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Abstract  
Fatigue design assessment is a crucial step in the design process of ships and offshore 
structures. To date, the stochastic approach is commonly used to calculate the total lifetime 
accumulated fatigue damage and the probability of fatigue failure for the structures.  
Meanwhile, the details of damage initiation and propagation are infrequently investigated. In 
terms of predicting crack growth, the traditional approaches face conceptual and mathematical 
difficulties in terms of predicting crack nucleation and growth, especially for multiple crack 
paths because the equations in classical continuum mechanics are derived by using spatial 
derivatives. Peridynamics is a non-local theory using the integral equations rather than 
differential equations which makes it suitable for damage prediction. In this study, a novel 
energy-based peridynamic model for fatigue cracking is proposed. The definition of cyclic 
bond energy release rate range and the energy-based peridynamic fatigue equations for both 
phases crack initiation and crack growth phases are introduced. For validation, first, a problem 
of mode-I fatigue crack growth is investigated. Next, different mixed-mode fatigue damages 
are also investigated and the peridynamic results are compared with the experimental results.  
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Nomenclature 

Latin Letters 

a , b  , d  Peridynamic constants for in-plane deformations. 

1 1( , )A m  Fatigue parameters for the phase (I) used in the PD fatigue 
model using cyclic bond strain range.

2 2( , )A m  Fatigue parameters for the phase (II) used in the PD fatigue 
model using cyclic bond strain range.

b  The vector of body forces. 

1( )( ) 1( ,  )k jB n  Fatigue parameters for the phase (I) used in the PD fatigue 
model using the cyclic bond energy release rate range. 

2( )( ) 2( ,  )k jB n  Fatigue parameters for the phase (II) used in the PD fatigue 
model using the cyclic bond energy release rate range. 

( )x kb  The external forces per unit area in x -direction. 

( )y kb  The external forces per unit area in y -direction. 

( , )C M  Material constants for the Paris equation using the stress 
intensity factor. 

0( )( )k jC  A coefficient that is used to calculate the energy release rate, 

( )( )k jg , for interaction between material points k  and j  in 

peridynamics. 

1( )( )k jC  A coefficient that is used to express the relationship between 
cyclic bond energy release rate range, 

( )( )

( )

k j

Ng , and the bond 

strain range, ( )
( )( )

N
k j .  

E  Young’s modulus 

cG  Critical energy release rate of material. 

cg  Average critical energy release rate for one interaction. 

( )( )

( )

k j

Ng  The cyclic bond energy release rate range at thN  cycle of 
loading. 

( )( )k jg  Energy release rate for interaction between material points k  
and j  in peridynamics. 

( )( )k jg   Energy release rate for interaction between material points k  
and j  in maximum loading. 

( )( )k jg   Energy release rate for interaction between material points k  
and j  in minimum loading. 

g  The cyclic bond energy release rate range corresponding to 
the fatigue limit  . 

h  Thickness of the plate. 

xH  Horizon of material point located at x  coordinates. 

CK  Fracture toughness of material. 

N  Number of loading cycles. 

cN  Total number of interactions passing through a unit crack 
area. 

kN  Total number of family members of material point k . 

q  The crack length. 



R  The load ratio between the minimum load minP  and the 

maximum load maxP . 

( )( )k js  The bond stretch between material points k  and j . 

( )( )k js  Bond stretch between material points k  and j  corresponding 

to the maximum load maxP  of the cyclic loading. 

( )( )k js  Bond stretch between material points k  and j  corresponding 

to the minimum load minP of the cyclic loading. 

cs  The critical bond stretch. 

t , t   The peridynamic force densities. 
u   The displacement vector. 
u   The acceleration vector. 

( )jV  The volume of the material point j . 

x  The vector of coordinates. 
 

Greek Letters 

  Horizon size. 
( )
( )( )

N
k j  The cyclic bond strain range between material points k  

and j  at thN  cycle of loading. 

  The fatigue limit. 

  Bulk modulus of the material. 
( )
( )( )

N
k j  The remaining life of the interaction between material 

points k  and j  at thN  cycle of loading. 
  Shear modulus of the material. 
   Poisson’s ratio. 
   Bond length in initial (undeformed) configuration. 
   Mass density. 
   Damage index to represent the local damages on the 

structure. 
   The angle between the line of interaction (between 

material points k  and j  in the undeformed 

configuration) and the x  axis.  

( )( )k j   Function to represent state of interaction (damaged or 
intact). 

( )( )k j , ( )( )j k   Micropotentials of the interaction between material point 
k  and j . 

( )k , ( )j  Dilatation of material point k , j , respectively. 

 

Acronyms 

CCM Classical Continuum Mechanics 
FDA Fatigue design assessment.
FEA Finite Element Analysis.
PD  Peridynamics/Peridynamic. 



1. Introduction 

Ships and offshore structures are often designed with the expectation of a long lifetime in the 
marine environment. Due to the repetition of the loading caused by wind, wave, current, and 
other harsh conditions, fatigue damages can occur on the structures, which may lead to major 
accidents. These accidents can result in very expensive maintenance costs, crew or passenger 
life losses, and pollution of the marine environment. Therefore, fatigue design assessment 
(FDA) is one of the design drivers for ship and offshore structures.  
 
To date, due to the randomness of the environment, the stochastic fatigue analyses are 
commonly used in the FDA for ship and offshore structures. In the FDA, first, the stress 
combination caused by hull girder loads, external wave pressure and internal cargo pressure is 
obtained. Subsequently, by using a suitable wave energy spectrum, the short-term stress 
response in irregular waves and short-term accumulated fatigue damage for the structures are 
predicted by using well-known Palmgren-Miner rule. Next, by using the service profile 
probability matrix, including wave heights, wave periods, ship headings, ship speeds, loading 
conditions, long-term accumulated fatigue damage, and deterministic fatigue life probability 
of failure are predicted. This approach is recommended by many classification societies [1-7], 
and it is also widely used in many practical ships and offshore structure analyses [8-12]. By 
using the stochastic approach, the total lifetime accumulated fatigue damage (in the long-term 
fatigue analysis) and the probability of failure (in the reliability fatigue damage analysis) are 
common outputs. Meanwhile, the details of damage initiation and propagation are still 
infrequently investigated.  
 
In order to predict fatigue crack growth, the traditional finite element method (FEM) by using 
the remeshing techniques [13, 14], or various modified versions of the FEM such as extended 
finite element method [15, 16], have been used. However, one conceptual problem for classical 
continuum mechanics (CCM) is that it uses the partial differential equations to represent 
structural behaviors. Therefore, additional criteria are needed to predict crack growth speed 
and direction or the branching of cracks [17-20]. 
 
Peridynamics (PD) is a nonlocal theory reformulating the CCM by using integro-differential 
equations [21-23]. In CCM, the state of a point is only influenced by its immediate neighbors. 
By contrast, the behavior of a material point in PD is governed by its interactions with 
surrounding material points located within a finite distance  , called the horizon size. Since 
the integro-differential equations used in PD are valid in both continuous and discontinuous 
models, the theory is suitable for predicting progressive damages [24, 25].  
 
Peridynamics can be applicable for both elastic and plastic materials and large deformation 
problems [26-31]. It is also applied for composite and polycrystalline materials [32-36]. The 
theory is also suitable for multi-physics [37, 38], coarsening and multiscale modeling [39-41]. 
Peridynamics is also suitable for structural idealization to analyze beam structures [42-45] or 
shell structures [45-49]. PD can also be combined with other well-known numerical methods 
such as finite element analysis (FEA) [50-53]. 
 
The first PD model for fatigue cracking is proposed by Silling and Askari [54], including three 
phases of fatigue failure: crack initiation (phase I), crack growth (phase II) and final failure 
controlled by quasi-static crack growth (phase III). Further validations for the PD model were 
studied by Zhang, et al. [55], Jung and Seok [56]. As proposed by Silling and Askari [54], each 
interaction in the PD model has its own remaining life. During the cyclic loading processes, 



the remaining life is reduced, and the reduction can be updated by using PD fatigue equations 
using the cyclic bond strain range.  
 
However, in some special cases, the existing PD fatigue model [54] may face some difficulties 
when it is applied for elastoplastic deformation problems, beam, shell, and composite 
structures. In elastoplastic deformation problems, the bond strain can consist of elastic and 
plastic strains [29, 57]. In beam and shell structures, the bond strain consists of in-plane, shear, 
and bending components [42, 49]. Similarly, composite structures often exhibit coupling 
between in-plane and out-of-plane deformations. Therefore, deciding which strain will be used 
for the PD fatigue equation can be a challenge. By contrast, the energy release rate for a bond 
is unique and it can consist of the energy release rates for both in-plane and out-of-plane 
deformations [42, 49, 57-62]. 
 
Therefore, this study proposes a novel energy-based PD model for fatigue cracking. The 
definition of the cyclic bond energy release rate range is introduced for the first time in the PD 
literature. The PD fatigue equations based on the cyclic bond energy release rate range are 
proposed. For simplification, this study focuses on the formulations for 2D structures. The 
numerical procedures to predict fatigue crack damages are also provided and the proposed PD 
model is verified by considering both mode-I and mixed-mode fatigue crack growth problems. 
 
