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Abstract

We present results from simulations, using the 2D particle-in-cell (PIC) code EPOCH,

in which we analyse the suitability of low transverse field resolution for the study of

laser wakefield acceleration (LWFA). The simulations use a tailored density profile to

stimulate injection, maintaining a constant post-injection density. We also examine the

applicability of reducing simulations post-injection, both through algorithmic nearest-

neighbour (NN) particle coalescing, and through a combination of variation in the num-

ber of particles-per-cell (PPC) with field interpolation.

For low transverse field resolution, we demonstrate that both the peak energy injected

and the resultant beam emittance converge rapidly, when the overall domain size is held

constant, with little variation beyond 1.2 cells-per-wavelength (CPW) in the transverse

direction. Results also show that whilst the proposed NN particle coalescing method

maintains the injected electron beam, this degrades sufficiently that it does not improve

accuracy over low transverse resolution, whilst being more computationally expensive.

In the case of variable PPC, we show that this method can exactly preserve the electron

beam profile for a PPC decrease from 32 to 1, whilst offering an order-of-magnitude

speedup in post-reduction computation. Through the incorporation of field interpola-

tion, we demonstrate minimal degrading in the simulated electron beam profile for a

20-fold decrease in the number of transverse simulation cells post-injection, with a cor-

responding computational speedup of factor 90.

Keywords— laser wakefield acceleration – pseudo-particle – macro-particle – simula-

tion reduction – particle coalescing – particle-in-cell – particle simulation
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1 | Introduction

The laser-plasma accelerator (LPA) was originally proposed by Tajima and Daw-

son in 1979 [1], following theoretical work that showed the suitability of plasmas

as an accelerator medium. Akin to conventional particle accelerators, such as

linear accelerators (LINACs) and synchrotrons, the principal aim of LPAs is the

generation of high energy particles – in this case, electrons. Spanning a wide

range of applications, including the production of radio-isotopes and diagnostics

[2, 3] as well as ultrafast electron diffraction [4], the electron beam can also be

used to generate X-rays, through methods such as Thompson backscattering [5–

7] or betatron radiation [8]. This offers further uses, spanning form lithography,

medical imaging and treatments, to the imaging of the structural dynamics of var-

ious biological and chemical systems [9].

Unlike conventional accelerators, which are limited by radio-frequency (RF) break-

down, plasma accelerators can sustain significantly stronger electromagnetic (EM)

fields, and thus offer the potential to be significantly more compact. Whereas su-

perconducting RF cavities are effective up to∼ 100 MeV/m [10], plasmas are able

to sustain acceleration gradients in excess of 100 GeV/m – three orders of magni-

tude greater [11, 12]. This corresponds to a sizeable difference in scale (and thus

cost) – whilst LINACs are typically in the range of several metres to kilometres,

LPAs can achieve GeV electron energies on scales of millimitres to centimetres.

Furthermore, LPAs also exhibit further useful characteristics such as femtosecond-

level duration, and ultra-small bunch emittance [13, 14]; since the resultant elec-

tron bunches generated by an LPA is synchronised with the laser pulse(s), this

provides further benefits in pump-probe applications [15].

Two distinct types of plasma accelerator were initially proposed [1] – the Plasma

Beatwave Accelerator (PWBA), and the Laser Wakefield Accelerator (LWFA) –

20
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with the latter not being feasible at time of conception due to insufficient develop-

ment of compact, ultra-high power lasers capable of producing ultra-short pulses

[15, 16]. Additionally, electrons were originally injected externally to be acceler-

ated [17], before the development of more powerful lasers capable of producing

intense electron beams solely from propagation of the laser pulse through the un-

derdense plasma, as demonstrated in 2002 by [18].

The PBWA, first observed by Clayton et al. in 1985 [19], uses two (or more)

long laser pulses, of frequency ω1, ω2; this resonantly excites a plasma wave when

the difference between the pulse frequencies is similar to the electron plasma fre-

quency [1, 20]: ∆ω = ω1 − ω2 ≈ ωp. However, whilst this method provides

control over the injection process, it introduces a number of problems – alignment

of the lasers is critical [21], and resonant detuning [22] provides further difficul-

ties.

Figure 1.1: Sample simulation frame showing the charge density (top), and mo-
mentum distribution as a function of longitudinal position (bottom).

Unlike PBWA, only a single laser pulse is used in LWFA, and the pulse length

cτL is directly matched to the plasma wavelength cτL ≈ λp. With the innovation
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of chirped pulse amplification in 1985 [23] having allowed development the nec-

essary power combined with short pulse length, experimental laser-wakefield ac-

celerators became viable [10, 24]. Due to the inherently short pulses used, LWFA

has the benefit of not being susceptible to Raman backscattering, and can operate

with less uniform plasmas as it is not resonantly excited [15, 25]. The point of

injection can then be controlled through various methods, such as tailored density

profiles [26], ionization injection [4], and colliding pulses [17]. With control over

the location of injection, this then allows for further fine-tuning in parameters af-

fecting the characteristics of the generated electron beam.

When simulating density ramp injection, we would expect that the accuracy is

largely dependant on the resolution in the interaction of the non-linear wake with

a sharp density transition, and in the formation of the initial wake. We thus hypoth-

esise that decreasing simulation resolution in the post-injection phase can signifi-

cantly reduce computation time whilst preserving the detail in the injected bunch.

Particularly for a constant post-injection background density, thereby effectively

reducing the problem to one akin to an electrostatic accelerator, we expect signif-

icant potential speedups.
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2 | Theoretical Background

2.1 Laser Wakefield Acceleration

In LWFA, a short, intense laser pulse is used to perturb oscillations in an under-

dense plasma, forming an electrostatic wake in the path of the laser [15, 27]; pulse

lengths are typically around τL . 1 ps, with a laser intensity IL & 1018 W.cm−2

[28]. Broadly speaking, there are two main regimes in LWFA – self-modulation

[28, 29], and the bubble1regime [30, 31], first proposed in 2002 by Pukhov et al.

[32]. We shall henceforth focus on the latter, which is capable of producing quasi-

monoenergetic electron beams [21, 33], in which the laser induced ponderomotive

force expels electrons radially, creating a highly non-linear, relativistic wake [34].

Whilst analytical solutions exist in the 3D linear, computational simulation is re-

quired to model the non-linear regime in more than one dimension [15].

Figure 2.1: Simulated laser pulse (red) propagating through a plasma from right
to left, forming a wake [35]. (a) depicts the linear regime, with normalised laser
intensity a0 = 0.5, whilst (b) has an a0 = 4.0, corresponding to the non-linear
bubble regime. Vertical scale has been magnified by factor 10 for subfigure (a).
Reprinted by permission from Springer: Nature, Nature Photonics, Developments
in laser-driven plasma accelerators, S. M. Hooker, Copyright Macmillan Publish-
ers Ltd (2013) [35].

1Sometimes also referred to as the "cavitation", or "blow-out" regime [21, 34].
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2.1.1 Ponderomotive Force

In LWFA, it is the ponderomotive force which drives the wake, expelling charged

particles from the path of the laser. To understand this force, let us consider the

force on the electron fluid in a homogeneous plasma (in the cold fluid limit) ex-

posed to some laser field [15]:

me
dve
dt

= −e (E + ve×B) (2.1)

where ve is the plasma fluid element velocity, e and me the charge and mass

of an electron respectively, and E and B the electric and magnetic fields. Let

us now assume the laser field has a spatially-dependent amplitude (e.g. E =

E(x) sin(ωLt)), with laser frequency ωL & ωpe � ωpi greater than or similar

to the electron plasma frequency, which is much greater than the electron ion

frequency. If we also substitute the total derivative2 d/dt = ∂/∂t + (ve · ∇):

∂ve
∂t

+ (ve · ∇)ve = − e

me

(E + ve×B) (2.2)

To the first order in |E|, we thus find:

me
∂v

(1)
e

∂t
= −eE(x) sin(ωLt) (2.3)

v(1)
e =

e

meωL
E(x) sin(ωLt) (2.4)

2also commonly referred to as the: convective derivative, material derivative, Lagrangian
derivative, Stokes derivative, particle derivative, advective derivative, and substantive derivative,
amongst others [36].
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where the superscript (1) is used to denote order. If we now consider the second

order response [37]:

∂v
(2)
e

∂t
= −

(
v(1)
e · ∇

)
v(1)
e −

e

me

(
v(1)
e ×B(1)

)
(2.5)

Through a temporal integration of the Maxwell-Faraday equation (∇ × E =

− ∂B/∂t ), we can find B(1):

