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Abstract  

 

Although DFA is known to reduce the intensity of T. cruzi mice infection, the 
mechanism underlying this effect is still unclear and may involve host and 
parasite factors. To investigate the impact of DFA on mice disease outcome, on 
T. cruzi biology and on host biomarkers, disease and parasitological studies 
were performed. DFA treated animals presented lower cumulative mortality rate 
in long term infection and lower parasitemia in both short and long term 
infection. DFA inhibited amastigotes and trypomastigotes growth in fibroblast 
culture, decreased parasite mobility, induced minor parasite apoptosis but did 
not change viability measured by trypan blue staining. No effect was observed 
in iron metabolism markers, erythrogram, leukogram, lymphocyte subsets, 
except for an increase in lymphocyte counts at 7th d.p.i. The treatment in mice 
showed minor action on the cellular immune response of spleen.  Beneficial 
DFA effects on mice T. cruzi infection may be due to trypanostatic effect, 
independently of interference on host iron metabolism and with minor effects on 
lymphocyte subpopulation counts. 
 

 
 
 
 
Index Descriptors and Abbreviations: Trypanosoma cruzi (T.cruzi); 
Desferrioxamine (DFA), day post-infection (d.p.i),  intraperitoneally (i.p.), not-
infected with T. cruzi and not-treated with DFA (control); not-infected with T. cruzi 
and treated with DFA (control +DFA); infected with T. cruzi and not-treated with 
DFA (T. cruzi); infected with T. cruzi and treated with DFA (T. cruzi + DFA); 
serum iron binding capacity  (TIBC), and Benznidazole (BZ). 
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Introduction 

 

Desferrioxamine (DFA) is a potent iron chelator used clinically to remove 

both intra and extracellular iron (Keberle, 1964; Zanninell et al., 1997; Hershko 

et al., 1998) and is known to modulate inflammation. It is an efficient antioxidant 

under normal conditions and oxidative stress, functioning via iron chelation, free 

radical scavenging and lipid chain breaking (Minotti et al., 1987; Rachidi et al., 

1994).  

This chelator is produced by the bacteria, Streptomyces pilosus (Keberle, 

1964). It is a hexadentate hydroxamate that binds iron 1: 1 stoichiometric. DFA 

is hydrophilic and does not cross the cell membrane easily. It acts by chelating 

iron pools of the liver and the iron released by reticuloendothelial cells following 

hemoglobin breakdown (Fielding, 1965). The iron-bound complex, ferrioxamine, 

which has very high chemical stability, is excreted in urine or feces (White et al., 

1988; Donfrancesco et al., 1996; Richardson, 1997). Mobilization of low-

molecular-weight iron by DFA is rapid. Removal of iron from tissues or cells by 

DFA is believed to first involve the mobilization of iron from ferritin and 

hemosiderin. DFA, however, is ineffective in mobilizing iron from transferrin and 

lactoferrin, and mobilizes iron from ferritin and hemosiderin very slowly, taking 

days to complete (Kontogiorghes, 1995; Richardson, 1997). 

The utilization of chelators has been proposed as a strategy to interfere 

with the progression of a multitude of diseases such as cancer (Yu et al., 2006), 

infectious (Spellberg et al., 2005) and neurologic (Richardson, 2004) diseases, 

and atherosclerosis. 

 Many studies in vitro and in vivo have demonstrated that this chelator has 

been used in treatment of infection for protozoa. In protozoan diseases, iron 

chelator leads to growth inhibition effects in Plasmodium falciparum (Hershko and 

Peto, 1988) and in bloodstream forms of Trypanosoma brucei (Breidbach et al., 

2002) being also considered a promising drug against Toxoplasma gondii using 

mice model (Mahmoud, 1999). Studies in human malaria showed that the 

treatment with DFA alone or in combination with standard therapy enhanced the 

parasite clearance in asymptomatic and severe malaria (Traore et al., 1991; 

Gordeuk et al., 1992; Mabeza et al., 1996). 
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In experimental T. cruzi infection, the effect of iron chelation on disease 

evolution is dependent on parasite strain. Thus Pedrosa et al. (1990) 

demonstrated that, in comparison with a control group, mice infected with the 

YuYu strain developed a less severe form of the disease when treated on the 

5th dpi with DFA at a dose of 10 mg/mouse, whereas no differences were 

observed in animals infected with Y and CL strains. Arantes et al. (2007) 

showed that mice treated with DFA 14 days prior to infection with T. cruzi Y 

strain and for 21 days after infection, presented lower levels of parasitaemia 

and reduced rates of mortality compared with infected but untreated animals. 

Furthermore, the infected groups exhibited lower levels of iron in the liver 

compared with non-infected animals of both treated and untreated groups. The 

serum iron levels of the infected but untreated group were, however, higher on 

the 21st dpi in comparison with the infected and treated group and the control 

group. More recently, the association of DFA and Benznidazole, the only 

etiological treatment commercially available for the disease, showed high 

efficacy and a mortality rate of 0% in mice (Francisco et al. 2008). All infected 

groups presented lower levels of iron in the liver, and the serum iron 

concentrations were greater in the groups treated with DFA and the association 

DFA/Benznidazole compared to the infected group. 

