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Abstract

This paper continues the analysis of the pattern-avoiding sorting machines re-
cently introduced by Cerbai, Claesson and Ferrari (2020). These devices consist
of two stacks, through which a permutation is passed in order to sort it, where
the content of each stack must at all times avoid a certain pattern. Here we char-
acterize and enumerate the set of permutations that can be sorted when the first
stack is 132-avoiding, solving one of the open problems proposed by the above men-
tioned authors. To that end we present several connections with other well known
combinatorial objects, such as lattice paths and restricted growth functions (which
encode set partitions). We also provide new proofs for the enumeration of some
sets of pattern-avoiding restricted growth functions and we expect that the tools
introduced can be fruitfully employed to get further similar results.
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1 Introduction

Pattern-avoiding sorting machines were introduced in a recent paper by Cerbai, Claesson
and Ferrari [CCF]. In the classical formulation of the Stacksort problem [Kn], an input
permutation π = π1 . . . πn is scanned from left to right and, when πi is the current element,
either πi is pushed onto the stack or the top element of the stack is popped and appended
to the output. If there is a sequence of push and pop operations that produces a sorted
output (that is, the identity permutation), then the input permutation is said to be
sortable. There is a well known algorithm, called Stacksort, that sorts every sortable
permutation. It has two key properties:

1. the stack is increasing, meaning that the elements inside the stack are maintained
in increasing order (from top to bottom);

2. the algorithm is right greedy, meaning that it always chooses to perform a push
operation as long as the stack remains increasing in the above sense; here the ex-
pression “right greedy” refers to the usual pictorial representation of this problem,
in which the input permutation is on the right, the stack is in the middle and the
output permutation is on the left (see Figure 1, left).

The notion of pattern avoidance allows us to efficiently characterize the set of the
permutations that can be sorted by Stacksort. Let Sn be the symmetric group over a
set of cardinality n, consisting of all permutations of length n. Given two permutations
σ ∈ Sk and π = π1 · · · πn ∈ Sn, with k 6 n, we say that σ is a pattern of π when there exist
indices 1 6 i1 < i2 < · · · < ik 6 n such that πi1πi2 . . . πik (as a permutation) is isomorphic
to σ, that is, πi1 , πi2 , . . . , πik are in the same relative order of size as the elements of
σ, in which case we write σ ' πi1πi2 . . . πik . This notion of patterns in permutations
defines a partial order, and the resulting poset is known as the permutation pattern poset.
When σ is a pattern of π, we say that π contains σ, otherwise π avoids σ. A downset
I of the permutation pattern poset, also called a permutation class, can be described in
terms of its minimal excluded permutations (or, equivalently, the minimal elements of the
complementary upset); these permutations are called the basis of I. When B is the basis
of I we write I = Av(B).

Returning to Stacksort, it is well known that a permutation is sortable if and only if it
avoids the pattern 231. As a consequence, the number of sortable permutations of length
n is the n-th Catalan number. Given that describing the set of sortable permutations
is rather manageable in the classical case, one would think that similar results can be
derived by considering a slightly more general version of the problem, where a second
stack is connected in series to the first one. Despite the many attempts, very few results
have been obtained. For example, Murphy [M] showed that thus sortable permutations
are a class with infinite basis. To describe the basis and to enumerate the permutations
in question remain open problems.

Due to the toughness of the problem in its full generality, several authors have con-
sidered weaker formulations by introducing some constraints on the sorting device. In his
PhD thesis [W], West studied permutations that can be sorted by two stacks connected
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in series using a right greedy algorithm. This is equivalent to making two passes through
a stack. Similarly, Smith [Sm] considered two stacks in series, where the first stack is re-
quired to be decreasing. It is worth noting that, due to the properties of classical stacksort,
the second (final) stack turns out to be necessarily increasing.

output input

SO
π1 . . . πn

⌊
2
1

⌋

output input

σ

⌊
2
1

⌋

π1 . . . πn

SσO SI

Figure 1: Sorting with one stack (left) and sorting with the σ-machine (right).

Pattern-avoiding machines constitute a further proposal to approach the general prob-
lem of sorting with two stacks. Let σ be a permutation. The σ-machine consists of two
stacks connected in series (see Figure 1, right), obeying the following constraints:

1. At each step of the procedure, the elements in each stack must avoid certain for-
bidden configurations, reading from top to bottom. The second stack is increasing,
that is, the sequence of numbers contained in the stack has to avoid the pattern 21.
We express this by saying that the stack is 21-avoiding. In the same spirit, the first
stack is σ-avoiding.

2. The algorithm performed with the two stacks connected in series is right greedy. As
already observed, this is equivalent to making two passes through a stack, performing
the right greedy algorithm at each pass. However, due to the restriction described
above, during the first pass the stack is σ-avoiding, whereas during the second pass
it is 21-avoiding.

We refer to the σ-avoiding stack as the σ-stack. A permutation π is σ-sortable if it is
sortable by the σ-machine. Denote by Sort(σ) the set of σ-sortable permutations and by
Sortn(σ) the set of σ-sortable permutations of length n. Denote by sσ(π) the output of
the σ-stack on input π. Observe that, since sσ(π) is the input to the second (classical)
stack, a permutation π is σ-sortable if and only if sσ(π) avoids 231. This fact, which
will be frequently used throughout the paper, allows us to restrict our attention to the
behavior of the σ-stack when analyzing the sortability of π.

In [CCF], the authors determine the patterns σ such that Sort(σ) is a permutation
class, providing explicitly the corresponding basis.
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Theorem 1 ([CCF], Theorems 3.2 and 3.4). Let σ = σ1σ2 · · · σk and let σ̂ = σ2σ1σ3 · · ·σk
be the permutation obtained by exchanging the first two elements of σ. Then:

1. Sort(σ) is a permutation class if and only if σ̂ contains 231.

2. If σ̂ contains 231, then Sort(σ) = Av(132, σr), where σr = σk · · ·σ2σ1.

Theorem 1 completely describes the sets of σ-sortable permutations that are permu-
tation classes. The remaining cases are much more challenging. For example, amongst
the six permutations of length three, Sort(321) = Av(123, 132) as a consequence of the
previous result, but so far the only other solved pattern is 123: 123-sortable permutations
are shown to be enumerated by the partial sums of partial sums of the Catalan num-
bers (sequence A294790 in [Sl]) via a bijection with Schröder paths avoiding the pattern
UHD [CF]. In this paper we deal with one of the remaining patterns of S3, namely 132.

In Section 3 we characterize 132-sortable permutations as those avoiding the classical
pattern 2314 and a certain mesh pattern.

In Section 4 we exploit the pattern avoidance characterization of Sort(132) to provide a
geometrical description of these permutations. This ultimately allows us to find a recursive
construction for Sort(132), which is used to provide a bijection between Sort(132) and
the set of restricted growth functions (rgfs, to be defined in next section) avoiding the
pattern 12231. The enumeration of the 12231-avoiding rgfs was obtained by Jeĺınek and
Mansour in [JM], where they present a much more general mechanism that determines
the entire Wilf-equivalence class of these avoiders, that is, the class of patterns that are
avoided by the same number of rgfs of each length n. Their counting sequence is the
binomial transform of the Catalan numbers, which is A007317 in the OEIS [Sl].

In Section 5 we exhibit direct combinatorial proofs for the enumeration of some pat-
terns in the same Wilf-equivalence class as 12231. We exhibit links with lattice paths and
pattern-avoiding permutations. Two of these patterns are enumerated via a bijection with
a family of labeled Motzkin paths, which provides a natural combinatorial interpretation
for a beautiful continued fraction for A007317. We also conjecture that a slight variation
on the same approach should lead to the enumeration of many other patterns in the same
Wilf-class. Finally, some of the results in this section lead to an independent proof of the
enumeration of Sort(132).

2 Preliminaries and notation

Given a permutation π = π1π2 . . . πn, the element πi is called a left-to-right maximum
(briefly, ltr-maximum) if πi > max {π1, . . . , πi−1}. Analogously, πi is called a ltr-minimum
if πi < min {π1, . . . , πi−1}. The element π1 is both an ltr-maximum and ltr-minimum. A
descent of π is a pair of elements (πi, πi+1) such that πi > πi+1. This is a slight deviation
from the classical definition, in which a descent is an index i such that πi > πi+1. A descent
is said to be consecutive if πi+1 = πi − 1. Ascents and consecutive ascents are defined
similarly. For example, the permutation π = 3417625 has three ltr-maxima, namely 3, 4, 7
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and two ltr-minima 3, 1. The descents of π are (4, 1), (7, 6), (6, 2), where only (7, 6) is a
consecutive descent. The ascents are (3, 4), (1, 7), (2, 5) and only (3, 4) is consecutive.

