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1.  INTRODUCTION

Risk analyses (RAs) look at the likelihood (see
Table 1 for a definition of RA terminology used) that
undesirable events (hazards) will occur, together
with the consequences of their occurrence (Greiner
et al. 2004, Peeler et al. 2007). When faced with

uncertainty about the likelihood of occurrence of a
hazard (the phenomena causing the potential risk)
and the associated consequences (therefore, risk =
likelihood × consequences), decision makers can use
RAs for evidence-based, transparent decisions and
guidance documents (Vose 2001) in order to reduce
the incidence of the hazard (Smith 2001, Peeler et al.
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ABSTRACT: Aquaculture studies are often faced with data limitations when carrying out a quan-
titative risk assessment. Consolidating results from a literature search of potentially applicable
methods, we propose a stepwise integrated methods approach that incorporates foundations from
an antimicrobial resistance framework, the Office International Epizooties risk model, quantita-
tive microbial risk assessment and infectious disease transmission models. We suggest that an ini-
tial ranking profile can be used to prioritize more in-depth qualitative and quantitative risk assess-
ments, when data are available. The ranking method was done using a software that provides
practical and interactive graphics for visualizing the impact of different factors and their respec-
tive weights on the likelihood of undesirable events (hazards) occurring. For this step, we illus-
trate how to include available data to obtain ranking results for decision makers using information
from a recent sea lice freshwater tolerance literature review (Groner et al. 2019) that identified a
gap in quantitative data. In our case example, for copepodid sea lice life stages, hypothetically
changing how much experts believe that location and time are important factors revealed the
most impact on the ranking for different degrees of freshwater tolerance evolution (no evolution,
various partial options, known evolution). The factors ‘location’ and ‘time’, as well as ‘freshwater
treatment’, have the greatest impact on the ranking for the preadult sea lice life-stages model.
Results from our proposed ranking method can help to drive decisions around interpreting the
various factors as they apply to mitigation planning and prioritizing those that should be included
in further research. Additionally, we identify where quantitative data could be incorporated, as
they become available, into a full risk assessment model with suggested models for a freshwater
tolerance risk analysis framework.

KEY WORDS:  Risk analysis · Risk ranking · Framework · Sea lice · Freshwater tolerance

OPENPEN
 ACCESSCCESS

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Strathclyde Institutional Repository

https://core.ac.uk/display/337876186?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://crossmark.crossref.org/dialog/?doi=10.3354/aei00373&amp;domain=pdf&amp;date_stamp=2020-10-22


418 Aquacult Environ Interact 12: 417–428, 2020

2007). RAs are founded on both qualitative and quan-
titative methods. Semi-quantitative methods have also
been proposed to provide score results when too few
quantitative data are available, as is often the case
for aquatic-focused RAs (Vose 2001, Peeler et al.
2007, Beaudequin et al. 2015). Once the hazard has
been identified, the goal of an RA is to evaluate the
risk of introducing the hazard, followed by identify-
ing pathways through which the probability of expo-
sure to the hazard can occur, as well as other factors
that can contribute to and affect the estimation of the
risk and any uncertainty related to that estimate
(Travis & Hueston 2001, Peeler et al. 2007). When
risks are considered harmful, the impact of mitiga-
tion measures are also incorporated into the RA.

The lack of information necessary to understand
the impact of new management practices on cur-
rent and future estimates of risk is one of the major
challenges when assessing those practices in pro-
duction systems, such as aquaculture, particularly
where immediate harm-reduction can have nega-
tive effects later. For example, in salmon aqua -
culture, control of sea louse parasites is a major
challenge, costing ap proximately 9% of farm rev-
enues and resulting in as much as a 16% reduction
in salmon biomass (Abolofia et al. 2017). Use of
chemotherapeutants to control sea louse infesta-
tions on salmon farms has led to the evolution of
resistance to some medicinal treatments over a rel-
atively short time frame (1 to 2 decades; reviewed

Terminology                                Definition

Consequence                               Outcome of hazard occurring

Factor(s)                                       Information that can positively or negatively impact the risk

Full or complete risk analyses   Complete process to assess risk estimate(s), by identifying hazards, probability of 
framework                                 exposure to the hazard and subsequent consequences. It can use more than one model 