Although clear evidence that DFA is able to reduce the intensity of 

infection by T. cruzi in mice, the mechanism of this effect is still unclear and 

may involve different mechanisms. Thus, the objective of this study was to 

demonstrate the impact of DFA in mice disease outcome, on T. cruzi biological 

and on host biomarkers. 
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Materials and methods  

Ethical issue: This research was reviewed and approved by in advance by the 

institutional Animal Care and Use Committee (CETEA 153/07). 

 

Impact of DFA in mice disease outcome 

 

Parasitemia and mortality in long term infection 

Swiss mice were treated with DFA 5 mg (n=10) or sterile water (n=10) daily by 

intraperitoneal (ip) route (0.05 ml) during 14 days before infection with 500 

blood forms of Y strain T. cruzi  and continuing up to 14  d.p.i. Parasitemia was 

checked and counted daily according to Brener (1962) methodology starting at 

fourth day after inoculation. Mortality was also observed daily. 

 

Impact of DFA on T. cruzi biological parameters 

 

T. cruzi growth inhibition assay  

 

Parasites and culture procedures: T. cruzi (Tulahuen strain) expressing the 

Escherichia coli beta-galactosidase gene were grown on monolayer of mouse 

L929 fibroblasts. Cultures to be assayed for beta-galactosidase activity were 

grown in RPMI 1640 medium (pH 7.2-7.4) without phenol red (Gibco BRL) plus 

10% fetal bovine serum and 2 mM glutamine. 

 

T. cruzi growth inhibition assay: In vitro assay with T. cruzi trypomastigotes and 

amastigote intracellular forms was performed according protocols established 

by Buckner et al. (1996) with modifications. Ninety-six-well tissue culture plates 

were seeded with L929 fibroblasts at 4.0 × 103 per well in 80 μl and incubated 

overnight. Beta-galactosidase- expressing trypomastigotes were then added at 

4.0 × 104 per well in 20 μl. After 2 h, the medium with trypomastigotes that not 

penetrated in cells was discarded and replaced by 200 μl of fresh medium. After 

48 h, the medium was discarded again and replaced by 180 μl of fresh medium 

and test compounds in 20 μl. The compound DFA – (Desferal, Novartis) was 

tested in triplicate in different concentrations (100, 50, 20, 10, 5 and 1 g/mL). 

After 7 days of incubation, chlorophenol red beta-D-galactopyranoside (CPRG) 
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(100 M final concentration) and Nonidet P-40 (0.1% final concentration) were 

added to the plates and incubated overnight at 37°C and the absorbance 

measured at 570 nm in an automated micro plate reader. Benznidazole (BZ) at 

its IC50 (1 g/ ml = 3.81 μM) was used as positive control. The results are 

expressed as percentage of trypanocidal activity (Oliveira et al., 2006). 

 

Mobility, viability (membrane integrity) and apoptosis assays  

  

Trypomastigotes of Y strain T. cruzi culture 
 
L929 cells were maintained in our laboratory by serial passages and kept frozen 

in liquid nitrogen. For the assays, 1x106 L929 cells were seeded in tissue 

culture flasks (Falcon 75 cm2) with 10 ml of DMEM medium (GIBCO, Grand 

Island, New York, USA) containing 10% FBS, and incubated at 37 °C in a 

humidified air containing 5% CO2. After 2 or 3 days, the monolayer was 

infected with 5×106 trypomastigotes of T. cruzi-Y strain obtained from 

experimentally infected mice (Brener & Chiari, 1963). Cultures were maintained 

in DMEM, 10% of FBS at 33 °C in 5% of CO2 at 95% humidity (Bertelli et al., 

1977). After 5– 6 days the trypomastigotes were harvested from the 

supernatant. Cell debris and amastigotes were removed by differential 

centrifugation at 100×g for 10 min at room temperature. Supernatant containing 

most of the parasites were centrifuged at 1000 ×g for 15 min at 4 °C. Pellet was 

washed three times in 0.15 M phosphate buffered saline, pH 7.2 (PBS) 

supplemented with 10% FBS. Cultures were performed under different 

conditions depending on specific assays. 

 

Mobility assay 

Trypomastigotes of T. cruzi -Y strain were cultured in the presence of different 

concentrations of DFA (1, 5, 10, 20, 10, 50 and 100 g/mL), gentian violet (50 

g/mL) or BZ (1 g/mL) for 1, 3, 6, 9 or 12 hours).  

For the determination of trypomastigote mobility, 10 L from suspension of 10 x 

106 parasites was applied to Neubauer chamber and the percentage of mobile 

parasites was calculated under light microscopy.  
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Trypan blue staining 

 Trypomastigotes of T. cruzi -Y strain were cultured in the presence of different 

concentrations of DFA (1, 5, 10, 20, 10, 50 and 100 g/mL), gentian violet (50 

g/mL), BZ (1 and 5 g/mL) or DFA (1, 5 and 10 g/mL) + BZ (1g/mL), for 0.5, 

1, 3, 6, 9 or 12 hours).  