Given two permutations α = α1 . . . αn and β = β1 . . . βm, the direct sum α ⊕ β is
the permutation π = π1 . . . πnπn+1 . . . πn+m of length n + m such that π1 . . . πn ' α,
πn+1 . . . πn+m ' β and πi < πj, for each i ∈ {1, . . . , n} and j ∈ {n + 1, . . . , n + m}. The
skew sum α 	 β is defined similarly, but requiring that πi > πj for each i ∈ {1, . . . , n}
and j ∈ {n + 1, . . . , n + m}. For example, 213 ⊕ 21 = 21354 and 213 	 21 = 43521. A
permutation is said to be layered if it is the direct sum of decreasing permutations. It is
well known that π is layered if and only if π ∈ Av(231, 312) and there are 2n−1 layered
permutations of length n.

A Dyck path is a path in the discrete plane Z × Z starting at the origin of a fixed
Cartesian coordinate system, ending on the x-axis, never falling below the x-axis and using
two kinds of steps, namely upsteps U = (1, 1) and downsteps D = (1,−1). The length of
a Dyck path is its final abscissa, which coincides with the total number of its steps. See
Figure 2 for an example of Dyck path. According to their semilength, Dyck paths are
counted by Catalan numbers (sequence A000108 in [Sl]). The n-th Catalan number is cn =
1

n+1

(
2n
n

)
and the associated ordinary generating function is C(x) = (1−

√
1− 4x)/(2x). A

slightly more general notion of lattice path is obtained by allowing one more kind of step,
the horizontal step H = (1, 0). The resulting paths are called Motzkin paths and their
enumeration (with respect to the total number of steps) is given by the Motzkin numbers
(sequence A001006 in [Sl]).

A Restricted Growth Function (rgf) of length n is a sequence of positive integers
R = r1 · · · rn such that r1 = 1 and ri 6 1 + max {r1, . . . , ri−1} for each i > 2. The rgfs
of length n bijectively encode set partitions of [n] = {1, 2, . . . , n}, where, for example, the
partition of [5] written in standard notation as 13–25–4 has rgf 12132, whose 3 in place
4 indicates that 4 is in the third block.

Denote by Rn the set of rgfs of length n and let R =
⋃
n>1Rn. The notion of pattern

avoidance can be naturally extended to rgfs. Given a sequence of positive integers
Q = q1q2 · · · qk, define the standardization of Q as the string std(Q) obtained by replacing
all occurrences of the i-th smallest element with i, for all i. Then, given a rgf R = r1 . . . rn
and a sequence of positive integers Q = q1 . . . qk, with k 6 n, Q is a pattern of R if there
is a subsequence ri1 . . . rik of R such that std(ri1 . . . rik) = Q. In this case we write Q 6 R
(and say that R contains Q); otherwise, we say that R avoids Q. We use the notation
R(Q) to denote the set of the rgfs avoiding Q and Rn(Q) = Rn ∩ R(Q). For a more
detailed survey on the notion of pattern avoidance in rgfs, we refer the reader to [JM]
and [CDDGGPS]. Observe that if R is a rgf then each occurrence of the integer k in R,
for any k > 1, is preceded by some occurrence of all the integers 1, . . . , k − 1. A useful
consequence is the following lemma, whose easy proof is omitted.

Lemma 2. Let R be a rgf and let Q = q1q2 . . . qk be a sequence of positive integers. Let
Q′ = std(Q) = q′1 . . . q

′
k and suppose that q′1 = t, for some t > 1. Then Q′ 6 R if and only

if 12 . . . (t− 1)Q′ 6 R.
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Figure 2: A Dyck path (on the left) and the mesh pattern µ = (132, {(0, 2), (2, 0), (2, 1)})
(on the right).

3 Pattern avoidance characterization of Sort(132)

For the remainder of this paper, we let σ = 132.

In this section we characterize Sort(σ) in terms of pattern avoidance. First we need
to introduce a slightly more general notion of pattern, originally given by Brändén and
Claesson in [BC]. A mesh pattern of length k is a pair (τ, A), where τ ∈ Sk and A ⊆
[0, k]× [0, k] is a set of pairs of integers. The elements of A identify the lower left corners
of forbidden squares in the plot of τ (see Figure 2). An occurrence of the mesh pattern
(τ, A) in π is then an occurrence of the classical pattern τ in π such that no elements of
π are placed into a forbidden square of A.

We start by proving a useful decomposition lemma for σ-sortable permutations. Given
a permutation π we decompose it as π = m1B1m2B2 . . .mkBk, where m1 > m2 > · · · >
mk = 1 are the ltr-minima of π and each block Bi contains all the elements strictly
between two consecutive ltr-minima. We refer to this as the ltr-minima decomposition of
π.

Lemma 3. Let π be a permutation and let π = m1B1m2B2 . . .mkBk be its ltr-minima
decomposition. Then:

1. sσ(π) = B̃1B̃2 · · · B̃kmkmk−1 · · ·m2m1, where each B̃i is a suitable rearrangement of
the elements of Bi.

2. If π is σ-sortable, then x > y for each x ∈ Bi, y ∈ Bj, with i < j.

Proof.

1. For each x ∈ B1, m1xm2 ' 231, thus every element of B1 has to be popped from
the σ-stack before m2 enters. After that, we have m1 and m2 on the σ-stack, with
m1 > m2 and m2 above m1. Note that they cannot both be part of a 132, therefore
m2 remains on the σ-stack until the end of the sorting process. Similarly, each
element of B2 has to be popped before m3 enters, since m3xm2 ' 132 for each
x ∈ B2. The same argument holds for every mj with j > 2.

2. Suppose there are two elements x, y such that x < y, x ∈ Bi and y ∈ Bj, with i < j.
Then, as a consequence of the previous item, xymk is an occurrence of 231 in sσ(π),
which is a contradiction since π is σ-sortable.
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Lemma 4. Let π ∈ Sortn(σ) and let π = m1B1m2B2 · · ·mkBk be its ltr-minima decompo-
sition. Then, when the next element of the input is b ∈ Bi the content of the σ-stack when
read from bottom to top is m1m2 · · ·mib1b2 · · · bt, where {b1, . . . bt} is a (possibly empty)
subset of Bi such that b1 < b2 < · · · < bt.

Proof. The first i ltr-minima m1, . . . ,mi of π lie at the bottom of the σ-stack, by Lemma 3.
Then the remaining elements b1, . . . , bt of Bi in the σ-stack must be in increasing order
from bottom to top, for otherwise, if bh > b` for some h < `, then sσ(π) would contain
b`bhmi ' 231, contradicting the σ-sortability of π.

We next show that σ-sortable permutations are characterized by the avoidance of a
classical pattern and a mesh pattern. This leads to a more precise geometrical description
of these permutations, as we will show in the next section. For the rest of the paper, let
µ = (132, {(0, 2), (2, 0), (2, 1)}) be the mesh pattern depicted in Figure 2. An occurrence
of the mesh pattern µ is thus an occurrence acb of the classical pattern 132 such that:

• every element that precedes a in π is either smaller than b or greater than c;

• every element between c and b in π is greater than b.

Theorem 5. If π is σ-sortable, then π ∈ Av(2314, µ).

Proof. Let π = m1B1m2B2 · · ·mkBk be the ltr-minima decomposition of π. Suppose, for
a contradiction, that π contains an occurrence bcad of 2314. When a enters the σ-stack,
at least one element between b and c, call it x, has already been popped from the σ-stack,
otherwise we would get the forbidden pattern acb ' 132 inside the σ-stack. Hence, by
Lemma 3, sσ(π) contains xdmk ' 231, violating the hypothesis that π is σ-sortable.

Next suppose that acb is an occurrence of 132 in π. We wish to show that acb is part of
an occurrence of either 3142, 2413 or 1423, thus proving that π avoids the mesh pattern
µ. Let m(a) be the ltr-minimum of the block that contains a (in particular, m(a) = a
if a is a ltr-minimum itself). Then m(a) 6 a and m(a) exits the σ-stack after b and
c (by Lemma 3), so c has to be popped before b enters, otherwise bcm(a) would be an
occurrence of 231 inside sσ(π). We consider the following two cases. Note that a < b < c,
so b, c are not ltr-minima in π.

• c ∈ Bi and b ∈ Bj, with i < j. In this case, mj < m(a) 6 a, hence acmjb ' 2413,
which is one of the desired patterns.

