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Abstract 14 

Background: More data-driven evidence is needed on the cost of antibiotic resistance. Both Japan 15 

and England have large surveillance and administrative datasets. Code sharing of costing models 16 

enables reduced duplication of effort in research. Objective: To estimate the burden of antibiotic-17 

resistant Staphylococcus aureus bloodstream infections in Japan, utilizing code that was written to 18 

estimate the hospital burden of antibiotic-resistant Escherichia coli bloodstream infections in 19 

England. Additionally, the process in which the code-sharing and application was performed is 20 

detailed, in order to aid future such use of code-sharing in health economics. Methods: National 21 

administrative data sources were linked with voluntary surveillance data within the Japan case study. 22 

R software code, which created multistate models to estimate the excess length of stay associated 23 

with different exposures of interest, was adapted from previous use and run on this dataset. Unit costs 24 

were applied to estimate healthcare system burden in 2017 international dollars (I$). Results: Clear 25 

supporting documentation alongside open-access code, licensing and formal communication 26 

channels, helped the re-application of costing code from the English setting within the Japanese 27 

setting. From the Japanese hospital perspective, it was estimated that there was an excessis a cost of 28 

I$6,3927,000 per S. aureus bloodstream infection (compared to no infection), whilst oxacillin 29 

resistance was associated with an additional excess cost of I$8,15510,000. Conclusions: S. aureus 30 

resistance profiles other than methicillin may substantially impact hospital costs. The sharing of 31 

costing models within the field of antibiotic resistance is a feasible way to increase burden estimates 32 

efficiently, allowing for decision makers (with appropriate data available) to gain rapid cost-of-illness 33 

estimates.  34 

 35 
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 36 

1 Introduction 37 

Health economics and outcomes research related to infectious disease often needs to take into 38 

account unique factors that can lead to increasingly complex statistical and economic methodology 39 

[1].[1] Cost-effectiveness models of interventions related to infectious disease should (generally) 40 

account for infectious disease transmission dynamics [2],[2] whilst costing studies related to 41 

healthcare-associated infections should account for factors such as time dependency bias. Time 42 

dependency bias describes a bias that arises when the time of infection isn’t fully taken into account 43 

when attributing hospital costs to a condition [1]. For example, if a full hospital stay was attributed to 44 

a methicillin-resistant Staphylococcus aureus (MRSA) infection, but the patient only contracted 45 

MRSA after being in hospital for ten days, you are wrongly attributing ten days of hospital costs to 46 

that MRSA infection. Estimating the cost of such infections accurately is key to ensuring robust cost 47 

parameters are utilized in cost-effectiveness analyses. Current literature has focused on estimating the 48 

impact of methicillin resistance, as opposed to also estimating the burden of other antibiotic 49 

resistance profiles relative to S. aureus infections [3, 4]. [3, 4] 50 

Accounting for time dependency bias, whilst also adjusting for other key factors like patient age 51 

and/or comorbidity, requires the use of models such as sub-distribution hazard models[5] or adjusted 52 

multistate models.[6] In order to apply such techniques, a flexible data analysis software environment 53 

is needed.[6] Similarly, building cost-effectiveness models which account for transmission of 54 

infections, potentially between patient populations and environments, requires more flexibility in the 55 

model building process. These factors have played a part in the increase in the use of R, an open-56 

source software environment that allows users to build complex health economics models directly or 57 

easily adapt the previous work of other users [7–9].[7–9]  58 

There are two main ways in which health economists can utilize and build upon the work of previous 59 

colleagues when constructing models in R; the first is through downloading “packages” directly from 60 

the host of R code (‘The Comprehensive R Archive Network’) [10],[10] the second is downloading 61 

available code from code-sharing sites [11].[11] Packages are, in essence, downloadable scripts of 62 

code performing defined functions (such as de-duplicating datasets), with documentation available 63 

online explaining the usability of such functions [10]. Code shared via open-access, code-sharing 64 

websites can provide the same service, however can be more informal. Additionally, researchers may 65 

choose to share code on such sites not as a way to share defined ‘reproducible’ functions for future 66 

analyses, but rather to be transparent in the data analysis or modelling procedures used in relevant 67 

published manuscripts.  68 

The practice of using code- sharing sites for collaboration and transparency should, theoretically, 69 

reduce time spent on duplication of basic code, increase efficiency in building health economic 70 

models within the field of infectious disease and increase robustness of such models (due to potential 71 

critique through increased transparency). As the use of R for health economic models continues to 72 

grow, and with the addition of health economics package collations pages such as “Health 73 

