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The abandoned workings of the former Markham Colliery are still in the process of flooding. They are being
exploited, via a ‘standing column’ heat pump arrangement in Markham No. 3 shaft, to produce thermal energy.
From 2012, water was pumped from 235 m below ground level in the shaft at c. 15 °C and 2–3 l/s, through
shell and tube heat exchangers coupled to a 20 kW heat pump, to supply space heating to commercial offices.
The thermally spent (cool) water was returned to the same shaft at c. 250 m bgl at around 12 °C. The mine
water contained iron, c. 6000mg/l chloride, andwas highly reducing. Avoiding contactwith oxygenwas effective
in preventing problems with ochre scaling. In January 2015, taking advantage of rising water levels, the pump
was repositioned at 170 m bgl, and the reinjection diffuser at 153 m bgl. Since then, both iron concentration
and salinity have fallen significantly, suggesting stratification in the shaft. Stable isotope data from sampling in
2015 generally show little variation. Sulphate δ34S exhibits values typical for British Coal Measures (c. +5‰),
whilst δ18O/δ2H indicate influence of fresh meteoric waters. Chloride and sodium concentrations have gradually
increased since May 2015, possibly indicating a renewed influence of deeper, more saline, waters and reflecting
the gradual rise ofminewater in the shaft. Furthermonitoring ofminewater chemistry and isotopic composition
is required to better assess the sustainability of theMarkhamheat pump scheme and advise on optimal manage-
ment of this mine water resource.
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1. Introduction

1.1. Heat from mine workings

It is well-recognised that abandoned, flooded mine workings repre-
sent (i) a store of potential thermal energy in the form of water and sat-
urated rocks at temperatures often several °C above annual average air
temperature, and (ii) a network of shafts, tunnels andworkings forming
a transmissive heat exchange network through which water can circu-
late and exchange heat with the geological environment (Banks et al.,
2003, 2004; Hall et al., 2011; Watzlaf and Ackman, 2006; Raymond
and Therrien, 2008; Preene and Younger, 2014; Ramos et al., 2015;
Bracke and Bussmann, 2015).

Some of theworld's largest (severalMW scale) minewater geother-
mal schemes simply pump large quantities of water from the mine and
.

s an open access article under
pass it through heat exchangers or heat pumps, prior to discharging the
water to a surface recipient, as at Barredo colliery, Mieres, Spain (Loredo
et al., 2011; Ordóñez et al., 2012; Jardón et al., 2013) or reinjecting it to
another point in themine system, as at Heerlen, Netherlands (Bazargan
et al., 2008; Minewater Project, 2008; Ferket et al., 2011; Verhoeven
et al., 2014). It is also possible, where deep shafts exist, to abstract
water from one depth in the shaft, pass the water through a heat ex-
changer or heat pump, and return the thermally spent water to the
same shaft at a different depth. Because there is an obvious risk of the
thermally spent water returning to the production pump before it has
reacquired its initial temperature (via heat exchange with the shaft
walls), such a ‘standing column’ arrangement (Deng et al., 2005; Orio
et al., 2005; O'Neill et al., 2006; Banks, 2012) is only suitable:

(i) if the heating/cooling demand is relatively modest compared
with the available recirculation length in the shaft (such that
heat can be regained from the surface area of the shaft walls), or

(ii) if there is sufficient pre-existing mine water flow along or
through the shaft which is able to provide an additional source
the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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of thermal replenishment, or is able to remove the returned
water before it reaches the abstraction point.

A ‘standing column’ heat pump arrangement has been installed in
Shaft No. 3 of the abandoned Markham Colliery, Derbyshire, UK. It
operates successfully and provides heat to a modest complex of offices
at the surface.