This study is organized as follows. Section 2 presents a brief review of the PD theory for 2D 
structures. Section 3 presents a brief review of the existing PD model for fatigue cracking based 
on the cyclic bond strain range. Section 4 provides the proposed energy-based PD model for 
fatigue cracking by using the cyclic bond energy release rate range. The numerical procedures 
to predict fatigue damages are provided in Section 5. Section 6 presents the PD results for 
mode-I and mixed-mode fatigue damages followed by the conclusions in Section 7. 

2. Peridynamic theory for 2D structures 
Peridynamics is a reformulation of the classical continuum mechanics (CCM) equations 
introduced by Silling [21]. As opposed to CCM, the motion of a material point is expressed in 
PD by using the integro-differential equation as  

       , ( , , ) ( , , ) ,
xH

t t t dV t            x u x t u u x x t u u x x b x  (1) 

The integro-differential equation given in Eq. (1) can also be represented in a discrete form as 

 ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )
1

( , , ) ( , , )
kN

k k k j j k j k j k k j k j j k
j

t t V


      u t u u x x t u u x x b   (2) 

where   represents the mass density, x  represents the vector of coordinates, u  and u  
represent acceleration and displacement vectors, respectively. In PD, the external loads are 
applied to the model by using the vector of body forces, b . 
 
As shown in Eqs. (1-2), the motion of a material point in PD is influenced by collective 
deformations of surrounding material points within a domain xH , which is called horizon. In 

the 2D model, the horizon of a material point is defined as the circle with a radius   
surrounding that material point. Here,   is called the horizon size. Material points within the 
horizon of a material point are called family members of that material point. 
 
In Eq. (2), kN  represents the number of family members of the material point k  and j  

represents the family member of the material point k . The term ( )jV  is the volume of the 



material point j . The term ( )( )k jt  denotes the force density that the material point j  exerts on 

the material point k , and ( )( )j kt  corresponds to the force density that material point k  exerts 

on the material point j .  
 
As studied by [23, 25, 63] and later by [49, 64], the linear PD equations of motion (EOM) for 
a 2D structure can be represented as 

 ( ) ( )( ) ( ) ( ) ( )( ) ( ) ( )
1

1
2 4 cos

kN

k k j k j k j j x k
j

hu ad bs V b    


 
    

 
  (3a) 

 ( ) ( )( ) ( ) ( ) ( )( ) ( ) ( )
1

1
2 4 sin

kN

k k j k j k j j y k
j

hv ad bs V b    


 
    

 
  (3b) 

with 

( ) ( )( ) ( )( ) ( )
1

kN

k k j k j j
j

d s V 


   (3c) 

   ( ) ( ) ( ) ( )

( )( )

cos sinj k j k

k j

u u v v
s

 

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  (3d) 

( ) ( )cos j kx x





  (3e) 

( ) ( )sin j ky y





  (3f) 

   2 2

( ) ( ) ( ) ( )j k j kx x y y      (3g) 

 

In Eqs. (3a-b), h  represents the thickness of the 2D structure. The terms ( )x kb , ( )y kb  represent 

external forces per unit area [49]. In Eq. (3c), the term ( )k  represents the dilatation of material 

point k .  In Eq. (3d), ( )( )k js  represents the bond stretch between material points k  and j  [23, 

24, 49, 64, 65]. The parameter   in Eq. (3g) represents the distance between material points k  
and j  in the undeformed configuration. The parameter   represents the angle between the line 
of interaction (between material points k  and j  in the undeformed configuration) and the x  
axis.  
 
In Eq. (3a-c), the terms a , b , d  represent PD constants, which can be expressed as [49] 

 
 2

3 1

4 1

Eh
a








 (4a) 

  3

3

1

E
b

 



 (4b) 

2

2
d

h 
  (4c) 

where E  and   represent the elastic modulus and Poisson’s ratio, respectively. 
 
For static case, the inertia terms on the left-hand sides of Eqs. (3a-b) vanishes. Therefore, Eqs. 
(3a-b) can be rewritten as 



 ( )( ) ( ) ( ) ( )( ) ( ) ( )
1

1
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 ( )( ) ( ) ( ) ( )( ) ( ) ( )
1

1
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k j k j k j j y k
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 
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 
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In Eqs. (3a-c) and Eq. (5), the term ( )( )k j  is the damage parameter that is used to represent the 

state of interaction, intact or broken. This parameter can be defined as [24] 

 ( )( ) ( ) ( )

1  if interaction exists,
,

0  if no interaction.k j j k t


  


x x  (6) 

The state of interaction can be determined by using either critical stretch criteria [24, 25, 66, 
67] or critical energy release rate criteria [29-31, 42, 49, 68]. The damage criteria based on the 
critical stretch can be described as [24, 25] 

( )( ) ( )( )

( )( ) ( )( )

interaction exists: 1

interaction is broken: 0

k j c k j

k j c k j

s s

s s





  

  
 (7) 

where cs  represents the critical stretch. For 2D structures, the critical stretch can be calculated 

as [24, 25] 

 2

6 16
2

9

c
c

G
s

   
 


   
 

  (8) 

where cG  represents the critical energy release rate of material,   and   represent shear and 

bulk modulus of the material.  
 
The damage criteria based on the critical energy release rate can be described as 

( )( ) ( )( )

( )( ) ( )( )

interaction exists: 1

interaction is broken: 0

k j c k j

k j c k j

g g

g g





  
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 (9) 

where ( )( )k jg represents the energy release rate for interaction between material points k  and  

j . The term cg  represents the average critical energy release rate for one interaction.  

The energy release rate for interaction between material points k  and j  can be calculated as 
[29, 30] 

 ( )( ) ( )( ) ( )( )

1

2k j k j j kg g g   (10a) 

with  

( )( ) ( )( ) ( ) ( )

1

( )k j k j k jg V V
x h




 (10b) 

( )( ) ( )( ) ( ) ( )

1

( )j k j k j kg V V
x h




 (10c) 

where x  represents the mesh size in the uniformly discretized PD model. The terms ( )( )k j
and ( )( )j k  represent micropotentials of the interaction between material point k  and j . The 

micropotential ( )( )k j  can be calculated as 

( )( ) ( )( ) ( )( )

1

2k j k j k jt s
h

   (11a) 



with 

( )( ) ( ) ( )( )

2
2k j k k j

ad
t bs


   (11b) 

The critical energy release rate for one interaction can be computed as [29, 30] 

c
c

c

G
g

N
  (12) 

where  cN  represents the total number of interactions passing through a unit crack area, A. As 

proposed by Madenci and Oterkus [29], the interactions passing the crack tip can be counted 
as 1/ 2  interaction. Meanwhile, the interaction passing a point inside the crack can be counted 
as 1 interaction.  For a horizon size 3.015 x   , there are 48 interactions passing the unit 
crack surface, in which 24 interactions passing the crack tips [31, 49]. Therefore, the total 
number of interactions passing the unit crack surface can be counted as 24 24 / 2 36cN    . 

 
The local damages on the structure can be represented by the damage index,  . This parameter 
is the ratio of broken interactions to the total number of interactions within the horizon of a 
material point, which can be represented as [24] 

 
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1
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,

, 1
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k j j k j
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


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



x x

x  (13) 

3. Peridynamics for fatigue cracking based on cyclic bond strain range 
The first PD model for fatigue cracking is developed by Silling and Askari [54]. In that model, 
a bond can be defined in either the crack nucleation phase (phase I) or the crack growth phase 
(phase II). Rapid crack growth (Phase III) can also be incorporated with the PD fatigue model 
when some interactions in the PD model have stretches exceeding the critical value [55]. The 
fatigue life of each bond is represented by its remaining life, ( , , )N x ξ  that is defined as [54] 

  1

( )
( )( )( 0) ( )

( )( ) 1 ( )( ) 1 11,      with  0,  0
N

mk jN N
k j k j

d
A A m

dN


        for phase (I)  (14a) 

  2
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( )( ) 2 ( )( ) 2 21,      with  0,  0
N

mk jN N
k j k j

d
A A m

dN


        for phase (II) (14b) 

where 1 1( , )A m  and 2 2( , )A m  represent the positive fatigue parameters for the phase (I) and 

phase (II), respectively. The parameter ( )
( )( )

N
k j  represents the remaining life of the interaction 

between material points k  and j  at thN  cycle of loading. The parameter ( )
( )( )

N
k j  represents the 

cyclic bond strain range between material points k  and j  at thN  cycle of loading which can 
be defined as [54] 

 
( )( ) ( )( ) ( )( )

( )
( )( ) 1

k j k j k j

N
k j s s s R        (15) 

where 
( )( )k j

s  represents bond stretch corresponding to the maximum load maxP , 
( )( )k j

s  represents 

bond stretch corresponding to the minimum load minP . The term R  represents the load ratio 

that can be defined as 

( )( ) ( )( )min max/ /
k j k j

R P P s s    (16) 

If the fatigue limit is considered, Eq. (14a) can be rewritten for phase (I) as [54] 
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where 0   represents the fatigue limit which is the lowest cyclic bond strain range that still 

results in fatigue damages. The fatigue limit,   can be determined from the experiment. Note 

that   can be set equal to zero if the fatigue limit is not considered [54]. 