Economics R Packages” available online [12, 13] being compiled within GitHub [12], we wanted to 74 

show the potential advantage of code sharing in health economics applied to infectious disease.  75 

Both Japan and England have large, infection surveillance and hospital administrative data sets [9, 76 

14]. Therefore, this short commentary piecereport discusses the process and subsequent results of an 77 

international collaboration in which Japan-based health economists estimated the hospital cost of 78 
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bloodstream infections using England-based equivalents’ R code [9], shared through GitHub [15]. 79 

The objectives of this brief report were to; (i) describe the code sharing process used to estimate cost 80 

of infections across two different, high-income country settings; and (ii) describe the top-line results 81 

of the analysis in Japan for a range of antibiotic resistance profiles. 82 

2 Methods 83 

2.1 Process Methodology 84 

Research was previously conducted to estimate the health and cost burden of antibiotic-resistant and 85 

antibiotic-susceptible Escherichia coli bloodstream infections in the English secondary care setting, 86 

using national administrative and surveillance datasets [9], this will be referred to as ‘the English 87 

study’. As some of these infections occur during a patient’s hospital stay, time dependency bias had 88 

to be taken into account, and as such multistate models were built to estimate excess length of 89 

hospital stay (LoS) associated with E. coli bloodstream infections [1].  90 

 91 

Multistate models estimate LoS as a function of (i) the number of people within each health state 92 

(such as number of patients in the infected state) and (ii) the number of transitions between health 93 

states (such as number of patients moving from infected to discharged) for specified time intervals 94 

(such as days) [16]. The English study utilised R software to construct these models, specifically 95 

using the “etm” and the “mvna” packages [17, 18]. As these R packages allowed for a maximum of 96 

one exposed group and non-exposed group to be compared at a time, models were constructed that 97 

first compared infected with non-infected patients, and then compared antibiotic resistant infections 98 

with antibiotic susceptible/intermediate infections for different antibiotics of interest [9]. Detailed 99 

methodology can be found within the related publication [9]. 100 

 101 

The English study utilised R software, and R packages such as ‘survival’ [16], to clean and analyse 102 

the data.  103 

The related code was subsequently deposited (open- access) to GitHub [15]. The relevant GitHub 104 

repository included the R scripts used within the data analysis on the English datasets, a data 105 

dictionary detailing the key variable definitions and a codebook which describes what the R scripts 106 

intend to do. This code was then downloaded by colleagues within the Japan study, adapted where 107 

needed, and utilised on Japanese hospital data to estimate the cost burden of antibiotic-resistant 108 

Staphylococcus aureus bloodstream infections. This will be referred to as ‘the Japanese study’.  109 

 110 

To begin the code application within the Japanese study, the code was downloaded and tested by 111 

health economists. Subsequently a meeting was held with colleagues across the partnering 112 

institutions to go through the code and its application within the Japanese study. Whilst a face-to-face 113 

(or virtual) meeting is not a necessity, the authors found it an efficient way of dealing with nuances 114 

of the code application to different data sources.  115 

 116 

2.2 The Japanese Study 117 

Copies of datasets from participating hospitals of The Japan Nosocomial Infections Surveillance 118 

(JANIS) system, a Japanese governmental surveillance system, were utilised as the data source for 119 

this analysis. JANIS is a voluntary surveillance system which covers around 30 % of Japanese 120 

hospitals [19]. These bacterial surveillance data collected from hospitals (JANIS dataset) were linked 121 

to administrative data; Diagnosis Procedure Combination (DPC) data, also collected from these 122 
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hospitals to obtain admission, discharge and patient data (JANIS-DPC database [4]).  The Ethics 123 

Committee, Graduate School of Medicine, Kyoto University approved the study (reference - R0577). 124 