1.2. History and configuration of Markham Colliery

MarkhamCollierywas amajor colliery just north of Bolsover, Derby-
shire, UK, comprising fourmain shafts - Shafts 1 and 4 on a northern site
and Shafts 2 and 3 on a nearby southern site (53.2424°N 1.3285°W)
(Fig. 1). It started operations in 1904 and worked a variety of seams in
the Pennine Lower and Middle Coal Measures of the Langsettian and
Duckmantian substages of the Westphalian (Pennsylvanian) Coal Mea-
sures Supergroup of the English East Midlands (Sheppard, 2005; BGS,
2012). These strata typically consist of cyclical fluvio-deltaic sequences
of interbedded sandstone, siltstone, mudstone, coal and associated
seatearth (INWATCO, 2005). Infrequent marine influences in the
upper part of the Lower CoalMeasures and the lower part of theMiddle
Coal Measures (Waters, 2009) resulted in prolonged periods of peat ac-
cumulation and the eventual formation of thick, good quality bitumi-
nous coals (Waters and Davies, 2006). Sulphur content from
elsewhere in the East Pennine Coalfields averages 2± 1% and correlates
strongly with iron, indicating that pyrite dominates sulphur content in
the coal (Spears and Tewalt, 2009).

Markham No. 3 Shaft was reportedly c. 490 m deep and 4.6 m in di-
ameter (15 ft. brick-lined - Healeyhero, 2015). Shafts 1 and 4 of
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Fig. 1. Location of the former Markham and surrounding col
Markham Colliery were the deepest shafts at Markham, reaching the
Blackshale coal seam at c. 630 m deep (British Geological Survey bore-
hole record SK47SE57). Markham is part of a major interconnected
complex of collieries in the area, the most immediate of which are the
former Ireland (53.2626°N 1.3456°W), Arkwright (53.2296°N
1.3633°W), Bolsover (53.2350°N 1.3116°W) and Duckmanton
(53.2447°N 1.3521°W) Collieries (Fig. 1). These collieries worked a
number of seams including (in descending order) the High Hazles,
Top Hard, Waterloo, Ell, Deep Soft, Deep Hard, Piper, Low Main and
Blackshale seams. During the 1980s and 1990s, the collieries of the re-
gion were progressively abandoned and Markham Colliery was closed
in 1993. On closure, the water make from Markham Colliery totalled
15.2 l/s and that from the adjacent Bolsover Colliery was 18.9 l/s plus
3.8 l/s from Duckmanton Colliery. Markham's Shafts 1, 2 and 4 were
backfilled on abandonment, while Shaft No 3 was left largely open, in
order to vent mine gas accumulation, with a hydraulically open plug
set in the shaft at the level of the Ell seam (−357 m asl).

Markham No. 3 Shaft and the land surrounding it was subsequently
acquired by Alkane Energy in 1998. Initially, coal bed methane was ex-
tracted, but aswater levels continued to rise rapidly following abandon-
ment of the coalfield, the methane-rich horizons were submerged and
methane extraction became uneconomic by 2006. By May 2011, the
water level in Shaft No. 3 (shaft top = +71.8 m asl) was 239.5 m bgl
(−167.7 m asl) (Fig. 2).

1.3. Mine water heat pump system at Markham

In spring 2012, Alkane Energy installed a ‘standing column’ heat
pump arrangement in the Markham No. 3 Shaft (Fig. 3), with a pump
field
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Fig. 2. Schematic of the Markham No. 3 Shaft ‘standing column’ heat extraction
arrangement, with rise in water level plotted.
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at 235 m bgl (Athresh et al., 2015). Water was passed through a sealed
shell-and-tube heat exchanger arrangement, thermally coupled to a
Danfoss DHP-R 20 kW heat pump (Danfoss, 2009), and the chilled
water was returned to the shaft via a diffuser at 250 m bgl (this is re-
ferred to as standing column Regime 1). On 28th January 2015, mine
water levels had risen sufficiently to allow the entire standing column
arrangement to be raised in the shaft, with the pump now being posi-
tioned at 170mbgl, below the reinjection diffuser at 153mbgl (referred
to as Regime 2) (Fig. 2).

No net pumping takes place at Markham andminewater levels con-
tinue to rise. Thewater still contains dissolvedmethane and is highly re-
ducing, such that blowers are occasionally needed to disperse methane
from the shaft headspace.