B(1) =
1

ωL
∇×E(x) cos(ωLt) =

me

e

(
∇× v(1)

e

)
(2.6)

Substituting this back into equation (2.5) together with equation (2.4), we find:

∂v
(2)
e

∂t
= −

(
v(1)
e · ∇

)
v(1)
e − v(1)

e ×
(
∇× v(1)

e

)
(2.7)

me
∂v

(2)
e

∂t
= − e2

meω2
L

(E · ∇)E − e2

meω2
L

[E × (∇×E)]

= − e2

meω2
L

[(E · ∇)E + E × (∇×E)] (2.8)

Using the identity a× (∇× a) ≡ 1
2
∇ (a2)− (a · ∇)a:

me
∂v

(2)
e

∂t
= − e2

meω2
L

[
(E · ∇) +

1

2
∇
(
E2
)
− (E · ∇)

]
(2.9)

= − e2

2meω2
L

∇
(
E2
)

(2.10)

Taking a temporal average, denoted by 〈 〉T , over the rapid laser field oscillations

of period T = 2π
ωL

, we find that

〈
E2
〉
T

=
〈
E2(x) sin2(ωLt)

〉
T

= E2(x)
〈
sin2(ωLt)

〉
T

=
1

2
E2(x) (2.11)
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Substituting equation (2.11) back into equation (2.10), we thus arrive at the pon-

deromotive force

me
∂〈v(2)

e 〉T
∂t

= − e2

4meω2
L

∇
(
E2
)

=: Fp (2.12)

It should be noted that this force contains both radial and axial components – it

thus dispels electrons radially outward, as well as in the propagation direction of

the laser.

2.1.2 Langmuir Waves

To understand the mechanism by which waves in the plasma (also referred to

as Langmuir waves) are excited, let us consider the response of a quasi-neutral

homogeneous plasma in the 1D linear regime. If a slab of electrons, thickness L,

is displaced in x within the plasma by a small distance δx� L (as in Figure 2.2),

the charge density σ of the leading face is σ = neeδx.

Figure 2.2: Schematic of the displacement of a slab of electrons ne, thickness
L, within the plasma by a small distance δx. Light blue here corresponds to the
displaced electrons, leaving behind an electropositive region of space.

Since an equal but opposite charge density also develops on the opposite face, an

electric field Ex = − σ
ε0

= −nee
ε0
δx is generated [38]. Applying Newton’s law,
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each individual particle is thus subject to the restoring force [15]:

me
d2(δx)

dt2
= eEx = −nee

2

ε0
δx

= −me

(
nee

2

ε0me

)
δx

= −meω
2
peδx

where we have defined the electron plasma frequency

ωpe =

√
nee2

meε0
(2.13)

This has the form of a harmonic oscillator, with associated period τpe = 2π/ωpe,

and describes the oscillation of electrons about their equilibrium position within

the plasma.

For LWFA, it is critical that the plasma frequency ωpe < ωL is less than the laser

frequency; with a corresponding characteristic time scale longer than one period

of the incident laser, the plasma is unable to stop the laser propagation [17]. This

is defined as an "under-dense" plasma, and contrasts to an "over-dense" plasma

which is capable of reflecting the laser pulse.

2.1.3 Self-injection

It is important to understand that the wake is not itself comprised of accelerated

electrons, it is simply the collective oscillation of electrons about their equilibria.

Instead, as the amplitude of the plasma wave continues to grow, eventually this

exceeds a threshold Emax, at which point the wave directly transfers energy to

constituent particles [39]. This process does not necessarily destroy the wake, and

can instead continuously "inject" electrons, thereby reducing its amplitude, until
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this is once again below the threshold; this has further benefits in enabling injected

particles to continue to gain energy from the plasma wave [33].

With a maximum electric field amplitude that can be supported by a plasma of

E0 = meωpec/e in the cold, non-relativistic limit [40], it is possible for this to be

exceeded in the non-linear regime [15]. Theoretical calculations in the 1D limit of

the non-linear, relativistic, cold fluid equations [41] predict a maximum amplitude

of

EWB =
√

2(γp − 1)E0

with relativistic Lorentz factor γp = (1 − v2
p/c

2)−1/2 associated with the plasma

wave phase velocity vp [15].

A simple estimate of the corresponding energy gain, assuming normalised laser

parameter a0 ∼ 1, is given by W ∼ E0Ldeph ∼ (mcωpe)(λ
3
pe/λL) [42]. Here,

Ldeph is the linear dephasing length (the length over which electrons outrun the

wake and are instead decelerated) and λpe, λL are the electron plasma- and laser

wavelengths respectively.

2.1.4 Shock Injection

In order to exert better control over the precise location and timing of the injection,

and to further improve the injected electron energy spectra, a variety of methods

– such as colliding counter-propagating pulses – have been explored [43]. An-

other method involves the use of a tailored density profile, reducing the length

over which electrons are injected and thus their energy spread, as demonstrated

by Bulanov in 1998 through analytical theory supported by simulations [44], and

various other groups [8, 26, 45]. This controls the wake phase-velocity vp, and

a sharp decrease in density (as in Figure 2.3) causes a phase mismatch between

some electrons and the wave, causing these to be trapped in the accelerating re-
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Figure 2.3: Example of typical density profile used for shock injection (blue). As
electrons ionised in close proximity to the density transition between (I) and (II)
spend disproportionately longer in the accelerating field (since the plasma wave-
length scales inversely with density), they are susceptible to trapping. Reproduced
from Springer: Nature, Scientific Reports, Shock assisted ionization injection in
laser-plasma accelerators, C. Thaury et al, Copyright Springer Nature (2015) un-
der CC BY license [48].

gion and thus injected [46, 47]. With the density gradient usually being produced

by methods such as placing a razor blade in a supersonic gas jet [8, 9, 49], the

density profile is comparatively easy to control, thus making the system – point of

injection, as well as various beam properties – tuneable [12].

2.2 Quantifying Beam Quality

In order to be able to analyse and compare the resultant electron beam from LWFA

simulations, we need to quantify the quality of the beam through macroscopic

variables, which should also be experimentally measurable. Since the principal

motivation is the generation of quasi-monoenergetic electron beams, it is essential

to identify the peak in the injected electron kinetic energy spectrum Epk, as well

as the width of this peak ∆Epk. Also of interest is the total charge injected Qtot,

as well as the charge in the principal peak, Qpk; a further useful quantity is the
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Figure 2.4: A selection of 12 representative shots for both self injection (a) and
shock injection (b). It is clear that shock injection results in significantly narrower
energy spectra in the injected bunch, although this comes at the cost of decreased
total injected charge. Reproduced from APS: Phys. Rev. ST Accel. Beams,
Density-transition based electron injector for laser driven wakefield accelerators,
K. Schmid et al, under Creative Commons Attribution 3.0 license [26].

normalised beam emittance εn, tr,rms, which effectively represents the divergence

in the beam.

2.2.1 Beam Energy and Charge

Whilst the calculation of the peak energy Epk is self-evident, it is important to

define the calculation of the width of this peak; we here define ∆Epk to be the full

width at half-maximum (FWHM).

The total charge Qtot is similarly simple to calculate, simply summing over all

injected electrons. For the charge in the principal peak Qpk, however, we sum

over electrons within the central peak of the electron kinetic energy spectrum,

cutting the peak off at 10% of the height of Epk, either side of the peak.

2.2.2 Normalised RMS Emittance

In addition to the previously discussed quantities, a further useful measure of

beam quality is the beam emittance, which measures the average spread of the
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beam particles in position-momentum phase space [50–52]. The RMS emittance,

εrms, for the y-py projection of a beam propagating in x is given by [50]:

εrms =
√
〈y2〉

〈
p2
y

〉
− 〈ypy〉2 (2.14)

where 〈 〉 represents the particle distribution’s second central moment, defined as:

〈AB〉 =

∑
AB

n
−
∑
A
∑
B

n2
A,B ∈ {y, py} (2.15)

=

∑
A2

n
−
(∑

A

n

)2

(when A = B)

and summations are implicitly over all n particles (
∑
A ≡

∑n
i=1Ai).

