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ABSTRACT

There has been an explosion in the literature recently on Non-
intrusive load monitoring (NILM) approaches based on neural net-
works and other advanced machine learning methods. However,
though these methods provide competitive accuracy, the inner
workings of these models is less clear. Understanding the outputs of
the networks help in improving the designs, highlights the relevant
features and aspects of the data used for making the decision, pro-
vides a better picture of the accuracy of the models (since a single
accuracy number is often insufficient), and also inherently provides
alevel of trust in the value of the provided consumption feedback to
the NILM end-user. Explainable Artificial Intelligence (XAI) aims to
address this issue by explaining these “black-boxes”. XAI methods,
developed for image and text-based methods, can in many cases
interpret well the outputs of complex models, making them trans-
parent. However, explaining time-series data inference remains a
challenge. In this paper, we show how some XAlI-based approaches
can be used to explain NILM deep learning-based autoencoders
inner workings, and examine why the network performs or does
not perform well in certain cases.
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1 INTRODUCTION

Deep learning models have become significantly larger than that of
10 years ago and with the ability to transfer trained model layers, un-
derstanding how the network is trained and how it can be adapted
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to a new use case has become increasingly more important [5]. Ex-
amples of this would be the use and modification of ResNet [6] by
Microsoft, GoogLeNet [20] by Google and AlexNet [10] where pre-
trained image classification models can be downloaded and with
minimal changes to input and output layers, image classification re-
sults can be obtained on a new dataset which are on par to the state
of the art [11]. More recently, the AlphaGo Zero network which,
given only the basic rules of play of the Chinese game Go, has taught
itself how to play Go at the highest level starting from a totally
random play [19]. As these types of reinforcement network and the
deep pre-trained networks are finding applications in critical sys-
tems, such as self driving cars, police, space, and other exploration
missions, the need to understand their inner-working and interpret
the decisions the system makes, are increasingly important. Thus,
the field of Explainable Artificial Intelligence (XAI) [4] [3] [12] [2]
has become the focus of research interest lately, mainly evolving
around developing models that are interpretable-by-design or de-
veloping “post-hoc” algorithms that can interpret “black boxes”
such as deep learning-based models [1] [14]. Another driver for
the XAl research is the recent EU legislation that empowers a cus-
tomer to request explanations for Al system decisions, recital 71 of
the EU GDPR law [17]. Examples of network explainability can be
seen in well-known image networks [1] [14]. With the addition of
saliency maps and attention mechanisms it is possible to see what
the network is ‘looking at’ when it is classifying images which can
be important to make sure that the network is not learning ‘data
noise’ or a common feature in images, e.g., classifying the blue
background as a fish instead of the fish in the foreground.

Deep Learning has become a major staple of recent NILM work
with about a third of papers published last year mentioning neural
networks in some form or another [7] [23] [9] [21] [25], [16]. In
many cases these networks attain state-of-the-art results in event
detection and regression tasks [8] [26]. However, it is unclear what
the network has learned in terms of pattern recognition, or indeed
if it has been over-trained for the given example house or dataset.
Furthermore, it is unclear what kind of features the network looks
for, and consequently, if and when a pre-trained model can be
used on unseen houses [16]. Averaged accuracy results very often
misrepresent the learning ability of the network, and can give the
wrong impression on what to expect on a case by case basis.

Models are becoming more complex and being able to under-
stand how a network learns can allow for accuracy improvement
via improved architecture designs and hyper-parameter selection
and also better transparency, especially if the model is providing
NILM results to utility customers, where incorrect information will
be questioned as it may led to disadvantaging the customer and
providing them misleading energy saving advice.
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Since deep learning models are becoming more involved, provid-
ing “post-hoc” interpretability is becoming an increasingly challeng-
ing task. In this paper, we study interpretability of deep learning
models for non-intrusive load monitoring (NILM) and how inter-
pretability can help improve the performance.

2 AUTOENCODER MODEL

To exemplify explainable NILM, we use an one-dimensional autoen-
coder model, which takes the aggregate signal as an input and the
appliance signal as an output. The architecture is suitable for the
NILM problem as it reconstructs the appliance power signal making
it easier to calculate the consumed power, rather than classifying
it, if the appliance is on or off. This provides a better indication of
how much an appliance actually consumed instead of estimating
the average power consumption from detected edges, e.g., from
event-based approaches.

