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Abstract

This research presents a contribution to the field of optimisation under uncertainty by proposing a nonlin-
ear navigation analysis approach under both aleatoric and epistemic uncertainty. The navigation analysis
is framed as a sequential filtering problem with an alternation of uncertainty propagation arcs and orbit
determination instances. The state distribution is modelled as a mixture of kernels where the mixture
weights are interval-valued to model the epistemic component. Specific techniques are discussed for
Gaussian mixtures in particular. The uncertainty propagation step is solved by using Gaussian Hermite
quadrature rules to compute the propagated means and covariances. The observation update is efficiently
solved with a combination of variational inference and importance sampling, and a routine is developed
to compute the posterior interval-valued weights. Given the distribution representation, lower and upper
expectations of a generic quantity of interest are the solutions of linear programming problems and,
therefore, are inexpensive to compute. The developed navigation analysis is finally applied to the robust
quantification of the probability of impact of Europa Clipper with Jupiter’s moon Europa during one of
its close flybys.
Keywords: Robust Mission Design; Navigation Analysis; Epistemic Uncertainty; Variational Inference;
Importance Sampling.

1. Introduction

In the mission design phase, the robustness and
reliability of the reference trajectory are typically
evaluated a posteriori through a navigation anal-
ysis. Thus, the trajectory design is determinis-
tic and decoupled from the uncertainty quantifi-
cation step. With this approach, numerous time-
consuming iterations and handovers between the
trajectory design and navigation analysis teams
are needed to improve the mission robustness and
reliability.

Furthermore, the navigation analysis is typi-
cally tackled as a Monte Carlo simulation of oper-
ations since diverse sources of uncertainty affect
the spacecraft trajectory [13, 21]. The slow con-
vergence is often tackled by the introduction of

a number of approximations and assumptions to
reduce the computational burden, e.g. dynamical
linearisation and Gaussian uncertainties [6, 7, 19].

However, although the larger admissible num-
ber of samples reduces the estimator error, the es-
timated quantity may differ from the true sought
one because of the approximations introduced. In
other words, the Monte Carlo simulation may de-
liver accurate statistics of a possibly inaccurate
operational scenario. To overcome these issues,
the paradigm of mission design and analysis under
uncertainty has been investigated in recent litera-
ture [4, 9, 10, 11, 14, 15, 16, 17, 22, 23].

This research presents a contribution to this
modern field by proposing a nonlinear navigation
analysis approach to deliver accurate statistics in
a competitive computational time, i.e. such that it
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can be employed directly for uncertainty quantifi-
cation within trajectory optimisation. Specifically,
the developed approach is constructed around a
novel epistemic sequential filtering scheme, where
the uncertainty is propagated directly through the
nonlinear equations of motion, and updated at
each observation time. Epistemic uncertainty
models different observation realisations by em-
ploying a likelihood function with epistemic mean
within the prior support. Furthermore, such ap-
proach can handle epistemic uncertainty over the
initial and model parameters distributions. There-
fore, the output distribution is obtained by directly
pushing forward the input uncertainty through the
navigation scenario, rather than reconstructing it
by Monte Carlo simulations. This approach en-
ables nonlinear mission analysis to be computa-
tionally tractable while solving for the true oper-
ational scenario, therefore returning more accu-
rate estimates overall. Furthermore, the general-
isation to epistemic uncertainty enables the use of
a broader range of uncertainty models which may
better characterise the available knowledge during
the different mission design phases. The devel-
oped approach is tested for the navigation analysis
of several flybys of the Europa Clipper trajectory.

The remainder of the paper is structured as fol-
lows: Section 2 is the core section of the paper
presenting the novel approach for navigation anal-
ysis under epistemic uncertainty; Section 3 dis-
cusses the considered test case and presents the
results obtained with the developed method; Sec-
tion 4 closes the paper with the final remarks and
a discussion on future developments.