In trace-space, we calculate the phase-space areas in the y-y′ space, instead of

y-py, where we define [50, 51]:

y′ :=
py
px

⇒ εtr, rms =

√
〈y2〉〈y′2〉 − 〈yy′〉2 (2.16)

Normalising this, using3

εn, tr, rms = γβεtr, rms =
p̄x
m0c

εtr, rms

we thus find the normalised rms emittance in trace-space:

εn, tr, rms =
p̄x
m0c

√
〈y2〉〈y′2〉 − 〈yy′〉2 (2.17)

3To show that these are equivalent, consider the relativistic momentum, p = γm0v. Substi-
tuting the relativistic beta (β) for the velocity (v), we find p = γm0βc, which can be re-arranged
to γβ = p

m0c
. Assuming a radially symmetric beam, we know that p̄y = p̄z = 0⇒ p̄ = p̄x, and

thus γβ = p̄x

m0c
.
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2.3 Plasma Particle-in-cell Simulation

Due to the lack of an analytic theory capable of describing full 3D non-linear

LWFA, laser-plasma simulations have been essential for progress in the field [10,

15]. Since plasma dynamics are well-described through the theory of electro-

magnetism, most numerical codes used in the simulation of LWFA implement

the particle-in-cell (PIC) method [53], moving particles according to the Lorentz

force, and calculating fields using Maxwell’s equations [54]. Whilst there are a

multitude of PIC codes widely used in the simulation of LWFA, we shall here

focus specifically on the open-source code EPOCH.

2.3.1 Fundamental Theory

2.3.1.1 Pseudo-particles and Weighting Functions

Due to the extreme computational expense associated with simulating all parti-

cles that exist even within the small region of interest ( 1018 electrons per cm3),

the concept of "pseudo-particles" (also referred to as "macro-particles") was in-

troduced. Corresponding to many real electrons, each pseudo-particle describes

the expected collective motion of these localised groups.

For a pseudo-particle representing k electrons, this particle would also be assigned

a mass of mk =
∑

imi = kme and a "particle weighting" of w = k; the particle

weighting here describes how many real electrons the pseudo-particle represents.

Since the Lorentz force is dependent only on the charge-to-mass ratio, pseudo-

particles follow the same trajectory as individual electrons with equivalent posi-

tion and momentum [55].

These pseudo-particles are used to populate a simulation grid representing the

physical space to be simulated, with the dimensions of the grid cells being depen-
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Figure 2.5: Cycle by which the PIC scheme operates. (top): charge and current
density at the gridpoints is calculated from the current particle positions and ve-
locities. (right): weighting is applied to closest gridpoints to the pseudo-particles,
by proximity to grid-point. (bottom): Maxwell equations evaluated to calculate
electric and magnetic fields at gridpoints. (left): Weighting applied to particles,
computing the force on particles and updating their position and velocity [56, 57].
Reprinted from Comp. Phys. Comm., 204, M. Vranic et al, Classical radiation
reaction in particle-in-cell simulations, Copyright (2016), with permission from
Elsevier [58].

dent on the phenomena being investigated [12]. For LWFA, sufficient resolution

in the laser pulse is required in order to model the plasma response [57]; whilst

∼ 10 cells per laser wavelength in the direction of propagation are generally suf-

ficient to see injection, the accuracy can be significantly improved by increasing

this resolution, and many simulations use of the order ∼ 30–100 cells per wave-

length [4, 9, 43]. Figure 2.5 is a flowchart depicting the overall method used in

EPOCH.

2.3.1.2 Particle Pusher

The particle pusher used in EPOCH is a Birdsall-Langdon type PIC scheme [59],

and is responsible for integrating the equations of motion for the pseudo-particles.

With each pseudo-particle i having an assigned position xi and velocity vi, ideally

one would track previous time steps to improve accuracy in the time integration
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Figure 2.6: Sketch of the leap-frog FDM integration method, depicting the stag-
gering of the two calculations. Even though xt and vt are not known at the same
time, they are advanced to xt+∆t and vt+∆t. Reprinted by permission from Taylor
and Francis: Plasma Physics via Computer Simulation, C. K. Birdsall and A. B.
Langdon, Copyright Taylor & Francis Group LLC (2004) [57].

[57]. However, this is impractical due to the large number of particles simulated in

2D and 3D, and thus a trade-off in memory, computational expense and accuracy

is made.

We solve this by combining the "leap-frog" method, in which the first-order force

and velocity equations are integrated separately, with the "finite-difference" method

(FDM), giving the following equations of motion [60] for each particle (Figure

2.6):

xn+ 3
2 − xn+ 1

2

∆t
= vn (2.18)

vn+1 − vn

∆t
=

e

m

(
En+ 1

2 +
vn+1 + vn

2
×Bn+ 1

2

)
=

F

m
(2.19)

Although this method inherently has some error, with appropriate simulation pa-

rameters this method can be surprisingly accurate, and offers a good compromise

in accuracy, speed and number of numerical operations [57]. Like most PIC codes,
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EPOCH uses the Boris rotation algorithm, which separates the force calculation

2.19 into several components [61]:

v− = vn +
e

2m
∆tEn+ 1

2 (2.20)

v+ = v− +
e

2m
∆t
(
v+ + v−

)
×Bn+ 1

2 (2.21)

vn+1 = v+ +
e

2m
∆tEn+ 1

2 (2.22)

This can be understood as splitting the acceleration due to the E-field into two

half-accelerations (2.20, 2.22), in between which the velocity vector rotation due

to the magnetic field is calculated (2.21). Equation (2.21) can also be transformed

to be time-explicit [61]:

v+ = v− +
(
v− + v− × t

)
× s (2.23)

where we have defined t = Ω∆t
2
b̂, s = Ω∆t

1+(Ω∆t/2)2
b̂, unit vector b̂ = B

B
and gyro-

frequency Ω = eB
m

.

2.3.1.3 Field Solver

The field solver is responsible for solving the Maxwell equations for each cell in

the simulation grid. EPOCH uses a Yee staggered second-order finite-difference

time domain (FTDT) method [59]. The use of a Yee cell [62] improves the accu-

racy of the field solver, by calculating each field component at the appropriate cell

boundary (see Figure 2.7). The appropriate time-centered equations to evaluate

are, for electric and magnetic fields E,B and current j are:

En+ 1
2 = En +

∆t

2

(
c2∇×Bn − jn

)
(2.24)

Bn+ 1
2 = Bn − ∆t

2

(
∇×En+ 1

2

)
(2.25)

35



University of York CHAPTER 2. THEORETICAL BACKGROUND

Figure 2.7: A single Yee grid cell, in 2D. Starting from the centre of the cell, the
point where E-field components are evaluated is shifted half a cell in the direction
the field points, if possible. The B-field components are moved half a grid in
all directions other than the direction it points. Reprinted from IOP Publishing:
Plasma Phys. Control. Fusion, Contemporary particle-in-cell approach to laser-
plasma modelling, T. D. Arber et al, under Creative Commons 3.0 Attribution
(CC BY) licence [59].

2.3.1.4 Current Calculation

In order to better preserve the charge on the grid, rather than only globally, EPOCH

implements the Villasenor and Buneman scheme, which solves an additional equa-

tion at each time step [59]. Specifically, the continuity equation ∂ρ/∂t = ∇ · J

is solved [55], with the particle pusher evaluating the jn+1 currents:

Bn+1 = Bn+ 1
2 − ∆t

2

(
∇×En+ 1

2

)
(2.26)

En+1 = En+ 1
2 +

∆t

2

(
c2∇×Bn+1 − jn+1

)
(2.27)

2.3.1.5 Stability Conditions

Of course, the stability of the simulation is dependent on the appropriate choice

of various simulation parameters – the grid resolution must be sufficiently high

to accurately describe the rapidly varying laser field. Additionally, simulating too
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few pseudo-particles can reduce the resolution in the motion of particles to a point

where injection may no longer be observed. Whilst one would also typically have

to worry especially about selecting an appropriate time step, in order to minimise

error in the particle pusher and field calculations, thereby better conserving en-

ergy, EPOCH automatically determines the optimal time step ∆t in accordance

with the Courant condition [59].

Tsung et al. [63] showed in 2006 that in addition to a suitable choice of time

step, the cell size must be carefully chosen to ensure good numerical dispersion.

A transverse cell size ∆y ∼ 0.2c
ωp

, where ωp is the plasma frequency, provides

sufficient resolution to resolve the laser evolution, for underdense plasmas with

ωp � ωL and ∆x� ∆y. It is further shown that with a suitable time step choice,

it is required that kL∆x = 2π
λL

∆x < 0.2 is satisfied in order to maintain a relative

error in the group velocity of less than 1% [63]. This means that with approx-

imately 30 cells per laser wavelength in the longitudinal direction, the errors in

group velocity (and thus electron energies) begin to converge.