The network is initially trained to recreate the aggregate input
signal to learn feature representations. The model has the decoder
reset and is trained to represent a single appliance type using the
features it has learned from the aggregate signal. In particular, the
model consists of 9 layers, 4 encoding convolutional layers, 4 decod-
ing layers and an output layer, each with ReLU activation. We used
two dropout layers, after the first two encoding layers. The input is
a window size of 2048 samples at 10sec sampling rate (downsam-
pled from 8s). Training involved preprocessing and normalising
both aggregate and appliance signals to a range between 0 and 1.
This was done by a min/max scaler where the aggregate signal
was set to a maximum of 12,000W and the appliance signal to a
maximum of 3000W. In extreme use cases where the aggregate is
higher than 12,000 Watts the values would be slightly higher than
1.

Due to the nature of household consumption, many of the high
consumption appliances are unlikely to be on for a significant
portion of time over a large period, e.g., a kettle might be on for
0.1% of a year and a washing machine around 2%. Therefore, the
input data was balanced, such that 87% of windows contain only
aggregate data (without the targeted appliance) and the remaining
13% include appliance activations, i.e., windows where an appliance
was on. Although this significantly reduces the training data, it
significantly increases accuracy.

The models were trained using TensorFlow, with a Nvidia RTX
2080Ti, for a maximum of 20 epochs per batch (1 month of real-time
data, with batch sizes of 8 x 2048-length samples), with a reduce
on plateau learning rate with patience of 2, and a network patience
of 4. Loss was calculated using mean absolute error (MAE) and
the optimiser was Adam with an initial learning rate of 0.0001
and AMSGrad set to False. All random number generators were
initialised to seed 7.

2.1 Challenges of explainability of time-series
data

Interpretable “by-design” methods, such as linear classifiers, k-

nearest neighbour, or decision trees [13], do no provide accurate

enough estimates for many NILM applications. Hence, more ad-

vanced, but non-interpretable, machine learning methods are needed.
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Various “post-hoc" approaches are developed to explain the outputs
of these algorithms that are not interpretable by design.

Interpretable “post-hoc” methods for deep learning models have
been successful in explaining image data inference [10] [22] [24].
However, one-dimensional convolutions applied to times-series
data, unlike images, require domain specific knowledge to under-
stand if they are correctly representing their input/target. With
image data, it is possible to map the filter activations as a 1-to-1
representation of the image for the initial layers, or attention mech-
anisms can be represented as highlights on top of the original input
images, which is easily interpretable by a human. This is unfortu-
nately not the case with time-series (and many other non-image)
data, making the process of interpreting deep learning network
“working" challenging.

Some initial results on explaining machine learning models used
to classify time-series data are presented in [18], where several XAI
methods are compared mainly based on identifying feature impor-
tance. Similarly to the saliency maps used on images, a heatmap
is created to represent relevance, as identified by a XAI method,
of different features and time samples in the time-series data. A
methodology to automate the evaluation of the quality of explana-
tions produced by XAI methods is proposed and tested on binary
and multi-class classification problems using Convolutional Neural
Networks (CNN) or Recurrent Neural Networks (RNN).

3 EXPLAINING DEEP NILM NETWORKS

For illustration, the network described in the previous section was
trained on the Washing Machine using House 2 from the REFIT
dataset and tested on House 5. The REFIT dataset is a domestic
household consumption dataset, available at 8 second resolution,
for a continuous period of about 2 years [15].

Assessing the quality of NILM results by averaging accuracy
(e.g., using MAE) over a long period of time can give the wrong im-
pression of the quality and accuracy of NILM feedback as over- and
under-spent predictions, i.e., false positives and negatives, cancel
out. For example, the designed network, described in the previous
section, provides an output that is statistically accurate, achieving
a mean consumption accuracy of over 80% over the 2-year period.

Hence, it is important that we can explain the network predic-
tions on a case by case basis, searching for an answer to ques-
tions such as ‘why was this particular washing machine activation
missed; or ‘why was this period assigned to the washing machine
though it was not running?’. By investigating the internal network
layer representations of the input signal, we can begin to identify
why these might occur.

Fig. 1 shows the output of the network over a partial input
window which contains two uses of the washing machine. It can
be seen that the network correctly identifies the first Washing
Machine operation (starting roughly at sample 100 and ending at
300). However, the second run of the washing machine (roughly
between samples 800 and 10000) was not picked up by the network.