• c and b are in the same block Bi. First suppose there is a ltr-minimum m = m`,
with ` < i, such that b < m < c; then m > m(a), so m precedes m(a) in π
and macb ' 3142, again one of the listed patterns. Otherwise, suppose that, for
every ltr-minimum m, either m < b or m > c and consider the element w that
immediately precedes b in π. We wish to show that w < b, which will conclude the
proof. Suppose, for a contradiction, that w > b and let x1, x2, . . . , xs = w be the
elements on the σ-stack, after w has been pushed, that are not ltr-minima when
we read from bottom to top. By Lemma 4, we have x1 < x2 < · · · < xs; moreover
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xs = w > b, so there is a minimum index t such that xt > b. Now observe that,
for ` > t, all the elements x` are popped from the σ-stack before b enters, because
bx`xt ' 132. We also observe that necessarily xt 6 c, otherwise c would already
have been popped and sσ(π) would contain the pattern cxtm(a) ' 231. We can
now assert that b is pushed onto the σ-stack immediately above xt. In fact, x` < b
for every ` < t; moreover, our hypothesis implies that either m < b or m > c for
every ltr-minimum m inside the σ-stack, therefore b cannot be the first element of
an occurrence of 231 (read from top to bottom) that involves elements inside the
σ-stack. However this results in an occurrence bxtm(a) of 231 in sσ(π), which again
contradicts the hypothesis that π is σ-sortable.

The condition of Theorem 5 is also sufficient for a permutation to be σ-sortable.

Theorem 6. If π ∈ Av (2314, µ), then π is σ-sortable.

Proof. Suppose, for a contradiction, that π is not σ-sortable, that is, sσ(π) contains an
occurrence of 231. Let π = m1B1m2B2 · · ·mkBk be the ltr-minima decomposition of
π. By Lemma 3, we have sσ(π) = B̃1B̃2 · · · B̃kmkmk−1 · · ·m2m1. Since the ltr-minima
are popped from the σ-stack in increasing order, neither b nor c can be a ltr-minimum.
Suppose that b ∈ Bi and c ∈ Bj, for some i 6 j. If i < j, then mibmjc ' 2314, which

is forbidden. Suppose instead that i = j and consider the leftmost ascent x < y in B̃i

(indeed there is at least one ascent in B̃i, since the elements b, c constitute a noninversion

in B̃i). There are two possibilities.

1. If y comes after x in π then x has to be popped before y is pushed onto the σ-stack.
Therefore, when x is popped, there are two elements u, v in the σ-stack, with v above
u, such that uvw ' 231, where w is the next element of the input. If v 6= x, then
also v is popped after x (for the same reason), but this is a contradiction with the

fact that x and y constitute an ascent in B̃i. Thus we have v = x and uxw ' 231,
which implies that w 6= y and uxwy ' 2314 in π, contradicting the assumption that
π avoids 2314.

2. Suppose instead that y precedes x in π. Observe that y has to be on the σ-stack
when x enters, because sσ(π) contains the ascent (x, y) (this fact will be frequently
used in the sequel). In this situation, miyx is an occurrence of 132 in π. We now
show that either miyx is an occurrence of µ or π contains 2314. If there is an
element z that precedes mi in π such that x < z < y (so that zmiyx ' 3142), then
z cannot be a ltr-minimum. In such a case, in fact, by Lemma 3, z would be in the
σ-stack below y when x is pushed, but zyx ' 231, which is impossible due to the
restriction of the σ-stack. Instead, if z ∈ B` for some ` < i, then m`zmiy ' 2314.
Therefore we can assume that every element that precedes mi in π is either smaller
than x or greater than y. Finally, suppose that there is an element z between y
and x in π such that z < x, which gives an occurrence miyzx of either 2413 or
1423. Then, since y is still in the σ-stack when x is pushed and z precedes x in π, z
enters the σ-stack above y, and so B̃I contains either x . . . z . . . y or z . . . x . . . y, with
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z < x. However, both cases give a contradiction, because (x, y) is the first ascent in
sσ(π).

Corollary 7. Sort(132) = Av (2314, µ).

In accordance with Theorem 1, the set Av (2314, µ) is not a permutation class; this
is due to the presence of the non-classical mesh pattern µ. For example, the σ-sortable
permutation 2413 contains the pattern 132, which is not σ-sortable.

4 Grid decomposition of 132-sortable permutations

In this section we exploit the characterization in terms of pattern avoidance in order to
provide a geometric description of Sort(σ). We start by refining the ltr-minima decom-
position π = m1B1m2B2 . . .mkBk of π as follows:

• for j > 1, the j-th vertical strip of π is Bj;

• for i > 1, the i-th horizontal strip of π is Hi = {x ∈ {1, 2, . . . , n} : mi < x < mi−1},
where m0 = +∞.

• for any two indices i, j, the cell of indices i, j of π is Ci,j = Hi ∩ Bj (note that Ci,j
is empty when i > j).

• the core of π is C(π) = B1B2 . . . Bk, obtained from π by removing the ltr-minima.

In what follows, the content of each Bj, Hi, Ci,j will be regarded as a permutation. For
example, let π = 13 14 15 10 12 6 7 8 11 9 3 1 4 5 2. Then (see Figure 3):

• the ltr-minima of π are 13, 10, 6, 3, 1;

• the vertical strips are B1 = 14 15 ' 1 2, B2 = 12 ' 1, B3 = 7 8 11 9 ' 1 2 4 3,
B4 = ∅ and B5 = 4 5 2 ' 2 3 1;

• the horizontal strips are H1 = 14 15 ' 1 2, H2 = 12 11 ' 2 1, H3 = 7 8 9 ' 1 2 3,
H4 = 4 5 ' 1 2 and H5 = 2 ' 1;

• the nonempty cells are C1,1 = 14 15 ' 1 2, C2,2 = 12 ' 1, C2,3 = 11 ' 1, C3,3 =
7 8 9 ' 1 2 3, C4,5 = 4 5 ' 1 2 and C5,5 = 2 ' 1;

• the core of π is C(π) = 14 15 12 7 8 11 9 4 5 2 ' 9 10 8 4 5 7 6 2 3 1.

The above terminology refers to the graphical representation of π, see Figure 3. We
now collect several properties of σ-sortable permutations, in order to find a geometric
description of them, as well as their enumeration.

The next lemma provides a useful property of σ-sortable permutations. In spite of its
simplicity, it gives a rather strong constraint on the shape of a σ-sortable permutation.
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Figure 3: The grid decomposition of the permutation π = 13 14 15 10 12 6 7 8 11 9 3 1 4 5 2.
The image of π under the bijection of Theorem 16 is the restricted growth function
φ(π) = 111223332345445.

Lemma 8. Let π be a σ-sortable permutation and suppose that the cell Ci,j is nonempty,
for some i, j. Then the cell Cu,v is empty for each pair of indices (u, v) such that u < i
and v > j.

Proof. Suppose there are two elements x ∈ Ci,j and y ∈ Cu,v such that u < i and v > j.
Then mixmvy ' 2314, which is impossible by Theorem 5.

Our next results are some pattern avoidance characterizations for Ci,j, Hi and C(π).

Lemma 9. Let π be a σ-sortable permutation and suppose that the cell Ci,j contains an
inversion x > y, where x precedes y in Ci,j. Then there is an element z between x and y
in π such that z < mi.

Proof. We refer to Figure 4 for a description of the statement of the lemma. For x and
y as above, we have mixy ' 132. In particular, x and y are in the same cell Ci,j and
mi is the corresponding ltr-minimum, hence every element w preceding mi in π is greater
than x (because w > mi−1 and x < mi−1). Therefore, as a consequence of Theorem 5,
there exists an element z between x and y in π such that z < y. If z < mi, then we are
done. Otherwise, if z > mi, we can repeat the same argument using the occurrence mixz
of 132, in which we have replaced y with the element z that comes strictly before y in π;
continuing in this way we eventually find an element of π with the desired property.

Proposition 10. If π is a σ-sortable permutation, then Ci,j ∈ Av(132, 213), for every
i, j.

Proof. Suppose that Ci,j contains an occurrence acb of 132. By Lemma 9, there exists an
element z between c and b in π such that z < mi. In particular, miazb ' 2314, which is
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Figure 4: The constructions of Lemma 9, left, and of Lemma 8, right.

a contradiction since π is σ-sortable (by Theorem 5). On the other hand, if Ci,j contains
an occurrence bac of 213, then (b, a) is an inversion in the cell Ci,j and therefore, again
by Lemma 9, there is an element z between b and a in π with z < mi and mibzc ' 2314,
a contradiction.

Proposition 11. If π is a σ-sortable permutation, then Hi ∈ Av(132, 213), for every i.

Proof. This is a consequence of Lemma 3 and Proposition 10.

Proposition 12. If π is a σ-sortable permutation, then C(π) ∈ Av(213).