2.3.2 Increasing Simulation Speed

With the significant computational expense involved with high-resolution LWFA

simulations – even in only 2 dimensions – it is highly desirable to develop schemes

to reduce this. Of course, there are many different possible approaches one might

take, and coupled with varying sets of assumptions, result in varying success de-

pending on simulated system.

2.3.2.1 Existing Schemes

To simulate LWFA in conventional PIC codes, it is essential to sufficiently resolve

the laser wavelength (λ ∼ 800nm); comparatively, the generated wakefields are

∼ 2 orders of magnitude larger, with total simulation lengths typically being in
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the order of centimetres. In an attempt to alleviate this disparity, some simula-

tion software introduce models such as the guiding centre approximation – this

averages over the laser frequency, thereby removing the need to resolve the laser

wavelength, and instead introduces an envelope equation, adding corresponding

terms for the laser and ponderomotive force to the particle pusher [64]. However,

this model has difficulty accurately simulating full pump depletion distance, and

self-injection [65].

Another model, known as the Lorentz boosted frame technique, was initially pro-

posed in 1992 by Mori et al. [66], although not selected for funding; it was in-

dependently re-discovered by Vay [67] in 2007. Fundamentally, the approach

exploits the fact that in a Lorentz boosted frame, the number of cells in the prop-

agation direction is invariant, whilst cell size – and thus time step – are Lorentz

expanded [65]. This combination of the increase in simulation time step, coupled

with the spatial reduction, results in a significant reduction in simulation time [68].

However, this approach introduces an instability in multi-dimensional simulations

[69], which impacts the accuracy in simulations of self-injection [65].

2.3.2.2 Particle Reduction

In addition to the variety of schemes which offer increases in speed by exploring

different physical models, another potential approach involves algorithmically re-

ducing the number of particles simulated mid-simulation. Multiple algorithms

have been proposed that describe the method for reducing the total number of

simulated macro-particles, through coalescing, in an attempt to increase the sim-

ulation speed whilst preserving the accuracy associated with the initial higher res-

olution [70–73]. Applying this to LWFA, the highest resolution is required in

the region where injection occurs – whether stimulated or self-injected – whereas

the post-injection acceleration phase, for example, converges at lower resolutions.
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Whilst there are various different algorithms, they generally merge 2 particles into

1 (or 4-2) conserving charge and mass, as well as total energy or total momentum.
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3.1 Nearest-Neighbour Reduction Method

Whilst it is important to attempt to conserve the total energy (and momentum) in a

simulation, for LWFA it is also important to preserve the energy- and momentum

distributions. Due to the large field gradients that are key to laser plasma accel-

erators, and the resulting strong relationship between spatial position in the wake

with particle momentum, one must be careful averaging over momentum and po-

sition when coalescing particles. We thus propose a method1, which attempts to

preserve the kinetic energy spectrum of simulated particles, by redistributing par-

ticle weightings of those particles removed by the algorithm, without averaging

over position or momentum.

3.1.1 Moving window

The concept of a moving window is frequently used in PIC simulations, since this

restricts the simulation to the current region of interest, rather than simulating the

full domain continuously. In LWFA, the (fixed size) window moves with the laser;

this is implemented through the deletion of cells that are now outside the domain

of the new window, and spawning new cells correspondingly (Figure 3.1). It is

important to note that since pseudo-particles are free to move between cells after

they have been initialised, the number of pseudo-particles in a particular cell ni,j

is only guaranteed to be identical to the specified particle-per-cell count nppc at

initialisation (Figure 3.2).

1Source code for the nearest-neighbour algorithmic reduction is available from https://
bitbucket.org/JFGrimm/epoch-simulation-reduction/. Written in MATLAB,
it includes further options beyond what is discussed here, such as non-uniform sampling, and can
reduce 2 or 3 dimensional simulations.
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Figure 3.1: Example simulation window with grid size (nx, ny), at some arbitrary
time post-injection. As the window moves, simulation cells are deleted from the
back (left) and added to the front (right), with an initial nppc particles-per-cell.
If we reduce, this thus involves a change in either transverse resolution (ny′),
particles-per-cell (n′ppc), or both. This has been represented in red.

To consistently reduce the number of particles being simulated after a reduction

algorithm has been applied, we can consider three options: reduce the particle-

per-cell count nppc, reduce the number of cells in the transverse direction ny, or a

combination of these:

• if ny′ = ny and n′ppc = nppc: no reduction

• if ny′ = ny and n′ppc < nppc: reduction in PPC only

• if ny′ < ny and n′ppc ≤ nppc: reduction in both field resolution and PPC

Reducing in ny has the added speed-up of decreasing the field resolution, whereas

a reduction only in PPC preserves this. Whilst one could also conceivably reduce

only the field resolution whilst maintaining the same number of pseudo-particles

throughout, by increasing the PPC by a factor of (ny/ny′), we shall not consider

increases in PPC henceforth.
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Figure 3.2: Total number of pseudo-particles in each simulation cell of a 32 PPC,
301 transverse cell simulation at some time after injection. It is clear that the
actual number of pseudo-particles in each cell can vary substantially from the
initial number (32), corresponding to the position in the wake.

3.1.2 Transverse Cell Reduction

To best describe the process of the proposed reduction algorithm, let us first con-

sider a single cell in a higher resolution simulation, some arbitrary time after in-

jection (Figure 3.3). Before applying a nearest-neighbour (NN) algorithm on the

Figure 3.3: Sample simulation cell at some arbitrary time after injection, show-
ing the distribution of pseudo-particles (blue) and the corresponding momentum
distribution.
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single cell, we first need to select which particles are kept and which are removed

from the simulation; there are several possible choices in how to sample the parti-

cles: at random, uniformly from the pseudo-particle momentum distribution, non-

uniformly from the momentum distribution, or some other structured method.

Figure 3.4: Nearest-neighbour reduction on a single cell, sampling particles uni-
formly from the momentum distribution, and adding weights of removed particles
to their closest (spatially) neighbouring sampled particle. (1) depicts a boundary
problem, where the closest sampled particle may lie in an adjacent cell.

Assuming we now sample uniformly from the momentum distribution, we use

an NN algorithm to determine the closest sampled particle (spatially) for each

discarded particle, and sum the particle weighting functions (Figure 3.4). As

is evident in (Figure 3.4), this method has several issues; principally, there is a

boundary problem where the nearest sampled particle may actually lie in an adja-

cent cell, which is not considered currently. Additionally, whilst it conserves the

momentum-distribution locally, this may not translate to a global conservation. A

further difficulty arises when considering cells which contain significantly fewer

pseudo-particles than the mean, raising questions in how many particles to sample

or discard.

One simple solution which addresses the issues discussed involves operating on

larger groups of cells, henceforth referred to as "super-cells", thereby minimising
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Figure 3.5: Nearest-neighbour reduction on a group of cells ("super-cell"), sam-
pling particles uniformly from the momentum distribution, and adding weights of
removed particles to their closest (spatially) neighbouring sampled particle.

these problems (Figure 3.5). Whilst operating on the entire simulation window

would likely be ideal, it requires a very robust NN algorithm with high memory

capacity even in 2D, hence the division into super-cells. It also allows further con-

trol over the comparative preservation of the local momentum distribution relative

to the global distribution – one would expect that smaller super-cells are likely to

better preserve the local distribution.

3.2 Parity Considerations

Due to the extreme field gradients which are key to electron injection, it is im-

perative to sample these appropriately. Figure 3.6 depicts the Ex field strength

at the x-position of the principal injected electron bunch as a function of y, of a

simulation with an on-axis beam propagating in x. In order to reduce the number
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of transverse cells ny, we must thus sample the y domain uniformly. When we

sample with an odd parity, we see that the on-axis dip in field strength, about the

position of the injected electrons, is exactly sampled. However, with even parity

of similar resolution, we now significantly over-estimate the on-axis field strength.

In preliminary simulations, this overestimate caused the generated electron beam

to disappear completely.

Figure 3.6: Interpolation of the Ex field component at fixed x-position, corre-
sponding to the location of an injected electron bunch. Due to the rapidly varying
fields, the on-axis field strength is significantly overestimated when interpolating
with even parity, which samples either side, whilst it is exactly sampled with odd
parity.

3.3 Variable PPC

An alternative method to reduce the number of simulated particles mid-simulation

involves changing the number of particles-per-cell without any NN algorithmic

reduction. Whilst most PIC codes, such as EPOCH, do not allow a spatially- or

temporally defined variation in PPC, it is possible to effectively restart a simula-
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tion with fewer particles-per-cell, thereby corresponding to a step-function profile.