2. Epistemic Navigation Analysis

In this section, a Navigation Analysis (NA) en-
compassing epistemic uncertainty is developed. In
particular, the approach is mathematically framed
as a sequential filtering problem. A typical trait
of sequential filtering is the alternation of Un-
certainty Propagation (UP) arcs, through the dy-
namical model, and Orbit Determination (OD) in-

stances, when a new measurement is received and
the state distribution is updated. The section is
structured as follows: first, Section 2.1 introduces
the model of epistemic uncertainty considered in
this work; then, Section 2.2 describes the devel-
oped method for performing OD in the presence of
epistemic uncertainty; finally, Section 2.3 presents
the UP method employed in this NA approach.

2.1 Epistemic Uncertainty

Given a generic random variable Z, we define
a known family of parametric distributions with
uncertain parameters λz as:

Pz = {p(z;λz) |λ ∈ Ωλz} , (1)

where λz is the epistemic parameter and Ωλ its
domain. The use of families of distributions cap-
tures the epistemic uncertainty in the knowledge
of the exact probability governing the realisation
of an event. Such an epistemic uncertainty can be
associated with the poor characterisation of phys-
ical, e.g. celestial body’s physical characteristics,
or system parameters, e.g. sensor noise or engine
performance. When information is sufficient to
identify a single distribution, uncertainty is purely
aleatory and Ωλ degenerate to a singleton. There-
fore, Equation (1) is as a generalisation of the pure
aleatoric model.

2.2 Variational Inference

Let us define p(xk|y1:k−1) the prior distribu-
tion, p(yk|xk) the likelihood function of the re-
ceived observation and p(xk|y1:k) the sought pos-
terior. By Bayesian inference, the target distribu-
tion is [18]

p(xk|y1:k) =
p(yk|xk) p(xk|y1:k−1)

p(yk|y1:k−1)
, (2)

where

p(yk|y1:k−1) =

∫
p(yk|xk) p(xk|y1:k−1) dxk.

The Bayes update process is represented in Fig-
ure 1, where the prior is represented in blue, the
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likelihood in yellow and the posterior in green.
The denominator is the most complex term to
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OBSERVATION UPDATE

• Bayesian Inference rule p(x | y) = p(y | x) p(x)
p(y)

p(x)

p(y |x)
p(x | y)

• No closed-form solution for generic distributions

• Variational Bayesian Inference q(x) ≈ p(x | y)
q*(x) = arg min

q
DKL(q∥p)

DKL(q∥p) = ∫ log ( q(x)p(y)
p(y | x) p(x) )q(x) dx = ∫ log ( q(x)

p(y | x) p(x) )q(x) dx + ∫ log (p(y))q(x) dx

• No need to compute normalisation term p(y)

= ∫ log ( q(x)
p(y | x) p(x) )q(x) dx + K

= p(y | x) p(x)
∫ p(y | x) p(x) dx

Fig. 1: Representation of Bayes’ inference.

compute as it requires solving a multidimen-
sional integral. Hence, the goal is to approximate
p(xk|y1:k) with a parametric variational distribu-
tion q(xk).

2.2.1 Variational Distribution Optimisation

We use KL divergence as measure of dissim-
ilarity between target p and variational distribu-
tion q

DKL(p‖q) = Eq
[
ln

q(xk)

p(xk|y1:k)

]
=

∫
ln

q(xk)

p(xk|y1:k)
q(xk) dxk ,

(3)

where Eq indicates the expectation with respect to
q. The goal is therefore to find the variational dis-
tribution minimising the divergence

q∗(xk) = arg min
q∈Q

DKL(p‖q), (4)

where Q is the set of admissible variational dis-
tributions. To simplify the optimisation, the di-
vergence can be written by exploiting logarithmic
properties as

DKL(p‖q) = Eq [ln q(xk)− ln p(xk|y1:k)] .
(5)

Substituting Equation (2) and using the expecta-
tion linearity, one gets

DKL(p‖q) = Eq
[
ln

q(xk)

p(yk|xk) p(xk|y1:k−1)

]
+

Eq [ln p(yk|y1:k−1)]