Proof. Suppose π contains an occurrence bac of 213 that does not involve any ltr-minimum
and suppose that b ∈ Ci,j for some i, j. Note that b < c, so, by Lemma 3, b and c must
belong to the same vertical strip Bj. Now, if a ∈ C`,j, with ` > i, then mibac ' 2314,
which is a contradiction, since π is σ-sortable. Therefore we must have a ∈ Ci,j. This
results in an occurrence miba of 132, with b and a both in the cell Ci,j; thus, by Lemma 9,
there is an element z between b and a in π such that z < mi and mibzc ' 2314, which is
again a contradiction.

What we have established so far in this section are necessary conditions satisfied
by σ-sortable permutations. Since each prefix of a σ-sortable permutation is still σ-
sortable, removing the last element from a σ-sortable permutation π′ ∈ Sortn+1(σ) returns
a permutation π ∈ Sortn(σ). In other words, every permutation in Sortn+1(σ) is obtained
from a permutation π ∈ Sortn(σ) by inserting a new rightmost element and suitably
rescaling the remaining ones. However, not just any integers are allowed for such an
insertion. Inserting a new minimum, which corresponds to creating a new vertical strip,
is always allowed, because it cannot create any new occurrence of 2314 or µ. On the
other hand, if π has k ltr-minima and we try to insert a new element in one of the cells
Ci,k of the last vertical strip, we have to obey the conditions stated in Lemma 8 and
Propositions 11 and 12. In particular, Proposition 11 implies that any permutation in Hi
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is co-layered, that is, it is the skew sum of increasing permutations. Thus, in order to get
a new co-layered permutation from a given one, and also in order to avoid the forbidden
pattern 2314, we find that there are at most two possible ways to insert a new rightmost
element in Ci,k:

1. min: insert a new minimum in Ci,k (which is also a new minimum of the horizontal
strip Hi);

2. cons: create a consecutive ascent in the two final positions of Ci,k,

recalling that an ascent (a, b) is consecutive if b = a+ 1.
This approach is formalized as follows. Let π be a σ-sortable permutation with k

ltr-minima. For i > 1, the cell Ci,k (belonging to the last vertical strip) is said to be
active if both of the following conditions hold:

(i) Cu,v is empty for each u, v such that u > i and v < k;

(ii) inserting a new rightmost element according to min does not create an occurrence
of 213 in C(π).

Note that, thanks to condition (i), condition (ii) can be equivalently stated by saying
that the permutation

⋃
j>i+1Cj,k is increasing. Moreover, if a cell Ci,k is not active, then

every insertion of a new rightmost element in Ci,k results in a non σ-sortable permutation
due to Lemma 8 and Proposition 12. We shall prove that if instead Ci,k is active, then
exactly one of the operations min and cons can be performed in order to obtain a σ-
sortable permutation. To this end we distinguish two cases, depending on whether Ci,k is
empty or not.

Proposition 13. Let π = π1 . . . πn be a σ-sortable permutation with k ltr-minima and let
Ci,k = γ1 . . . γt be a nonempty active cell of π. Let x = πn and suppose x ∈ C`,k. Then:

1. performing min on Ci,k returns a σ-sortable permutation π′ if and only if ` > i;

2. performing cons on Ci,k returns a σ-sortable permutation π′ if and only if ` 6 i.

Proof. 1. Suppose ` < i and we want to insert a new rightmost element γt+1 into Ci,k
according to min. Assume, for a contradiction, that the resulting permutation π′

is σ-sortable. The elements γt and γt+1 form an inversion in Ci,k, so by Lemma 9
there exists an element z between γt and γt+1 in π such that z < mi. Hence
miγtzx ' 2314, which contradicts the assumption that π is σ-sortable. Instead, if
` = i, that is, γt = x = πn, then γtγt+1 is an inversion inside Ci,k such that γt and
γt+1 are adjacent in π. This implies that π is not σ-sortable (again as a consequence
of Lemma 9).

Conversely, suppose that ` > i and γt+1 is inserted into Ci,k according to min. By
Theorem 5, π ∈ Av(2314, µ), so we just have to show that the permutation π′

obtained after the insertion still avoids the two forbidden patterns. If γt+1 plays the
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role of the 2 in an occurrence of 132, say acγt+1, then we have either acxγt+1 ' 1423
or acxγt+1 ' 2413, which means that the selected occurrence of 132 is not an
occurrence of the mesh pattern µ. Otherwise, suppose there is an occurrence bcaγt+1

of 2314 in π′. If mk = 1 precedes c in π, then caγt ' 213 in C(π), contradicting
Proposition 12. On the other hand, if mk follows c in π, then c ∈ Bj, for some
j < k, and γt ∈ Bk, with c < γt, contradicting Lemma 3.

2. Suppose we insert γt+1 into Ci,k according to cons and ` > i. Then γtxγt+1 is an
occurrence of 213 in C(π′), hence π′ is not σ-sortable, due to Proposition 12, as
desired.

Conversely, suppose that ` < i and we insert γt+1 into Ci,k according to cons;
this means that γt+1 = γt + 1. The resulting permutation π′ does not contain an
occurrence bcad of 2314 with γt+1 = d, for otherwise bcax would be an occurrence
of 2314 in π, contradicting the hypothesis that π is σ-sortable. On the other hand,
suppose there are two elements a, c in π such that acγt+1 is an occurrence of 132. We
now prove that acγt+1 is not an occurrence of the mesh pattern µ by distinguishing
two cases.

If c > mi−1 (note that i > `, so mi−1 exists), then a < γt+1 < mi−1, so mi−1 precedes
a in π (because a < mi−1 and mi−1 is a ltr-minimum) and mi−1acγt+1 would be an
occurrence of 3142. Instead, if c < mi−1, then c is not a ltr-minimum, because a < c
precedes c; moreover, c is in Ci,k, since c < mi−1 and c > γt+1, hence cγtx is an
occurrence of 213 in C(π), which is impossible due to Proposition 12. Finally, if
` = i, then x = γt, γt+1 = γt + 1 and they are adjacent in π′, so γt+1 is neither part
of an occurrence of 2314 nor of µ, since otherwise γt would be as well, contradicting
the hypothesis that π is σ-sortable.

If Ci,k is empty, then the operation cons does not make sense, so the only possibility
is to try to perform min. The next proposition asserts that this can always be done.

Proposition 14. Let π = π1 . . . πn be a σ-sortable permutation with k ltr-minima and let
Ci,k be an empty active cell of π. Let π′ be the permutation obtained from π by inserting
a new rightmost element y in Ci,k according to min. Then π′ is σ-sortable.

Proof. By Theorem 5 we have that π ∈ Av(2314, µ) and we want to prove that π′ ∈
Av(2314, µ). Suppose there are three elements b, c, a in π such that bcay ' 2314. Since
c > b, the element c is not a ltr-minimum of π. Suppose that c ∈ Cu,v, for some u, v.
If a is a ltr-minimum, then of course v < k, and we have also u > i, because y is the
minimum of its horizontal strip and y > c. This would imply that Cu,v is a nonempty
cell, with u > i and v < k, which is impossible since Ci,k is active. Otherwise, if a is not a
ltr-minimum, then cay ' 213 in C(π′), which again contradicts the assumption that Ci,k
is active.

Next, in order to prove that π′ does not contain the mesh pattern µ, suppose there
are two elements a, c in π such that acy ' 132 and suppose c ∈ Bj, for some j 6 k. If
j < k, then acmky is an occurrence of 2413, as desired. Otherwise, if j = k, we have that
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c ∈ C`,k, for some ` < k, because Ci,k is empty before we insert y; moreover, m` precedes
a in π, because m` > y and a < y. Thus m`acy ' 3142, as desired.

Corollary 15. Let π be a σ-sortable permutation. Then, for every active cell of π, exactly
one of min and cons generates a σ-sortable permutation.

Propositions 13 and 14 can be interpreted as a constructive procedure to generate in-
ductively every σ-sortable permutation. Starting from π ∈ Sortn(σ), one can either insert
a new rightmost minimum or choose an active cell of π and insert a new rightmost element
by performing either min or cons, according to the rules of Propositions 13 and 14. More-
over, if the number of active cells of π is t, then π produces t+ 1 σ-sortable permutations
of length n + 1: one for each active cell and one when a new minimum is inserted. In
principle, this gives rise to a generating tree for σ-sortable permutations, which is often
a useful tool for enumeration. Unfortunately, we have not been able to fully understand
the succession rule of such a tree (namely, we do not know how to compute the number
of active sites of the permutations generated by a permutation with a given number of
active sites). However, by exploiting the grid structure of σ-sortable permutations, our
generating procedure leads to a bijection with a class of pattern-avoiding rgfs.