Taking snapshots of the network layers and outputs at vari-
ous points enables us to better understand good training vs. bad
training and better helps understand the differences seen between
epochs. Figs. 2 (left) and 3 (left) show the activations of the first
convolutional layer (conv1d) at the encoder and the third decoder
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Figure 1: Network prediction. The input is the aggregate sig-
nal. The target is the washing machine signal measured us-
ing appliance-level monitor, and the prediction is the output
of the network.

layer (conv1d_transpose_3) of the network which contain 512 and
128 filters, respectively. Note that the encoding layers are used for
feature representation - to learn and extract discriminative features,
while the decoding layers reconstruct the signal, hence the outputs
of the latter are more ‘signal looking’. We present 64 filters in both
cases to improve visibility of the figure.

We can see in the first encoder layer that filters 178 & 257 have
extracted the two edges that correspond to two washing machine
usages. Most other filters either missed the second usage or picked
up many other appliances between the two washing machine us-
ages. Some filters appear to have little activation or none at all.
Assuming equal importance of each feature (i.e., each filter out-
put), it becomes obvious that the second usage might be missed as
features that represent this usage are not discriminative enough.

Indeed, this is propagated to the decoder side (Fig. 3 (left)), where,
despite a significant amount of noise, it is obvious that most filters
have a significant peak corresponding to the location of the first
usage of the target appliance. Some filter outputs do have a response
to the second appliance run, but usually hidden in the noise or
smaller than the first peak. Consequently, after combining the filter
outputs in the output layer, the second usage will be missed.

The two plots on the right in both figures (Figs. 2 & 3) show
activations when the first washing machine usage is masked (that
is, it is removed). At the encoder side, one can see a clear peak for
most filters’ outputs around sample 900. The earlier neurons are
inactive, due to zero washing machine usages caused by masking.
This is propagated to the decoder side where the reconstruction
clearly shows the second peak and the flat response prior to it.

These observations indicate that the first washing machine us-
age in some way caused the second one to be missed. To further
investigate this issue, Fig. 4 shows the difference in activations of
all of the filters between the non-masked and masked input case.
The horizontal axis corresponds to the neuron number, and each
colour represents one filter. Note that the first layer reduces the
initial input size from 2048 samples to 1024, which means that the
first masked 1500 samples correspond to the first 750 samples in

NILM’20, November 18, 2020, Virtual Event, Japan

this encoder layer. Since the filter window is shifted by one sample
each time, there are 1024 neurons each with a receptive field of 300
corresponding to the filter size.

It can be seen from the figure that, the first 750 neurons are inac-
tive in the case of the masked input, after neuron 860 compared to
the non-masked input. In this case neuron 861 is the most changed
from the non-masked input and we can then identify the filters that
contribute to this difference the most.

Fig. 5 shows the activation difference between non-masked and
masked input for neuron 861 only, for each filter. It can be seen
that filters 223, 211, 205, and 168 contribute a large amount to
the successful detection of the second washing machine usage. To
understand how they contribute to the network’s overall output,
we manually adjusted the filter bias in an attempt to have the
non-masked input detect both the first and second activations.
Understanding the interaction between the bias weights and the
output is useful as if we can generate a result which detects both
activations, it shows that with proper training it is possible the
network to achieve this.

Once bias for the first encoder layer was adjusted in favour of the
four filters mentioned previously, the output in Fig. 6 shows that
both activations are detected without changing (masking) the input.
The second activation is not fully realised, and the bias adjustment
has meant that the original activation is slightly diminished. How-
ever, the result shows how the inner workings of the network can
be understood using masking. Using this knowledge it could be
possible to make a network performing well, perform better with
additional training on specific cases making use of masked inputs.
We can explain now why, the original network correctly identified
the first usage of the washing machine, and missed the second one.

4 CONCLUSION

This paper attempts to initiate the, as yet unexplored, explainabil-
ity problem of NILM deep learning networks. This is critical for
customers to trust the NILM feedback and NILM developers to
improve training and performance. We begin by looking at a one-
dimensional convolutional autoencoder network representations
of NILM data trained on a specific appliance. We show human ob-
servable patterns are discernible from activation plots under the
assumption of prior knowledge. We study the importance of partic-
ular segments of the input, by masking appliance activations. This
way, we identified which neurons and filters were the most critical
and by re-adjusting the bias, we succeeded to improve the outcome
of the network.
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