The objective of the study reported in this paper is to investigate
whether monitoring of mine water chemistry and isotopic composition
can provide information that is useful formanaging or assessing the sus-
tainability of a mine water heat pump scheme.
Fig. 3. Upper- the headworks of Markham No. 3 Shaft, showing methane venting and the
(angled) pumping and return mains of the ‘standing column’ heat pump system. Lower-
shell and tube heat exchangers in the heat pump plant room. Photos by D. Banks.
2. Methodology

2.1. Existing data

As part of Alkane Energy's ongoing monitoring activities, suites of
chemical samples had been collected from the pumped water supply
and submitted to the commercial laboratory of Environmental Scientific
Group (ESG) at Bretby, Staffordshire, UK (UKAS accreditation ISO/IEC
17025:2005). These results were made available for comparison with
the samples analysed in this study and provide useful insight into vari-
ations in water chemistry as shaft water levels have continued to rise
and as the pump location has changed. For these data, electrical conduc-
tivity (EC), pH and alkalinity were determined in the laboratory using
standard electrodes and titration against sulphuric acid. Chloride and
ammoniacal nitrogen were determined by automated discrete colori-
metric methods. Total sulphur was determined by inductively coupled
plasma optical emission spectrometry (ICP-OES) and then converted
to sulphate. Ca, Mg, Na, K, Sr, Ba and Fe (total = unfiltered, dissolved=
filtered sample)were also determinedby ICP-OES.Mn and several other
metals, not reported in this paper, were determined by inductively
coupled plasma mass spectrometry (ICP-MS). Total and ferrous iron
was also determined on hydrochloric acid-preserved aliquots using dis-
crete colorimetric methods. Methanewas determined by headspace gas
chromatography–mass spectrometry (GC–MS).
2.2. Field sampling and onsite analysis

SinceMay 2015, pumpedwaterswere sampled on an approximately
monthly basis from a sampling tap on the rising main at the Markham
No. 3 shaft top. Samples for laboratory analysis of major ions were
taken in duplicate using polypropylene screw-cap vials and filtered at
0.2 μm to remove any particulate matter. Duplicate samples for metals
were filtered and preserved using HNO3 in clean 10 ml glass screw-
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cap vials. Samples for δ18O and δ2H isotopic analysis were taken in trip-
licate using clean 10 ml glass screw-cap vials and sealed with Parafilm
to prevent any sample evaporation. Meteoric control samples for δ18O
and δ2H isotopic analysis were taken from the Holme Brook stream,
Chesterfield, at 53.2389°N 1.4441°W. Sulphate-δ34S isotope sampling
involved direct precipitation of sulphate as BaSO4 from freshwater sam-
ples in the field using themethod of Carmody et al. (1998).Waters in 1 l
plastic bottles were acidified to pH 3–4 using 10% HCl and then dosed
with excess 5% BaCl2 solution. A rapid cloudy reaction indicated the
presence of sulphate via the precipitation of BaSO4 crystals.

Field determinations were made of pH, temperature, and EC using a
handheld Myron P Ultrameter and dissolved oxygen (DO) was mea-
sured using a Hach SensION + DO6. Alkalinity was determined as
CaCO3 with a Hach Model 16,900 digital titrator, using nitric acid and
bromcresol green - methyl red pH indicator. Recorded values in
mg l−1 CaCO3 equivalent were then converted to meq/l (by dividing
by 50.04 mg meq−1) or to mg l−1 HCO3

– equivalent (by multiplying by
1.22). The alkalinity is assumed to be predominantly in the form of
HCO3

– at pH values close to 7.Where required, equipmentwas calibrated
before each day's fieldwork and all water samples were refrigerated as
soon as possible after collection.

2.3. Major ion analysis

Anion and cation concentrations were determined simultaneously
using ion chromatography on Dionex equipment in the labs of the
School of Engineering at the University of Glasgow. For anions a 10 μl
sample was passed through a Dionex IonPac AG14A guard column
and AS14A-5u analytical column before analysis on an ICS-900, with
the aid of displacement chemical regeneration suppression (ACRS
500). A mix of 8 mM sodium carbonate/1 mM bicarbonate eluent and
72 mN H2SO4 regenerant was pumped through the system at
0.5 ml/min. For cations a 10 μl sample was passed through a Dionex
IonPac CG12A guard column and CS12A analytical column, set to
30 °C, before analysis on an ICS-1100. A 20 mMmethnanesulfonic acid
eluent was pumped through the system at 0.25 ml/min and a CERS
500 was used as an electrolytic suppressor. For both anion and cation
analyses a conductivity cell was used for peak detection complete
with a 3 level calibration. The standard for anion measurement was an
in-house developed solution and the cation standard was a Dionex Six
Cation-II solution. Chromeleon 7 software was used for final data anal-
ysis and quantification.