                                                     and should identify uncertainty around the probability and risk estimate(s). It should also 
                                                     include risk mitigation and risk communication steps. In our proposed method, it also 
                                                     includes a risk ranking step

Hazard                                         Undesirable event, phenomenon causing the potential risk

Likelihood                                    Introduction and exposure assessment

Measurement score,                   How a factor or subfactor will be measured in order to estimate the score or directional
measurement scale,                  result of each one. Can be presented as a category (e.g. yes/no/maybe) or linear (e.g.
measurement                             number of days)

Multicriteria decision analysis   A risk modelling framework for handling complex decisions, where a decision is based 
(MCDA)                                     on more than one factor

Multimodal                                  More than one model

Outcome                                      The hazard defined in degrees or levels or alternatives

Phi                                                How preference is estimated. Positive flow (phi+) indicates the level to which a particular 
                                                      outcome is dominating all others, negative flow (phi−) indicates the level to which a given 
                                                     outcome is being dominated, and net flow (net phi) is used to provide an approximate 
                                                     measure of the overall preference of an outcome

Preference, preference level,    The quantitative or score value that identifies which outcome is preferred over another, 
preference value                       i.e. it is more influential on the risk estimate or score

Risk                                              Likelihood × consequence

Risk estimate                               A quantitative estimate for the calculated risk

Risk profile                                  A schematic or outline of all the applicable factors, subfactors and weights for a unique 
                                                     scenario used in the ranking method to define a risk score

Risk ranking,                               A model that ranks or prioritizes (by preference values) different degree(s) of a hazard
ranking                                      occurring

Risk scores                                   Quantitative or semi-quantitative estimates of risk (the preference values in the ranking 
                                                     method) as defined by a set of specific factors, subfactors and weights

Subfactor(s)                                  Further divisions of factors to define differences between conditions of a factor

Uncertainty                                  Lack of precise knowledge of input values

Weight                                         The degree of influence of a factor or subfactor(s). Combined weights refer to combining
                                                     the weight of a factor and its subfactors into one weight estimate

Table 1. Definition of risk analyses terminology used
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in Aaen et al. 2015). The lack of effective medicinal
treatments, stricter regulations and in dustry ef forts
to reduce medicine use for sea lice has pre cipitated
the development of non-medicinal methods for sea
louse control such as mechanical, fresh water and
thermal treatments (Overton et al. 2018). RA could
aid in strategizing how and when these non-
medicinal methods should be used to im prove
practices and avoid the evolution of treatment
tolerance.

A literature review by Groner et al. (2019) sum-
marized current knowledge about the potential
evolution of freshwater and low-salinity tolerance
in sea lice and other copepodids that infect wild
and/or farmed salmonids. However, major quanti-
tative data gaps were identified that preclude more
complete RAs. To address risk-based de cisions in
aquaculture when such major quantitative data
limitations exist, we propose a step-wise approach
that uses more than one model (mul-
timodal) for an integrated risk analy-
sis framework. Multicriteria decision
analysis (MCDA) offers a framework
for handling complex decisions that
need to account for conflicting objec-
tives. When quantitative data are not
available, risk-ranking methods can
be carried out prior to a more complete
RA (CAC 2011). MCDA can enable
the ranking of factors that can posi-
tively or negatively impact the risk of
hazard(s) occurring (Fazil et al. 2008,
Oidtmann et al. 2011, Martínez et
al. 2015). Risk ranking prioritizes
current qualitative data or semi-qual-
itative factors (see the ex ample of
antimicrobial resistance models for
knowledge data gaps as presented in
CAC 2011) to drive decisions around
interpreting these various factors as
they apply to mitigation planning and
prioritizing those that can guide re -
search to ob tain the data required
for a more complete quantitative RA
(Peeler et al. 2007). We illustrate this
ranking method using the case exam-
ple of the evolution of freshwater tol-
erance in sea lice. Following the
ranking, we suggest a possible inte-
grated RA method that would include
various models that focus on both
qualitative and quantitative data for
the case example.