For the determination of viability of trypomastigotes, 1 x 105 parasites were 

resuspended in PBS, 1µL of trypan blue 0.4% and incubated for 10 minutes at 

room temperature before analysis by flow cytometry. A total of 10 000 events 

were acquired and analysed using Flow-Jo software. The percentage of viable 

parasites (no staining by Trypan blue) was defined by histogram of trypan blue 

content (x-axis, trypan blue fluorescence) versus counts (y-axis). 

Annexin and PI staining 

Trypomastigotes of T. cruzi -Y strain were cultured in the presence of different 

concentrations of DFA (1, 5, 10, 20, 10, 50 and 100 g/mL), gentian violet (50 

g/mL), BZ (1 and 5 g/mL) or DFA (1, 5 and 10 g/mL) + BZ (1g/mL), for 0.5, 

1 or 3 hours).  

For this experiment, 1 x 106 parasites were resuspended in a Ca2+-enriched 

binding buffer (Apoptosis Detection Kit, Sigma, USA). Suspension of parasites 

were double stained with FITC-conjugated annexin V and PI for 10 min at room 

temperature and protected from light. They were immediately analyzed on flow 

cytometer in their staining solution. Annexin V and PI emissions were detected 

in FL-1 (band pass 530nm, band width 30nm) and FL-2 (band pass 585nm, 

band width 42nm) channels, respectively. Parasites showing no staining by 

either propidium iodide or annexin V-FITC was considered alive. Parasites 

stained with the annexin V-FITC alone were considered in early apoptotic 

process. Parasites stained by both propidium iodide and annexin V-FITC were 

considered dead. 

 

Parasitemia by short term infection 

Swiss male mice (n = 20) were inoculated with 50.000 blood forms of Y strain T. 

cruzi. At parasitemia peak (seven days after infection), animals were divided 

into 4 groups (n = 5) and treated with DFA, BZ or both, as outline below: 
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  Group 1: Controls (no treatment)  

  Group 2: Treated with DFA - 25 mg / kg  

  Group 3: Treated with BZ - 500 mg / kg  

  Group 4: Treated with BZ (500 mg / kg) and DFA (25 mg / kg)  

  

The number of circulating parasites was determined at the beginning of the 

experiment according to Brener (1962) and considered as a 100% match of 

parasitemia (time 0). Parasitemia was determined 3 and 6 hours after infection 

and drug administration and compared with time 0 to calculate the reduction 

percentage in circulating blood trypomastigotes number (Brener et al., 1984). 

  

Impact of DFA on host biomarkers 

 

Biochemical, hematological and immunological analysis of DFA treated 

mice 

Thirty-day old swiss mice (n=30) were treated with daily ip DFA 5 mg from 14 

days before infection with 500 blood forms of Y T. cruzi and continuing to 7, 14 or 

21 after infection. Control animals (n=30) received sterile water. 

Fifteen animals of each group were infected by ip injection of 500 bloodstream 

forms of the Y T. cruzi strain (Filardi & Brenner, 1984). 

Animals were divided in four experimental groups (n=15): not-infected and not-

treated (control); not-infected and treated (control +DFA); infected and not-treated 

(T. cruzi); infected and treated (T. cruzi + DFA).  

Animals were evaluated on the day of inoculum (0), 7th, 14th and 21st d.p.i. 

 

Biochemical analysis of iron metabolism (ferritin, serum iron, total iron-

binding capacity) 

 

Serum ferritin was determined by ELISA assay (Immunoperoxidase assay for 

determination of ferritin in mouse sera Kit #E-90F, Immunology Consultants 

Laboratory, Newberg, USA).  Serum iron was determined in nonhemolyzed 

serum samples by spectrophotometric analysis using commercially available kit 

(Ferrozine #38 Labtest, Lagoa Santa, Brazil) and employing an iron standard  of 

89.5 µmol/L.  The iron binding capacity was determined in nonhemolyzed serum 
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samples by spectrophotometric analysis using commercially available kit 

(Ferrozine #41 Labtest, Lagoa Santa, Brazil), and employing an iron standard of 

170 µmol/L. Total iron-binding capacity (TIBC) was calculated by  serum iron + 

CLLF ( latent capacity of iron binding). 

 

Mouse blood cell counts 

 

The blood cell counts were determined using an electronic hematology particle 

counter from ABC Vet (Horiba, ABX Diagnostics). Differential leukocyte count 

was performed by Giemsa stained blood smears and a total of 100 cells were 

counted. Blood was collected by orbital plexus puncture. 

 

 Flow cytometry immunophenotyping of cultured spleen cells  

Three animals from each group were sacrificed at different times of infection: 

day of inoculum Animals were evaluated on the day of inoculum (0), 7th, 14th 

and 21st d.p.i. 