2.4. Stable isotope analysis

Stable isotope analyses were undertaken at the SUERC laboratories,
East Kilbride. For δ18O analysis, each sample was over-gassed with a
1% CO2-in-He mixture for 5 min and left to equilibrate for a further
24 h. A sample volume of 2 ml was then analysed using standard tech-
niques on a Thermo Scientific Delta V mass spectrometer set at 25 °C.
Final δ18O values were produced using the method established by
Nelson (2000).

For δ2H analysis, sample and standard waters were injected directly
into a chromium furnace at 800 °C (Donnelly et al. 2001), with the
evolved H2 gas analysed on-line via a VG Optima mass spectrometer.
Final values for δ18O and δ2H are reported as per mil (‰) variations
from the V-SMOW standard in standard delta notation. In-run repeat
analyses of water standards (international standards V-SMOW and
GISP, and internal standard Lt Std) gave a reproducibility better than
±0.3‰ for δ18O, ±3‰ for δ2H.

For sulphate-δ34S isotope analysis, the barium sulphate precipitate
was recovered from the sampling vessel, washed repeatedly in de-
ionised water and dried. SO2 gas was liberated from each sample by
combustion at 1065 °C with excess Cu2O and silica, using the technique
of Coleman and Moore (1978), before measurement on a VG Isotech
SIRA II mass spectrometer. Results are reported as per mille (‰)
variations from the Vienna Canyon Diablo Troilite (V-CDT) standard in
standard delta notation. Reproducibility of the technique based on re-
peat analyses of the NBS-127 standard was better than ±0.3‰.

3. Results

3.1. Hydrochemical data

Field determinations and concentrations of major/minor ions are
presented in Table 1. The water samples obtained from Markham fall
into three broad categories (Fig. 4):

• Type A. Samples obtained during the investigative phase in 2011,
prior to the installation of the heat pump system, from 250 and
340 m depth.

• Type B. Samples obtained from 2012 up to 28th January 2015, during
the trialling and operation of the ‘standing column’ arrangement at
235–250 m depth (Regime 1 - Fig. 3).

• Type C. Samples obtained following 28th January 2015, during the
trialling and operation of the ‘standing column’ arrangement at 153–
170 m depth (Regime 2 - Fig. 3).

A clear difference is found between samples from

• Types A & B, which typically represent very saline, ammonium-,
methane- and iron-rich water.

• Type C, which represents much less saline, methane- and iron-poor
water.

The Type A samples (especially the initial sample from 250m depth,
with 14 mg/l SO4

= and 19 mg/l Ba) contain lower concentrations of sul-
phate and elevated concentrations of barium, compared with the other
samples. This is a very strong indicator of sulphate reduction at depth in
themine, as the absence of sulphate allows barium to accumulate with-
out its solubility being inhibited by barite (BaSO4) saturation. The Type
A samples are also highly saline sodium-chloride waters with up to
11 g/l chloride (over 60% seawater salinity).

The Type B samples contain sodium at around 4 g/l and chloride at
around6 g/l at an approximately 1:1M ratio. This represents deep saline
formation water commonly found at depth in Coal Measures strata
(Banks, 1997) and is also associated with elevated ammoniacal nitro-
gen, at typically 4–5 mg/l in Type B samples. Sulphate is present at
500–1700 mg/l and the meq sulphate/chloride ratio varies from 0.06
to 0.22 (by comparison standard sea water has a ratio of 0.10 -
Lenntech, 2015) (Fig. 5). Otherwise, Type B waters are characterised
by 8–10 meq/l alkalinity, typically around 20 mg/l iron, 2.3–4.5 mg/l
manganese, 76–110mg/l potassiumand around 5mg/l strontium. Anal-
yses of ferrous iron, compared with total iron, strongly suggest that the
iron in the groundwater is maintained in dissolved, ferrous, form due to
the reducing nature of the water.

The Markham No. 3 Shaft water is reducing and contains dissolved
methane at concentrations of up to 9 mg/l in Type B samples. Type C
samples have not been found to contain detectable methane, however,
they contain nitrate and rather low concentrations of iron and manga-
nese (Fig. 5), which suggests more oxidising water of a shallower na-
ture. The ferrous and dissolved iron results for the Type C samples are
in the range 0.07 to 0.16 mg/l, as compared with total iron of 0.3 to
0.7 mg/l, which may suggest that some of the dissolved iron has com-
menced oxidation to colloidal ferric iron oxyhydroxides.