2.  MATERIALS AND METHODS

We have created a step-by-step workflow for
assessing the risk of sea lice developing tolerance to
freshwater treatments (Fig. 1), following the regula-
tory World Organization for Animal Health (Office
International Epizooties; OIE 2019) RA model (which
does not include a ranking method) as well as the
antimicrobial RA model from the Executive Commit-
tee of the Codex Alimentarius Commission (CAC
2011), which does include a ranking method. Our
approach focuses on how a ranking method can first
be developed for aquaculture studies with data limi-
tations, and then applying that ranking method for
our case study using the criteria identified by Groner
et al. (2019). For our case study, we present hypothet-
ical scenarios where different factors may have more
or less influence (weight) on the hazard occurring
and how changing the weight can change the rank-

Fig. 1. Proposed workflow (based on CAC 2011) for assessment of the risk of 
sea lice evolving freshwater tolerance
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ing. We include methods and examples with the case
study about how to incorporate available data and
visualize results of the ranking through the use of a
user-friendly, graphical risk-ranking tool (Visual
Promethee 1.4 software VP Solutions, 2013; www.
promethee- gaia. net). Because we did not have ade-
quate quantitative data available to illustrate, with
the case example, a complete RA model beyond
the ranking, we present instead several different
model types from the literature that could be in -
cluded and adapted when quantitative data become
available and to help prioritize research for the case
example.

2.1.  Developing the ranking method

We used MCDA to enable ranking of factors that
can positively or negatively impact the risk of the
hazard occurring. These factors are identified from
evidence-based information and can be quantitative
or semi-quantitative. A factor can be further divided
into various levels of subfactors to define differences
between conditions that define the factor. This
method could be used as part of the framework out-
lined in Fig. 1 to create a risk profile (a schematic or
outline of all the applicable factors, subfactors and
weights).

Once factors and subfactors are established and
justified, we need to define how each will be meas-
ured (e.g. linear scale, categories, etc.). These meas-
urements should reflect evidence-based information
from the risk profile and expert opinion (CAC 2011).
Finally, each factor is assigned weights to reflect its
impact or influence on ranking. Therefore, a combi-
nation of different weights for each factor and sub-
factor(s) will be used to create a risk score. The
higher the score, the higher the preference of one
being ranked higher than another.

We chose the PROMETHEE II method (Belton &
Stewart 2002, Figueira et al. 2005, Fazil et al. 2008) as
the best example to generate the ranking method
and assess the preferences in the light of different
weights or influence of factors over others. Belton &
Stewart (2002) and Figueira et al. (2005) provide a
detailed explanation of the mathematics and the
analysis behind the preference calculations. Briefly,
the degree of preference, Π(a, b), for outcome option
a against outcome option b, is calculated according
to the formula:

(1)

where w is the weight of factor j, and Pj(a,b), which
measures the preference for option a over option b,
comes from the preference function. Ranking is gen-
erated in PROMETHEE using what the methodology
calls ‘positive flows’, ‘negative flows’ and ‘net flows’.
The positive flow (phi+) indicates the level to which a
particular outcome (in risk ranking this would be a
degree of the hazard occurring) is dominating all oth-
ers, the negative flow (phi−) indicates the level to
which a given outcome is being dominated, and the
net flow (net phi) is used to provide an approximate
measure of the overall preference of an outcome.
Each outcome is based on a unique pre-defined set of
factors and subfactors, as well as assigned weights
that are used for the preference function.

3.  RESULTS

3.1.  Hypothetical examples of using the ranking
method for the case study

In our case example, we define the hazard as fresh-
water tolerance evolution in sea lice, and we define
the risk score from the ranking method here as the
preference value of our outcomes (risk of evolving
freshwater tolerance) occurring as defined by a com-
bination of factors, subfactors and weights. For our
case example, we created 2 models, using the Visual
PROMETHEE software, based on 2 Lepeophtheirus
salmonis sea lice life stages, namely copepodids and
preadults. We did not merge them into one model
for the sake of simplicity for our illustration of the
method, due to numerous interactions and combina-
tions that occur between life stage and various crite-
ria (in particular, length of exposure time to fresh-
water; see the Supplement at www.int-res.com/
articles/ suppl/ q012p417_supp.pdf).