 Spleen cell suspension 

The suspensions of spleen cells were prepared in accordance to Taylor et al., 

1987. The organ was immersed in cold RPMI 1640 (5 mL) in Petri dish and 

placed on ice for maceration. Fragments were pressed using blunt glass rod 

and then filtered on stainless steel gaze to obtain single cell suspension. The 

cell suspension was washed twice in RPMI-1640 and resuspended at a 

concentration of 1 x 107cells/mL. 

In vitro short-term culture of spleen cells 

 Suspensions of spleen cells were incubated in the presence of 1 mL of RPMI-

1640 (GIBCO, Grand Island, NY, USA) in polypropylene tubes (Falcon, BD 

Pharmingen) for 12 h at 370 C in a 5% CO2 humidified incubator followed by 

incubation with Brefeldin A (BFA) (Sigma, St Louis, MO, USA), at a final 

concentration of 10 µg/ml for an additional period of 4 h. 

Immunostaining for cell surface markers 

At the end of incubation period, cells were treated with EDTA (Sigma) at a final 

concentration of 20 mM for 10 min, at room temperature and washed once with 

FACS buffer (PBS 0.5% of bovine serum albumin, BSA; Sigma, pH 7.4), by 

centrifugation at 600 g for 7 min at room temperature, and resuspended to half 
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original volume with FACS buffer. Samples of 400 µL of cell suspension from 

cultures were dispensed into 5-ml polystyrene tubes (Falcon), each containing 3 

µL of anti-mouse CD4, anti- mouse CD8 and anti- mouse CD19 (Caltag 

laboratories) or 3 µL of anti- mouse CD49 (BD Pharmingem) labeled with FITC. 

After incubation for 30 min at room temperature in the dark, cell surface-stained 

samples were treated with 2 ml of FACS Lysing/fix Solution (BD Pharmingen), 

immediately vortexed and re-incubated for an additional period of 3 min. After 

this period, the suspension was centrifuged at 400 g for 10 minutes at room 

temperature, and the supernatant was removed. The cells were washed twice 

with 2 mL PBS (phosphate buffered saline 0.15 M, pH 7.2) and then fixed with 

100 μL of FACS FIX solution (10.0g/l paraformaldehyde, 10.2 g/l sodium 

cacodylate and 6.65 g/l sodium chloride). 

Flow cytometry acquisition and analysis 

Flow cytometry acquisition was performed using a FACScalibur flow cytometer 

(BD Pharmingen) considering a total of 30,000 events per tube. CELL QUEST 

software (Becton, Dickinson San Jose, CA, USA) provided by the manufacturer 

was used for data acquisition and analysis.  

 

 

Statistical analysis 

Statistical analyses of the data were carried out using GraphPad Prisma 

software (GraphPad Software 5.0, San Diego, CA, USA). Data were initially 

assessed by one-way analysis of variance (ANOVA) between days: when 

interactions were significant, the Tukey test was used to determine the specific 

differences between mean values. The results of differences between groups 

were statistically evaluated using unpaired Students t-test. Values are 

expressed as means ± standard deviation: differences in mean values were 

considered significant at the p < 0.05 level.  
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Results  

1. Impact of DFA in mice disease outcome 

 

Considering the complex network triggered during T. cruzi infection, several 

factors including those related to the parasite and those inherent to host 

immune response could be associated with different disease outcome observed 

following DFA treatment. 

 

To further focus this phenomenon, we have investigated parasite and host 

parameters aiming to identify mechanisms underlying the DFA impact in the 

course of T. cruzi infection. 

 

1.1 DFA reduces parasitemia and mortality in Y strain T.cruzi infected 
mice  

 

Animals were treated with DFA 5 mg or sterile water daily by intraperitoneal (ip) 

route (0.05 ml) during 14 days before infection with 500 blood forms of Y strain 

T. cruzi and continuing up to 14 d.p.i 

At 14 days post infection, a decrease in parasitemia and in mortality was seen 

in DFA treated mice (p<0.05) (Figure 1a). The average parasitemia value in 

DFA group mice (46,444 trypomastigotes/0.1 ml of blood)  was 5.4 times lower 

than in control group (250,444 trypomastigotes/0.1 ml of blood) (p< 0.05). 

It was observed that 67% of the animals in the control group died, whilst the 

death rate in the DFA group was 33% (p<0.05). 

  

2. Impact of DFA on T. cruzi biological parameters 

 

2.1 DFA decreases parasite growth in in vitro fibroblast culture and 

mobility of trypomastigotes in culture 

 

Using fibroblast culture, we evaluated Y strain T. cruzi growth in the presence of 

DFA. The activity of the DFA, shown grown inhibition of amastigotes and 

trypomastigotes, is presented in Figure 1b. Using here benzonidazol as a drug 

control, the chelator was shown to be active in a dose of 100 µg/mL (IC 50). In 
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this concentration of DFA, the percentage of reduction of parasites was 49%, 

whereas treatment with BZ (1 µg/mL) was reduced in 93%. 