The Type C samples are far less solute-rich than Type A or B, and
seem to represent shallower, fresher water. Initially (February 2015),
they contained sodium at 215 mg/l and chloride at 380 mg/l, at an ap-
proximately 0.87:1 M ratio. Ammoniacal nitrogen, was b0.1 mg/l with
sulphate at 404 mg/l. Otherwise, the initial Type C water was
characterised by 5meq/l alkalinity, 0.3 mg/l iron, 0.03 mg/l manganese,
17 mg/l potassium, and around 0.62 mg/l strontium. Since May 2015,
some of these parameters have crept back up a little, as deeper saline
water appears to have been drawn into the ‘standing column’



Table 1
Chemical properties of waters sampled fromMarkham No. 3 Shaft. UoG= University of Glasgow, ESG= Environmental Scientific Group, T = temperature, EC= electrical conductivity,
‘nd’=not-determined, * denotes field determination of pH, EC or alkalinity (other determinations at ESG lab). All non-stated values inmg/l, except pH units. The upper-shaded area rep-
resents Type A samples obtained from depth in the shaft prior to the commencement of the heat pump ‘standing column’. The central unshaded area represents Type B samples obtained
from235mdepth during the initial standing column configuration. The lower-shaded area represents Type C samples obtained from170mdepth during themost recent standing column
configuration.

Sample 

(m bgl)

Date Lab pH Alkalinity 

(meq/L)

T (°C) EC 

(µS/cm)

Mg Na Ca K Fe Mn Ba Sr Cl– SO4
= NO3

– NH4–

N

CH4

250 31/08/11 ESG 7.0 8.21 nd 24200 160 3830 528 78 10.8 1.13 19.2 8.27 6940 14 nd 4.7 2.32

340 31/08/11 ESG 6.6 7.07 nd 40900 641 8550 879 106 80.7 2.632 0.35 14.1 11700 716 nd 14.3 nd

235 15/10/12 ESG 7.1 8.61 nd 24700 216 3720 431 109 21.8 2.277 0.15 5.35 6590 1684 nd 5.0 6.64

15/10/12 ESG 7.2 8.69 nd 24100 218 3690 435 110 21.5 3.408 0.15 5.44 6590 1723 nd 5.0 9.04

10/01/13 ESG 7.3 7.89 nd 20500 176 3920 382 77 3.91 3.742 0.15 4.76 5820 1711 nd 3.8 0.54

10/01/13 ESG 7.3 8.09 nd 19700 175 3920 376 76 3.93 3.69 0.15 4.73 5860 1699 nd 3.8 0.93

28/08/13 ESG 7.9 10.01 nd 22000 191 4040 362 85 20.8 4.45 0.15 4.74 6190 511 nd 4.4 4.32

28/08/13 ESG 7.9 9.29 nd 22600 190 4170 359 85 21.3 4.48 0.15 4.73 6140 509 nd 4.4 3.01

170 16/02/15 ESG 7.5 4.96 nd 1900 31 215 110 17 0.31 0.025 0.08 0.62 380 404 nd 0.07 <0.02

21/05/15 UoG 7.55* 5.30* 13.5 2627* 47 361 133 57 nd nd nd nd 663 403 5.0 nd nd

30/06/15 UoG 7.15* 5.38* 15.2 2720* 47 397 134 47 nd nd nd nd 732 409 3.9 nd nd

10/09/15 UoG 7.26* 5.44* 13.8 3268* 52 477 139 56 nd nd nd nd 900 386 3.1 nd nd

17/09/15 ESG 7.2 6.25 nd 3160 43 434 130 26 0.72 0.027 0.12 1.04 829 135 Nd <0.01 <0.02

08/10/15 UoG 7.18* 5.30* 14.2 3440* 53 512 131 50 nd nd nd nd 1005 134 3.4 nd nd

18/11/15 UoG 7.34* 5.69* nd 3024* 58 406 166 63 nd nd nd nd 821 130 4.5 nd nd

17/12/15 UoG 7.24* 5.75* 13.8 3022* 57 393 161 65 nd nd nd nd 818 131 4.8 nd nd
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recirculation cell (and as mine waters continue to rise), although
sulphate and ammoniacal nitrogen have decreased to 135 and
b0.01 mg/l respectively.