 125 

Acute care hospitals (most of which are educational hospitals) were included in this analysis, 126 

including private, public, and university hospital throughout Japan. This is a similar setting to the 127 

English study, which was based in acute care National Health Service (Foundation) Trusts.  Adult, 128 

patient data on S. aureus bloodstream infections were extracted from the JANIS dataset between 129 

April 2014 and March 2016., This representeding two Japanese, fiscal years. Definitions of antibiotic 130 

resistance were in line with the JANIS data definition, which is line with governmental guidance 131 

[20]. Antibiotic resistance impact was investigated in relation relating to first-generation 132 

cephalosporin, carbapenem, gentamicin, fluroquinolones and penicillin (including methicillin and 133 

oxacillin), as these are important classes with resistance case numbers greater than 1,000. 134 

Additionally, oxacillin was selected by the Japanese study as a key antibiotic to test individually. 135 

‘Not-tested’ was included in our non-exposed controls, allowing for use of all available data and 136 

consistency with the English study [9]., this may lead to conservative results as bloodstream 137 

infections resistant to exposures of interest (but not tested) could be wrongly placed within the non-138 

exposed category, however this is consistent with the English study. 139 

 140 

Multistate models were then used to estimate the excess LoS of S. aureus bloodstream infections, as 141 

done in previous analyses [3, 8, 9]. Figure 1 depicts the structure of these. Cumulative transition 142 

hazards representing the movement between states were calculated using the data provided. These 143 

were then used to estimate ‘expected LoS’ on each day (t) [16, 21]. These estimates for each day (e.g. 144 

expected LoS for infected patients minus expected LoS for non-infected patients on t=2) are then 145 

averaged across all days of the study period (weighted by frequency of events) to get an estimate of 146 

average excess LoS [7].  Artificial censoring was used to reduce the impact of outliers on multistate 147 

model results [3]. The artificial censoring time was moved from 45 days (from the English study) to 148 

90 days (for the Japanese study), due to the longer average inpatient LoS for Japanese hospital 149 

patients. For example, a recent OECD report has stated that average LoS for acute care in Japan in 150 

2017 (16.5 days) was much higher than in the UK (6.9 days respectively) [22].  [4, 9].   151 

 152 

To estimate costs from the healthcare system perspective, the unit cost of an excess bed day was 153 

applied to excess LoS estimates. The most applicable cost found was  the World Health Organisation 154 

(WHO) estimation of a cost per inpatient bed day for Japan [514.26 in 2010 international dollars 155 

(I$)], which was estimated as part of the WHO-CHOICE estimates of cost for inpatient and 156 

outpatient health service delivery [23] an estimate of $649 (USD) per marginal bed day, taken from a 157 

report focusing on estimating the cost of healthcare-associated infections in Asia-Pacific Economic 158 

Cooperation countries [20].  This 20103 cost was converted to Japanese Yen using purchasing power 159 

parity (PPP) [24] [23], inflated to 2017 costs using the consumer price indicesthe Gross Domestic 160 

Product implicit price deflator [25][24], then converted back to I$ international dollars (I$) using PPP 161 

[24][25]., to giveThis gave an an estimate of $551688 per day (2017 I$).  This process of cost 162 

conversion is in line with guidance that has been previously published [26, 27].  163 

Descriptive statistics were summarized, with median and interquartile ranges used for continuous 164 

variables, and proportions (represented by percentages) used for categorical variables. 165 

3 Results 166 

3.1 Process Results 167 
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Researchers from the English study cleaned the R script code, wrote a corresponding data dictionary 168 

and relevant codebook to explain the R scripts. These were then uploaded to a code sharing website 169 

[15]. Researchers in the Japanese study downloaded this code and began to adapt according to their 170 

exposures of interest and the data available. For example, variable names within the cleaning code of 171 

the English study needed to be adapted to match the variables names in the linked JANIS-DPC 172 

database. Colleagues leading the Japanese study were familiar with the datasets, enabling an 173 

understanding of how to adapt data formats to fit into the coded structure fairly quickly. Harmonizing 174 

data structures is key in applying code that was built for other analyses, and determination as to 175 

whether key variables are present in the application dataset is needed as a first step. 176 