Our different outcomes (degrees of freshwater tol-
erance occurring, described in detail in the following
paragraph) provide various possibilities that are
ranked (preference for one or more over another)
based on the risk scores. For our example, we incor-
porate factors identified in the Groner et al. (2019)
review: genetics, metapopulation dynamics, and
selection-strength factors such as environment and
freshwater treatments (Fig. 2). These 4 broad factors
were further subdivided into subfactors. In Table 2,
we list our selected factors and their associated sub-
factors, including how we defined them, the scale we
used for measuring changes in them, and the weight
of importance we assigned them in our example
models. We selected the measurement scales and
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weights based on information obtained
from Groner et al. (2019), Ljungfeldt
et al. (2017) and expert opinion (M.
Andrews, Norwegian University of Life
Sciences [NMBU]). Assigned weights
in Table 2 are author-selected and are
used to demonstrate how to incorporate
overall (combined) versus individual
factor and subfactor weight components.
Combined weights refer to combining
the weight of a factor and its subfactors
into one weight estimate. We used
some of the freshwater exposure time
by life stage interactions described in
the supplement as well as information
from Groner et al. (2019), Ljungfeldt
et al. (2017) and expert opinion (M.
Andrews) for defining the scales, scores
and weights for each of the respective
sea lice life-stage models (Table 3).

We created 3 degrees of sea lice
evolving tolerance to freshwater treat-
ments (Table 3): ‘no’ (sea lice death,
therefore no tolerance), ‘partial’ (possi-
ble oc currence) and ‘known’ (no change
in sea lice survival and behavior, there-
fore tolerance). We created several
‘partial’ options for freshwater toler-
ance evolution, whereby the outcome is
some degree of mortality (<30% sur-
vival or >50% survival or unknown % survival) or
inhibited development. These ‘partial’ degrees of
freshwater tolerance were based on information from
various field and experimental studies of sea lice
responses to various salinity thresholds (see the sup-
plement and Table 3) (Ljungfeldt et al. 2017, Crosbie
et al. 2019, Sievers et al. 2019, expert opinion [M.
Andrews]). In our case example, the de grees of
freshwater tolerance with the highest net phi corre-
sponds to a higher risk score of freshwater tolerance
evolution occurring in sea lice, considering all the
specific information used to define that model.

Because the influence of criteria and sub-criteria
can be weighted as de scribed previously, the VP
walking weights (proportion of weight assigned to
each factor and subfactor[s]) allow for an interactive
visualization of how the ranking of the degrees of
freshwater tolerance can be influenced if the weights
are changed. In our case example, for copepodid life
stages, hypothetically changing the weights for the
‘location’ and ‘time’ subfactors (from those weights
we assigned them as described in Table 2) had the
most impact on the ranking (positive or negative

direction of net phi value) of the different degrees of
freshwater tolerance (no, various partial options,
known). The subfactors ‘location’ and ‘time’, as well as
‘intervention’, had the greatest impact on the rank-
ing for the preadult life-stages model. In Fig. 3, we
visually present 2 different options of various changes
in combined weights assigned to our factors of inter-
est and the resulting effect on the ranking’s prefer-
ence values for each life-stage model. The first com-
bined-weight option (Fig. 3A, column 1) is the one
presented in Table 2, while in the second weight
option (Fig. 3A, column 2), salinity, time, and location
are assigned higher combined weights. Differences
in ranking (net phi value) for the degrees of fresh-
water tolerance are visualized depending on the sea
lice life stage (Fig. 3B,C). Variations were greater for
the ‘partial’ freshwater tolerance options. The level
of net phi flow (higher preference and ranking) for
‘known’ freshwater tolerance also slightly varies
depending on the different weights assigned in each
model. With all of these examples, we show that the
analyses available through the VP software can be
an effective and interactive means for visualizing the
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Fig. 2. Key factors identified from the recent literature review (Groner et al.
2019) that may affect the risk of sea lice evolving tolerance to freshwater treat-
ments. Asterisks indicate factors with further explanatory notes as follows:
location  (environmental salinity, exposure to freshwater run-off, sensitivity of
associated lice population to freshwater, etc.); connectivity (farm to farm, wild
to farm, farm to wild, direction of water current, density of wild versus farmed
hosts, etc.); duration (length of exposure, number of repeated exposures); and 

permanent freshwater cap (snorkel cages, skirts)



risk scores and weights of various degrees of fresh-
water tolerance occurring, while allowing the user to
readily make changes to factors, subfactors and
weights, as these information change or become
available. Results from this visual ranking method
can help to drive decisions around interpreting vari-
ous factors and subfactors in mitigation planning and
prioritizing which ones to in clude in further RA and
research (see Fig. 1).