= Eq
[
ln

q(xk)

p(yk|xk) p(xk|y1:k−1)

]
+

ln p(yk|y1:k−1) ,
(6)

where Eq [ln p(yk|y1:k−1)] = ln p(yk|y1:k−1)
because ln p(yk|y1:k−1) is independent from x.
Therefore, ln p(y) is a constant and can be ne-
glected in the optimisation, which can now be
written as

min
q∈Q

Eq
[
ln

q(xk)

p(yk|xk) p(xk|y1:k−1)

]
. (7)

In general, the expectation has no closed-form so-
lution and needs to be computed numerically. As
the expectation is a n-dimensional integral, em-
ploying an efficient numerical method is crucial
in solving efficiently the minimisation problem.
In this paper, we employ importance sampling to
the expectation computation, that is a Monte Carlo
method sampling a proposal distribution π(xk)
which has a larger support than all the distribu-
tions in Q. Hence, we can rewrite the generic ex-
pectation Eq [φ(xk)] as

Eq [φ(xk)] =

∫
φ(xk) q(xk) dxk

=

∫
φ(xk)

q(xk)

π(xk)
π(xk) dxk

= Eπ
[
φ(xk)

q(xk)

π(xk)

]
.

(8)

Thus, a Monte Carlo method taking N samples
from the proposal x

(i)
k ∼ π(xk) approximates the

posterior as

Eq [φ(xk)] ≈
1

N

N∑
i=1

q(x
(i)
k )

π(x
(i)
k )

φ(x
(i)
k ) . (9)
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Therefore, we can run the optimisation over the
variational distributions using a single proposal
and fixed samples. Furthermore, many of the
quantities are now independent on q and therefore
can be precomputed. The discretised optimisation
problem to be solved now is

min
q∈Q

N∑
i=1

q(x
(i)
k )

π(x
(i)
k )

ln
q(x

(i)
k )

p(yk|x
(i)
k ) p(x

(i)
k |y1:k−1)

.

(10)

2.2.2 Epistemic Variational Inference

In the epistemic setting, both the prior distribu-
tion, coming from the propagation, and the likeli-
hood function can be affected by epistemic uncer-
tainty as

p(xk|y1:k−1;λxk) ∈ Pxk
p(yk|xk;λyk) ∈ Pyk

. (11)

The posterior distribution resulting from the varia-
tional inference (4) is therefore set-valued as well

q(xk;λxk ,λyk) ∈ Pxk|yk (12)

with

Pxk|yk =

{
q∗(xk;λxk ,λyk)

∣∣∣
arg min
q∈Q

DKL (p(xk|y1:k;λxk ,λyk) ‖ q(xk))
}

.

(13)
The disadvantage of this representation is that the
epistemic uncertainty accumulates when new ob-
servations are received leading to an increase in
the uncertainty space dimensionality.

Hence, we aim at constructing a posterior set
representation as

q(xk;λxk|y1:k) ∈ Pxk|y1:k , (14)

which is therefore independent on λxk and λyk
once the inference step is completed. To achieve
this goal, the variational distribution employed is
a mixture one as

q(xk;λxk|y1:k) =

M∑
j=1

λ
(j)
xk|y1:kq

(j)(xk) (15)

subject to

M∑
j=1

λ
(j)
xk|y1:k = 1∫

q(j)(xk)dxk = 1 ∀j ∈ [1, . . . ,M ] .

(16)

The conditions (16) ensures that the distribu-
tion (17) is a valid density function integrating to
one. The epistemic parameters are the mixture
weights

λxk|y1:k = [λ
(1)
xk|y1:k , . . . , λ

(M)
xk|y1:k ] . (17)

Thus, the variational optimisation (4) should be
carried out including a linear constraint on the pa-
rameters sum

min
λxk|y1:k

N∑
i=1

[ ∑M
j=1 λ

(j)
xk|y1:kq

(j)(x
(i)
k )

π(x
(i)
k )

·

ln

∑M
j=1 λ

(j)
xk|y1:kq

(j)(x
(i)
k )

p(yk|x
(i)
k ) p(x

(i)
k |y1:k−1)

]

s.t.