R scripts that created time-dependent data sets (i.e. accounted for the time between admission and 177 

infection for hospital-onset infections), created multistate models to estimate excess LoS were 178 

downloaded, adapted and run in the Japanese study. Subsequently, licensing information for the code 179 

was added to the English study code [15], and should be added in future coding uploads of this 180 

nature, to reduce legal ambiguity on the source code [28]. 181 

Clear annotation of code, and consistent labelling of particular processes was noted as highly useful 182 

for the Japanese study when utilizing the English study code. Throughout the data cleaning and 183 

analyses, the data dictionary and codebook were noted as being instrumental in aiding the adaptation 184 

of variable names and R code processes to fit the Japanese data.  185 

This process led to time-efficient cost estimates for S. aureus being available, with reduced time 186 

spent on initial data cleaning and basic analysis coding for the Japanese study.  187 

3.2 The Japanese Study Results 188 

4,017 S. aureus bloodstream infection inpatient spells were included in the analysis. To estimate the 189 

excess LoS of these infections, these spells were compared to 1,215,119 patient spells which were 190 

not related to S. aureus bloodstream infections. Descriptive statistics are presented in Table 1 below, 191 

in which you can see over 25% of exposed patient spells resulted in in-hospital mortality, compared 192 

to less than 5% in the non-exposed group.  193 

Initial results showed that S. aureus bloodstream infections, when accounting for time dependency 194 

alone, were associated with an excess length of hospital stay by an average of 11.6 days. This 195 

increase in hospital stay translated into an excess cost Japanese hospitalsof over I$6,392  7,000 per 196 

infection, when applying the unit cost of a bed day (as described in the methods section). (Table 2). 197 

Additionally, an S. aureus bloodstream infection resistant due to oxacillin was over $10,000 more 198 

costly (per infection) than its oxacillin-susceptible equivalent.  Resistance to all tested antibiotics was 199 

associated with an excess LoS of over 10 days. The resistance exposures that had the largest absolute 200 

associationeffect were oxacillin (14.8 days), first generation cephalosporin (13.7 days) and 201 

carbapenem (13.7 days) resistant exposures (comparative to their relevant susceptible non-exposed 202 

cases respectively). The translation of this into estimates of monetary impact can be seen in Figure 2. 203 

The range of the excess cost per infection associated with resistance was estimated to be from 204 

I$5,675 (for gentamicin resistance) to I$8,155 (for oxacillin resistance).  205 

4 Discussion 206 

This work highlights the potential for code sharing to reduce research burden in health economics 207 

across international settings. This report details key things to consider in the sharing of costing 208 

models, namely; discussing the appropriateness of the data structures and variables initially, ensuring 209 



   Cost-of-illness for Antibiotic Resistance 

 
6 

This is a provisional file, not the final typeset article 

appropriate licensing is in place and being upheld, providing and using in-depth supporting 210 

document, and (even if a formal collaboration is not feasible) communication between the code’s 211 

original authors and those applying code is necessary to reduce mistakes in code interpretation and/or 212 

application. Code that was written to analyze English hospital data[9, 15], was used directly on 213 

Japanese hospital data, producing time-efficient cost estimates relating to S. aureus bloodstream 214 

infections. This suggests such code (which is currently available open-access [15]) may be useful in 215 

other healthcare systems in estimating the impact of antibiotic resistance. 216 

It was estimated that S. aureus bloodstream infections was associated with led to patients staying in 217 

hospital for an extra 12 days on average. Antibiotic resistance was estimated to be associated with an 218 

excess LoS for tested exposure groups by between 10 and 15 days. Previous research within the 219 

Japanese setting that estimated the burden of MRSA, based on antibiotics prescribed, estimated an 220 

excess LoS of 51 (95% CI; 30–88) days for those on ‘anti-MRSA’-antibiotics, 16 (9–30) days for 221 

those on ‘non-anti-MRSA’ antibiotics and 6 (3–12) days for non-infected patients [4]. However, the 222 

case definitions were different so it is difficult to make direct comparisons to our results.   223 

Estimates of excess length of stay from resistance-related exposures of interest ranged from around 224 