In EPOCH, this can be achieved through the following method:

1. Using your preferred language, load the SDF file corresponding to the timestep

in the simulation you wish to reduce.

2. Extract the following data, and write these as binary data files (type double):

weight w, positions {x, y}), momenta P{x, y, z}, electric fields E{x, y, z},

magnetic fields B{x, y, z}, x-grid gx, and time t.

3. Determine the left boundary position of the window xleft = min(gx)

4. Make the following modifications to the input deck, based on the original

simulation:

• Offset all time-based parameters by -t, and the x-domain by +xleft.

• Change the moving window start time to 0.

• Delete the laser control block.

• Change the PPC to the new desired value n′ppc.

• Add a particles_from_file block to load particle data from

step 2.

• Similarly, add a fields block to load the field data from step 2.

5. Run the modified input deck

This approach will initialises new cells with a lower PPC when the modified sim-

ulation is run, before replacing existing particles with those loaded from file –

therefore, the lower PPC effectively is only defined for future cells added to the

front of the moving window. As the simulation window moves, pseudo-particles

gradually despawn as they leave the simulation window; however, since the in-
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jected electrons are travelling with relativistic speed, they continue to move with

the window and do not despawn. This therefore preserves exactly the resolution

in the injected electrons, whilst gradually decreasing the number of non-injected

particles simulated until the window has moved beyond the domain at which the

PPC was reduced, resulting in a corresponding speedup in computation time. This

approach may also be combined with field interpolation to reduce the grid reso-

lution – thus further decreasing the number of simulated non-injected particles in

future simulation cells.
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4.1 Aim and Objectives

Using the open-source laser-plasma simulation code EPOCH, we aim to quan-

tify the effect of running narrow width simulations (few cells in transverse direc-

tion). Using this as a basis, we will analyse the suitability of various reduction

schemes – implementing nearest-neighbour algorithms, field reduction, and vari-

able particles-per-cell – with the aim to maintain high detail in the beam charac-

teristics after reduction, whilst decreasing the simulation time. In order to ensure

results are self-consistent and representative, we also test to ensure convergence

in the initial simulation parameters - specifically, the number of particles-per-cell,

and cells per laser wavelength (in the longitudinal direction).

4.2 Simulation Parameters

To maintain consistency across the various simulations, we hold all but the key

parameters of interest constant. Whilst there are many schemes to generate quasi-

monoenergetic electron beams in LWFA [9, 10, 26, 52], we here use shock-

injection. The density profile (Figure 4.1) is a modified version of that used by

Swanson et al. [9], with some minor modifications; instead of an effective tran-

sition width of 100µm, this was decreased to 25µm, with the aim of injecting a

greater charge. Additionally, the post-step density was held constant to ensure a

narrower peak in the energy spectrum, as demonstrated by Baird [12].

Further key simulation parameters are as follows:

• Laser wavelength: λL = 0.805µm
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• Laser beam waist: w(FWHM) = 18µm

• Laser pulse duration: τL(FWHM) = 47fs

• Laser intensity: IL = 1.5× 1019W/cm2

• Laser polarization: θL = 90◦ (out-of-plane)

• Window domain: {lx, ly} = {100λL, 120λL}

• Number of cells: {nx, ny} = {10000, 301}

• Particles-per-cell: nppc = 32

• End time: tend = 10.6ps

All simulations will be executed in 2D; whilst comparative data for 3D simula-

tions would be useful, these are significantly more computationally expensive.

For these simulations, ions are also not simulated, instead being treated as a neu-

tralizing background field; this is possible due to the large inertia of the ions, with

respect to electrons, resulting in negligible contributions over the short time scales

simulated.

4.3 Convergence Tests

In order to ensure that the base simulation parameters, around which the reduc-

tion and transverse cell simulations are based, are self-consistent, we need to test

for convergence in two key parameters: particles-per-cell (nppc) and cells-per-

wavelength (CPW). For the former, we hold all simulation parameters constant

as listed in Chapter 4.2, apart from the number of particles-per-cell, which are

varied in accordance with Table (4.1).
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Figure 4.1: The plasma density profile used for simulations (black), which is based
on the profile (red, dashed) simulated by Swanson et al. [9], but with some modi-
fications. Instead of an effective step width of 100µm, a width of 25µm was used,
with a flat post-step density as suggested by Baird [12].

4.4 Transverse Simulation Cells

In order to better understand potential effects of the different reduction schemes,

it is important to have a baseline to which these can be compared. By holding

the particles-per-cell and simulation domain constant as described in Chapter 4.2,

we now vary the number of transverse cells spanning the y-domain (noting that

overall window dimensions are constant). Preliminary simulations showed large

statistical variance in simulation results at low transverse cell counts, and we thus

average over three simulations with identical parameters, but different random

seeds (Table 4.2).

The combination of varying number of transverse cells, whilst leaving the overall

window dimensions unchanged, results in correspondingly fewer macro-particles

being simulated, and a decrease in the electric- and magnetic field resolution (in
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No. Convergence Test Parameters
nppc Window length CPW

1 1 100 λL 100
2 2 100 λL 100
3 4 100 λL 100
4 8 100 λL 100
5 16 100 λL 100
6 32 100 λL 100
7 64 100 λL 100
8 128 100 λL 100
9 32 1,000 λL 10
10 32 400 λL 25
11 32 200 λL 50
12 32 150 λL 66.6
13 32 100 λL 100
14 32 50 λL 200

Table 4.1: Simulation parameters to test convergence in particles-per-cell (nppc)
and cells-per-wavelength (CPW), by varying nppc and the length of the moving
window (lx), respectively. For both, the number of longitudinal and transverse
cells remains constant in accordance with the base parameters laid out in Chapter
4.2. Simulation 13 is identical to 6, corresponding to the base parameters, and is
included for completeness although the same results will be used for both.

the transverse direction). We are also careful to select only odd-parity transverse

cell numbers, since although simulations initiated with even parity successfully

simulate injection, any simulations in which fields have been interpolated require

odd parity (see Chapter 3.2). In order to be able to fully compare simulations, we

thus opt to only simulate with odd parity.

4.5 Reduction Schemes

As discussed in Chapters 2.3.2 and 3, there are many different approaches one

might take when attempting to reduce the number of particles and field calcula-

tions in order to increase simulation speed, whilst attempting to preserve accuracy.
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No. Transverse cells (ny) Window dimensions Cell width (transverse)
1 – 3 5 24.00λL
4 – 6 11 10.91λL
7 – 9 31 3.87λL

10 – 12 61 1.97λL
13 – 15 101 (100λL, 120λL) 1.19λL
16 – 18 301 0.40λL
19 – 21 601 0.20λL
22 – 24 1001 0.12λL
25 – 26 2001 0.06λL

Table 4.2: Simulation parameters describing the variation in transverse cells, with
corresponding cell widths (size in transverse direction), whilst the absolute win-
dow dimension remains constant. Runs are grouped since each parameter set is
repeated a total of 3 times, each with different random seeds.

Although we shall primarily focus on nearest-neighbour algorithmic reduction

(without any averaging in particle momenta or positions) and simulations with

variable particles-per-cell, it is important to compare the effects these additional

methods have. We shall also examine the effects of different sizes of super-cells

(see Chapter 3.1.2), when reducing to different widths. In order to maintain con-

sistency between different reduction schemes, and to avoid difficulties involved

with reducing about the transition, all simulation reduction will occur some time

after injection, at t = 8ps, and will be based on a simulation matching the param-

eters listed in Chapter 4.2, but with 2001 transverse cells.

4.5.1 Nearest-Neighbour Particle Averaging

In order to compare the effects of particle attribute (momentum, position) averag-

ing, we here hold constant the following reduction parameters:

sampleMethod = ’p_dist’

reduceMethod = ’nearest’

fieldReduce = ’linear’
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superCell = [50, 20]

Where sampleMethod corresponds to the sampling method for choosing which

particles to keep and which to discard, and has here been set to use a struc-

tured uniform sampling of the super-cell momentum distribution, using nearest-

neighbour algorithmic reduction as specified by reduceMethod. Field interpo-

lation is fixed as linear interpolation, as defined by fieldReduce. superCell

defines the number of super-cells that are created in (x, y) - thus corresponding to

a grouping clusters of 200 and 100 cells in x and y, respectively.