M∑
j=1

λ
(j)
xk|y1:k = 1 .

(18)

Hence, the procedure to perform the varia-
tional inference under epistemic uncertainty is
structured as follows:

1. Take S different pairs of prior and likelihood
epistemic parameters λxk ∈ Ωλxk

and λyk ∈
Ωλyk

;

2. For each s-th pair of epistemic parame-
ters, with s = 1, . . . , S, solve the optimi-
sation (18) to get the optimal coefficients
λs∗xk|y1:k ;
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3. Construct the posterior epistemic set as

Pxk|yk =
{ M∑
j=1

λ
(j)
xk|y1:kq

(j)(xk)
∣∣∣

λ
(j)
xk|y1:k ∈

[
min
s
λs∗

(j)

xk|y1:k ,max
s
λs∗

(j)

xk|y1:k

]
,

M∑
j=1

λ
(j)
xk|y1:k = 1

}
.

(19)

The posterior epistemic set is therefore con-
structed by taking an outer approximation on the
coefficients found by performing variational in-
ference on S epistemic instances of the prior and
likelihood.

Such process is illustrated in Figure 2. Specifi-
cally, Figure 2(a) represents the kernels q(j)(xk)
of the variational distribution. Figure 2(b) de-
picts the posteriors with coefficients λs∗xk|y1:k re-
sulting from the S variational inferences per-
formed. Once the epistemic posterior is formed as
in Equation (19), Figure 2(c) represents multiple
instances of such posterior obtained by sampling
the epistemic coefficients within the component-
wise bounds

[
mins λ

s∗(j)
xk|y1:k ,maxs λ

s∗(j)
xk|y1:k

]
under

the conditions that they sum to one.
Such epistemic inference enables the re-

initialisation of the state uncertainty after each
observation update. The posterior imprecise set
is indeed constructed with epistemic parameters
λxk|y1:k which do not depend on the previous his-
tory. Therefore, this procedure avoids the afore-
mentioned accumulation of uncertainty.

The optimisation in Equation (18) is per-
formed using a local solver because analytical
derivatives of the objective are available and easy
to compute and the constraints are linear. It may
be the case that the global optimum is not found,
however the goal is to select a variational distribu-
tion which suitably approximates the target pos-
terior, although not the best possible fit. There-
fore, local optimality is considered acceptable be-
cause of the advantages in computational time.

(a) Kernels of mixture to represent posterior.

(b) S variational inference optimisations given epis-
temic instances of prior and posterior.

(c) Instances of the epistemic posterior distribution (19).

Fig. 2: Representation of the epistemic variational
inference approach.

The derivative of the objective with respect to the
j-th free variable is

N∑
i=1

[
q(j)(x

(i)
k )

π(x
(i)
k )

·ln

∑M
j=1 λ

(j)
xk|y1:kq

(j)(x
(i)
k )

p(yk|x
(i)
k ) p(x

(i)
k |y1:k−1)

+ 1

 .

(20)
Hence, the analytical objective’s gradient can be
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easily computed.

2.3 Uncertainty Propagation

The state UP in time is a computationally in-
tensive step. Therefore, usually, some approxi-
mations are enforced to speed up the UP, such
as linearisation of the dynamics and Gaussian-
assumed uncertainty distributions [7, 19, 20]. In
this work, we aim at employing a method which
keeps the dynamical nonlinearities and employing
a more complex distribution parameterisation. In
the epistemic inference developed, the variational
distribution has been imposed to be a mixture of
kernels. In this section, we will focus on UP for a
mixture of normal distributions, although differ-
ent kernels can be easily adapted. Specifically,
we will shortly describe the approach introduced
in [9] specializing it for Gaussian mixtures.

The approach splits the UP into two fundamen-
tal steps: first, a polynomial representation of all
the possible states at time tk given the states at
time tk−1, the uncertain parameters and the con-
trol variables; then, the distributions at time tk−1
are sampled and propagated through the polyno-
mial mapping to construct the distribution at time
tk. This second step requires only multiple inex-
pensive evaluations of the polynomial, therefore a
high number of samples can be employed.