10 to 15 days in the Japan case, much higher than those estimated in the English study (ranging from 225 

roughly 0.5 to 1.5 days). However, this is in line with the difference between general differences seen 226 

in hospital LoS across the two studies, with the non-infected controls for Japan and England having a 227 

median length of stayLoS of 8 and 0.5 days respectively [4, 9]. Additionally, as highlighted in the 228 

methods, this is in line with previous international comparisons of  inpatient LoS [22]. Cited potential 229 

reasons for such international variation include differences in bed supplies and differences in hospital 230 

payment systems [22]. 231 

Previous research within the Japanese setting that estimated the burden of MRSA, based on 232 

antibiotics prescribed, estimated that the MRSA group had an excess LoS of 51 (95% CI; 30–88) 233 

days, the 16 (9–30) days for those on non-MRSA antibiotics and 6 (3–12) days for non-infected 234 

patients.[4] Though the case definitions are slightly different our descriptive statistics align with 235 

these estimates.  236 

Strengths and Limitations 237 

Getting rapid, initial results in estimating the burden of antimicrobial-resistant infections, as in the 238 

case presented here, can be important for deciding treatment policy on a regional or local level. The 239 

excess LoS and cost results presented in this report provide initial estimates of the absolute effects 240 

associated with a variety of antibiotic exposures. These estimates highlight the need for future 241 

primary and secondary research in S. aureus bloodstream infections to investigate the impact of 242 

different antibiotic susceptibility profiles (such as oxacillin), not just methicillin, on patient 243 

outcomes.  244 

The costs are derived using excess length of stay results reported are estimates adjusting for time 245 

dependency alone, and are costed using an regional reference excess bed day cost (so do not account 246 

for further drug or other associated medical costs). Though this is in line with previous literature [9, 247 

29]. .[9, 25] The cost of a bed-day was taken from WHO-CHOICE, which is a modelled cost 248 

estimated that was based on a global analysis [23]. However, other, usable estimates were not 249 

readily-available within the literature for this setting.  Another bias that may result in conservative 250 

estimates is that bloodstream infections resistant to exposures of interest (but not tested) could be 251 

wrongly placed within the non-exposed category. However, this was preferred to dropping non-tested 252 
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cases or grouping them with the exposed category, the latter of which could lead to overly generous 253 

estimates in terms of resistance-associated excess LoS.  254 

Uncertainty has not been estimated through the application of techniques such as bootstrap sampling, 255 

however, such processes do require more time and computing resources. Statistical significance is 256 

therefore not determined for the outcomes presented in this brief research report. Additionally, the 257 

underlying excess LoS results reported are estimates adjusting for time dependency alone. Therefore, 258 

for more robust ‘excess cost’ estimates in the future, patient covariates should be taken into account 259 

and uncertainty intervals calculated using similar methods as applied in the English study [9]. 260 

Though limited by the aforementioned factors, the estimates presented here are important regarding 261 

Japanese health policy, with the current and potential future burden S. aureus bloodstream infections 262 

being a major cause for concern in this setting [14].[12]  263 

Processes such as the one described in this report could reduce the ‘cost of information’ when 264 

analyzing the value of additional information in health economic evaluations. Though seemingly 265 

simple, this process of code sharing and transparency between health economists could lead to more 266 

efficient research, more cost evidence, cost-effectiveness evidence and therefore, theoretically, more 267 

efficient resource allocation decisions. This is particularly relevant in the field of antimicrobial 268 

resistance. There have been calls for more robust epidemiological and health economic estimates 269 

utilizing data [30].[26] The sharing of code amongst health economists within this field, and in health 270 

economics in general, could help reduce research waste and increase collaboration.  The call for open 271 

science can be extended to related manuscripts; with an appeal for open-access versions of cost-of-272 

illness manuscripts which describe in more detail the methods and results, for example through 273 

author or institutional websites (if not an open-access article in itself).  274 

5 Conclusion 275 

Antibiotic resistance (as defined across different antibiotic classes), on average, was associated with 276 

results in an additional healthcare system cost of between I$5,6757,000 and I$8,15510,000 per S. 277 

aureus bloodstream infection in Japan. These estimates were calculated using reduced resources due 278 

to the code-sharing practices described in this report., and can be utilized by relevant policy makers 279 

in budget priority setting. Such estimates can be used in future budget and research priority setting, 280 

whilst such code-sharing practices can reduce future research burden.  281 
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 Table 1. Descriptive Statistics of Exposed and Non-Exposed Patient Hospital Spells 414 