Since DFA was not very active in decreasing in vitro parasite growth, we 

decided to investigate a putative trypanostatic action. To test the effect of DFA 

on parasite motility, we counted the number of mobile trypanosome in the 

supernatant of L929 cells, using different concentrations of DFA (1, 5, 10, 20, 

50 and 100 g/mL) and times of incubation (1, 3, 6, 9 and 12 hours) (Figure 

1c). After 1 hour incubation, no difference was seen among all groups. 

After 3 hours of incubation, DFA in concentrations higher than 10 g/mL 

showed more efficiency than BZ 1 g/mL in reducing parasite motility (p<0.05). 

After 6 hours incubation, this difference was not observed. Gentian violet was 

used as positive control. 

 

2.2 DFA does not alter membrane integrity and induces minor apoptosis 

 

Membrane integrity was analyzed by trypan blue staining.   

Infected L929 cells were cultured in the presence of different concentrations of 

DFA (1, 5, 10, 20, 50 and 100 g/mL) or BZ (1 and 5 g/mL) and times of 

incubation (0, 0.5, 1, 3, 6, 9 and 12 hours). Trypomastigotes from supernatant 

were stained with trypan blue. 70-90% of parasites remained viable in all tested 

concentrations of DFA or BZ, with no difference between groups (Table 1). 

 

Apoptosis induced by DFA was assessed by phosphatidylserine externalization. 

Similarly to the results of viability by flow cytometry, the majority the 

tripanosomes treated with DFA showed no staining by either propidium iodide 

or annexin V-FITC up to 3 hours of incubation (Figure 2), suggesting parasite 

preservation. As propidium iodide is a membrane-permeable nuclear stain, 

these results also point toward membrane integrity. In the other side, all dead 

parasites treated with DFA showed phosphatidylserine externalization. 

2.3 DFA reduces parasitemia in in vivo short time test  

 

Animals were infected with 50.000 parasites and treated with DFA (25 mg/kg) 

and/or BZ (500mg/kg) (Figure 3). Parasitemia, 3 hours after infection, was 
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significantly reduced in DFA (65.11%), BZ (65%) and DFA + BZ (89.9%) treated 

mice. Nevertheless, 6 hours after infection, only BZ or DFA + BZ treated 

animals persisted with lower parasitaemia.  

 

3. Impact of DFA on host biomarkers 

3.1. DFA does not affect host iron metabolism 

To investigate if the effect of DFA on disease progression was due to host iron 

metabolism impairment, we analyzed ferritin, serum iron and total iron-binding 

capacity (TIBC) levels in infected and DFA treated animals. Unexpectedly, 

these parameters did not differ between groups (Figure 4), suggesting that DFA 

effect on parasite was not dependent on host iron metabolism. 

 

3.2 DFA does not alters mouse blood cell counts and lymphocytes 

subpopulation 

The effect of DFA in blood cells was also investigated. The results of mouse 

blood cell counts are presented in tables 2 and 3. 

No difference on erythrogram (erythrocytes, hemoglobin, hematocrit) and 

platelet counting was seen.  

The results of differential leukocytes counts showed that T. cruzi + DFA animals 

showed higher percentage of lymphocytes compared to T. cruzi group in 7th  

d.p.i. 

To further characterize the effect of DFA in lymphocyte subpopulation, we 

performed immunophenotypical analysis of spleen cells.  

In figures 5 and 6, phenotypic profiles of splenic lymphocytes populations from 

different experimental groups were presented. NK cells (CD49+), T lymphocytes 

(CD4+ + CD8+), B cells (CD19+) and T cell subpopulations (CD4+ and CD8+) 

were analyzed. 

No difference was seen between groups, although longitudinal differences were 

noted inside each group. In the control group, a decreased in populations of B 

cells at 21st d.p.i compared to 7th  d.p.i. was observed. In control + DFA group, 

an increased in NK cells populations was observed at 14th  and 21st d.p.i in 

comparison to 7th  d.p.i.  T cells populations showed an increased at 21st d.p.i 

compared to day 0 and 7th  d.p.i.  In CD8+ T cells populations an increased at 

14th  and 21st d.p.i in relation to the 7th  d.p.i. was observed. However, for the 
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populations of B cells a decreased was observed at 21st d.p.i compared to 7th  

d.p.i. 

 In T. cruzi group, an increased in NK cells population was observed at 7th and 

21st d.p.i compared to day 0. The populations of T cells showed an increased at 

21st d.p.i compared to 14th d.p.i and day 0.  In populations of CD4+ T cells was 

observed an increased at 21st d.p.i in relation to the 7th d.p.i. It was observed in 

populations of CD8+ T cells an increased in the 21st d.p.i compared to 14th d.p.i 

and day 0 and a decreased in the 14th d.p.i compared to day 0. However, for the 

populations of B cells was observed a decreased in the 21st d.p.i compared to 

14th d.p.i and day 0. 