2.3.1 Sparse Polynomial Mapping

Consider the set Ωξk−1
of all possible uncer-

tainty realisations ξk−1 = [xk−1,uk−1]
T at time

tk−1, where uk−1 are realisations of an uncertain
control action. The set Fk+1

k of compatible states
at time tk+1 can be defined as

Fkk−1 = {xk(ξk−1) | ξk−1 ∈ Ωξk−1
} , (21)

where xk(ξk−1) is defined as

xk(ξk−1) = xk−1 +

∫ tk

tk−1

f(t,x,uk−1) dt ,

(22)

where f represents the set of ordinary differential
equations governing the spacecraft motion

ẋ = f(t,x,u) . (23)

The polynomial relationship which connects
the set Ωξk−1

to Fkk−1 can be written as

F kk−1(ξk−1) ≈
Nq∑
i=0

αk,i Ψi(ξk−1) ∀ξk−1 ∈ Ωξk−1

(24)
where Ψi is the i-th multivariate polynomial ba-
sis and αk,i its coefficient. The expansion is trun-
cated to a finite order q, with corresponding Nq

multivariate basis, to handle it numerically.
In this work the coefficients αk,i are computed

by stochastic collocation [2]: a number of re-
sponses x

(j)
k is evaluated over a structured grid

of collocation samples ξ
(j)
k−1; then a polynomial

representation F kk−1 is fitted the set of propagated
samples. A sparse Smolyak collocation is em-
ployed to limit the grid dimensionality growth
with increasing uncertain dimensions.

2.3.2 Gaussian Mixture Propagation

In the developed approach, the state probabil-
ity distribution p(xk−1) at time tk−1 is a Gaus-
sian mixture one with interval-valued weights
(see eq. (19))

p(xk−1) =
M∑
j=1

λ
(j)
k−1N (xk−1;µ

(j)
k−1,Σ

(j)
k−1) ,

(25)
where λk−1 is used to abbreviate λxk−1|y1:k−1

for
ease of notation, µ(j) is the j-kernel mean and
Σ(j) its covariance. The goal is to compute the
propagated distribution p(x) at time tk.

In general, an uncertainty distribution propa-
gated through a nonlinear dynamics does not keep
its Gaussianity. However, when using a Gaus-
sian mixture, each kernel acts on a more localised
portion of the domain. Therefore, the dynamical
nonlinearities experienced in each component are
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smaller than they would have been by using a sin-
gle larger Gaussian distribution.

Hence, the propagated distribution is still as-
sumed as a Gaussian mixture in the form of

p(xk) =
M∑
j=1

λ
(j)
k−1N (xk;µ

(j)
k ,Σ

(j)
k ) , (26)

where the means and covariances are computed as

µ
(j)
k =

N∑
i=1

w(j,i) F k
k−1(ξ

(j,i)
k−1)

Σ
(j)

X−k
=

N∑
i=1

w(j,i)
(
F k
k−1(ξ

(j,i)
k−1)− µ

(j)
k

)
·

(
F k
k−1(ξ

(j,i)
k−1)− µ

(j)
k

)T
,

(27)
where ξ

(j,i)
k = [x

(j,i)
k ,u

(j,i)
k ]T are the roots of

the multivariate Hermite polynomial andw(j,i) the
corresponding quadrature weights for the j-th be-
lief component [2].

2.3.3 Lower and Upper Expectations

In NA often the interest is to compute the ex-
pectation of a quantity φ connected to the uncer-
tain state Ep [φ(Xk)]. When the state distribu-
tion is epistemic, the value of such expectation de-
pends on the epistemic parameter as well

Epλk [φ(Xk)] =

∫
φ(xk)p(xk|y1:k;λk)dxk .