 
By using the relations given in Eq. (17), the remaining life of a bond in phase (I) can be 
calculated as 
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( 1)
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   (18) 

By using the relations given in Eq. (14b), the remaining life of a bond in phase (II) can be 
calculated as 

  2( 0) ( ) ( 1) ( )
( )( ) ( )( ) ( )( ) 2 ( )( )1,   

mN N N N
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Beyond the crack growth phase (phase II), the structures can experience rapid crack growth 
(phase III). In this case, the traditional PD model [22-25] for damage prediction can be used. 
Therefore, the interaction state of a bond can be defined as 
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3.1. Fatigue parameters for phase (I) 
Assuming that 1ξ  is the bond that has the largest cyclic bond strain in the structure, according 

to Silling and Askari [54], crack nucleation occurs when 

11
1 1

1
m

N
A

  (21) 

where 1  represents the largest cyclic bond strain in the PD model. 

If the fatigue limit,   is considered, Eq. (21) can be rewritten as 
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
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The relations in Eqs. (21-22) can be rewritten as 

     1
1 1

1 1

log1
log log

A
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and 
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By using the relations in Eq. (23), the parameters 1A  and 1m  can be obtained from N   test 

data for material as shown in Fig. 1. 
 



 
                                          (a)                                                                   (b) 
Fig. 1. Calibration phase (I) parameters 1A  and 1m  (a) without fatigue limit, (b) with fatigue 

limit 
As shown in Fig. 1, the experimental results for log  versus log N  or  log    versus 

log N  are often represented with scatter data, shown in blue. Based on these scatter data, the 

fitted curves, shown in red, can be obtained. The slopes of the fitted curves are equal to 11/ m
. Meanwhile, the intersections of the slopes with the log  or  log    axis (the vertical 

axis) are equal to  1 1log /A m . Therefore, the fatigue parameters, 1 1( , )A m , for phase (I) can 

be obtained from the fitted curve.  
 

3.2. Fatigue parameters for phase (II) 
In phase (II), the fatigue crack growth follows the well-known Paris law that can be represented 
as [69] 

Mdq
C K

dN
   (24) 

where q  represents the crack length and N  represents the number of loading cycles, K  
represents the stress intensity factor range, C  and M are material constants for the Paris 
equation using the stress intensity factor. 
 
According to Silling and Askari [54], the parameter 2m  in Eq. (19) can be obtained directly 

from the material constant M  as 

2m M  (25) 

Meanwhile, the parameter 2A  in Eq. (19) needs to be calibrated by conducting a trial PD fatigue 

simulation. Details of the calibration for the parameter 2A  is presented in the appendix A which 

can be described as follows; 
Step 1: Assume an arbitrary value for 2A  as: 2 2(trial)A A   

Step 2: Conduct a PD fatigue simulation with the trial value 2 2(trial)A A  and calculate the crack 

growth rate and stress intensity (SIF) range for this trial case:  (trial)
/dq dN  and (trial)K .  

Step 3: Plot the scatter data of  (trial)
/K dq dN   in the logarithmic scale and find the best-fit 

equation:   (trial)(trial)
/ Mdq dN C K   

Step 4: Calibrate the value for 2A  as [54] 



 
 

(experiment)
2 2(trial)

(trial)

/

/

dq dN
A A

dq dN
  (26a) 

or 

(experiment) (experiment)
2 2(trial) 2(trial)

(trial) (trial)

M

M

C K C
A A A

C K C


 


 (26b) 

where  
  (experiment)(experiment)

/ Mdq dN C K   (26c) 

 
Here Eq. (26c) is the Paris law equation obtained from the experimental data.  
 
Note that 1m , 1A  and 2m  are material constants which are independent of the horizon size. 

However, the parameter 2A  is dependent on the horizon size [54]. According to Silling and 

Askari [54], the relationship between the parameter 2A  and the horizon size   can be presented 

as 

  2( 2)/2
2 2

ˆ mA A    (27) 

where 2Â  is a constant and it is independent of  .  

Therefore, the value of the parameter 2A  can be scaled due to the change of horizon size as 

follows: 
Assuming that (1)

2A  is the calibrated value for the parameter 2A  obtained from a trial PD 

simulation (see Appendix A for the calibration procedure) by using the horizon size of (1) , for 
example (1)

13 x    in which 1x  represents the mesh size used in the trial PD simulation.  

By substituting (1)
2A  and (1)  into Eq. (27), the value for the parameter 2Â  can be calculated as 

  2

(1)
2

2 ( 2)/2(1)

ˆ
m

A
A


  (28) 

Now, assuming that a PD fatigue simulation with a different mesh size 2 1x x    and a horizon 

size of (2)
23 x    is needed. Therefore, by substituting Eq. (28) into Eq. (27) and by putting 

(2)  , a new value of the parameter 2A  for the PD fatigue simulation with a mesh size of

2 1x x    and a horizon size of (2)
23 x     can be obtained as 

 
 

 2 2

2

(1)
( 2)/2 ( 2)/2(2) (2) (2)2

2 2 ( 2)/2(1)

ˆ m m

m

A
A A  



 

   (29) 

4. An energy-based PD model for fatigue cracking 
In some special cases such as beam, shell, and composite structures, both in-plane and out-of-
plane deformations can exist. In peridynamics, in addition to bond stretch, the definitions of 
other parameters including curvature and shear angle are also used to describe the behaviours 
of these structures [45, 49]. Therefore, deciding which bond strain will be used for the PD 
fatigue equations given in Eq. (18-19) can be a challenge. By contrast, in these structures, the 
energy release rate for a bond is unique and it can consist of the energy release rates for both 
in-plane and out-of-plane deformations [42, 49, 57-62]. Therefore, in this section, a novel PD 
model for fatigue damage prediction based on the cyclic bond energy release rate range is 



proposed. The fatigue equation in Eq. (14) is rewritten in the energy-based form. New fatigue 
parameters for the proposed model are also presented.  
 

4.1. The cyclic bond energy release rate range 
Similar to the definition of the cyclic bond strain range proposed by Silling and Askari [54], 
the cyclic bond energy release rate range at thN  cycle of loading can be defined as 

( )( )

( )
( )( ) ( )( )k j

N
k j k j

R
g g g

R
    (30a) 

or 

( )( )

( )( ) ( )( )( )

( )( ) ( )( )

   for  0

   for  0
k j

k j k jN

k j k j

g g R
g

g g R

 

 

   
 

 (30b) 

where ( )( )k jg   and ( )( )k jg   represent the energy release rates for interaction between material 

points k  and j  in maximum and minimum loading conditions, respectively. These energy 
release rates can be calculated by using Eq. (10). The loading ratio R  is defined in Eq. (16).  
 
Note that the bond stretches 

( )( )k j
s  and 

( )( )k j
s  given in Eq. (15) can be either positive or negative. 

However, the energy release rate ( )( )k jg   and ( )( )k jg   given in Eq. (30) are always positive.  

Therefore, the term /R R  is introduced in Eq. (30) to ensure the calculation of the energy 

release rate range can be applicable for both positive and negative load ratios. 
 
By using the micro-potential and force density given in Eq. (11), the energy release rates for 
interaction between material points k  and j  given in Eq. (10) can be rewritten as 

  ( ) ( )
( )( ) ( ) ( ) ( )( ) ( )( ) 2

1 2
4

2 2( )
k j

k j k j k j k j

V Vad
g bs s

x h
  


 

     
 (31) 

The energy release rate in Eq. (31) can be rewritten as 

( ) ( ) ( ) ( ) 2
( )( ) ( )( )2

( )( ) ( )( )

2
2( )

k j k j
k j k j

k j k j

V Vad
g b s

s s x h

 




  
         

 (32a) 

or 
2

( )( ) 0( )( ) ( )( )k j k j k jg C s  (32b) 

with 

( ) ( ) ( ) ( )
0( )( ) 2

( )( ) ( )( )

2
2( )

k j k j
k j

k j k j

V Vad
C b

s s x h

 




  
         

 (32c) 

For the bond-based PD model, the term 0a   in Eq. (32) [25]. Therefore, Eq. (32c) can be 
simplified as 

( ) ( )
0( )( ) 2( )

k j
k j

V V
C b

x h



 (33) 

As can be observed from Eq. (33) for the bond-based PD model, the parameter 0( )( )k jC is 

independent of loading conditions. However, for the ordinary state-based PD model, the 
dilatation terms exist. Therefore, as given in Eq. (32c), 0( )( )k jC  is loading dependent and it can 

be updated during the PD fatigue prediction.  



 
Note that the estimation in Eq. (32) is assumed for a bond with ( )( ) 0k js  . As given in Eq. (31), 

for a bond with  ( )( ) 0k js  , the energy release rate is also equal to zero, ( )( ) 0k jg  . Therefore, 

the estimation of the energy release rate given in Eq. (32) is not needed when ( )( ) 0k js  . 