Let π = π1 . . . πn be a permutation with k ltr-minima m1, . . . ,mk and set m0 = +∞.
Define the map φ by setting φ(π) = r1 . . . rn, where ri = j if mj 6 πi < mj−1. In
other words, the map φ scans the permutation π from left to right and records the index
of the horizontal strip that contains the current element of π, including the ltr-minima
in the corresponding strips. For example, if π = 13 14 15 10 12 6 7 8 11 9 3 1 4 5 2, then
φ(π) = 111223332345445 (see Figure 3). Note that φ is defined for any permutations. We
will now show that, when restricted to σ-sortable permutations, the map φ is a bijection
between Sortn(σ) and Rn(12231).

Theorem 16. Let φ : Sortn(σ)→ Rn(12231) be defined as above. Then φ is a bijection.

Proof. By Lemma 2, avoiding 12231 is equivalent to avoiding 2231. We start by proving
that, for each σ-sortable permutation π, φ(π) avoids 2231, that is, φ is well-defined.
Suppose, on the contrary, that φ(π) contains an occurrence ri1ri2ri3ri4 of 2231. Consider
the leftmost occurrence rj of the integer ri1 in π (note that j 6 i1). Then rj corresponds
through φ to the ltr-minimum of the horizontal strip of index ri1 in π. Hence the elements
πjπi2πi3πi4 form an occurrence of 2314 in π, which contradicts Theorem 5.

That φ is injective is a consequence of Corollary 15. Moreover, using the construction
of Proposition 13, we will show that φ is surjective. Given a rgf R = r1r2 . . . rn, construct
the permutation πR by scanning R from left to right and, when the current element is r`,
insert a new rightmost element π` in the following way (suitably rescaling the previous
elements when necessary):

• when r` is the first occurrence of an integer in R then π` = 1;

• otherwise, π` is inserted in the horizontal strip Hr` , according to the rules of Propo-
sition 13.

the electronic journal of combinatorics 27(3) (2020), #3.32 14



Pattern p Formula for |Rn(p)| OEIS

12123, 12132, 12134, 12213,

12231, 12234, 12312, 12321,
n−1∑

k=0

(
n− 1

k

)
ck A007317

12323, 12331, 12332

Table 1: The eleven patterns of the Wilf-class enumerated by A007317, see [JM, Table 3].

We now wish to prove that, if the rgf R avoids 2231, then πR is a σ-sortable permu-
tation such that φ(πR) = R. It is easy to see that φ(πR) = R, as a direct consequence of
the definition of φ. Since insertions inside active cells are always allowed, what remains
to be shown is that each element is in fact inserted into an active cell. We now argue by
contradiction, and suppose that y is the first element that is inserted into a nonactive cell
Ci,j. According to the definition of an active cell, there are two cases to consider.

1. If there exists a nonempty cell Cu,v, with u > i and v < j, then, given any x ∈ Cu,v,
the elements of R corresponding to muxmjy form an occurrence of 2231, which is
forbidden.

2. Suppose that inserting a new rightmost element according to min creates an occur-
rence bay of 213 that does not involve any ltr-minima. Let Hu be the horizontal
strip that contains b and let Hv be the horizontal strip that contains a. Note that
v > u > i. If v > u, then the elements corresponding to mubay in R form an
occurrence of 2231, which is again a contradiction. On the other hand, if v = u,
then a belongs to the same horizontal strip of b, so, since a < b, a was inserted
according to min. Therefore, by Proposition 13 and our choice of y, the element
a′ that precedes a in C(π) belongs to Hw, for some w > u. As a consequence, the
elements muba

′c correspond to an occurrence of 2231 in R, which is impossible.

Corollary 17. For every natural number n, |Sortn(σ)| = |Rn(12231)|.

The enumeration of these rgfs follows from the results in [JM], where it is shown
that 12231 is Wilf-equivalent to 12332 (see Table 1 here). Moreover, they also show that
1221-avoiding rgfs are enumerated by the Catalan numbers. Hence, as a consequence of
Theorem 31 in [JM], we immediately obtain the following formula for σ-sortable permu-
tations:

|Sortn(σ)| =
n−1∑

k=0

(
n− 1

k

)
ck.

The above sequence is A007317 in [Sl].
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5 Combinatorial proofs for pattern-avoiding restricted growth
functions

In the previous section we have completely solved the problem of counting σ-sortable
permutations, by explicitly finding a bijection with the class of 12231-avoiding rgfs,
whose enumeration is known [JM]. However, this does not provide a clear understanding
of why the resulting counting sequence is the binomial transform of Catalan numbers.
What we would like to have is a transparent bijective link between σ-sortable permutations
and some combinatorial objects whose structure immediately reveals the connection with
this counting sequence.

The current section is devoted to illustrating some bijections involving sets of rgfs
avoiding a certain pattern. Although the enumerations of these sets are known, essentially
as corollaries of the general mechanism presented by Jeĺınek and Mansour [JM], we provide
new direct combinatorial proofs, exhibiting links with other well studied combinatorial
structures. More precisely, we start by describing a presumably new bijection between
Rn(1221) and the set of Dyck paths of semilength n. Moreover, for some of the patterns
p listed in Table 1, we describe bijections between R(p) and other combinatorial objects,
such as labeled Motzkin paths and pattern-avoiding permutations. Finally, we define a
bijection betweenR(12321) andR(12231) that, together with some of the previous results,
gives a transparent bijective argument that fully explains the enumeration of σ-sortable
permutations.

5.1 The pattern 1221

The following lemma is contained in [CDDGGPS] and provides a nice characterization of
1221-avoiding rgfs.

Lemma 18 ([CDDGGPS], Lemma 6.2). Let R be a rgf. Then R ∈ R(1221) if and only
if the subword w(R) obtained by removing the first occurrence of each letter in R is weakly
increasing.

As an immediate consequence, we have the following corollary.

Corollary 19. Let R = r1 . . . rn ∈ R(1221) and M = max(R). If R has no repeated
elements let t = 1, otherwise let t be the maximum among repeated elements of R. Then
r1 . . . rnj ∈ R(1221) if and only if t 6 j 6M + 1.

The previous corollary can be rephrased using the language of generating trees (see
for instance [BDLPP]). In particular, we say that an integer x is an active site of the
rgf R ∈ R(1221) whenever adding x at the end of R returns another rgf belonging to
R(1221) (whose length is of course increased by one). Due to Corollary 19, the set of
active sites of R is the interval {t, t+ 1, . . . ,M,M + 1} and thus there are M + 1− t+ 1
active sites, where M and t are as in the corollary. In the language of generating trees,
any rgf obtained from R this way is called a child of R.

For the next theorem, we recall the definition of a double rise in a Dyck path, which
is an occurrence of the consecutive pattern UU.
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Theorem 20. There is a bijection ψ from Rn(1221) to the set of Dyck paths of semilength
n, such that the maximum of R ∈ Rn(1221) equals one plus the number of double rises in
the path ψ(R). As a consequence, denoting by fn,k the number of elements in Rn(1221)
whose maximum is k, we get that fn,k = nn,k, where nn,k is the (n, k)-th Narayana number.

Proof. Recall from [BDLPP] that every Dyck path P̃ of semilength n+ 1 is obtained (in
a unique way) from a Dyck path P of semilength n by inserting a peak UD either before a
D-step in the last descending run of P or after the last D-step. This construction gives rise
to a well known generating tree for Dyck paths, such that the number of active sites of a
path P is k+ 1, where k is the length of the maximal suffix of P entirely made of D-steps.
The path P̃ is therefore a child of P in the associated generating tree. Our goal is to
define (in a recursive fashion) a bijection α between the generating tree of R(1221) and
the generating tree of Dyck paths. In other words, we wish to show that α is a bijection
preserving both the size (that is, a rgf R ∈ Rn(1221) is mapped to a Dyck path of
semilength n) and the number of active sites.

We start by setting α(1) = UD. Note that 1 has two active sites, since the children
of 1 are 11 and 12. The path UD has two active sites as well, since its children are UUDD

and UDUD. Now let R = r1 . . . rn and α(R) = p1 . . . p2n, for some n > 1. Suppose that
the number of active sites of both R and α(R) is k. Let M = max(R) and let t be the
maximum element of R that is not a ltr-maximum of R. By Corollary 19, the active sites
of R form the interval {t, t + 1, . . . ,M,M + 1}, with M + 1 − t + 1 = k by hypothesis.
Moreover, the length of the maximal suffix of D-steps of α(R) is k − 1. We shall describe
α on the children of both R and α(R), and show that the number of active sites is still
preserved.