Abbreviations: BSI – bloodstream infection, IQR – interquartile range, SD – standard deviation 415 

Descriptor Characteristic 

(measure) 

Non-“Staphylococcus 

aureus BSI”   

Staphylococcus aureus BSI  

Sample SizeTotal Number of Hospital 

Spells 

1,215,119 4,017 

Gender  Male 575,615 (47.4%) 1,586 (39.5%) 

Median Age Median age in years 

(IQR) 

70 (58 - 79) 77 (66 – 85) 

Elixhauser 

Comorbidity 

Index 

Mean (SD) 5 (6.63) 7.64 (7.06) 

Average length of 

stay 

Median days in 

hospital (IQR) 

8 (4 – 17) 34 (16 – 63) 

Mortality In-Hospital Mortality 

(%) 

4.8% 27.6% 

 416 

Table 2. Excess Length of Stay and Cost Estimates for Staphylococcus aureus Bloodstream 417 

Infections according to Resistance Profiles 418 

All estimates adjust for time dependency only. Abbreviations: BSI - bloodstream infection, CI – 419 

confidence interval, n – number of spells relating to that exposure/non-exposure, SA – 420 

Staphylococcus aureus. 421 

Exposure Group (number of 

cases) 

Non-exposure Group (number of cases) Excess Length of Stay 

(in Days) 

Staphylococcus aureus (SA) BSI  

(n=4,017) 

Non-Infected Controls (n=1,215,119) 11.6 

SA BSI resistant to 1st generation 

Cephalosporins (n=1,393) 

SA BSI not resistant to 1st generation 

Cephalosporins (n= 2,624; 2,283 susceptible & 

341 not tested) 

13.7 

SA BSI resistant to Carbapenems 

(n=1,362) 

SA BSI not resistant to Carbapenems (n= 2,655, 

2,340 susceptible & 315 not tested) 

13.7 

SA BSI resistant to Gentamicin 

(n=1,334) 

SA BSI not resistant to Gentamicin (n= 2,683, 

2,505 susceptible & 178 not tested) 

10.3 

SA BSI resistant to 

Fluroquinolones (n=1,627) 

SA BSI not resistant to Fluroquinolones (n= 

2,390, 2,273 susceptible and 117 not tested) 

11.6 

SA BSI resistant to Penicillins 

(n=2,751) 

SA BSI not resistant to Penicillin (n = 1,266, 

1,250 susceptible and 16 not tested) 

12.9 

SA BSI resistant to Oxacillin 

(n=1,186) 

SA BSI not resistant to Oxacillin (n=2,831, 

1,633 susceptible & 1,198 not tested) 

14.8 
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 422 

 423 

Figure 1. Multistate Models to Estimate Excess Length of Stay 424 

Boxes represent possible health states (green boxes representing Staphylococcus aureus states) and 425 

arrows represent potential transitions between states. For (A) the exposure group is Staphylococcus 426 

aureus bloodstream infections. For (B) a separate model was constructed for each antibiotic exposure 427 

group of interest, whereby healthcare-associated infections entered the model at time of infection. 428 

“Not antibiotic resistant” included susceptible and not tested (as defined by the data source used). 429 

[Insert Figure 1A and Figure 1B here] 430 

 431 

 432 

 433 

Figure 2. Excess Hospital Cost associated with Antibiotic Resistance in Staphylococcus aureus 434 

Bloodstream Infections  435 

Costs presented are in 2017 International Dollars (I$). Costs presented are those associated with 436 

excess length of stay. The exposure groups are patients with S. aureus bloodstream infections that are 437 

resistant to the stated antibiotic groups. These are compared to patients with S. aureus bloodstream 438 

infections that are not resistant to the respective antibiotic groups. Note the penicillin category 439 

includes methicillin and oxacillin. Oxacillin was selected by the Japanese study as a key antibiotic to 440 

test individually in addition to this. Ordering was based on ascending cost estimates. 441 

[Insert Figure 2 here] 442 