 
By using the relationship given in Eq. (32b), the cyclic bond energy release rate range in Eq. 
(30) can be rewritten as 

   
( )( )

2 2

0( )( ) ( )( ) ( ) )
(

(
)

k j j
N

k j k k jCg s
R

R
s    (34a) 

or 

 
( )( )

22
0( )( ) ( )

(
(

)
)1

k j k j
N

k j

R
g C s

R
R  

   
 

 (34b) 

By using the relation given in Eq. (15), the cyclic bond energy release rate range in Eq. (34b) 
can be rewritten as 

 ( )( )

(

2

2
0( )( )

( )
)( )( )

1
1

k j

N
jN

j
k

k

R
g

R
C

R
R

  
          

 (35a) 

or 

 
( )( )

2

1( )
( ) ( )

( )( )( )k j k j
N N

k jg C   (35b) 

with 

 
2

1( )( ) 0 2( )( )

1
1

1
k j k jC

R
R

R
C

R

 
     

 (35c) 

 

4.2. The energy-based PD fatigue model 
Similar to the original PD fatigue model [54], in this energy-based model, the remaining life 
of the interaction between material points k  and j  can be represented in terms of the cyclic 
bond energy release rate range as 

  1

( )
( )( )( 0) ( )

( )( ) 1( )( ) ( )( ) 1( )( ) 11,    with  0,  0
N

nk jN N
k j k j k j k j

d
B g B n

dN


        for phase (I) (36a) 

  2

( )
( )( )( 0) ( )

( )( ) 2( )( ) ( )( ) 2( )( ) 21,    with  0,  0
N

nk jN N
k j k j k j k j

d
B g B n

dN


        for phase (II) (36b) 

 
where 1( )( ) 1( , )k jB n  and 2( )( ) 2( , )k jB n  represent the fatigue parameters used in the energy-based 

PD fatigue model for phase (I) and phase (II), respectively. The parameter ( )
( )( )

N
k jg  represents 

the cyclic bond energy release rate range of the interaction between material points  k  and j  

at the thN  loading cycle.  
If a fatigue limit is considered, the fatigue equation given in Eq. (36a) for phase (I) can be 
rewritten as 

  1( ) ( ) ( )
( )( ) 1( )( ) ( )( ) ( )( ),    if   

0                                      otherwise

nN N N
k j k j k j k j

d B g g g g

dN


 

   


 (37a) 



with 
2

1( )( )k jg C    (37b) 

where g  represents the cyclic bond energy release rate range corresponding to the fatigue 

limit  . 

By integrating Eq. (37a), the remaining life of a bond in phase (I) can be calculated as 

  1( 1) ( ) ( )
( )( ) 1( )( ) ( )( ) ( )( )( 0) ( )

( )( ) ( )( )
( 1)
( )( )

,    if   
1,   

                                          otherwise

nN N N
k j k j k j k jN N

k j k j
N
k j

B g g g g
 




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

     


  (38) 

By integrating Eq. (36b), the remaining life of a bond in phase (II) can be calculated as 

  2( 0) ( ) ( 1) ( )
( )( ) ( )( ) ( )( ) 2( )( ) ( )( )1,   

nN N N N
k j k j k j k j k jB g        (39) 

Similar to the damage criteria given in Eq. (20), the state of interaction in the energy-based 
model can be defined as 

( )( ) ( )
( )
( )( )

(
( )

)

( )

( )( ) )( )( )(

0    or          0

0    and        1k
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N
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c

N

k k j
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j

j

j

g g

g g

 

 

    


   
 (40) 

 

4.3. Fatigue parameters 1( )( ) 1( , )k jB n , 2( )( ) 2( , )k jB n  

In this section, the relationships between the fatigue parameters in the proposed energy-based 
PD model, ( ( )( )i k jB , in ) and the fatigue parameters in the cyclic bond strain model, ( iA , im ) are 

presented. The values of ( ( )( )i k jB , in ) can be obtained indirectly from the experimental data 

through the calibrations for ( iA , im ). Note that, in this section, 1i   denotes phase (I) and 2i   

denotes phase (II). 
 
By comparing Eq. (36) with Eq. (14), the relationships between fatigue parameters in the 
energy-based model, ( ( )( )i k jB , in ) and the cyclic bond strain model, ( iA , im ) can be obtained as 

( )( ) ( )( ) ( )( )
i im n

i k j i k j k jA B g   (41a) 

or 

       ( )( ) ( )( ) ( )( )log log log logi i k j i k j i k jA m B n g    (41b) 

On the other hand, the relation given in Eq. (35b) can be rewritten as 

     1( )( ) ( )()( ) )(l 2og log logkk kjj jCg    (42) 

Therefore, by using the relation given in Eq. (42), the relations in Eq. (41b) can be rewritten as 

         ( )( ) ( )( ) ( )( )1( )( )logl o 2og log log gl ki ji k j i k j i i k jA m B n nC     (43a) 

or 
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



 

 (43b) 

In order to ensure Eq. (43b) is correct for every interaction, the following relations between 
fatigue parameters in the energy-based PD model, ( ( )( )i k jB , in ) and the cyclic bond strain PD 

model, ( iA , im ) can be obtained as 

/ 2i in m  (44a) 
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Therefore; 
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4.4. Phase transition 
According to Silling and Askari [54], the PD bond strains in the nucleation phase can agree 
with the measured strain data. However, in the growth phase, the actual process zone at a crack 
tip is usually smaller than the PD continuum-level model. Therefore, bond strains in phase (II) 
could be fictitious. As a result, the transition from phase (I) to phase (II) might not be smooth 
because the bond strain can suddenly become fictitious.   
 
In order to avoid the above phenomenon for phase transition, Silling and Askari [54] proposed 
a method based on the information of the damage index   at each material point and its family 
members. Specifically, phase (I) fatigue equation given in Eq. (18) or Eq. (38) for a given 
material point k is valid, if all material points within its horizon (including itself) has the 
damage index 0  . By contrast, the phase (II) fatigue equation given in Eq. (19) or Eq. (39) 

is valid when material point k  or at least one of its family members have 0  . According to 

Silling and Askari [54], 0  can be chosen as 0 0.5  . In this study, the same approach is used. 

However, as shown in Fig. 2 for an example of a plate with a crack, material points located 
along the crack have the damage index of 0.398   for the horizon size of 3 x   . It means 
that the plate can be completely split when the damage indexes of material points reach the 
value of  0.398  . Therefore, in this study, instead of using 0 0.5   as suggested by Silling 

and Askari [54], the value 0 0.398   is used to decide the phase transition for each bond in 

two-dimensional models. 
 
If some interactions have energy release rates exceeding the critical value, ( )( )k j cg g , the 

fatigue simulation is stopped and the conventional PD model for damage prediction (phase III) 
[22-25] can be used.  
 



 
Fig. 2. Variation of damage index,  , on in plate with a pre-existing crack 

5. Numerical procedure 
In the PD model, the domain is uniformly discretized with material points associated with 
specific volumes. The behavior of the structure subjected to the statically extreme loading 

maxP P  is obtained by solving the PD equations of motion given in Eq. (6). Details of the 

solution technique for static loading conditions are presented in Appendix B.  
 
In the cyclic bond strain range PD fatigue model [54], the remaining life of each interaction is 
updated by using Eq. (18) for phase (I) and Eq. (19) for phase (II). The state of interactions can 
be updated by using Eq. (20). In the energy-based PD fatigue model, the remaining life of each 
interaction is updated by using Eq. (38) for phase (I) and Eq. (39) for phase (II). The state of 
interactions can be updated by using Eq. (40). The numerical procedure for fatigue damage 
predictions by using the cyclic bond strain PD model and by using the energy-based PD model 
are shown in Fig. 3 and Fig. 4, respectively. 



 
Fig. 3. Numerical procedure for fatigue prediction by using the cyclic bond strain range PD 

model (m represents the total number of material points) 
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Fig. 4. Numerical procedure for fatigue prediction by using the energy-based PD model (m 

represents the total number of material points) 
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Apply boundary conditions

True

False

Initialize geometry and material parameters

Discretization: PD material points

Construct family member array for each material 

Calculate bond energy release rate for all 
interactions by using Eq. (31);
Calculate cyclic bond energy release range for 
all interactions by using Eq. (34b) (see Fig. 6)

Update damage index 𝜙 for all material points by using Eq. (13)

Apply boundary conditions; 
Apply loading condition: 𝑃 ൌ 𝑃௠௔௫

෍ ෍ 𝜓 ௞ ௝
ሺ௡ሻ

ே

௝ୀଵ

௠

௞ୀଵ

൏ ෍ ෍ 𝜓 ௞ ௝
ሺ௡ିଵሻ

ே

௝ୀଵ

௠

௞ୀଵ

Calculate bond energy release rate for all interactions by using Eq. (31);
Calculate cyclic bond energy release range for all interactions by using Eq. (34b) (see Fig. 6)

Find the maximum value of bond energy release rate of all interactions in the PD model: 𝑔̅௠௔௫
ሺଵሻ

Find the maximum value of bond energy 
release rate of all interactions in the PD 

model: 𝑔̅௠௔௫
ሺ௡ሻ

Update interaction state (parameter 𝜓) for all bonds (see Fig. 7)



As shown in Fig. 3 and Fig. 4, in order to decide whether the static solution is skipped or not, 
the summation of all interaction states is compared with its value in the previous load cycle.  