In the Type C waters the SO4
=/Cl− meq ratio increases abruptly to a

value of 0.8 (Fig. 5). This reflects the likelihood that a major source of
sulphate in the Type C waters is now sulphide oxidation products (see
Stable Isotope data, below), rather than deep-seated salinity. As 2015
progresses and the salinity increases, the SO4

=/Cl− meq ratio falls
again back down to values of b0.2 (as observed in Type A and B waters
and consistent with a sea water ratio of c. 0.1) as the deep salinity
reasserts itself.

Unfortunately, we have no temperature data from Type A or B wa-
ters, and so cannot produce a temperature to depth trend for the Mark-
ham No. 3 Shaft. The average temperature of Type C water samples,
after being pumped from 170 m bgl to the surface, is 14.1 ± 0.7 °C.
This is within expected temperature values of 14.2 to 15.7 °C given a
geothermal gradient of 28 °C/km for the upper 1 km of sedimentary
crust in the UK (Busby et al., 2011) and a long term average surface at-
mospheric temperature of 10.16 ± 0.73 °C, recorded at the Keyworth
weather monitoring station in Nottinghamshire (Darling and Talbot,
2003).
3.2. Stable isotope data

This study is the first to perform isotopic analysis on Markhammine
waters, so captured information is restricted to Type C waters. Values
obtained from May to December 2015 for δ18O, δ2H and δ34S show vir-
tually no variation out with standard errors across all samples (Table 2).

MarkhamNo. 3 Shaft minewater δ18O and δ2H values show remark-
able consistency and fall close to, or on the global meteoric water line
(Fig. 6). Values of −8.2 ± 0.3‰ and −54 ± 1‰ for δ18O and δ2H are
close to the analytical techniques' reproducibility and are similar to
the weighted mean average meteoric water O and H isotopes for the
nearby Keyworth area (Darling and Talbot, 2003). Average values of
−6.5‰ and−44‰ for δ18O and δ2H for the Holme Brookmeteoric con-
trol samples are typical for stream waters across northern England
(Younger et al., 2015).
In terms of comparison to other groundwater bodies, averages from
61 analyses of deep borehole freshwater samples from the Triassic Lin-
colnshire Limestone aquifer (−8.0 ± 0.27 and −53.7 ± 2.26, Darling
et al., 1997), 50 km to the east, are remarkably similar to Markham iso-
topic values and suggest a similar meteoric origin and subsurface
mixing history. There is no evidence for extensive isotopic exchange
with the host lithologies whichwould drive both δ18O and δ2H to higher
values (Sheppard, 1986). The values of both water bodies are in line
with contour map values of ‘recent’ groundwaters within unconfined
aquifers believed to have been recharged within the Holocene
(Darling et al., 2003).

There have also been isotopic studies completed for brine waters
(with TDS values 60,540 to 197,000 ppm) in underseaMiddle CoalMea-
sures mine workings in northern England (Younger et al., 2015). These
data fall generally in the same region as the Markham data. Salinity
varies significantly between the mine water sites, but does not appear
to exert a systematic control on the δ18O and δ2H values, which appear
to behave rather conservatively, retaining near original surface water
characteristics, running close to the global meteoric water line.

Carboniferous coal sulphate-δ34S values typically range 0–10‰ and
are largely the result of δ34S fractionation during pyrite oxidation
(Matthies et al., 2012; Elliot and Younger, 2014). The average Markham
sulphate-δ34S value of 4.3‰ is within the typical range of 4–12‰ ob-
served in local groundwaters from coal-bearing formations (Matthies
et al., 2012).
4. Discussion

It is very common for the water column in deep shafts of non-
pumped coal mine systems to be strongly stratified (Nuttall and
Younger, 2004), often with solute-rich saline mine water at depth in
the shaft with more ‘dilute’ recent recharge water floating on top at
shallower depth. Pumping has thepotential to disturb this stratified sys-
tem (Elliot and Younger, 2007, 2014). The samples of TypeAwater from
MarkhamNo. 3 Shaft, taken from 250 to 340m depth show that, at that
depth there was a highly saline (N60% seawater), highly reducing (sul-
phate-reducing and methanogenic) hydrochemical regime.
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When the heat pump ‘standing column’ scheme started operating,
with pumping from 235 m depth, the water was somewhat less saline
(c. 30% seawater) with no obvious evidence of sulphate reduction (ele-
vated SO4