• The child of R corresponding to the active site M is mapped to the path obtained
from α(R) by inserting a new peak UD immediately after the last D-step of α(R).
Here the active sites of the resulting sequence are M + 1 −M + 1 = 2. The same
happens for the resulting Dyck path, since the length of the maximal suffix of D-steps
is 1.

• For i = t, . . . ,M − 1, the child of R corresponding to the active site i is mapped
to the path obtained from α(R) by inserting a new peak UD immediately before the
(M + 1− i)-th D step of the last descending run. The number of active sites of the
resulting rgf is then M + 1 − i + 1 = M + 2 − i, which is also the length of the
maximal suffix of D-steps of the resulting path.

• Finally, the child of R corresponding to the active site M + 1 is mapped to the path
obtained from α(R) by inserting a new peak UD immediately before the first D-step
of the last descending run of α(R). In this case the number of active sites of the
resulting rgf is M + 2 − (t + 1) = k + 1. Moreover, the number of active sites of
the resulting path is also k + 1, since the length of its maximal suffix of D-steps is
increased by one with respect to α(R).

Therefore α is a bijection between the two generating trees, as desired. To conclude,
observe that the number of double rises in α(R) is equal to max(R) − 1. Indeed, by

the electronic journal of combinatorics 27(3) (2020), #3.32 17



definition of α, each double rise in α(R) corresponds to the first occurrence of an integer
in R, except for the first occurrence of 1 (which does not create a double rise). As is well
known (see for example [D]), the number of Dyck paths of semilength n with k−1 double
rises is given by nn,k, which gives the desired equality fn,k = nn,k.

Corollary 21. Let n > 0 and gn = |Rn(12332)|. Denote by g(n, k) the number of
elements in Rn(12332) whose maximum is k, for 1 6 k 6 n. Then

g(n+ 1, k + 1) =
n∑

j=k

(
n

j

)
nj,k.

Proof. As observed in [JM], every 12332-avoiding rgf of length n+ 1 can be obtained by
choosing n−j positions for the 1s (except for the first 1, which is fixed) and then choosing

a rgf R̂ ∈ Rj(1221) for the remaining j spots (where the elements of R̂ incremented by

1 will be inserted). In particular, if the maximum of R̂ is k, then the resulting rgf
has maximum k + 1. So, as a consequence of Theorem 20, we have g(n + 1, k + 1) =∑n

j=k

(
n
j

)
nj,k.

As it turns out, the formula in Corollary 21 also enumerates σ-sortable permutations
according to the number of their ltr-minima. A proof will be given in upcoming sections
(Proposition 28 and Theorem 34) by means of a bijection between 12231- and 12321-
avoiding rgfs. However, although we have a precise geometrical description of Sort(σ),
we have not been able to find a direct proof of this.

Open Problem 22. Prove directly (that is, without using a bijection involving different
objects) that the number of 132-sortable permutations of length n+ 1 with k + 1 left-to-
right minima is given by

n∑

j=k

(
n

j

)
nj,k.

5.2 The patterns 12323 and 12332

Let

F (x) =
∑

n>0

(
n−1∑

k=0

(
n− 1

k

)
ck

)
xn

be the ordinary generating function of σ-sortable permutations (equivalently, of R(12323)
and ofR(12332)). Then F (x) can be expressed using the following continued fraction (see,
for example, [B, F]):

F (x) =
1

1− 2x−
x2

1− 3x−
x2

1− 3x−
x2

1− 3x− . . .
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`0 `1
U

U D `2 `0

D `0 `0

Figure 5: The labeled Motzkin path corresponding, via the bijection β of Theorem 23, to
the restricted growth function 12134435367, which in turn corresponds to the set partition
13–2–479–56–8–10–11.

A nice combinatorial interpretation of this continued fraction can be given in terms
of labeled Motzkin paths, via Flajolet’s general correspondence [F]. More precisely,
|Sortn+1(σ)| is the number of Motzkin paths of length n such that each horizontal step at
height zero has two types of labels `0, `1 and each horizontal step at height at least one
has three types of labels `0, `1, `2. Let Mlab

n be the set of such labeled Motzkin paths of
length n. We now define a map β from Mlab

n to rgfs of length n+ 1 (see Figure 5). Let
P ∈Mlab

n and let ∆ be an initially empty stack. We construct a rgf R by scanning from
left to right the labels of P (including U and D for upstep and downstep, respectively).
We start by setting R = 1. Then we append a new rightmost element to R according to
the following rules, where L denotes the currently scanned label:

• if L = U then append a new strict maximum M and push M onto ∆;

• if L = D then append top(∆) and pop it from ∆;

• if L = `0, then append a new strict maximum (without pushing it onto ∆);

• if L = `1 then append 1;

• if L = `2 then append top(∆) (without popping it from ∆).

In other words, U corresponds to the first occurrence of a letter x that appears at least
twice in R, D to the last occurrence of such a letter, and `2 to an occurrence of such an
x that is neither the first nor the last. Moreover, the label `0 corresponds to an element
x 6= 1 appearing only once and the label `1 corresponds to the element 1.

It is worth noting the correspondence between the labels of a Motzkin path P described
above and properties of the set partition associated (in Section 2) to the rgf R = β(P ).
Namely, if B is a block of cardinality at least 2 in such a partition and B doesn’t contain 1,
then U, D and `2 correspond, respectively, to the least, the largest and any of the remaining
elements of the block. Furthermore, `0 corresponds to a singleton block not containing 1
and `1 corresponds to the elements of the block containing 1. With this correspondence
the auxiliary stack ∆ is seen to keep track, at each stage of the construction of R, of the
open blocks in the corresponding partition, that is those blocks that have not yet received
all their elements.

Theorem 23. The map β is a bijection between Mlab
n and Rn+1(12323).
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Proof. It is straightforward to see that β is injective and that β(P ) is a rgf for every
P ∈ Mlab

n . Since |Mlab
n | = |Rn(12323)|, we only need to show that β(P ) avoids 12323,

for each P ∈Mlab
n . Suppose, for a contradiction, that abcb′c′ is an occurrence of 12323 in

β(P ). This implies, of course, that b, c 6= 1. Without loss of generality, we may assume
that b and c are the first occurrences of the corresponding integers in β(P ); then both b
and c correspond to U-steps in P and are pushed onto ∆. Moreover, since b′ = b and b′

follows c in β(P ), when c enters ∆, b is still in, and so c lies above b in ∆. Now observe
that the element b′ must correspond to either a D-step or a horizontal step labeled `2 of P .
However, in both cases, when b′ is inserted into β(P ), b has to be at the top of the stack,
hence c should have been popped. This would imply that there are no more occurrences
of c in β(P ) after b′, which is not the case, since c′ = c.

Remark 24. If we replace the stack ∆ with a queue Ξ, then the same map gives a bijection
with rgfs avoiding 12332. The proof is analogous to the previous one, and is omitted.

Remark 25. If we restrict the previous bijections to Motzkin paths with no horizontal
steps labeled `1, then we get bijections with rgfs that avoid 1212 (if we use a stack ∆) or
1221 (if we use a queue Ξ), provided that we remove the 1 at the beginning and decrease
all the other elements by one. This follows again from the characterization of R(12323)
and R(12332) given in [JM]. The corresponding continued fraction is then:

F (x) =
1

1− x−
x2

1− 2x−
x2

1− 2x−
x2

1− 2x− · · ·

This gives an alternative proof of the fact that rgfs avoiding either 1221 or 1212 are
enumerated by the Catalan numbers, whose generating function is known to be given by
the above continued fraction.

Remark 26. As a consequence of the bijections in Theorem 23 and Remark 24, the statistic
“sum of the numbers of U and `0 steps” inMlab

n is equidistributed with the statistic “(value
of the) maximum minus one” both in Rn+1(12332) and in Rn+1(12323). The same holds
for the statistics “number of labels `0” and “number of singletons 6= {1}”, as well as for the
statistics “number of labels `1” and “number of occurrences of 1 minus one”. Some compu-
tations seem to suggest that the distribution of the maximum is the same for several other
patterns of the same Wilf-class, namely 12123, 12132, 12213, 12231, 12312, 12321, 12331, so
we suspect that the same approach should lead to straightforward bijections, by suitably
modifying the interpretation of the steps.
For example, call ri a repeated ltr-maximum of a rgf r1r2 . . . rn if ri = max {r1, . . . , ri−1}.
Then steps having label `1 seem to have the same distribution as the repeated ltr-maxima
in R(12321) and R(12312), so in order to define a bijection withMlab it could be enough
to find the “correct” interpretations for steps having labels D and `2.
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5.3 The patterns 12321 and 12312

In this subsection we deal with rgfs avoiding the patterns 12321 and 12312, respec-
tively, by exhibiting a connection with permutations avoiding the patterns 321 and 312,
respectively.