( ) ( )
( )( )

1 1

kNm
n n

k j
k j


 

    (47a) 

( 1) ( 1)
( )( )

1 1

kNm
n n

k j
k j

 

 

    (47b) 

where ( )
( )( )

n
k j  represents the interaction state of the bond between material points k  and j  at 

load cycle n  and ( 1)
( )( )

n
k j   represents the interaction state of the bond between material points k  

and j  at load cycle 1n . 
If the summation of all interaction states at the current cycle is smaller than its value at the 
previous cycle, ( ) ( 1)n n   , it means that some new bonds are broken. Therefore, the static 
solution for extreme loading maxP P  needs to be solved to obtain a new displacement field. 

Otherwise, there is no newly broken bond in the PD model and the static solution can be 
skipped. Therefore, the solution results for the previous loading cycle 1n  can be used for the 
current loading cycle n .  
 
As shown in Fig. 3 and Fig. 4, the phase information for each interaction is updated after each 
loading cycle to decide whether phase (I) or phase (II) fatigue equation is valid for each 
interaction. The procedure is presented in Fig. 5. Similarly, the interaction states for all bonds 
in the PD model are also updated after each loading cycle as shown in Fig. 3 and Fig. 4. Details 
are presented in Fig. 8.  
 
As shown in Fig. 3 for the fatigue prediction by using the cyclic bond strain range model [54], 
stretches and strain ranges of all interactions in the PD model are calculated at each loading 
cycle. Details of calculating bond stretches and cyclic bond strain ranges are presented in Fig. 
6.  
 
Fig. 4 presents the fatigue prediction procedure by using the energy-based PD model, the 
energy release rate and the cyclic bond energy release rate range are calculated for each 
interaction at each loading cycle as presented in Fig. 7.  
 



 
Fig. 5. Define/update phase information for all interactions in the PD model 

Loop 1: over material points
k = 1, 2, ...,  k ≤ 𝑚

Define/update phase information for all interactions based on damage index 𝜙

Loop 2: over family members of material point k
j ൌ member ሺଵሻ , memberሺଶሻ,..., member ሺ୒ሻ

Initialize a vector 𝜙ത with a size of ሺሺ𝑁 ൅ 1ሻ ൈ 1ሻ
(N is the total number of family members of material point k )

𝜙ത 1,1 ൌ 𝜙ሺ௞ሻ

𝑐𝑜𝑢𝑛𝑡 ൌ 1

𝑐𝑜𝑢𝑛𝑡 ൌ 𝑐𝑜𝑢𝑛𝑡 ൅ 1

𝜙ത 𝑐𝑜𝑢𝑛𝑡, 1 ൌ 𝜙ሺ௝ሻ

𝑗 ≡ member ሺ୒ሻ

j = next family 
member

False

True

max 𝜙ത ൐0.398

The material point k and its all 
interactions belong to phase (II):

phase(k) = 2

True

False

The material point k and its all 
interactions belong to phase (I):

phase(k) = 1

𝑘 ൏ 𝑚

𝑘 ൌ 𝑘 ൅ 1

True

False

Go to next step in the PD fatigue 
prediction

Initialize a vector with a size of ሺ𝑚 ൈ 1ሻ to store the phase 
information for all material points in the PD model, namely "phase"

(m is the total number of material points in the PD model )



 
Fig. 6. Calculate bond stretches and cyclic bond strain ranges for all interactions in the PD 

model 

 

Loop 1: over material points
k = 1, 2, ...,  k ≤ 𝑚

Loop 2: over family members of material point k
j ൌ member ሺଵሻ , memberሺଶሻ,..., member ሺ୒ሻ

Calculate bond stretch in extreme loading condition 𝑃 ൌ 𝑃௠௔௫ by using Eq. (3d):

𝑠 ௞ ௝
ା ൌ

𝑢 ௝ െ 𝑢 ௞ 𝑐𝑜𝑠𝜑 ൅ 𝑣 ௝ െ 𝑣 ௞ 𝑠𝑖𝑛𝜑
𝜉

𝑗 ≡ member ሺ୒ሻ

j = next family 
member

False

True

𝑘 ൏ 𝑚

𝑘 ൌ 𝑘 ൅ 1

True

False

Go to next step in the PD fatigue 
prediction

Calculate bond stretch by using Eq. (3d), cyclic bond strain range by using Eq. (15) for all 
interactions in the PD model 

Calculate cyclic bond strain range by using Eq. (15):

𝜀 ௞ ௝
ሺ௡ሻ ൌ |𝑠 ௞ ௝

ା 1 െ 𝑅 |
where n represent the load step number



 

Fig. 7. Calculate bond energy release rate, cyclic bond energy release rate range (The fatigue 
parameters 1( )( ) 1( , )k jB n , 2( )( ) 2( , )k jB n  are calculated to update the remaining life on the next 

step in the PD fatigue simulation in Fig. 4) 

Loop 1: over material points
k = 1, 2, ...,  k ≤ 𝑚

Loop 2: over family members of material point k
j ൌ member ሺଵሻ, memberሺଶሻ,..., member ሺ୒ሻ

Calculate bond stretch in extreme loading condition 𝑃 ൌ 𝑃௠௔௫ by using Eq. (3d):

𝑠 ௞ ௝
ାሺ௡ሻ ൌ

𝑢 ௝
ሺ௡ሻ െ 𝑢 ௞

ሺ௡ሻ 𝑐𝑜𝑠𝜑 ൅ 𝑣 ௝
ሺ௡ሻ െ 𝑣 ௞

ሺ௡ሻ 𝑠𝑖𝑛𝜑

𝜉

𝑗 ≡  member ሺ୒ሻ

j = next family 
member

False

True

𝑘 ൏ 𝑚

𝑘 ൌ 𝑘 ൅ 1

True

False

Go to next step in the PD fatigue 
prediction

Calculate bond energy release rate by using Eq. (31):

𝑔̅ ௞ ௝
ሺ௡ሻ ൌ

𝑎𝑑
𝜉

𝜗 ௞
ሺ௡ሻ ൅ 𝜗 ௝

ሺ௡ሻ ൅ 2𝑏𝑠 ௞ ௝
ሺ௡ሻ 𝜉𝑠 ௞ ௝

ሺ௡ሻ 𝑉ሺ௞ሻ𝑉ሺ௝ሻ

2Δ𝑥ଶℎଶ

Calculate bond energy release rate for all interactions by using Eq. (31);
Calculate cyclic bond energy release range for all interactions by using Eq. (34b)

Calculate dilatations by using Eq. (3c):

𝜗 ௞
ሺ௡ሻ ൌ ∑ 𝑠 ௞ ௜

ሺ௡ሻ 𝑉ሺ௜ሻ
ே
௜ ୀଵ and   𝜗 ௝

ሺ௡ሻ ൌ ∑ 𝑠 ௝ ௟
ሺ௡ሻ 𝑉ሺ௟ሻ

ே
௟ୀଵ

Calculate bond energy release range by using Eq. (34b):

𝑔 ௞ ௝
ሺ௡ሻ ൌ |𝐶଴ ௞ ௝

ሺ௡ሻ | 1 െ
𝑅ଷ

𝑅
𝑠 ௞ ௝

ା ௡ ଶ

Calculate 𝐶଴ ௞ ௝
ሺ௡ሻ , 𝐶ଵ ௞ ௝

ሺ௡ሻ by using Eq. (32c) and Eq. (35c), respectively.

𝐶଴ ௞ ௝
ሺ௡ሻ ൌ

𝑎𝑑
𝜉

𝜗 ௞
ሺ௡ሻ

𝑠
௞ ௝

ሺ௡ሻ
൅

𝜗 ௝
ሺ௡ሻ

𝑠
௞ ௝

ሺ௡ሻ
൅ 2𝑏 𝜉

𝑉ሺ௞ሻ𝑉ሺ௝ሻ

2Δ𝑥ଶℎଶ

𝐶ଵ ௞ ௝
ሺ௡ሻ ൌ |𝐶଴ ௞ ௝

ሺ௡ሻ | 1 െ
𝑅ଷ

𝑅
1

1 െ 𝑅 ଶ

Calculate fatigue parameters ሺ𝐵ଵሺ௞ሻሺ௝ሻ, 𝑛ଵ ሻ and  ሺ𝐵ଶሺ௞ሻሺ௝ሻ, 𝑛ଶሻ by using Eq. (45) 
and Eq. (46), respectively.

𝑛ଵ ൌ
𝑚ଵ

2
;   𝐵ଵ ௞ ௝

ሺ௡ሻ ൌ
𝐴ଵ

𝐶ଵ ௞ ௝
௡

௠భ
ଶ

𝑛ଶ ൌ
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2
;  𝐵ଶ ௞ ௝

ሺ௡ሻ ൌ
𝐴ଶ

𝐶ଵ ௞ ௝
௡

௠మ
ଶ



 

Fig. 8. Update interaction states for all bonds 

6. Numerical results 
In this section, mode-I and mixed-mode fatigue damages on 2D structures are predicted by 
using the proposed energy-based PD fatigue model as shown in Fig. 10 and Fig. 13. The 
structures are made of aluminum 6061-T6 with the elastic modulus of 9 268 10  N/mE   , 
Poisson’s ratio of 0.33   [70], and fracture toughness of 6  MPa m= 48.7 10CK  [71].  