=, modest Ba and no odour of H2S has been noted from Type B
and C samples). High methane concentrations have been recorded in
Type B samples, but this may have been migrating up from greater
depth. The Type B waters contained high concentrations of Fe and Mn
of several 10s of mg l−1 (Fig. 5) and also contained ammoniacal nitro-
gen. This suggests that the Type Bwaters fall within an Fe-Mn reducing,
N-reducing redox regime. Thus, during the period 2012–2014 we can
hypothesise that the heat pump ‘standing column’mayhave been locat-
ed in a transitional zone between deep, highly reducing brines below
and, putatively, shallower, less saline, less reducing waters above.

When, in January 2015, the standing column pump was raised to
170m, the ammonical nitrogen and dissolved iron andmanganese con-
centrations fell sharply and the salinity reduced still further to only a
few hundred mg l−1 chloride, suggesting that the ‘standing column’
now fell within a shallower, less saline, less reducing body of water
(Type C) “floating” on a deeper, denser saline water body (Type A). As
the year of 2015 has progressed, thewater has gradually become some-
what more saline. This could be due to the continued pumping drawing
upwater fromdepth (although thiswould seemunlikely if the ‘standing
column’ is a closed cell, and with a pumped circulation of c. 2 l/s). It
seems more likely that the continued post-closure recovery and rise of
minewater levels in the Markham-Bolsover complex has lifted the
hydrostratigraphical interface slowly up the shaft, such that the pump
“sees” progressive increases in the proportion of deep saline water (at
least until the rise in water level allows the pump to be raised once
again).

The implications of this hypothesis are threefold:

(i) Corrosion. The presence of chloride salinity and highly reducing
conditions can promote corrosion of pipes and heat exchangers.
Using marine grade materials can mitigate this risk, although
even stainless steel can be susceptible to corrosion under reduc-
ing conditions, where protective surface oxide layers cannot
form. Thus, a knowledge of the dynamics of saline and redox in-
terfaces will allow prognoses to be made of the risk of corrosion
in pumping-heat exchange systems.



Table 2
O, H, S isotope systematics of H2O and SO4

=. All δ-values‰ against Vienna StandardMean
Ocean Water (VSMOW) or Canyon Diablo Troilite (CDT) standards, ‘nm’ = not-deter-
mined. Average values of triplicate analyses which reproduce well within error of repro-
ducibility. Holme Brook, Chesterfield, represents local meteoric water samples.

Sample site Date

δ18O δ2H δ34S (SO4)

(VSMOW) (VSMOW) (VCDT)

Markham No. 3 Shaft 21/05/15 −7.3 −49 3.8
30/06/15 −8.1 −51 4.7
10/09/15 −8.3 −54 4.8
08/10/15 −8.2 −55 5.8
18/11/15 −7.9 −53 6.3
17/12/15 −8 −54 6.1

Holme Brook 06/07/15 −6.3 −45 nd
08/10/15 −6.7 −42 nd
25/11/15 −6.8 −44 nd
17/12/15 −6.9 −45 nd
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(ii) Coal mine waters are notorious for containing elevated concen-
trations of iron, sulphate and manganese, ultimately due to oxi-
dation of pyrite in the mined environment and secondary
mineral weathering from the acid generated by that reaction.
Precipitation of iron (and, to a lesser extent, manganese)
oxyhydroxides can rapidly clog up pipework, heat exchangers
and reinjection boreholes, if the iron is allowed to come into con-
tact with oxygen (Banks et al., 2009). During the initial years of
operation (when Type B waters were pumped), the Markham
scheme was noteworthy for the fact that, despite relatively
high dissolved iron concentrations, no serious issues with iron
cloggingwere noted in the heat exchangers, presumably because
the highly reducing nature of the water ensured that the iron
remained in solution. It remains to be seenwhether thiswill con-
tinue to be the case, now that the system is pumping less reduc-
ing waters (Type C), albeit with lower total iron concentrations.