 In the T. cruzi + DFA group was observed an increased in the populations of T 

cells in the 21st d.p.i in compared to 7th d.p.i and day 0. In populations of CD8 +T 

cells was observed an increased in the 21st d.p.i in relation to the 7th d.p.i and a 

decreased in the 7th d.p.i compared to day 0. However, for the populations of B 

cells was observed a decreased in the 21st d.p.i compared to 7th d.p.i. 
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 Discussion 

 

Although clear evidence that DFA is able to reduce the intensity of 

infection by T. cruzi in mice, the mechanism of this effect is still unclear and 

may involve host and parasite factors. 

In this paper, parasitemia and mortality data demonstrate that the 

intensity of mice infection by Y strain was attenuated by DFA treatment. These 

results are in agreement with our previous study that demonstrated reduced 

parasitemia and mortality in mice treated with DFA and infected with Y strain of 

T.cruzi (Arantes et al., 2007; Francisco et al., 2008). 

In evaluating of impact of DFA on T. cruzi biological parameters, this is 

the first study that shows the activity of DFA (100 g/mL) directly on T. cruzi  

forms, indicating that DFA can have other mechanisms of action besides iron 

depletion. 

 Since DFA was not very active in decreasing in vitro parasite growth, we 

decided to investigate the capacity of DFA in damaging membrane integrity of 

trypomastigotes. We found that DFA does not induce parasite death. So we 

searched a putative trypanostatic action. A decrease in motility was observed 

when trypomastigotes were culture in the presence of DFA. This result is of 

great importance. Little is known about DFA activity on T. cruzi and this 

decrease can come to be a major step in the mechanism of action of DFA on 

parasite in vitro.  DFA initially can lead to static effect on the parasite in culture 

and we came assume that the initial contact with parasite, others mechanisms 

of action may be involved. Effects on motility are observed in parasites with the 

use of certain drugs. Grimm et al., 2001, demonstrated effect leishmaniostatic in 

flow cytometry analysis.  

It is the first paper that shows a possible involvement of apoptosis as 

possibly mechanism of DFA action in Trypanosoma cruzi.  In this work, T. cruzi 

induces minor apoptosis with the utilization of DFA and others works should be 

conducted to demonstrate this possible mechanism in this parasite. 

Flow cytometry has become the method of choice for the analysis of apoptosis 

in a variety of cell systems (Darzynkiewick et al., 1997; Lecoeur et al., 1997). 

Multiparameter analysis combines immunocytochemical detection of individual 

proteins with apoptotic markers and DNA analysis. It is a powerful approach to 



 16 

characterize cells committed to apoptosis and to define the components of the 

cell death machinery (Petit et al., 1995; Darzynkiewick et al., 1997; Lecoeur et 

al., 1997; Lecoeur et al., 1998; Bedner et al., 1999). Apoptotic cells exhibit an 

early loss of phospholipid asymmetry, leading to the exposure of PS residues 

on the outer layer of the plasma membrane (Fadok et al., 1992). Because 

annexin V binds to negatively charged phospholipids such as PS, FITC-

conjugated annexin V is classically used to identify apoptotic cells by flow 

cytometry (Vermes et al., 1995). During apoptosis, the cells become reactive to 

annexin V prior to the loss of both plasma membrane integrity and the ability to 

exclude PI. By staining the cells with a combination of annexin V and PI, both 

apoptotic cells (annexin V1/PI-) and apoptotic necrotic cells (annexin V1/PI1) 

are detected. The annexin V1/PI- phenotype specifically identified apoptotic 

cells. 

 In vivo, using higher number of parasite inoculum, we tested in a short 

period of time the sensibility of T. cruzi to DFA. In 3 hours after infection, DFA 

was effective in reducing parasitaemia, demonstrating your direct action on the 

parasite. This result showed correlation with the reduction of parasitaemia of the 

prolonged treatment with DFA. Breidbach et al. (2002) evaluated the inhibition 

of the blood forms of Trypanosoma brucei by the DFA, and noted that the 

incubation of parasites with the chelator led to inhibition of DNA synthesis and 

oxygen consumption, indicating that the DFA can affect ribonucleotide 

reductase and alternative oxidase. In 6 hours, the DFA was not effective and 

this is probably due to the short half-life in plasma and rapid metabolism of DFA 

(Aouad et al., 2002). The results obtained with this method show a fairly good 

correlation with those obtained by prolonged treatment in this paper and 

schedules used to assess the action of drugs in experimental Chagas’ disease 

(Filardi & Brenner, 1984). 

Through the mechanism the action of iron chelator, in this work was 

expected to decrease the levels of ferritin, serum iron and TIBC in groups 

receiving treatment with DFA, which in fact did not occur, showing that DFA 

effect on parasite was not dependent on host iron storages, this way, not 

decreased these levels. 

  The infection with parasites can alter the levels of host iron storages. 

Serum ferritin level is said to be useful for diagnosis of iron deficiency anemia, 
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metabolism disorder and malignant tumor. Ferritin may also be an acute-phase 

protein and is often elevated in the course of disease. Recent studies have 

demonstrated new roles for ferritin, primarily related to immunity and auto-

immunity (Recalcati et al., 2008). The concentration of serum iron is altered in 

the presence of infectious processes, can reduce a few hours after the 

development of an infection (Cook et al., 1992., Worwood, 1995). The TIBC 

they can increase before the reserves of iron are completely exhausted, 

reflecting depletion of reserves, however, is less sensitive than ferritin (Cook, 

1992).  