 
The fatigue parameters for phase (I) can be calibrated by using the experimental results ( N   
curve) provided in [72]. In this study, the N   data provided in  [72] is reconstructed and 
plotted on a log-log scale as shown in Fig. 9. Based on the calibration shown in Fig. 9, the 
fatigue parameters for phase (I) (without the consideration of fatigue limit) are obtained as  

1 2.29153m   (48a) 

Loop 1: over material points
k = 1, 2, ...,  k ≤ 𝑚

Loop 2: over family members of material point k
j ൌ member ሺଵሻ , memberሺଶሻ,..., member ሺ୒ሻ

𝑗 ≡  member ሺ୒ሻ

j = next family 
member

False

True

𝑘 ൏ 𝑚

𝑘 ൌ 𝑘 ൅ 1

True

False

Go to next step in the PD fatigue 
prediction

𝜆 ௞ ௝
ሺ௡ሻ ൑ 0

𝜓ሺ௞ሻሺ௝ሻ ൌ 0 𝜓ሺ௞ሻሺ௝ሻ ൌ 1

True
False

Update interaction state (parameter 𝜓) for all bonds



1

1

log
0.87975

A

m
    (48b) 

or  

1 103.7465A   (48c) 

Therefore, the fatigue parameters for phase (I) in the energy-based PD model can be obtained 
by using Eq. (45) as 

1
1 1.145765

2

m
n   (49a) 

  1

1
2

(

1

)

( ) ) /

)

(

1(

k j m

k jC

A
B   (49b) 

where 1( )( )k jC  is obtained by using Eq. (35c).  

 

 
Fig. 9. Calibration for phase (I) parameters for aluminum 6061-T6 ((*): the experimental data 

is reproduced from [72]) 

6.1. Mode I fatigue crack propagation  
In this section, the mode-I fatigue problem is investigated as shown in Fig. 10(a). The 
dimensions of the plate are shown in Fig. 10(a) and the PD discretized model is shown in Fig. 
10(b). The plate is subjected to cyclic loading with maximum loading max 14 kNP  , load ratio 

0.1R  , and loading frequency of 10 Hz [70].  
 
In PD, the model is uniformly discretized with mesh size 46 10  mmx    and the horizon size 

3.015 x    is used. Since the problem is symmetric, the fixed boundary conditions at two 
material points located at  1.25 , / 2W x  and  1.25 , / 2W x , shown in black in Fig. 10(b), 

are assumed.  
 



In order to apply loading conditions, first, material points located inside the cut-outs, shown in 
red in Fig. 10(b), are assumed as rigid with the elastic modulus of 200rigidE E . Next, the 

extreme load 314 10  NP    is applied to the material points located at the centers of the cut-
outs as shown in Fig. 10(b).  
 
The fatigue parameter 2 2.6183m  is obtained from the experimental results given by Sajith, 

et al. [70]. Therefore, the phase (II) fatigue parameter for the energy-based PD model 

2 1.3092n   is used.  

 
In order to obtain values for parameters 2A  and 2( )( )k jB , a trial value 2(trial)A  needs to be assumed 

and the corresponding value (trial)
2( )( )k jB  is obtained for each interaction by using Eq. (46b). A trial 

fatigue simulation using  1( )( ) 1 1.145765,k jB n   obtained from Eq. (49) for phase (I) and 

 (trial)
2( )( ) 2, 1.3092k jB n   for phase (II) is conducted to calculate the fatigue crack growth rate 

  trial
/dq dN  and the SIF range  trialK (see appendix A). The best-fit equation with the form 

of   (trial)(trial)
/ Mdq dN C K   is obtained by using   trial

/dq dN  and  trialK  values. Next, by 

comparing   trial
/dq dN with the experimental values  (experiment)

/dq dN , the calibrated value of 

the parameter for 2A  is obtained by using Eq. (26b) and the parameter 2( )( )k jB  is obtained for 

each interaction by using Eq. (46b).  
 
In this example, the values of 2A  and 2( )( )k jB  are obtained after two steps of calibration. In the 

first calibration step, to save the computational cost for the trial simulation, a large trial value 
of 4

2(trial 1) 10A   is assumed. Next, by using the calibration method discussed above and in 

appendix A, the first calibrated value of (calibrated 1)
2 1174A   is obtained. The value of (calibrated 1)

2( )( )k jB

is also obtained by using Eq. (46b). However, the results obtained from the PD fatigue 
simulation using  1( )( ) 1 1.145765,k jB n   and  (calibrated 1)

2( )( ) 2, 1.3092k jB n   still have significant 

differences with the experimental results in terms of the q N  curve. Therefore, the second 

calibration step with 2(trial 2) 1174A   is conducted, and the final calibrated value of 2 1055A   

is obtained. Therefore, the fatigue parameter (calibrated 2)
2( )( )k jB  is finally obtained by using Eq. (46b).  

 



  
                                        (a)                                                          (b) 

Fig. 10. Mode I fatigue problem (a) geometry (b) PD discretized model 
 
Fig. 11 shows the fatigue damage evolution on the plate under mode-I loading condition. After 
2000 loading cycles, the crack starts propagating as shown in Fig. 11(a). As expected, the crack 
propagates along its initial direction toward the right edge of the plate as shown in Fig. 11(b-
d). After 40850 loading cycles, the crack reaches the location at 0.0522 mx  as shown in Fig. 
11(d). Fig. 12 shows crack length, q  versus load cycle, N for fatigue crack growth of the plate. 
As can be observed from the figure, the PD prediction results have good agreement with the 
experimental results [70]. The crack length, q  versus load cycle, N  predicted by the PD model 
agrees very well with the experimental curve for the first 30000  cycles. Later, the predicted 
crack growth is slightly quicker than the experimental results. The final predicted fatigue life 
is 40850PD

fN   (cycles), meanwhile, the experimental value is ex perimental 42600fN   (cycles). 

Therefore, the relative error in terms of the final fatigue life can be estimated as 
ex perimental

ex perimental
(%) 100 4.108%

PD
f f

f

N N
error

N


     (50) 

 

 
                                  (a)                                                                    (b) 
 



 
                                  (c)                                                                    (d) 
Fig. 11. Fatigue damage evolution at (a) 2000 cycles, (b) 15000 cycles, (c) 30000 cycles, (d) 

40850 cycles 

 
Fig. 12. Fatigue crack length, q  versus load cycle, N  (the experimental data is obtained from 

[70]) 

6.2. Mixed-mode fatigue crack propagation 
After verifying the energy-based PD fatigue model for mode-I fatigue crack evolution, the 
proposed PD model is further used to predict fatigue damages in the mixed-mode loading 
conditions as shown in Fig. 13. The dimensions for the specimen are in mm as shown in Fig. 
13(b). The plate has an initial notch with a length of 40 mm and a 5 mm initial fatigue crack is 
created [70]. The material properties are the same as in Section 6.1. The loading is defined by 
the extreme load 16 kNP  , load ratio 0.1R   and the loading angle   as shown in Fig. 13(a) 
and Fig. 14(a).  
 
The boundary and loading conditions for the numerical models suggested by Sajith, et al. [70] 
are shown in Fig. 14(a). In PD, the model is uniformly discretized with a mesh size of 

46 10  mmx    . As shown in Fig. 14(b), material points, shown in blue, green, black, and 
red, which are associated with 6 cut-outs, are defined as rigid with the elastic modulus of 



200rigidE E . Material points, shown in black in Fig. 14(b), located at the centers of the lower 

cut-outs are fixed. Meanwhile, material points, shown in red in Fig. 14(b), located at the centers 
of the upper cut-outs are subjected to applied forces as [70] 

  1 0.5cos / sinF P e f    (51a) 

2 sinF P    (51b) 

  3 0.5cos / sinF P e f    (51c) 

 
                                 (a)                                                                         (b) 
Fig. 13. Mixed-mode fatigue problem (a) experimental configuration in [70], (b) specimen’s 

dimensions 
 

 
                                              (a)                                                                (b) 
Fig. 14. Loading and boundary conditions (a) suggested by Sajith, et al. [70], (b) used in the 

PD model  



6.2.1. Crack path prediction 
In peridynamics, the horizon sizes and mesh sizes can have significant effects on the crack 
propagation, especially for mixed-mode loading problems. Therefore, to find the best suitable 
mesh size and horizon size for mixed-mode loading problems, the fatigue damage in the plate 
subjected to mixed-mode loading condition with 45o   is predicted by using the developed 
PD model with different mesh sizes and horizon sizes. Since the value of fatigue parameter 

2( )( )k jB  only affects the results for the q N  curve, all the PD simulations (with different 

horizon sizes, different mesh sizes) use the same values of fatigue parameters calibrated from 
the previous example. 
 
Fig. 15 shows the fatigue crack paths predicted by the PD model with different horizon sizes, 

2 ,  3 ,  4x x x     , for the mixed-mode loading with 45o  . In these PD simulations, the 

same mesh size used in mode I fatigue problem, which is 46 10  mx    , is used. As shown in 
Fig. 15(a), the crack path predicted by the PD model with the horizon size of 2 x    is nearly 
straight which is incorrect when compared to the experimental result [62]. On the other hand, 
the crack paths predicted by the PD model with horizon sizes of 3 x    and 4 x    are 
nearly identical as shown in Fig. 15(b, c, d). Moreover, the predicted crack paths in these two 
cases, 3 x    and 4 x   , match well with the crack path in the experiment [62]. Therefore, 
to reduce the computational cost, the horizon size 3 x    can be used.  