3.2.  Proposed integrated RA framework

We also propose an integrated RA framework
(Fig. 4). This could be developed pending available
data and resources, to support the particular goals of
an RA team. It is also dependent on the outcomes and
applicability of the risk ranking related to those goals

(see steps in Fig. 1 and the ranking examples discussed
previously). The framework integrates the traditional
OIE hazard identification, release, exposure and con-
sequence assessments with portions of 2 specific RA
modelling foundations, namely quantitative micro-
bial risk assessment (QMRA) and infectious disease
transmission (IDT) models for a more inclusive and
applicable framework to the diversity of data in
aquaculture studies. In Table 4, we present examples
from the literature for different modelling ap -
proaches that can be incorporated and/or modified,
including ranking and the MCDA models. Brouwer
et al. (2018) define QMRA models as focusing on fac-
tors in the environment that characterize pathogen
dynamics and subsequent exposure. These models
are based on dose−response models and are used
mainly in regulatory settings, as in the case of the
OIE model. In contrast, IDT models focus more on
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Factor Subfactor Combined Factor                         Measurement        Measurement          Direction
(weight) (weight) weight (%) definition                              type                     definition

Genetics Heritability 40 Presence of heritable 
(50%) (80%) genetic or epigenetic               Qualitative      1 (none), 2 (present),     Increase

variation for FW                                                       3 (unknown)
tolerance

Fitness
trade-offs (20%) 10 Decreases in sea lice                Qualitative      1 (none), 2 (present),      Increase

fitness that are associated                                       3 (unknown)
with FW tolerance

Exposure Salinity (33%) 7 Parts per thousand of               Categorical                 Range                Decrease
(20%) saline concentration                                           (0 to 30‰ salinity)

measured in water

Intervention (33%) 7 Type of freshwater                    Qualitative                1 (none),                Increase
treatment used                                                 2 (>1 treatment type), 
                                                                                  3 (wellboat), 
                                                                                  4 (unknown)

Time (33%) 7 Duration of exposure               Categorical          Range (0 to 7 h)          Increase
to hyposaline water

Population/ Lice/hosts (50%) 15 Type of hosts (farm or wild)     Qualitative       1 (no connectivity),      Increase
environment and connectivity between                                  2 (wild > farmed), 
(30%) populations                                                          3 (farmed > wild), 

                                                                              4 (farmed > wild; 
                                                                            more connectivity),
                                                                                  5 (unknown)                   

Location (50%) 15 Sensitivity                                 Qualitative       1 (more sensitivity),      Increase
(or decreased tolerance)                                     2 (less sensitivity), 
of a population to freshwater                        3 (unknown sensitivity)
treatment that is due to 
various environmental or 
other non-heritable factors

Table 2. Selected factor and subfactors (based on Ljungfeldt et al. 2017, Groner et al. 2019, Sievers et al. 2019, and expert opin-
ion [M. Andrews]), for use in our Visual PROMETHEE example to evaluate risk ranking effect of these factors for sea lice
evolving tolerance to freshwater (FW). Assigned weights are author-selected and are used to demonstrate how to incorporate
overall (combined) versus individual factor and subfactor weight components. Combined weights refer to combining the weight
of a factor and its subfactors into one weight estimate. The direction of the measurement value (either increase or decrease in 

number value or percent value) corresponds to an increased risk of sea lice evolving tolerance to freshwater



population factors and how pathogens are spread
between and among populations (Brouwer et al. 2018).
These models are based on susceptible− infectious−
recovered (SIR) models to define the interacting pop-
ulation groups. Outputs from these models, in partic-
ular system dynamic IDT models (versus agent-
based), can provide unit frequency (e.g. average
population estimates) that are dependent on differ-
ent conditions and can be used for determining the
probability and likelihood of the hazard occurring
(see examples in Greiner et al. 2013, Beaudequin et
al. 2015, McEwan et al. 2016, Rico et al. 2017, Wright
et al. 2018). Because it is set in a Bayesian framework
to handle uncertainty, we suggest that the Aldrin et
al. (2017) salmon lice (L. salmonis) model may be
adapted for a quantitative RA, with factors such as
temperature dependence (see also Myksvoll et al.
2018), population and individual fish demographics,
transmission rates and control measures (see their
papers for specific equations and descriptions of as -
sumptions made within their models; e.g. a decreased
effect of treatment over time due to tolerance devel-
opment and maturation times). However, the Aldrin
et al. (2017) model does not include salinity, as they
had insufficient salinity data; yet as we are consid-
ering freshwater as a treatment modality, we pro-
pose adjusting their model to include freshwater
treatment(s).