In the work carried out by Pedrosa et al. (1990), the reduction of serum iron in 

mice treated with DFA and infected by Y, CL and YuYu strains of the T. cruzi 

was not verified. Lalonde and Holbein (1984) demonstrated that no significant 

changes occurred in the levels of iron in serum of mice not-infected by T. cruzi 

and treated with DFA, while the infected and treated animals had presented 

sufficient iron supplies to keep a normal immune response. Arantes et al. 2007 

observed that the serum iron levels of the infected/non-treated group were 

higher on the 21st day post-infection in comparison with control and 

infected/treated groups. Francisco et al. 2008 showed that serum iron 

concentrations were greater in group treated with DFA and the association 

DFA/Benznidazole compared to the infected group. 

These results show that DFA failed to reduce the bioquimical iron levels of the 

host. In this work the DFA did not lead to a deficiency of iron in the host. 

  The DFA in this work does not alter the levels of hemoglobin, erythrocyte, 

hematocrit and platelets of mice infected or not by T. cruzi. Pedrosa et al. 

(1990) evaluated the iron deficiency in mice and correlated the effect of this 

deficiency with the evolution of Chagas’ disease. The authors showed that the 

hypohemoglobinemia presented for the host was permanent in the group of 

mice fed with diet without iron, probably because it’s the low supplies had not 

been enough to compensate the erythropoiesis that follows the anemia. In 

animals infected with CL and Y strain and treated with DFA the iron probably 

was recovered of the hemoglobin suggesting that this treatment did not 

intervene with the necessities required for erythropoiesis. Arantes et al. 2007 

only observed differences in hemoglobin levels between infected and treated 
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with DFA group compared with control treated group in 21 dpi, demonstrating 

no differences between infected treated and infected not treated group.  

 Since the discovery of Chagas disease 100 years ago, few studies have 

explored the causes of anemia associated with T. cruzi infection. Mice 

inoculated with different strains of the T. cruzi present intense thrombocytopenia 

(Cardoso et al., 1980) and neutropenia following by neutrophilia and 

eosinophilia (Repka et al, 1985). A similar hematological alteration have been 

also described in experimental African trypanosomiasis (Ikede et al., 1977) and 

is a common characteristic of human immunodeficiency virus infection (Claster, 

2002) and malaria (Weatherall et al., 2002 & Paul et al., 2003). Marcondes et al. 

2000 showed that experimental acute T. cruzi infection is associated with 

anemia, thrombocytopenia, leukopenia, and bone marrow hypoplasia and that 

these alterations can be prevented by nifurtimox (an anti-trypanosomal drug) 

treatment. However, the mechanisms responsible for these hematological 

alterations are not well understood. Recently, Stijlemans et al. 2008 

demonstrated that during the acute and chronic phase of experimental 

Trypanosoma brucei infections that liver-associated erythrophagocytosis 

mediated by cytokine-activated macrophages is the most likely main initiating 

event of aggressive anemia during the acute phase of infection. Persistence of 

strong type I cytokine production during the chronic phase of infection leads to 

hyper-activated macrophages cells and a more progressive anemia. 

 In this paper, the animals infected and treated com DFA (T.cruzi + DFA) 

showed a higher percentage of lymphocytes in7th d.p.i may be more effective in 

controlling the infection by the response of your immune system, together with 

the direct action of the DFA on the parasite. The treatment with DFA had an 

impact on immune response in splenocytes of non-infected animals, increasing 

the population of NK, T cells and CD8+ T cells cells throughout the treatment 

course. In infected animals, DFA had a direct impact on the cellular immune 

response, increasing the population of T cells and CD8+T cells and this may be 

related to decreased levels of parasitemia and increased survival rate. 

Although little is known about the effect of DFA on the immune system of 

mice infected with T. cruzi, in previous study our research group observed in 

mice infected and treated with DFA an increase in weight of spleen, liver and 

lymph nodes in relation to their respective control in the 14th d.p.i. In the 21st 
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d.p.i, there was an increase in relative weight of these organs only in the 

infected non-treated group. Possibly this early action of DFA allows the infected 

animals to mount more effective immune response, increasing their survival 

(unpublished data). 

The development of a strong cellular immune response is a key factor in 

the control of T. cruzi infection. This occurs by the activation of a complex 

integrated immune response which involves cells from the innate and adaptive 

immune systems (Golgher and Gazzinelli, 2004).  

Natural killer cells (NK) are essential for defense against infection induced by T. 

cruzi (Cardillo et al., 1996). Infection with T. cruzi results in augmentation of NK 

cell activity (Brodskyn et al., 1996). Also, NK cell depletion results in increased 

susceptibility to T. cruzi infection (Cardillo et al., 1996). Besides cytotoxic 

activity and cytokine secretion, NK cells can control B cell Ig secretion (Gray et 

al., 1995).  