 
                                 (a)                                                                   (b) 
 



 
                                 (c)                                                                   (d) 
Fig. 15. Fatigue crack path in mixed-mode loading with 45o   predicted by the PD model 
with different horizon sizes (a) 2 x   (b) 3 x   , (c) 4 x   , (d) a comparison between 

two cases 3 x   and 4 x    (the mesh size of 46 10  mx     is used for all cases) 

Fig. 16 shows the fatigue crack paths predicted by the PD model with different mesh sizes, 
4 4 4 418 10  m, 9 10  m,6 10  m,4.5 10  mx           for the mixed-mode loading with 45o  . 

In these PD simulations, the horizon size 3 x    is used. As shown in Fig. 16, all the crack 
paths predicted by the PD fatigue model with different mesh sizes match the experimental 
results [62]. Moreover, the crack paths predicted by the PD model with mesh sizes of 

46 10  mx     and 44.5 10  mx     are nearly identical as shown in Fig. 16(c, d). Therefore, 
to reduce the computational cost, the mesh size of 46 10  m  can be used.  

 
                                 (a)                                                                   (b) 
 



 
                                 (c)                                                                   (d) 
Fig. 16. Fatigue crack path in mixed-mode loading with 45o   predicted by the PD model 

with different mesh sizes (a) 418 10  mx    (b) 49 10  mx    , (c) 46 10  mx    , (d) 
44.5 10  mx     (the horizon size 3 x    is used for all cases) 

Note that, the values of 2A  and 2( )( )k jB  do not affect the predicted results in terms of crack 

paths. Therefore, for the convergence study of the mesh size, an arbitrary value of 2A  can be 

used, and 2( )( )k jB  can obtained from 2A  by using Eq. (46b). Later, when the suitable mesh size 

is chosen, the correct values for 2A  and 2( )( )k jB  can be calibrated by using the chosen mesh 

size.  

Fig. 17 shows the fatigue crack propagation in the mixed-mode loading in the case of o45 
predicted by the PD model with the mesh size of 46 10  mx     and the horizon size of 

3 x   . As shown in Fig. 17(a), the crack starts propagating upward at 10000 loading cycles. 
The angle of crack propagation with respect to the horizontal axis is measured numerically as 

o38.66PD   at 30000  loading cycles as shown in Fig. 17(c). This observation has good 

agreement with the experimental results which is o
exp eriment 40.263  . Later, the crack 

propagates with a slightly smaller angle and reaches the final fatigue crack growth state (prior 
to phase III) at 42768  loading cycles as shown in Fig. 17(d). The slight reduction of crack 
propagation angles is also observed in the experiment by Sajith, et al. [70], Chung and Yang 
[73], Borrego, et al. [74]. 



 
                                 (a)                                                                   (b) 

 
                                 (c)                                                                   (d) 
Fig. 17. Fatigue crack evolution in mixed-mode loading with 45o   at (a) 10000 (b) 20000, 

(c) 30000, (d) 42768 cycles 
Fig. 18 shows the prediction results with the mesh size of 46 10  mx     and the horizon size 
of 3 x    for the mixed-mode fatigue crack propagation in the case of . Fig. 18(a-c) 
shows the crack evolution at 20000 , 35000  and 44500  loading cycles, respectively. Similar 
to the previous loading condition, the fatigue crack also propagates upward but with a larger 
angle o50.19PD  . This observation has very good agreement with the experimental results 

o
ex periment 51.33  [70]. Similar to the previous loading condition, after 44500  loading cycles, 

the crack starts propagating with a slightly smaller angle and reaches the final fatigue crack 
growth state (prior to phase III) at 53727  loading cycles as shown in Fig. 18(d). This 
observation has good agreement with the experimental results studied by Sajith, et al. [70], 
Chung and Yang [73], Borrego, et al. [74]. 

o60 



 
                                 (a)                                                                     (b) 

. 
                                 (c)                                                                   (d) 
Fig. 18. Fatigue crack evolution in mixed-mode loading with 60o   at (a) 20000 (b) 35000, 

(c) 44500, (d) 53727 cycles  
Fig. 19 shows the crack tip positions in the two loading conditions predicted by the proposed 
energy-based PD fatigue model. As can be seen from the figure, the PD results have good 
agreement with the experimental results studied by Sajith, et al. [70] which shows the accuracy 
of the proposed PD model in terms of crack path prediction.  



 
Fig. 19. Crack tip locations (the experimental data is obtained from [70]) 

 

6.2.2. Fatigue life prediction 
Fig. 20 shows the fatigue crack length, q  versus load cycle, N  in two loading conditions. As 

can be seen from Fig. 20(a) for the loading condition with 45o  , the predicted results have 
very good agreement with experimental results in the first 28000  loading cycles. Later, there 
is a small difference between the two results. The predicted results show a slightly slower crack 
growth compared to the observation from the experiment [70]. As can be seen from Fig. 20(b), 
the predicted crack growth in case of 60o   has very good agreement with the experimental 
results which shows the accuracy of the proposed PD fatigue model in terms of fatigue life 
prediction.  

 
                                      (a)                                                                      (b) 

Fig. 20. Crack length, q  versus load cycle, N   for mixed-mode fatigue crack growth with 

load angle (a) 45o  , (b) 60o   (the experimental data is obtained from [70]) 

7. Conclusion 
In this study, a novel energy-based PD model for fatigue damage prediction is proposed. The 
definition of cyclic bond energy release rate range is proposed and used for fatigue equations 



for the first time in the PD literature. The numerical procedure to predict fatigue cracking by 
using the proposed PD model is presented.  
 
The capability of the proposed PD model is verified by considering mode-I and mixed-mode 
fatigue crack propagations. The results predicted by the proposed PD model show good 
agreements with the experimental results in terms of the crack paths as well as the crack growth 
rates.  
 
The developed PD model can be further extended to the 3D formulation and it can also be used 
to predict fatigue damage for structures during the operation process.  
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Appendix A. Calibration for parameter 2A  

In this section, details of the calibration for the parameter 2A  used in Section 6.2.1 are 

presented. As presented in Section 3.2 and Section 6.1, the calibration for the parameter 2A  is 

conducted by the following steps; 

Step 1: Assume a trial value for 2A  as: 2(trial) 1174A    

Step 2: Conduct a PD fatigue simulation with the trial value 2(trial) 1174A   and calculate 

 (trial)
/dq dN  and (trial)K .  

Step 2.1. Calculate  (trial)
/dq dN  

First, by using the PD results for 2(trial) 1174A  , the crack length, (trial)q  versus load cycle, (trial)N  

is obtained as shown in red in Fig. 21.  Later, a smoothed curve for the PD results is obtained 

as shown in blue in Fig. 21. Finally,  (trial)
/dq dN is numerically obtained from the smoothed 

curve as 

  (trial)

(trial)
(trial)

/
q

dq dN
N





 (A1) 

 

Fig. 21. Fatigue crack length, (trial)q versus  load cycle, (trial)N  (the experimental data is 

obtained from [70]) 



Step 2.2. Calculate (trial)K  

By using the data of the crack length, (trial)q  obtained from the trial PD fatigue simulation and 

by assuming that the material is linear-elastic, the stress intensity factor (SIF) range, (trial)K  

can be calculated as [75] 

 
 2 3 4

(trial) 3/2

2
0.886 4.64 13.32 14.72 5.6

1

P q
K q q q q

h W q

 
     


 (A2a) 

with  

(trial)q
q

W
  (A2b) 

max (1 )P P R    (A2b) 

 
Step 3: Plot the scatter data of  (trial)

/dq dN  versus (trial)K  in the logarithmic scale and find 

the best fit Paris law equation for the scatter data:   (trial)(trial)
/ Mdq dN C K   

First, by using the  (trial)
/dq dN  and (trial)K  calculated in Eq. (A1) and  Eq. (A2a), 

respectively; the scatter data  (trial)
/dq dN  versus  (trial)

K , shown in blue in Fig. 22, is plotted 

in the logarithmic scale. From this scatter data, the best fit curve, shown in black in Fig. 22, is 
obtained as 

  7 2.6183

(trial)
/ 4.8295 10dq dN K    (A3) 

 

Fig. 22. Fatigue crack growth curve for   (trial)
/dq dN versus  (trial)

K   with 2(trial) 1174A   

(the experimental data is obtained from [70]) 



Step 4: Calibrate the value for 2A  

As it can be found in [70], the best fit Paris law equation for the experimental results is written 
as 

  7 2.6183

(experiment)
/ 4.34 10dq dN K    (A4) 

Therefore, the value of the parameter 2A  can be estimated from Eq. (26b) as 
7 2.6183 7

2 2(trial) 7 2.6183 7

4.34 10 4.34 10
1174 1055

4.8295 10 4.8295 10

K
A A

K

 

 

  
  

  
 (A5) 

 

Appendix B. Implicit solver for static conditions in peridynamics 

In this section, the implicit solver for ordinary state-based peridynamics for static conditions is 
presented. First, the PD equations of motion for static conditions given in Eq. (6) can be 
rewritten as 