No. Attribute Averaging ny′ n′ppc

1 none 101 32
2 momentum 101 32
3 position 101 32
4 momentum, position 101 32
5 none 2001 1.62

Table 4.3: Simulation parameters for comparing the effects of different particle
attribute averaging methods when using nearest-neighbour reduction, where ny′

is the reduced number of transverse cells, and n′ppc the reduced PPC. Simulation
5 corresponds to a reduction in PPC only, of equivalent factor - since this is non-
integer, this is rounded to 2 in the restarted simulation.

4.5.2 Super-cell size

To compare the nuances of different super-cell sizes, we again fix the reduction

parameters as in Chapter 4.5.1, but now vary the superCell parameter instead

of averageCombined, which we leave empty (no averaging):

sampleMethod = ’p_dist’

reduceMethod = ’nearest’

fieldReduce = ’linear’
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averageCombined = {}

We now look at two different categories of super-cell - one "large" and one "small",

and reduce to varying numbers of transverse cells for each. Henceforth, "large"

super-cells will refer to 10 super-cell divisions in the x-direction, and 5 in the

y-direction, whilst "small" super-cells refer to 100 and 50 divisions respectively.

Whilst ideally we would include a simulation with only one super-cell (full frame),

this was unfortunately not possible due to memory limitations in the reduction al-

gorithm implementation. Table 4.4 shows the different parameters varied for the

"large" and "small" super-cell reductions, as well as a count of the number of orig-

inal simulation cells that are grouped into a super-cell.

No. superCell ny′ Cells per super-cell
1 [10, 5] 5 400,000
2 [10, 5] 11 400,000
3 [10, 5] 31 400,000
4 [10, 5] 61 400,000
5 [10, 5] 101 400,000
6 [10, 5] 301 400,000
7 [100, 50] 5 4,000
8 [100, 50] 11 4,000
9 [100, 50] 31 4,000

10 [100, 50] 61 4,000
11 [100, 50] 101 4,000
12 [100, 50] 301 4,000

Table 4.4: Simulation parameters for comparing reduction to varying numbers
of transverse cells ny′, for different "super-cell" resolutions. Simulations 1 – 6
here correspond to "large" super-cells, where each super-cell comprises 400,000
original simulation cells, whilst 7 – 12 correspond to "small" super-cells, being a
factor 100 smaller.
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4.5.3 Variable PPC

In addition to the nearest-neighbour reduction algorithms, a further scheme to de-

crease computation time post-injection involves decreasing the number of particles-

per-cell. As with the NN reduction, we again make this reduction based on the

simulation with 2001 transverse cells and 32 PPC, at a time of 8 picoseconds.

In addition to decreasing to various numbers of particles-per-cell, we shall also

consider the additional impact of linear field interpolation in conjunction with this

method, thereby further reducing the particles simulated as the window moves

(see Chapter 3.3). The parameters for this set of simulations are described in Ta-

ble 4.5, with all other parameters being held constant as defined in Chapter 4.2.

No. Particles-per-cell Transverse cells
pre-reduction post-reduction

1 1 2001 2001
2 2 2001 2001
3 4 2001 2001
4 1 2001 31
5 1 2001 101
6 1 2001 301
7 1 301 301

Table 4.5: Simulation parameters for variable PPC simulations; simulations 1 –
3 correspond to reducing to different numbers of particles-per-cell, whilst 4 – 6
reduce to 1 PPC with linear field interpolation. 7 is an additional run without field
interpolation, but is based on a 301 cell simulation instead of 2001.
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5.1 Convergence

As discussed in Chapter 4.3, we must first ensure that the simulations converge in

both particles-per-cell, and cells-per-wavelength in order to enable a meaningful

comparison between simulations.

5.1.1 Particles-per-cell

Holding all parameters other than the PPC constant, as described in Table 4.1, the

number of particles-per-cell was varied between 1 and 128 in powers of two. Fig-

ure 5.1 depicts the position of the beam peak in energy-space, Epeak, as a function

of PPC, as well as the corresponding upper and lower FWHM energies.

Figure 5.1: The Epeak and EFWHM dependence on the number of pseudo-particles
per cell. The upper and lower boundaries of the FWHM energy are here plotted
in (yellow), about the peak (red).
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It is evident that whilst the simulations show relatively little variation even at low

PPC, the peak energy converges at 16 PPC, although the FWHM continues to un-

dergo small fluctuations. This is due to small statistical variances in between the

different simulations; since the fluctuations are small about an approximately con-

stant value, and the peak energy is exactly constant, this suggests that the selected

base simulation value of 32 PPC is well-converged in energy.

Figure 5.2: The dependence of beam emittance (εn, tr, rms) on the number of
pseudo-particles per cell. Although the emittance appears to converge from 16
PPC, it increases again at 128 PPC, although this could be due to statistical varia-
tions.

In contrast, the convergence in the normalised trace-space beam emittance is much

more drastic, as shown in Figure 5.2. For simulations below 16 PPC, the error

relative to higher PPC simulations is ∼ (300 − 400)%; beyond this it is approx-

imately constant with minor variations, although 128 PPC suggests a somewhat

large beam emittance. Whilst not perfectly converged, 32 particles-per-cell again

appears to be sufficiently converged to be well-behaved, whilst requiring signifi-

cantly less computation time than higher values which provide little improvement.
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5.1.2 Cells-per-wavelength

If we now hold all other parameters constant whilst varying cells-per-wavelength

(CPW) in the longitudinal direction, as described in Table 4.1, we see that un-

like the Epeak convergence in PPC, there significantly more variation in the peak

energy as a function of the varied parameter (Figure 5.3). The peak energy now

increases non-linearly with the number of cells-per-wavelength, although the ab-

solute width of the FWHM about the peak, EFWHM, remains fairly constant, with

minor fluctuations. As discussed in section 2.3.1.5, we notice a large disparity in

the beam energy when using fewer than ∼30 CPW, as a result of numerical dis-

persion. As expected, we see the beam energy gradually converge as we increase

the number of cells per wavelength beyond this.

Figure 5.3: The Epeak and EFWHM dependence on the number of simulation cells
(in the longitudinal direction) per laser wavelength.

The emittance of the generated beam decreases as the CPW is increased, with

an order of magnitude difference in emittance between 200 CPW and below 100

CPW (Figure 5.4). Whilst it is clear for both peak energy and emittance that the
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simulation is not fully converged, the resultant error when simulating with 100

CPW at the given parameters is sufficiently small that it is a good compromise

between computation time and accuracy. This is especially true since the absolute

accuracy of the simulated beam compared to 3D simulations or experimental data

is not vital; rather, it is the resultant change to the beam as a result of reduction

methods that is the focus. As such we must ensure that statistical aberrations are

sufficiently small that they do not obscure this comparison, and that simulations

are reasonably representative, which the combination of 32 PPC and 100 CPW

achieves.

Figure 5.4: The dependence of beam emittance (εn, tr, rms) on the number of sim-
ulation cells (in the longitudinal direction) per laser wavelength. The datapoint
for 10 cells per wavelength has been distinguished since the beam emittance was
incalculable (NaN).

5.2 Transverse Simulation Cells

To establish a baseline to which reduced simulations can be compared, it is im-

portant to run simulations with small numbers of transverse cells throughout the
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Figure 5.5: The Epeak dependence on number of transverse simulation cells. The
datapoints depicted are averaged over 3 simulations with different random seeds,
with the standard deviation of these values being represented by an error bar.

simulation (see Chapter 4.4, Table 4.2). In order to reduce the statistical noise

in these simulations, we thus average over three simulations run with identical

parameters, which we showed to converged as in Chapter 5.1, but with different

random seeds.

Figure 5.5 depicts the resultant distribution of peak energies for the different num-

ber of transverse cells; the errorbars here depict the standard deviation over the

values calculated from the simulations, vanishes for 2001 cells. Whilst both 5 and

11 cells significantly underestimate the peak energy, there is little variation from

301 cells onwards. In a sense, this shows that the chosen value of 301 transverse

cells as a basis for the convergence tests is a sensible value, and is also well con-

verged.

The corresponding beam emittances are depicted in Figure 5.6. Whilst the beam

emittance for 5 and 11 transverse cells could not be determined, the emittance

rapidly converged from 61 cells onwards, with only small fluctuations within er-
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Figure 5.6: The dependence of beam emittance (εn, tr, rms) on the number of simu-
lation cells in the transverse direction. Data has been averaged over 3 simulations
with different random seeds, depicting the standard deviation as in the form of an
error bar. For 5 and 11 transverse cells, the beam was incalculable (NaN).

ror. Although this is somewhat surprising given that preliminary simulations sug-

gested that the beam emittance should converge slower than the peak energy as

a function of number of transverse cells, it may be that this was affected by the

use of a different density profile and laser parameters. We nevertheless show that,

again, 301 transverse cells is sufficient to accurately determine the beam emit-

tance, as well as peak energy in these simulations.