Let R = r1 . . . rn be a rgf. Recall from Remark 26 that ri is said to be a repeated
ltr-maximum when ri = max {r1, . . . , ri−1}, that is, when ri is at least as great as all
preceding letters, but not a ltr-maximum. Denote by Rn.r. the set of rgfs with no
repeated ltr-maxima. The notations Rn.r.

n and Rn.r.(Q), for a pattern Q, are defined in

the usual way. If R = r1 . . . rn ∈ Rn.r. is a rgf with no repeated ltr-maxima, denote by R̃
the subsequence of R obtained by deleting its ltr-maxima. Note that R̃ is not necessarily
a rgf. For example, if R = 121311245246, then R̃ = 111224.

Lemma 27. Let R ∈ Rn.r.. Then R avoids 12321 if and only R̃ is weakly increasing.

Proof. Suppose R̃ = . . . ba . . ., where b > a. Note that b is not a repeated ltr-maximum
of R, so there has to be an element c in R such that c > b and c comes before b. Then R
contains an occurrence cba of 321 and therefore it also contains 12321, by Lemma 2.

Conversely, if R contains an occurrence abcb′a′ of 12321, then b′ precedes a′ in R̃ and
b′ > a′, so R̃ is not weakly increasing.

We can now define a bijection between Rn.r.(12321) and Av(321). In fact, the pre-
vious lemma roughly says that the combinatorial structure of elements of Rn.r.(12321)
is analogous to that of permutations in Av(321), that is, they can both be written as
a shuffle of two weakly increasing sequences (namely, the strictly increasing sequence
of the ltr-maxima and the weakly increasing sequence of the remaining elements). Let

R = r1 . . . rn ∈ Rn.r.(12321) and suppose R̃ = ri1 . . . rik , where k > 0. Construct a per-

mutation of length n by keeping the same positions for the ltr-maxima and mapping R̃
to a strictly increasing sequence S = s1 . . . sk as follows:

• s1 = ri1 ;

• sj = sj−1 + (rij − rij−1
) + 1, for j > 2.

Finally, in order to get a permutation that avoids 321, insert the remaining elements
in increasing order (they will be the ltr-maxima). For instance, if R = 121314234, then

R̃ = 11234, so we get S = 12468 and the resulting permutation is 351729468 (bold
elements are the ltr-maxima). Note that a rgf having maximum k (equivalently, with k
ltr-maxima) is mapped to a permutation with k ltr-maxima. It is straightforward to prove
that the resulting permutation avoids 321. Moreover, since 321-avoiding permutations are
uniquely determined by positions and values of their ltr-maxima, the strictly increasing
sequence S is enough to uniquely identify one such permutation. Therefore the map
defined above is injective. Finally, the construction proposed can be easily inverted, so
the map is a size-preserving bijection between Rn.r.(12321) and Av(321). We thus have
the following result, whose proof immediately follows from the above discussion.
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Proposition 28. The number of rgfs in Rn.r.
n (12321) is cn. Moreover, the number of

rgfs in Rn.r.
n (12321) having maximum k is given by nn,k.

Next we show that any rgf avoiding 12321 is obtained by choosing a sequence in
Rn.r.(12321) and then inserting some repeated ltr-maxima.

Theorem 29. Let R be a rgf and let α(R) be the sequence obtained from R by removing
all the repeated ltr-maxima. Then α(R) is a rgf. Moreover, R avoids 12321 if and only
α(R) avoids 12321.

Proof. It is easy to check that α(R) is still a rgf and clearly α(R) avoids 12321 if R does.
On the other hand, suppose that R contains an occurrence abcb′a′ of 12321. Note that
b′ and a′ are not repeated ltr-maxima, so they are elements of α(R) and they follow c in
R. Let c′ be the first occurrence of the integer c in R. Then c′ ∈ α(R) and c′ precedes b′

in α(R), so α(R) contains an occurrence c′b′a′ of 321, which is equivalent to containing
12321.

Corollary 30. For each n > 1, we have

|Rn+1(12321)| =
n∑

k=0

(
n

k

)
ck.

Moreover, there are
∑n

j=k

(
n
j

)
nj,k rgfs in Rn+1(12321) with maximum k.

Proof. This is a direct consequence of the results proved in this subsection, together with
the fact that the first element of a rgf cannot be a repeated ltr-maximum.

Remark 31. The same approach can be used to find a bijection between Rn.r.(12312) and
Av(312). In fact, 312-avoiding permutations are also uniquely determined by the positions
and values of their ltr-maxima, and a completely analogous argument can be applied. As
a consequence, we also have

|Rn+1(12312)| =
n∑

k=0

(
n

k

)
ck.

5.4 A bijection between R(12321) and R(12231)

In Section 4 we showed that σ-sortable permutations are in bijection with rgfs avoiding
12231. Although the labeled Motzkin path approach described in Section 5.2 could be
fruitful, a direct combinatorial enumeration for the pattern 12231 seems to be rather more
complicated than for the patterns treated in the previous section. Here we illustrate a
bijection between R(12231) and R(12321), thus obtaining an independent proof of the
enumeration of Sort(σ).

From now on we say that ri1ri2ri3 is an occurrence of the pattern 2̃31 in R if ri1ri2ri3
is an occurrence of 231 and ri1 is not a ltr-maximum of R (that is, ri1 is not the
first occurrence of the corresponding integer). Note that R(12231) = R(2̃31) and also
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R(12321) = R(321), so we can focus on the patterns 2̃31 and 321 instead of 12231 and
12321, respectively. Given a rgf R = r1 . . . rn, define rm(R, 321) = i1i2i3, where riiri2ri3
is the lexicographically rightmost occurrence of 321 in R. In other words, for any other
occurrence rjirj2rj3 of 321, we must have either j1 < i1, or j1 = i1 and j2 < i2, or j1 = i1,
j2 = i2 and j3 < i3. If R avoids 321, set rm(321) = 000 by convention. Similarly, denote
by lm(R, 2̃31) = i1i2i3 the lexicographically leftmost occurrence of 2̃31 in R. If R avoids
2̃31, set lm(R, 2̃31) = (n+ 1)(n+ 1)(n+ 1).

Now, let R = r1 . . . rn ∈ R(2̃31), a hypothesis we will assume throughout the rest of
this section. Define recursively a rgf γ(R) as follows.

1. R(0) = R.

2. For t > 0, if R(t) contains 321, then R(t+1) is obtained from R(t) by exchanging the
elements ri1 and ri2 , where i1i2i3 = rm(R(t), 321).

3. Finally, define γ(R) = R(k), where k is the minimum index such that R(k) avoids
321.

It is easy to verify that, at each step, R(t) is a rgf; moreover R(k) avoids 321 by
construction. Thus, in order to prove that the map γ is well defined, we have to show
that the integer k indeed exists. This follows from the next lemma.

Lemma 32. For every t > 0, we have rm(R(t+1), 321) <` rm(R(t), 321), where <` denotes
the lexicographical order.

Proof. Let R(t) = r
(t)
1 . . . r

(t)
n and R(t+1) = r

(t+1)
1 . . . r

(t+1)
n . Moreover, let rm(R(t), 321) =

i1i2i3 and rm(R(t+1), 321) = j1j2j3. Note that, as illustrated in Figure 6, our hypothesis

imposes some constraints on the elements of R(t). More precisely, r
(t)
j 6 r

(t)
i2

, for each

j = i1 + 1, . . . , i2 − 1. Also, for each j = i2 + 1, . . . , i3 − 1, either r
(t)
j 6 r

(t)
i3

or r
(t)
j > r

(t)
i1

.

Finally, r
(t)
j > r

(t)
i2

for each j > i3. We will repeatedly use these inequalities throughout
this proof. Our goal is now to show that j1j2j3 <` i1i2i3. Suppose, by contradiction, that
j1j2j3 >` i1i2i3. Consider the following case analysis.

• Suppose j1 > i1. If j1 < i2, then necessarily r
(t+1)
j1

= r
(t)
j1

6 r
(t)
i2

, due to the
above constraints. Hence we must have j2, j3 6= i2, since otherwise the indices
j1, j2, j3 would not correspond to an occurrence of 321 in R(t+1). This implies that
r
(t+1)
j1

r
(t+1)
j2

r
(t+1)
j3

= r
(t)
j1
r
(t)
j2
r
(t)
j3

is an occurrence of 321 in R(t) as well, with j1j2j3 >`

i1i2i3: this is a contradiction, since we are assuming that rm(R(t), 321) = i1i2i3.