(28)
Hence, we can compute tight bounds on such ex-
pectation such that

Epλk ∈
[
Epλk ,Epλk

]
(29)

where

Epλk = min
λk

Epλk [φ(Xk)]

Epλk = max
λk

Epλk [φ(Xk)] .
(30)

By plugging the variational form (19) in the ex-
pectation definition, we obtain

Epλk [φ(Xk)] =

∫
φ(xk)

M∑
j=1

λ
(j)
xk|y1:kq

(j)(xk)dxk

=
M∑
j=1

λ
(j)
xk|y1:k

∫
φ(xk)q

(j)(xk)dxk

=
M∑
j=1

λ
(j)
xk|y1:kEq(j) [φ(Xk)] .

(31)
Therefore, once the kernels expectations
Eq(j) [φ(Xk)] are computed, e.g. using Gauss-
Hermite quadrature rules, the lower bound can
be easily computed as the solution of a linear
programming problem

Epλk = min
λk

M∑
j=1

λ
(j)
xk|y1:kEq(j) [φ(Xk)]

s.t.

M∑
j=1

λ
(j)
xk|y1:k = 1 .

(32)

The same holds for the upper bound where a max-
imisation is performed in place of a minimisa-
tion. Plenty of efficient numerical routines exist
to solve linear programming problems, e.g. MAT-
LAB’s linprog. In addition, because the linear
programming problem is a subclass of convex op-
timisation, the found optimum is also granted to
be globally optimum. Therefore, the chosen vari-
ational parameterisation makes it extremely effi-
cient and robust to compute tight lower and upper
expectations.

3. Test Case

In this section, the developed epistemic filter-
ing is applied to the NA of one leg of the Europa
Clipper tour [12] to quantify the Probability of Im-
pact (PoI) during a close encounter with Jupiter’s
moon Europa.
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3.1 Problem Definition

The scenario studied is represented in Figure 3.
The trajectory starts spans two successive flybys
with an apocenter impulsive manoeuvre to tar-
get the second flyby (E18) identified by the black
square. The spacecraft trajectory and its devi-
ations are depicted with dotted black lines, Eu-
ropa’s orbit with a dotted blue line, the observa-
tions with a dashed yellow line and the ∆v ma-
noeuvre with a green arrow. Hence, the space-
craft trajectory starts from a close flyby and the
initial uncertainty is propagated until the apoc-
entre while performing OD. The OD campaign
is carried out with an 8 hours ON 8 hours OFF
schedule to faithfully model the part-time avail-
ability of the tracking stations availability. The
PoI is then computed by propagating the uncer-
tainty after the ∆v, and its associated execution
errors, to the nominal flyby time without perform-
ing additional OD. The PoI is computed in such a
way to ensure spacecraft safety and environmental
protection to Europa even in the event of a com-
munication loss after the main manoeuvre. Also,
the delivered PoI after the apocentre manoeuvre
is usually the more critical measure because: this
∆v brings the spacecraft close to the moon; it in-
troduces the largest execution errors; the state un-
certainty can grow severely during the long prop-
agation time.

The whole trajectory lasts for 14 days. The
motion is described in a Europa-centred in-
ertial reference frame, specifically the mean
equinox and ecliptic of J2000 (ECLIPJ2000) [1].
The spacecraft dynamics is a high-fidelity full-
ephemeris one including the gravitational fields of
Jupiter (central and J2), of its moons Europa (cen-
tral and J2), Io, Ganymede and Callisto, and of
the Sun. The dynamics is numerically propagated
with the library jTOP [3].

The goal is to quantify tight bounds on the PoI
at flyby [PoI,PoI]. The PoI is computed as the
probability of the spacecraft minimum distance
from Europa, at flyby E18, to be smaller or equal

to the radius of Europa REUR written as

PoI(λE18) =

∫
1(φrE18(xE18) ≤ REUR) ·

p(xE18;λE18) dxE18 ,
(33)

where φrE18(xE18) is the function mapping the
Cartesian state to the pericenter distance of the
hyperbolic trajectory with respect to Europa, and
1(·) is the indicator function.