 ( )( ) ( ) ( ) ( )( ) ( ) ( )
1

1
2 4 cos

kN

k j k j k j j x k
j

ad bs V b   


 
    

 
  (B1a) 

 ( )( ) ( ) ( ) ( )( ) ( ) ( )
1

1
2 4 sin

kN

k j k j k j j y k
j

ad bs V b   


 
    

 
  (B1b) 

By using the dilatation given in Eq. (3c) and the bond stretch given in Eq. (3d), the equations 
of motion given in Eq. (B1) can be rewritten in a matrix form as 

( )

( )( ) ( )
1 ( )

( )

2 2
( )( ) ( )

( )( ) 2 2
1 ( ) ( )

( )

cos cos2

sin sin

4 cos cos sin cos sin cos

sin cos sin cos sin sin

k

k

N
k

k j j
j j

k

N
jj x k

k j
j k y k

j

ad
V

u

ubV b

v b

v

 


 

     


      





    
      

 
                    
  




 (B2a) 

or 

( )

( ) ( ) ( )
( )( ) ( )( )

1 1( ) ( ) ( )

( )

k

k

N N
k j x kdila BB

k j k j
j jj k y k

j

u

u b

v b

v


 

 
                  
  

 k k  (B2b) 

with 
2 2

( )
( )( ) ( )( ) 2 2

4 cos cos sin cos sin cos

sin cos sin cos sin sin
jBB

k j k j

bV      


      
  

    
k  (B2c) 

and 

( )( ) ( )( ) ( )

cos cos2

sin sin
dila
k j k j j

ad
V

 


 
  

    
k  (B2d) 

where ( )( )
BB
k jk  represents the bond stiffness corresponding to the second term in the left-hand 

side of Eq. (B2a). The term ( )( )
dila
k jk represents the bond stiffness corresponding to the first term 

in the left-hand side of Eq. (B2a).   



Note that, Eq. (B2) is the equation of motion for material point k . Assuming that the PD 
discretized model has m  material points. Therefore, the equation of motion for all material 
points in the PD model can be written as 

   dila BB K θ K U B  (B3a) 

with 

(1) (2) ( ) (1) (2) ( )

T

m mu u u v v v   U    (B3b) 

(1) (2) ( 1) ( )

T

m m      θ   (B3c) 

(1) (2) ( ) (1) (2) ( )

T
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 (B3e) 

 

1,1 1,2 1,

2,1 2,2 2,

2 ,1 2 ,2 2 ,

dila dila dila
m

dila dila dila
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 
 
   
 
  
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

   

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where B  and U  represent the vector of applied forces per unit area and the vector of 
displacements of the PD discretized model. The term BBK  represents the global stiffness matrix 
corresponding to the local stiffness ( )( )

BB
k jk , dilaK  represents the global stiffness matrix 

corresponding to the local stiffness ( )( )
dila
k jk . Note that, the matrix BBK  given in Eq. (B3e) has a 

size of  2 2m m . Meanwhile, dilaK  given in Eq. (B3f) has a size of  2m m .  

On the other hand, the dilatation given in Eq. (3c) can be rewritten as 

   ( ) ( ) ( ) ( )

( ) ( )( ) ( )
1
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j k j k

k k j j
j

u u v v
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or 

 

( )

( )

( ) ( )( ) ( )
1 ( )

( )

cos cos sin sin
k

k

N
j

k k j j
j k

j

u

ud
V

v

v

     


 
 
   
 
 
  

  (B4b) 

or 
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with 

 ( )( ) ( )( ) ( ) cos cos sin sink j k j j

d
V     


  k  (B4d) 



Note that Eq. (B4c) is the dilatation for material point k . By assuming the PD discretized 
model has m  material points, the global dilatation vector of all material points in the PD model 
can be calculated as 

 θ K U  (B5a) 

with  

1,1 1,2 1,2

2,1 2,2 2,2
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Note that, the matrix K  given in Eq. (B5b) has a size of  2m m .  

Therefore, by substituting Eq. (B5a) into Eq. (B3a), the PD equation of motion for static 
loading conditions can be written as 

     dila BB  K K K U B  (B6a) 

or 
KU B  (B6b) 

with 

    dila BB K K K K  (B6c) 

where K  represent the total stiffness matrix of the PD model.  
By solving Eq. (B6b), the displacement field of the PD model is obtained. In this study, the PD 
simulation is implemented in MATLAB and the displacement field is obtained by using the 
backslash (\) operator. The numerical procedure for the static solution in PD is shown in Fig. 
23. 



 

 
Fig. 23. Numerical procedure for the implicit solver in PD for static loading conditions 

 

Start

Pre-existing crack?
Initialize fail array 𝚷 to store 

information of 𝜓ሺ௞ሻሺ௝ሻ

by using Eq. (5)

True

False

Loop 1: over material points
k = 1, 2, ...  i ≤ 𝑚

Loop 2: over family members of material point k
j ൌ member ሺଵሻ, memberሺଶሻ,..., member ሺ୒ሻ

Calculate 𝐤 ௞ ௝
୆୆ by using Eq. (B2c)

𝐤 ௞ ௝
஻஻ ൌ 𝜓ሺ௞ሻሺ௝ሻ

4𝑏𝑉ሺ௝ሻ

𝜉
cosଶ 𝜑 െ𝑐𝑜𝑠ଶ𝜑 𝑠𝑖𝑛𝜑𝑐𝑜𝑠𝜑

𝑠𝑖𝑛𝜑𝑐𝑜𝑠𝜑 െ𝑠𝑖𝑛𝜑𝑐𝑜𝑠𝜑 sinଶ 𝜑
    

െ𝑠𝑖𝑛𝜑𝑐𝑜𝑠𝜑
െ sinଶ 𝜑

Add 𝐤 ௞ ௝
୆୆ to the stiffness matrix 𝐊஻஻:

𝐊୆୆ rows ൌ 𝑘, 𝑘 ൅ 𝑚, columns ൌ 𝑘, 𝑘 ൅ 𝑚, 𝑗, 𝑗 ൅ 𝑚 ൌ  𝐊୆୆ rows ൌ 𝑘, 𝑘 ൅ 𝑚, columns ൌ 𝑘, 𝑘 ൅ 𝑚, 𝑗, 𝑗 ൅ 𝑚 ൅ 𝐤 ௞ ௝
஻஻  

𝑗 ≡  member ሺ୒ሻ

j = next family 
member

False

True

𝑘 ൏ 𝑚

𝑘 ൌ 𝑘 ൅ 1

True

False

Output: 𝐔, 𝐊, 𝐊ௗ௜௟௔ , 𝐊ణ, 𝐊୆୆

End

Initialize geometry and material parameters

Discretization: PD material points

Construct family member array for each material points

Calculate 𝐤 ௞ ௝
𝝑 by using Eq. (B4d)

𝐤 ௞ ௝
𝝑 ൌ 𝜓ሺ௞ሻሺ௝ሻ

𝑑𝑉ሺ௝ሻ

𝜉
െ𝑐𝑜𝑠𝜑 𝑐𝑜𝑠𝜑     െ𝑠𝑖𝑛𝜑 𝑠𝑖𝑛𝜑

Add 𝐤 ௞ ௝
𝝑 to the stiffness matrix 𝐊ణ:

𝐊ణ rows ൌ 𝑘, columns ൌ 𝑘, 𝑘 ൅ 𝑚, 𝑗, 𝑗 ൅ 𝑚 ൌ  𝐊ణ rows ൌ 𝑘, columns ൌ 𝑘, 𝑘 ൅ 𝑚, 𝑗, 𝑗 ൅ 𝑚 ൅ 𝐤 ௞ ௝
𝝑  

Calculate 𝐤 ௞ ௝
ௗ௜௟௔ by using Eq. (B2d)

𝐤 ௞ ௝
ௗ௜௟௔ ൌ 𝜓ሺ௞ሻሺ௝ሻ

2𝑎𝑑𝑉ሺ௝ሻ

𝜉
െ𝑐𝑜𝑠𝜑 െ𝑐𝑜𝑠𝜑
െ𝑠𝑖𝑛𝜑 െ𝑠𝑖𝑛𝜑

Add 𝐤 ௞ ௝
ௗ௜௟௔ to the stiffness matrix 𝐊ௗ௜௟௔ :

𝐊ௗ௜௟௔ rows ൌ 𝑘, 𝑘 ൅ 𝑚, columns ൌ 𝑘, 𝑗 ൌ 𝐊ௗ௜௟௔ rows ൌ 𝑘, 𝑘 ൅ 𝑚, columns ൌ 𝑘, 𝑗 ൅ 𝐤 ௞ ௝
ௗ௜௟௔  

𝐊 ൌ 𝐊ௗ௜௟௔ 𝐊ణ ൅ 𝐊୆୆

Using backslash solver in MATLAB to solve Eq. (B6b):
𝐔 ൌ 𝐊\𝐁ഥ

Initialize the global stiffness matrices: 
𝐊, 𝐊୆୆ have size of ሺ2𝑚 ൈ 2𝑚ሻ

𝐊ௗ௜௟௔ has size of ሺ2𝑚 ൈ 𝑚ሻ
𝐊𝝑 has size of ሺ𝑚 ൈ 2𝑚ሻ
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