5.3 Nearest-Neighbour Simulation Reduction

Having established the comparison data for full simulations run with low trans-

verse resolution, we now move to the impact of reduction algorithms, and how

these compare. As detailed in Chapter 4.5.1, we first test the different nearest-

neighbour particle averaging approaches.
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Figure 5.7: Comparison of the different particle attribute averaging (momentum
and position) methods, relative to unreduced simulations of full width. 2001 and
101 are the full width simulations with respective numbers of transverse cells.
PPC is a simulation reduced in PPC only using the NN algorithm, but maintains
the field resolution. The others (none, pos., mom., pos. + mom.) correspond to:
no averaging, position averaging, momentum averaging, and the averaging over
both position and momentum, respectively.

5.3.1 Nearest-Neighbour Attribute Averaging

The coalescing of particles with an attempt to maintain the beam attributes is non-

trivial – since it inherently loses information, there are many possible approaches

which attempt to reduce the number of particles simulated without negatively im-

pacting the beam (see Chapter 3). In particular, we now consider the impact of

averaging the coalesced particle positions and momenta, compared to no averag-

ing, whilst implementing the nearest-neighbour as described in 4.3.

The results for both peak energy and emittance have been combined in Figure

5.7. Since the post-reduction number of transverse cells is 101, we have included

the corresponding full simulation from Chapter 5.2, as well as the full simulation

62



University of York CHAPTER 5. RESULTS

which was reduced (2001 cells).

It is immediately evident that, as expected, averaging over either momentum or

position when coalescing particles using this approach (or a combination of the

two) performs significantly worse than both no averaging, and full-width low

transverse resolution simulations. Whilst position averaging only slightly over-

estimates the peak energy, the calculated emittance is almost 2 orders of magni-

tude greater. Meanwhile, momentum averaging under-estimates the peak energy

by a factor of 7, whilst still overestimating beam emittance by a factor of 40. It

is hence unsurprising that the combination of the two does not fare significantly

better.

However, both simulations subject to nearest-neighbour reduction which did not

involve the averaging of particle momenta or positions performed well (simula-

tions (1) and (5) from Table 4.3). Simulation (1), here represented as ’none’, re-

sulted in a peak energy of 71.25 MeV, compared with 66.79 MeV and 69.62 MeV

for the 2001 and 101 cell simulations. This corresponds to an increase of 4.46

MeV (6.7%) and 1.63 MeV (2.3%) respectively. The emittance also evaluated

slightly higher (1.397 µm rad compared to 1.261 µm rad for both full width simu-

lations), corresponding to an increase of 10.8%. Simulation (5) meanwhile, main-

tained field resolution and instead decreased the PPC by an equivalent amount

using the NN algorithm. This produced a beam with peak energy 76.25 MeV

(+14.2%)and emittance 0.780 µm rad (-38.1%), with differences relative to the

2001 cell simulation.

These results suggest that when using the nearest-neighbour algorithm to reduce

the number of particles simulated, using a structured uniform sample from the mo-

mentum distribution within each super-cell, that it is best to reduce in the number

of transverse cells, without any particle averaging.
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5.3.2 Large Super-cells

We now analyse the importance in choosing a suitable size for the super-cells.

Corresponding to the simulations (1) – (6) in Table 4.4, Figure 5.8 depicts the

final beam energies when reducing with "large" super-cells.

Figure 5.8: Here shown are the positions of the peak energies (Epeak), and posi-
tions of the upper- and lower FWHM energies (EFWHM), for reduced simulations
with "large" super-cells, as compared to the full-width control.

Whilst reducing to 5 and 11 transverse cells caused the peak energy to be sig-

nificantly underestimated, reducing to 31 cells only overestimates Epeak by +2.83

MeV (69.62 MeV, identical to full-width 101 transverse cells), this overestimation

increases until it stabilizes at ∼ 75 MeV for ny’ > 101.

Regarding beam emittance, unlike in Chapter 5.2, this was calculable for both 5

and 11 reduced transverse cells, although it overestimated by a factor 20. The
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Figure 5.9: Here shown is the calculated beam emittance (εn, tr, rms), for the
full-width control (black) and reduced (red) simulations with "large" super-cells.
Again, the values for unreduced narrow-width simulations have been included for
comparison, and the emittance for 5 and 11 transverse cells was incalculable for
the unreduced simulation.

emittance then approached that of the 2001 cell simulation, with only 31 trans-

verse cells, thereby outperforming the unreduced simulations with low numbers

of transverse cells. For 61, 101 and 301 reduced cells, however, the emittance

converged to a slightly lower value, underestimating this by -12%, compared to

+10% for the unreduced 301 cell simulation.

5.3.3 Small Super-cells

Moving to the "small" super-cell simulations (7 – 12, Table 4.4), Figure 5.10

shows the corresponding peak energies.
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Figure 5.10: Here shown are the positions of the peak energies (Epeak), and po-
sitions of the upper- and lower FWHM energies (EFWHM), for "small" super-cell
reduced simulations as compared to the full-width control. For reduced widths of
5 and 11 cells, no beam was present.

Interestingly, whilst beams were observed in the large super-cell simulations re-

duced to 5 and 11 cells, this was not the case with small super-cells. Again,

31 reduced cells was insufficient to accurately reproduce the peak energy, being

around 20 MeV too low, but reducing to higher cell counts proved more effective

than when using larger super-cells. Here, 61 and 101 reduced cells both predicted

peak energies within 0.5 MeV of the 2001 cell full simulation, thereby also out-

performing the 101 cell unreduced simulation. 301 reduced cells proved slightly

worse, perhaps, although it still resulted in a lower deviation than the large super-

cells, at +2.24 MeV (+3.4%).

With regards to beam emittance, we now see that the small super-cells perform
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Figure 5.11: Here shown is the calculated beam emittance (εn, tr, rms), for the
full-width control (black) and reduced (red) simulations with "small" super-cells.
Additionally, the values for unreduced narrow-width simulations have been in-
cluded for comparison. Once again, the emittance for 5 and 11 transverse cells
was incalculable for both reduced and unreduced simulations.

slightly worse for low reduced transverse cells (31, 61, 101) than both unreduced

simulations, and large super-cells. However, in the case of 301 reduced transverse

cells, this now overlaps exactly with that of the unreduced 301 cell simulation.

5.4 Variable PPC Simulation Reduction

An alternative method to reduce the number of particles being simulated, without

algorithmic reduction, involves a spatially-varying particle-per-cell definition – in

this case, a step function (see Chapter 3.3). Figure 5.12 shows the variation in
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peak energy as a function of number of transverse cells (post-reduction), corre-

sponding to the parameters in Table 4.5.

Figure 5.12: Depicted are the peak energies Epeak for unreduced (black) and vari-
able PPC simulations (red), where the number of particles per cell is reduced from
32 to 1, and fields are interpolated linearly from the original 2001 transverse cell
simulation. Additionally, the energy when reducing from a narrower simulation
(ny = 301 cells), with identical decrease in PPC, is depicted in blue.

It is notable that simulations (2) and (3) – those decreasing to 2 and 4 particles-per-

cell – are not depicted; this is due to both beam energy and emittance evaluating to

the same value as simulation (1). With regards to beam peak energy, it is evident

that when using the variable PPC method, this converges rapidly, with little vari-

ation beyond 101 transverse cells. Whilst performing significantly better at the

lower transverse resolutions as compared to the unreduced simulation, the final

energy converges to a slightly higher value: 67.88 MeV as opposed to 66.79 MeV

(an increase of 1.6%). Simulation (7), which was instead based on a simulation

with ny = 301, only deviated by 0.34 MeV (-0.5%).

Similarly, when examining the beam emittance (Figure 5.13), this again converges
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Figure 5.13: Depicted are the calculated beam emittances εn, tr, rms for unreduced
(black) and variable PPC simulations (red), where the number of particles per
cell is reduced from 32 to 1, and fields are interpolated linearly from the original
2001 transverse cell simulation. Additionally, the emittance when reducing from
a narrower simulation (ny = 301 cells), with identical decrease in PPC, is depicted
in blue.

much more rapidly than the unreduced simulation, with a significantly closer value

at 31 transverse cells, and little variation above 101 cells. Whilst the emittance

calculated for the full-width variable PPC simulations (1 – 3) is slightly lower

than the equivalent unreduced simulation, this only represents a difference of 0.04

µm rad (-3.2%) – less than half a standard deviation as calculated in Figure 5.6.