Next suppose that j1 = i2 (and so j2 > i2). Note that r
(t)
i1

= r
(t+1)
i2

= r
(t+1)
j1

, hence

r
(t)
i1
r
(t)
j2
r
(t)
j3

is an occurrence of 321 in R(t) with i1j2j3 >` i1i2i3, which is impossible.

Finally, suppose that j1 > i2. Then obviously r
(t)
j1
r
(t)
j2
r
(t)
j3

= r
(t+1)
j1

r
(t+1)
j2

r
(t+1)
j3

is an

occurrence of 321 in R(t), with j1j2j3 >` i1i2i3, again a contradiction.

• Suppose instead that j1 = i1 and j2 > i2. Then r
(t+1)
i1

= r
(t)
i2

and j2 > i2, so r
(t)
i2
r
(t)
j2
r
(t)
j3

is an occurrence of 321 in R(t), with i2j2j3 >` i1i2i3, which is impossible.
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i1 i2 i3 i1 i2 i3

Figure 6: On the left, the rightmost occurrence of the pattern 321 in R(t), with indices
i1i2i3. Shaded boxes correspond to forbidden regions. On the right, the resulting pattern
in R(t+1), obtained by exchanging the elements in positions i1 and i2.

• Finally, the case j1 = i1 and j2 = i2 is clearly impossible, since we have r
(t+1)
i1

=

r
(t)
i2
< r

(t)
i1

= r
(t+1)
i2

.

Next we show that γ is a bijection by proving that the recursive construction defined
above can be reversed. More precisely, R(t) can obtained from R(t+1) by transforming the
leftmost occurrence of 2̃31 into an occurrence of 321 (see Figure 7).

rm(321) 99K 2̃31
77

''
R(t)

gg R(t+1)

ww

321 L99 lm(2̃31)

Figure 7: The diagram of Lemma 33.

Lemma 33. Let t > 0. Let rm(R(t), 321) = i1i2i3 and lm(R(t+1), 2̃31) = j1j2j3. Then
i1 = j1 and i2 = j2.

Proof. We again refer to Figure 6 for an illustration of the constraints imposed on the
elements of R(t) by the position of the rightmost occurrence of 321 inside R(t). We proceed
by induction on t.

Suppose first that t = 0, that is, R(0) = r
(0)
1 . . . r

(0)
n avoids 2̃31, but contains 321. Set

R(1) = r
(1)
1 . . . r

(1)
n , rm(R(0), 321) = i1i2i3 and lm(R(1), 2̃31) = j1j2j3. Note that r

(1)
i1
r
(1)
i2
r
(1)
i3

is an occurrence of 2̃31 in R(1). Indeed, by Lemma 2, the first occurrence of the integer
r
(0)
i2

in R(0) precedes r
(0)
i1

, since r
(0)
i1

> r
(0)
i2

. Therefore j1j2j3 6` i1i2i3. We have to show
that i1 = j1 and i2 = j2. Suppose, to the contrary, that j1 < i1. If either j2 = i1 or
j2 = i2, then r

(0)
j1
r
(0)
i1
r
(0)
j3

would be an occurrence of 2̃31 in R(0), which is impossible since

R(0) ∈ R(2̃31). Thus we must have j2 6= i1 and j2 6= i2. In particular, since j2 6= i2,

we must have either j3 = i1 or j3 = i2, otherwise r
(0)
j1
r
(0)
j2
r
(0)
j3

= r
(1)
j1
r
(1)
j2
r
(1)
j3

would be an
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occurrence of 2̃31 in R(0) as well. However, if either j3 = i1 or j3 = i2, then r
(0)
j1
r
(0)
j2
r
(0)
i2

would be an occurrence of 2̃31 in R(0), which is again a contradiction. Therefore it has
to be i1 = j1. Finally, the case j1 = i1 and j2 < i2 is forbidden, due to the restrictions
depicted in Figure 6. Summing up, we must have i1 = j1 and i2 = j2, as desired.

Now suppose that t > 1. Let R(t) = r
(t)
1 . . . r

(t)
n . For the rest of this proof, we fix the

following notation:

- rm(R(t−1), 321) = t1t2t3;

- lm(R(t), 2̃31) = s1s2s3;

- rm(R(t), 321) = i1i2i3;

- lm(R(t+1), 2̃31) = j1j2j3.

By the inductive hypothesis we have s1 = t1 and s2 = t2. Moreover, Lemma 32 implies
that t1t2t3 >` i1i2i3, hence t1t2 >` i1i2 and s1s2 >` i1i2. Note that r

(t+1)
i1

r
(t+1)
i2

r
(t+1)
i3

is an

occurrence of 2̃31 in R(t+1), so we must have j1j2j3 6` i1i2i3. Our goal is to show that
i1 = j1 and i2 = j2. We shall proceed by contradiction, so we assume that j1 < i1 or
j2 < i2. Our strategy consists in finding an occurrence of 2̃31 in R(t) such that the indices
of its first two elements strictly precede i1i2 (in the lexicographical order). Indeed, this
would imply that s1s2 <` i1i2, since s1s2s3 = lm(R(t), 2̃31), which is impossible since we
know that s1s2 >` i1i2.

Suppose first that j1 < i1. If {j2, j3} ∩ {i1, i2} = ∅, then r
(t)
j1
r
(t)
j2
r
(t)
j3

is the desired

occurrence of 2̃31 in R(t), since in this case j1, j2, j3 are not involved in the transition from
R(t) to R(t+1) and we are assuming that j1 < i1. Therefore at least one of j2 and j3 must
coincide with either i1 or i2. We will now show that, in each case, we are able to find an
occurrence of 2̃31 in R(t) with the desired property.

• If j2 = i1, then r
(t+1)
j2

= r
(t+1)
i1

< r
(t)
i1

, hence r
(t)
j1
r
(t)
j2
r
(t)
j3

is an occurrence of 2̃31 in R(t),
and j1j2 <` i1i2.

• If j2 = i2, then r
(t)
j1
r
(t)
i1
r
(t)
j3

is an occurrence 2̃31 in R(t), and j1i1 <` i1i2.

• If j3 = i1, then r
(t)
j1
r
(t)
j2
r
(t)
i2

is an occurrence of 2̃31 in R(t), and j1j2 <` i1i2.

• If j3 = i2, then r
(t)
i2
< r

(t)
i1

= r
(t+1)
i2

, hence r
(t)
j1
r
(t)
j2
r
(t)
i2

is an occurrence of 2̃31 in R(t),
and j1j2 < i1i2.

The above case-by-case analysis shows that i1 = j1. Moreover, we cannot have j2 < i2;
this is again due to the restrictions illustrated in Figure 6.

Theorem 34. The map γ is a size-preserving bijection between R(12321) and R(12231).
Moreover, γ preserves the maximum value of a rgf.

By Theorem 34 and Corollary 30, the distribution of the maximum letter in rgfs over
Rn(12231) is given by

∑n
i=k

(
n
i

)
ni,k. This provides a combinatorial (even if not direct)

proof of the formula stated in Open Problem 22 for the distribution of ltr-minima of
Sort(132).
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6 Final remarks and future work

In Sections 3 and 4 we have characterized the elements of the set Sort(132), thus solving
one of the open problems for pattern-avoiding machines introduced in [CCF]. For three
remaining patterns σ of length 3, namely 213, 231 and 312, a characterization of the σ-
sortable permutations remains to be found, as well as their enumeration. The pattern 231
seems to be significantly more challenging than the others. This is arguably due to what
seems to be the case, according to computational evidence, namely that the 231-machine
can sort more permutations of length n, for each n > 3, than the machines associated
to any other pattern of length 3 (in particular, it is the only one that can sort every
permutation of length 3).

The enumeration of 132-sortable permutations has been obtained by means of a bijec-
tion with rgfs avoiding 12231, whose enumeration can be found in [JM] as an application
of a much more general mechanism. In Section 5 we have found new direct proofs for re-
lated classes of rgfs, exhibiting connections with other well known combinatorial objects,
such as lattice paths and pattern-avoiding permutations. In particular, the bijection with
labeled Motzkin paths in Theorem 23 seems amenable to being extended and generalized,
in order to cover the enumeration of many patterns in the same Wilf-equivalence class.
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A. Dennunzio, E. Formenti, L. Manzoni, A. E. Porreca (Eds.), Cellular Au-
tomata and Discrete Complex Systems, AUTOMATA 2017, Lecture Notes
in Comput. Sci., 10248 (2017) 56–67.

[D] E. Deutsch, Dyck path enumeration, Discrete Math., 204 (1999) 167–202.

[F] P. Flajolet, Combinatorial aspects of continued fractions, Discrete Math.,
32 (1980) 125–161.

the electronic journal of combinatorics 27(3) (2020), #3.32 26
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