3.2 Uncertainty Model

The initial distribution p(x0;λ0) is written in
the Gaussian mixture form as

p(x0;λ0) =
M∑
j=1

λ
(j)
0 N (x0;µ0,Σ

(j)
0 ) (34)

with interval-valued weights

λ
(j)
0 = [0, 1] ∀j = 1, . . . ,M . (35)

The mean is the same for all the components and
it is the nominal initial state. The covariances are
defined as

Σ
(j)
0 = blkdiag

(
λ
(j)
0−1 Σ0(1:3, 1:3),

λ
(j)
0−2 Σ0(4:6, 4:6)

)
where λ(j)0−1, λ

(j)
0−2 ∈ [0.5, 2.0] are two multipliers

scaling the reference covariance Σ0, Σ0(1:3, 1:3)
and Σ0(4:6, 4:6) indicate respectively the posi-
tion block and the velocity block and the operator
blkdiag indicates a block-diagonal matrix. Being
the multipliers defined within [0.5, 2.0], they en-
compass kernels with covariance from half up to
double the extent of the reference one. The refer-
ence covariance is defined from the one in Radial
Transversal Normal (RTN) components

ΣRTN = diag
(

[3.72,5.32, 9.32,

2.3e-32, 3.4e-32, 5.9e-32]
)

(36)
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TEST CASE

E18

Europa
S/C

Jupiter

ΔV
Observation

Fig. 3: Sketch of navigation analysis scenario for Europa Clipper leg.

where diag indicates a diagonal matrix and the
unit of the first three elements is [m2] while for the
last three is [m2/s2]. Then, the reference covari-
ance in inertial rectangular coordinates is com-
puted as

Σ0 = J CarRTNΣRTNJ Car
T

RTN (37)

where J CarRTN is the Jacobian of the transformation
from RTN to Cartesian coordinates.

The execution errors of the impulsive manoeu-
vre are modelled with Gates’ model [5, 8], which
decompose the additive error in magnitude (along
the commanded ∆v direction) and pointing com-
ponents (perpendicular to the commanded ∆v di-
rection) as depicted in Figure 4. The parameters

Commanded Δv Execution Error D

Executed ΔV

Magnitude

Pointing

90° 

Fig. 4: Execution error by Gates’ model.

of the Gates’ model are reported in Table 1. This
model has both fixed parameters, that is an error
appears whenever a manoeuvre is performed, and
proportional parameters, that is the error is larger
for larger manoeuvres.

Table 1: Parameters Gates’ model for execution
errors.

Fixed Pointing σpf 3.33 [mm/s]
Proportional Pointing σpp 6.67 [mrad]

Fixed Magnitude σmf 4.67 [mm/s]
Proportional Magnitude σmp 0.33% [-]

As for the OD, the tracking stations measure
the spacecraft range and range-rate with respect to
Earth [20]. The likelihood function is modelled as
Gaussian mixture with epistemic coefficients as

p(yk|xk;λy) =

M∑
j=1

λ(j)y N (y
(j)
k ;h(xk),Σy)

(38)
where h is the range and range-rate observation
model and the weights are interval-valued as

λ(j)y = [0, 1] ∀j = 1, . . . ,M . (39)
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This time the covariance, quantifying the mea-
surement accuracy, is fixed and set to

Σy = diag
(

[3.02, 0.12]
)

, (40)

where the unit of the range is [m2] and for the
range-rate is [m2/s2]. The exact value of the re-
ceived measurement is unknown at the time of
mission design, and therefore it is considered as
an epistemic parameter y

(j)
k .

The number of mixture components has been
set to M = 100 for the initial distribution, the
likelihood function and the variational distribu-
tion.

3.3 Navigation Analysis Results

The developed epistemic navigation analysis
has been run on the described test case to robustly
quantify the PoI range resulting from epistemic
uncertainty. Figure 5 displays the resulting 3-σ
uncertainty in B-plane coordinates at flyby E18.
In detail, the several coloured ellipses result from
different instances of the epistemic coefficients in
the mixture representation. The equivalent Eu-
ropa’s surface is represented by the bold black line
at h = 0 km, while the dashed grey ones represent
Europa’s subsurface for different depths. It can be
seen that all the ellipses have a significant nonzero
intersection with Europa’s surface, but different
instances of the epistemic parameters have a rel-
evant influence on both the extension and the dis-
placement of the uncertainty region.