4.  DISCUSSION

We proposed including in the RA framework a
visual method to prioritize or rank degrees of fresh-
water tolerance for future research and mitigation
planning, using the Visual PROMETHEE 1.4 soft-
ware (VP Solutions, 2013) to analyze a risk profile
classified within the MCDA framework. Our pro-
posed RA framework was adapted from the import
risk guidelines of the World Organization for Animal
Health (OIE 2019; based on the model defined by
Covello & Merkhofer 1993), by incorporating a risk-
ranking step before conducting the risk assessment.
The 4 steps required for the OIE RA are: (1) hazard
identification (in our case example, this would be the
evolution of freshwater tolerance in sea lice); (2) risk
assessment (including how a hazard is introduced,
pathways by which animals can be exposed to the
hazard or experience it, results or consequences of
having the hazard or being exposed to it, and esti-
mating the risk of exposure and possible results of
exposure); (3) risk management; and (4) risk commu-
nication. These formal RAs can range from including
qualitative to semi-quantitative to full quantitative
parameter estimates for probability and likelihood
outcomes.

It is important that transparency around assump-
tions and uncertainty be maintained, including inter-
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Outcome Life Subfactor
(freshwater stage Heritability Fitness Salinity Intervention Time Hosts Location
tolerance) trade-offs (psu or ppt) (h)

No C No No 30 None 0.0 None More
P No No 30 None 0.0 None More

Known C Yes Yes 0 Wellboat 7.0 Farm > wild; Less
more connectivity Less

P Yes Yes 0 Wellboat 7.0 farmed > wild;
more connectivity

Partial >50% C Yes Yes 13 Unknown 1.0 Farm > wild Less
lice survival 1 P Yes Yes 5 Unknown 1.0 Farm > wild More

Partial >50% C Yes Yes 23 Unknown 1.0 Farm > wild More
lice survival 2 P n/a n/a n/a n/a n/a n/a n/a

Partial <30% C n/a n/a n/a n/a n/a n/a n/a
lice survival P Yes Yes 0 Unknown 1.0 Unknown Unknown

Partial ?% C Yes Yes 7 >1 0.5 Wild > farm Unknown
lice survival P Yes Yes 5 >1 n/a Wild > farm Unknown

Partial inhibited C Yes No 25 Unknown 0.5 Unknown Unknown
lice development P n/a n/a n/a n/a n/a n/a n/a

Table 3. Subfactor values for each of our suggested outcomes (degrees of freshwater tolerance evolution). We used 2 example
life-stage models in Visual PROMETHEE (C: copepodid; P: preadult). n/a: not applicable. Hosts: type of hosts (farm or wild)
and connectivity between populations; location: sensitivity (or decreased tolerance) of a population to freshwater treatment 

that is due to various environmental or other non-heritable factors



actions between factors that can affect
the interpretation of risk estimates
(CAC 2011). For example, interactions
between farmed and wild fish as well
as environmental factors can impact
fish stress and increase RA model un -
certainty in aquaculture studies (Travis
& Hueston 2001, Sievers et al. 2019).
Kristoffersen et al. (2018) and Myksvoll
et al. (2018) discussed how various
environmental factors (e.g. tempera-
ture, location, presence of farmed fish,
etc.) can change the behaviour of sea
lice and/or fish, depending on whether
the fish are wild or farmed. In addition,
the length and number of treatments,
salinity and the potential for reattach-
ment of sea lice could all affect the
preference of one degree of freshwater
tolerance over another (Wright et al.
2018, Crosbie et al. 2019, Sievers et al.
2019). There is a greater risk of the
hazard occurring as there is more
uncertainty around an unknown pres-
ence or quantity of a factor or subfac-
tor. Uncertainty due to interaction(s)
between factors can be mitigated by
applying different weighting schemat-
ics to key factors and subfactors.
 However, it can be difficult to obtain
quantitative data for selecting weights.
Expert opinion or literature review
information can be used, in which case
this should be reported (Fazil et al.
2008). Groner et al. (2019) identified
several gaps in available knowledge
for each of the selected factors for our
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Fig. 3. Changes in net phi values (prefer-
ence) by sea lice life stage: (B) copepod; (C)
preadult, of different degrees of freshwater
tolerance occurring, according to weights
presented in (A). The 2 result options are
based on 2 different combined-weighting
schemes assigned to the following factors
and subfactors. 1: genetics = 50% (with her-
itability = 80% and fitness trade-offs = 20%),
exposure = 20% (with salinity, intervention,
and time each 33%) and population/envi-
ronment = 30% (with lice/hosts and location
each 50%); 2: genetics = 40% (with heri-
tability = 75% and fitness trade-offs = 25%),
exposure = 20% (with salinity and time each
40% and intervention = 20%) and popula-
tion/environment = 40% (with lice/hosts = 