(iii) The fact that a hydrochemical stratification persists in the shaft
suggests that (i) there is no natural significant convection or hy-
draulically forced advection of water in the shaft (and this has
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Fig. 6. Plot of δ18O and δ2H for Markham mine waters, as compared to local Holme Brook
and long term weighted mean values for meteoric water recorded at Keyworth (Darling
and Talbot, 2003). The solid trend line represents the Global Mean Meteoric Water Line
(GMWL).
implications for the overall thermal capacity of the ‘standing
column’).

In terms of Type C water provenance, slowly increasing major ion
concentrations suggests an increasing influence of amodest component
of deeper saline water, whilst largely uniform δ18O and δ2H values are
completely consistent with fresh, meteoric waters. This phenomenon
is not uncommon for other similar studies, e.g. at the nearby Caphouse
Colliery (Burnside et al., in press) and across northern England
(Younger et al., 2015), where a similar decoupling for far greater salin-
ities (up to 122,000 mg/l Cl and 55,000 mg/l Na) and far greater fluid
depths (600m bgl for abandonedmines and 1600m bgl for exploration
boreholes) is observed. This suggests that the water molecules are de-
rived from meteoric recharge, while a component of the ‘salinity’ may
be derived from an ionically significant, but hydraulically minor, input
of deeper saline water.

Younger et al. (2015) believe high concentrations of solutes to be a
result of recharge during Cenozoic uplift episodes and suggest three
possible mechanisms to explain this hydrogeological paradox; evapo-
rite dissolution; high-temperature rock-water interaction with
radiothermal granites; and ‘freeze-out’ from overlying permafrost
formed during cold periods. There are no local granite bodies and
sulphate-δ34S values preclude any major evaporite influence. Similar
to the Caphouse Colliery (Burnside et al., in press), ‘freeze-out’ is the
most likely cause of delineation between water isotopes and ion
concentrations.

5. Conclusion

The abandoned workings of the former Markham Colliery are being
exploited, via a ‘standing column’ 20 kW heat pump arrangement in
Markham No. 3 Shaft, to produce thermal energy to a modest complex
of offices at the surface. Though slowing, groundwater rebound follow-
ing closure of the colliery is still in progress. This has allowed for, and
may further allow, raising of the ‘standing column’ arrangement in the
shaft. Sampling of mine waters at three different depths since August
2011 have returned three distinct water types that represent progres-
sively less saline waters and suggest the presence of stratification in
the shaft water column.

From2012,waterwas pumped from235mbgl in the shaft at c. 15 °C
and 2–3 l/s. The thermally spent (cool) water was returned to the same
shaft at c. 250 m bgl at around 12 °C, after passing through shell and
tube heat exchangers. The mine water contained iron and c. 6000 mg/l
chloride, but was highly reducing, so great care was taken to avoid con-
tact with oxygen and prevent ochre scaling. Since January 2015, the
pumphas been re-set at a depth of 170mbgl and extracts comparatively
dilute, iron-poor waters which are returned at 153 m bgl. The salinity of
these waters gradually increased as 2015 progressed. This is likely a re-
sult of continued post-closure water table recovery and rise of
minewater levels in the Markham-Bolsover complex lifting the
hydrostratigraphical interface slowly up the shaft, such that the pump
“sees” progressive increases in the proportion of deep saline water.

There is virtually no variation in isotopic values throughout 2015.
δ18O and δ2H compositions suggest the presence of meteoric sourced
waters that have had little isotopic exchange with mineral phases.
Sulphate-δ34S values are typical for British CoalMeasures and consistent
with δ34S fractionation during pyrite oxidation.

Thermal energy has been successfully extracted from the Markham
No. 3 Shaft since October 2012. Alternating pump depths, differing
water chemistries and return of thermally spent waters have yet to
show any detrimental effects on the geothermal resource. However, it
would bewise tomaintain a comprehensivewater monitoring program
as increasing salinity levels pose a possible threat of corrosion to the
pump-heat exchange system and the extraction of less reducing waters
increases the risk of ochre formation, despite the low iron concentra-
tions. The persistent stratification in the shaft, and subsequent lack of
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meaningful advection, has implications for the thermal capacity of the
water body should local heat demand expand in the future.
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