The bounds on the PoI computed by Equa-
tion (32) using φrE18 are

PoI ∈ [0.6, 6.5] % . (41)

The width of this interval indicate that epistemic
uncertainty has a large effect on the value of the
collision probability. In particular, epistemic un-
certainty on the initial covariance and on the ob-
servation realisation has a large impact on the de-
livered uncertainty.

4. Conclusions

This paper presented novel developments in
the field of navigation analysis under epistemic
uncertainty as a fundamental step towards an in-
tegrated approach for trajectory design under gen-
eralised models of uncertainty. Specifically, the
main contribution of this research is the introduc-
tion of a combination of variational inference and
importance sampling to solve the Bayes’ update
step in the presence of epistemic priors and likeli-
hoods.

The navigation analysis was framed as a se-
quential filtering problem dividing it into two fun-
damental steps: uncertainty propagation to map
the state uncertainty distribution forward in time
through the dynamical equations; orbit determi-
nation to update the state distribution incorporat-
ing the information coming from a received mea-
surement. Then, methods for performing both
these steps under epistemic mixture distributions
were introduced and discussed. The OD step was
solved by using the developed epistemic varia-
tional inference approach which requires the solu-
tion of several local optimisations to find the pos-
terior distributions. The UP was realised by Gaus-
sian Hermite quadrature rules sped up by sparse
polynomial mappings to approximate the dynam-
ical propagation.

Both the steps were solved maintaining the dy-
namical and observation nonlinearities and with-
out enforcing restricting approximations or as-
sumptions. Besides, such epistemic approach to
navigation analysis allows one to include broader
models of uncertainty and therefore to more faith-
fully characterise the uncertainty and information
structure available during the different phases of
mission design. Furthermore, the epistemic model
removes the need for large Monte Carlo sam-
pling over the initial dispersion, observation er-
rors and model uncertainties. Another advantage
of the developed approach is the formulation of
lower and upper expectations as easy-to-solve lin-
ear programming problems.
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B-PLANE IMPACT ELLIPSOIDS

PoI = [ 0.6 % , 6.5% ]
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Fig. 5: Spacecraft 3-σ epistemic ellipses in B-plane coordinates.

The developed NA was finally applied to
the robust quantification of collision probability
bounds for Europa Clipper during one of its fly-
bys with Jupiter’s moon Europa. This test case en-
compassed epistemic uncertainty both on the ini-
tial dispersion and the observation likelihood, thus
resulting in epistemic priors and posteriors along
all the trajectory. OD arcs were performed be-
fore the main manoeuvre, which introduced exe-
cutions errors as well, and then the PoI was quan-
tified on the delivered uncertainty at the flyby. The
range of PoI resulting from epistemic uncertainty
was rather large, showing the importance of mod-
elling and processing this systematic component
as well in mission design. Indeed, in general,
while the lower value PoI may be considered safe
for some applications, the upper value PoI may
not. A purely aleatoric approach, in which only
precise distributions can be specified, would only
be able to return a single value within the interval
[PoI,PoI], therefore providing only limited infor-
mation to the mission designer.

As for the UP, future work will focus on an up-
date routine for the mixture weights during prop-
agation. In the OD step, future developments will
revolve around the employment of different ker-
nels which provide a more global coverage of the

domain, such as Bernstein polynomials, as well
as nonlinear epistemic parameters. A complex-
ity analysis will then be performed to compare the
numerical performance of this epistemic NA ver-
sus existing methods. Finally, future theoretical
work will focus on the development of enhanced
methods and proofs for constructing an epistemic
posterior representation which conservatively ap-
proximates the infinite set of possible posteriors
resulting from Bayes’ inference.
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