25% and location = 75%)



case example that either increased uncertainty or led
to non-accessibility of risk estimates.

The degrees of the hazard occurring that are used
can be changed based on the set of factors, subfac-
tors and weights used as new empirical information
becomes available, or if the effect of various rankings
(for example, midpoint versus extreme values) may
need to be evaluated depending on the purposes of
the RA (see Fig. 1). The practical interpretation of
ranking results is dependent on the inclusion of fac-
tors and up-to-date information that will define dif-
ferent management or mitigation protocols. The
ranking (net phi value) of some degrees of fresh-

water tolerance that are more or less likely to occur
over others will help decision makers to determine
those that are to be preferred over others as a first-
choice management strategy in order to decrease the
likelihood of sea lice evolving tolerance to freshwater
treatments. For instance, for the hypothetical cope-
podid model, the ‘known’ degree of freshwater toler-
ance had the highest net phi value, while the ‘partial’
freshwater tolerance degrees were grouped lower,
mostly in pairs evenly spaced, and specifically ‘inhib-
ited development’ was second in preference to
‘known’. Practically, if treatment and management
protocols include the defined factors and subfactors
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Fig. 4. Suggested risk analysis framework incorporating quantitative methods (Brouwer et al. 2018, Kristoffersen et al. 2018)
and additional risk and quantitative examples for characterizing the risk of sea lice evolving tolerance to freshwater. Ovals 

represent the OIE risk model categories



and their weights, then the factors for the ‘known’
degree of freshwater tolerance are more likely to fail
(i.e. copepodid sea lice are more likely to evolve
freshwater tolerance), followed by those that cause
inhibited development. On the other hand, if we look
at the preadult model, ‘<30% survival’ had the high-
est ranking (i.e. the most likely to see freshwater tol-
erance evolution), followed closely by ‘known’, and
then less likely (larger gap in net phi values) were
the remaining ‘partial’ degrees of freshwater toler-

ance (i.e. these are better choices if we want to avoid
freshwater tolerance occurring).

In our case example, we were not able to consider
the uncertainty of the output of closer-ranked de -
grees of freshwater tolerance for simplicity’s sake,
but as data become more available, then a subse-
quent quantitative model can help to handle the
uncertainty. In general, quantitative RA probabilities
and sensitivity analyses are identified mathemati-
cally through stochastic simulation models using
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Modelling approach Species/uses                                      Main goal of models                                   Citation

QMRA and SD Waterborne bacteria Review to look at integration of QMRA                        Brouwer et al. 
and SD for: risk of waterborne outbreaks (QMRA)            (2018)
and quantification of transmission pathways (SD)

SD Gill disease in Assess how freshwater exposure duration                     Wright et al.
Linear model Atlantic salmon altered the detachment and survival                                   (2018)

of gill-isolated Neoparamoeba perurans

Probabilistic model − Antibiotic Risk of antibiotic resistance development                        Rico et al. 
exposure concentrations concentrations in environmental compartments                                           (2017)
to antibiotics in pond water in aquaculture production systems                                            

QMRA and BN Foodborne and Evaluation of the capabilities                                     Beaudequin et al.
waterborne pathogens and challenges of current                                                     (2015)