As part of experimental T. cruzi infection, some typical alterations concerning 

the immune system are observed, such as polyclonal B and T lymphocyte 

activation in secondary lymphoid organs, hypergammaglobulinemia, and 

immunosuppression towards homologous and heterologous antigens (Minoprio 

et al., 1989). Despite these abnormalities, specific immune responses can 

proceed to control parasitaemia, and the participation of T lymphocytes 

essential in this process as well as in the inflammatory response 

(Kierszenbaum, 1995).  

The induction of protective immunity seems to be related to CD4+T cells, as 

depletion of this subset leads to decreased inflammation and concomitant high 

levels of parasitaemia and tissue parasitism (Tarleton, 1995). In humans and 

mice, CD4+ lymphocytes produce substantial quantities of gamma interferon 

(IFN-γ), which is important to both the humoral and cellular immune responses 

(Reed, 1998). In vivo parasite replication can be controlled by CD8+ T 

lymphocytes, important producer of IFN-γ. In fact, mice lacking CD8+ T 

lymphocytes are more susceptible to infection, showing higher levels of 

parasitaemia and tissue parasitism yet displaying less inflammation in cardiac 

tissue (Tarleton et al., 1992). The B cells have important functions during the 

acute phase of an intracellular parasite infection, by regulating the pattern of the 
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T-cell mediated immune response and/or the functional phenotypes of 

effector/memory CD8+ T cells (Cardillo et al., 2007). 

 In the present work, we observed that DFA was able to decrease 

parasite growth in in vitro fibroblast culture and mobility of trypomastigotes in 

culture, demonstrated the direct action on the parasite. In the animal model, the 

action of the DFA was independent of the effect on the homeostasis of iron 

metabolism. Infected animals treated with DFA showed lower parasitemia and 

mortality rates remain unchanged in spite of markers related to the dynamics of 

iron metabolism, such as levels of serum iron, ferritin, transferrin binding 

capacity and erythrocyte indices. These findings may indicate that the sensitivity 

of the parasite to the unavailability of micronutrients is larger than the host cell. 

However further analysis are still necessary to investigate the impact of DFA on 

the immunological status with involvement cytokine production following T. cruzi 

infection on were as it’s relevant in the context of BZ chemotherapy. 
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Legend: 
 
Figure 1- a) Swiss mice (n=20) were inoculated with 500 T. cruzi Y strain 

trypomastigotes and received no treatment (control) or DFA for up to 28 days 

from 14 days before infection. Parasitaemia and mortality were obtained at 14 

days after infection. b) T. cruzi (Tulahuen strain) expressing Escherichia coli 

beta-galactosidase gene was cultured for 4 days in L929 fibroblasts in the 

presence of different concentrations of DFA. Trypanocidal activity was 

calculated by b-galactosidase activity. The results are expressed as percentage 

growth inhibition. BZ was used as positive control. c) Y strain trypomastigotes 

were cultured in L929 cells in the presence of different concentrations of DFA 

and had their motility evaluated after 1, 3, 6, 9 and 12 hours. BZ and gentian 

violet were used as control.  

 

Figure 2- Trypomastigotes cells were cultured in L929 cells in the presence or 

not of DFA.  BZ and gentian violet were used as control. Suspension of 1 x 106 

parasites was double stained with FITC-conjugated annexin V and PI. Parasites 

showing no staining by either annexin or PI were considered alive (white). 

Parasites stained with the annexin alone were considered in early apoptotic 

process (black). Parasites stained by both PI and annexin were considered in 

late apoptotic process (light gray). Parasites stained with PI alone were 

considered dead (dark gray). 

 

Figure 3- Swiss mice (n=20) were inoculated with 50.000 T.cruzi Y strain 

trypomastigotes and received no treatment (control), DFA 25mg/kg, BZ 500 

mg/kg or BZ 500 mg/kg + DFA 25  mg/kg. Parasitemia was estimated before, 3 

and 6 hours after treatment. 

 

Figure 4- Swiss mice (n=30) were (T. cruzi) or not (control) inoculated with 500 

T. cruzi Y strain trypomastigotes and received no treatment or desferrioxamine 

(DFA) for up to 35 days from 14 days before infection. Levels of ferritin, serum 

iron and capacity iron binding were measured before, 7, 14 and 21 days after 

infection. Values shows are means± SEM. 
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Figure 5- Swiss mice (n=30) were or not inoculated with 500 T. cruzi Y strain 

trypomastigotes and received no treatment or desferrioxamine (DFA) for up to 

35 days from 14 days before infection. Splenocytes were cultured for 12 hours 

in culture medium and stained for NK cells (CD49), T cells (CD4+CD8) and B 

cells (CD19). 

 

Figure 6- Swiss mice (n=30) were or not inoculated with 500 T. cruzi Y strain 

trypomastigotes and received no treatment or desferrioxamine (DFA) for up to 

35 days from 14 days before infection. Splenocytes were cultured for 12 hours 

in culture medium and stained with anti-CD4 and anti-CD8. 

 

 

 

 
 
 
 

 