Simulation (7) performed even better, with a difference from the 301 transverse

cell unreduced simulation of merely 0.01 µm rad (-0.9%).

69



University of York CHAPTER 5. RESULTS

5.5 Reduction Spectra

Whilst the macroscopic quantities such as the peak energy Epeak and normalised

trace-space beam emittance εn,tr,rms (Chapter 2.2) are useful in allowing a direct

quantitative comparison between simulations, this of course fails to capture the

full detail of the simulation. Figure 5.14 thus depicts the electron energy spectra

for some key simulations spanning the previous results sections.

Subfigure (A) displays the spectrum for unreduced full-width simulations with

2001 transverse cells, and 32 PPC. Whilst there are minor statistical fluctuations

due to different random seeds, the resultant spectra are near identical. (B) de-

picts three select small super-cell runs – with 31, 101 and 301 reduced transverse

cells. It is evident that although the the latter two simulations showed reasonable

agreement with the emittance and peak energy, the nearest-neighbour reduction

algorithm fails to preserve the spectrum at lower energies, whilst also splitting the

main peak into multiple. However, the total injected charge in the principal peak

appears to be approximately conserved, unlike in the large super-cell simulations

(C). Whilst these similarly fail to preserve the lower energy distribution, the prin-

cipal peaks are shifted significantly to higher energies, and inject a significantly

lower charge.

(D) depicts the spectra for the variable PPC simulations without field interpola-

tion, showing excellent agreement both between different reduced PPC and the

full resolution simulations in (A) – not just regarding the principal beam, but

across the full energy spectrum. (E) adds additional field interpolation, which

causes increasing deterioration in the overall spectrum accuracy as the field res-

olution is decreased. However, it still performs significantly better than either of

the nearest-neighbour reduced simulations.
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Figure 5.14: Depicted are the full energy spectra for various reduction methods.
(A) full simulation with 2001 transverse cells, and 32 PPC. (B) NN reduction,
using the "small" super-cells. (C) NN reduction, using the "large" super-cells.
(D) variable PPC. (E) variable PPC, with additional field interpolation.
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5.6 Computation Time

Of course, since the principal aim of the various reduction algorithms is a decrease

in computation time, it is important to compare these. Figure 5.15 shows the post-

reduction CPU-normalised computation time, per simulation femtosecond, as a

function of the "reduction factor" – here defined as the inverse product of relative

PPC with relative number of post-reduction transverse cells:

Reduction Factor =
ny

ny′
· nppc

n′ppc

In dotted black, we depict the computation time of the unreduced simulations

with varying transverse resolution; since these do not undergo reduction, we in-

stead use a "virtual" reduction factor relative to the unreduced 2001 cell width

simulation. Unsurprisingly, both nearest-neighbour reduced simulations (orange,

red) are approximately colinear with the unreduced simulations, as these contain

an identical number of macro-particles and grid cells post-reduction (with some

statistical fluctuation).

The blue lines correspond to simulations reduced using the variable PPC ap-

proach; since these preserve the injected macro-particles directly, this results in

more particles in a given simulation frame after reduction, compared with the

unreduced simulations. Correspondingly, the computation time for equivalent re-

duction factors is ∼ 2 times greater. Nevertheless, the variable PPC simulation

reducing to 1 PPC attained a post-reduction speed-up of factor 11.3, whilst pre-

serving the beam almost exactly. Allowing minor decay in the beam profile, fur-

ther adding field interpolation in combination with a variable PPC reduction to 1

PPC reduced computation time by factors of 37.9 and 90.3, for 301 and 101 trans-

verse post-reduction cells respectively.
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Figure 5.15: We here show the relationship between the (CPU-independent) com-
putation time per simulated picosecond, and the reduction factor (the inverse prod-
uct of relative number of cells, and relative PPC), for various reduction schemes
corresponding to (A, ..., E) in Figure 5.14. In solid black (A), we represent the
full-width (2001 transverse cells, 32 PPC) simulation, used as a basis for reduc-
tion. In dotted black, we represent unreduced simulations with fewer transverse
cells, assigning a virtual reduction factor of (2001/ny). Red and orange repre-
sent nearest-neighbour approaches with large- and small super-cells, respectively,
whilst the variable PPC method is depicted in blue. (B) and (C) correspond to 301
reduced cell simulations using small- and large super-cell NN reduction respec-
tively. Variable PPC reduction to 1 PPC corresponds to (D), whereas (E) further
includes field interpolation to 301 transverse cells.
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Having examined the different possible methods when reducing simulations us-

ing the nearest-neighbour algorithm, it is evident that coalesced macro-particles

should retain the momentum and position of the sampled particle, as opposed

to averaging over coalesced particles (Chapter 5.3.1). Regarding the optimal

size of the super-cells to use, we show that with the given simulation parame-

ters, smaller super-cells were more substantially more effective than larger cells

(Chapters 5.3.2, 5.3.3); this likely due to a better local preservation of the particle-

momentum distribution. Since a relatively small proportion of electrons simulated

are injected, this would hence result in a slightly higher number of high-energy

macro-particles in the reduced simulation, as compared to larger cells, which bet-

ter preserve the global distribution.

When compared with low transverse resolution simulations which are not reduced

(Chapter 5.2), however, it is clear nearest-neighbour reduced simulations do not

better preserve the electron beam quality, except at very low transverse resolution.

When coupled with the high computation time for the initial high-resolution sim-

ulation, and no comparative speed-up post-reduction (Chapter 5.6), it rather ob-

vious that nearest-neighbour algorithms do not provide a benefit over unreduced

simulations with a relatively low transverse resolution. We thereby also note that

simulations with few cells in the transverse direction are viable, and can produce

good results, but are more prone to statistical fluctuations; depending on the de-

sired accuracy and quantities of interest, it may be useful to simply average over

multiple low transverse resolution simulations, which have a significantly shorter

computation time than higher resolution simulations.

In contrast, the variable PPC method reproduced the beam almost perfectly when

applied without field interpolation, and with only slight deterioration in the precise
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Figure 6.1: For a variable PPC simulation, the number of simulated macro-
particles is shown (red) as function of simulation time post-reduction. In blue,
the equivalent CPU-normalised computation time per simulated femtosecond is
plotted, showing strong correlation with the number of particles as expected.

energy distribution with interpolation (Chapters 5.4, 5.5). Showing significant de-

crease in computation time post-reduction, this is of course dependent on the ratio

of reduced PPC and number of transverse cells, to that in the initial section of

the simulation. Whilst not offering an immediate speed-up, since it takes time for

non-injected particles to leave the simulation window, we observe a linear speed-

up, up to some maximum (Figure 6.1). This method is thus very useful especially

when a very high beam resolution and accuracy is desired, and there is a signifi-

cant post-injection acceleration phase.

It would also be useful to characterise at which point the simulation would best

be reduced, using the variable PPC technique, and the effect of various field inter-

polation methods. Furthermore, the interaction of this method with other existing
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schemes aimed to decrease computation time – such as boosted frame simulations

– could be considered. This we leave as further work.
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7 | Conclusion

Reduction algorithms can be used to increase simulation speed whilst preserving

injected electron principal beam spectra and beam emittance, although care needs

to be taken regarding specific reduction methods and parameters. We show that

for LWFA in particular, greater accuracy is achieved using the nearest-neighbour

reduction algorithm without additional averaging of momenta and position, when

creating the coalesced particle. The NN algorithm does not show significant im-

provement over full simulations at low transverse resolutions, however, whilst

being more computationally expensive.

The most accurate method which increases simulation speed with negligible loss

in accuracy involves changing the number of particles-per-cell count some dis-

tance after the step transition (at a position where no more electrons are injected).

A further increase based on this method is viable, through the interpolation of the

electric- and magnetic fields, thereby further decreasing the number of particles

post-reduction with slight deterioration in the precise beam spectrum.

Using the variable PPC method, we observe an order-of-magnitude decrease in the

post-reduction computation time when reducing a 2001 transverse cell simulation

with 32 PPC to 1 PPC; when incorporating field reduction to 301 and 101 trans-

verse cells, we observe decreases factor 38 and 90 decreases in computation time,

respectively. We thus suggest modifying existing PIC codes – such as EPOCH –

to allow the definition of a spatially- or temporally varying particle-per-cell dis-

tribution; further changes to allow a variation in the grid resolution, to further

increase speeds at the cost of some precision, would be recommended but may be

more difficult to implement.
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