QMRA methods and BN models

QMRA and BN Food safety Explore Bayesian computational                                    Greiner et al.
statistics in the context of QMRA.                                        (2013)
Explore the analogy between 
Monte Carlo modelling and 
Bayesian inference

Hydrodynamic model Salmon lice Hydrodynamic ocean model system,                            Myksvoll et al.
particle tracking model (infestation pressure)                    (2018)
and Bayesian statistical model

Spatial−temporal linear Sea lice To assess relative spatial and temporal                      Kristoffersen et al.
mixed model risks associated with farm-origin salmon lice.                     (2018)

Qualitative and quantitative, Foodborne Discuss the formal OIE risk analysis                               CAC (2011)
including risk ranking and antimicrobial approach, as well as qualitative steps,                                      
OIE approaches resistance quantitative steps and risk ranking 

steps for evaluating the risk of foodborne
antimicrobial resistance in humans

MCDA Food safety To demonstrate the use of ranking methods                   Fazil et al.
(PROMETHEE) in microbial food safety decision making to                        (2008)

reduce microbial risks

MCDA − additive Fish farm To rank freshwater salmonid fish farms in a                Oidtmann et al.
risk score model microbiological risks country or region free of a specified pathogen                   (2011)

for the likelihood of disease introduction 
and spread of the specified pathogen

Decision chart Antibiotic resistance, Risks associated with genes that are present               Martínez et al. 
human pathogens in environmental resistomes (likelihood of their                 (2015)

introduction into human pathogens, and the 
consequences for the treatment of infections)                          

Table 4. Various modelling approaches discussed that can be incorporated or modified for a full risk analysis framework, in-
cluding risk ranking, for evaluation of the risk of freshwater tolerance evolution occurring in sea lice. QMRA: quantitative mi-
crobial risk assessment; SD: system dynamic; BN: Bayesian network; OIE: World Organization for Animal Health; MCDA: 

multi-criterion decision analysis



software, such as @RISK, to perform Monte Carlo
simulations (Greiner et al. 2004, Peeler et al. 2007).
All model assumptions for each step need to be trans-
parently described (Greiner et al. 2004). For trans-
parency, RAs also need to describe all factors that
contribute to uncertainty (‘lack of precise knowledge
of input values’) around the risk estimate and as -
sumptions made in lieu of available data (Travis &
Hueston 2001). For example, some of the factors from
the Tasmanian study by Wright et al. (2018) could be
used in a quantitative RA model (e.g. time limits,
sublethal or lethal outcomes, salinity doses, etc.). For
another example, Rico et al. (2017) looked at a prob-
abilistic approach to the development of antimicro-
bial resistance in aquaculture and tolerance to
antibiotic treatments; it may be possible to alter their
calculations for exposure concentration, probability,
minimum selective concentration (this would only be
applicable if looking at ranges of salinity, not just
freshwater) and tolerance development risk for toler-
ance to freshwater treatments instead of antibiotic
treatments. One of the major differences, however, is
that chemical resistance frequently evolves from a
single-point mutation, whereas freshwater tolerance
may be polygenic (reviewed in Groner et al. 2019).
Rico et al. (2017) suggests that the tolerance develop-
ment risk ‘can be used to derive tolerance threshold
concentrations’, but they caution that the model
needs to ‘adequately define exposure standards pro-
tective of background tolerance levels…’ (based on
factors including amount of exposure, length of ex -
posure time, dose, environmental factors, susceptibil-
ity factors in fish and fish biomass in environments).
However, because of limitations and un certainties,
they suggest their approach should only be used for
the initial phase of RA.

5.  CONCLUSION

As an aid to focusing future research for aqua -
culture studies with quantitative data limitations,
we propose including a risk ranking method in an
in tegrated RA framework that can assist decision
makers, dependent on their goals, as well as data
and funding availabilities. We suggest that an initial
ranking method can be used to prioritize more in-
depth qualitative and quantitative RAs, using a soft-
ware that provides practical and interactive graphics
for visualizing the impact of different factors and
their respective weights on the risk of the hazard
occurring. We have presented hypothetical examples
around risk ranking for 2 different sea lice life stages,

with currently available data from recent freshwater
tolerance research and literature reviews. In addi-
tion, we present a flowchart that can assist future in-
depth and quantitative RAs, particularly for fresh-
water tolerance evolution in sea lice as additional
data become available.
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