
PPQ-Trajectory: Spatio-temporalQuantization forQuerying in
Large Trajectory Repositories

Shuang Wang

University of Warwick

Coventry, United Kingdom

Shuang.Wang.1@warwick.ac.uk

Hakan Ferhatosmanoglu

University of Warwick

Coventry, United Kingdom

Hakan.F@warwick.ac.uk

ABSTRACT
We present PPQ-trajectory, a spatio-temporal quantization based

solution for querying large dynamic trajectory data. PPQ-trajectory

includes a partition-wise predictive quantizer (PPQ) that gener-

ates an error-bounded codebook with autocorrelation and spatial

proximity-based partitions. The codebook is indexed to run approx-

imate and exact spatio-temporal queries over compressed trajecto-

ries. PPQ-trajectory includes a coordinate quadtree coding for the

codebook with support for exact queries. An incremental temporal

partition-based index is utilised to avoid full reconstruction of tra-

jectories during queries. An extensive set of experimental results

for spatio-temporal queries on real trajectory datasets is presented.

PPQ-trajectory shows significant improvements over the alterna-

tives with respect to several performance measures, including the

accuracy of results when the summary is used directly to provide

approximate query results, the spatial deviation with which spatio-

temporal path queries can be answered when the summary is used

as an index, and the time taken to construct the summary. Superior

results on the quality of the summary and the compression ratio

are also demonstrated.

PVLDB Reference Format:
Shuang Wang and Hakan Ferhatosmanoglu. PPQ-Trajectory:

Spatio-temporal Quantization for Querying in Large Trajectory

Repositories. PVLDB, 14(2): 215-227, 2021.

doi:10.14778/3425879.3425891

1 INTRODUCTION
With the prevalence of positioning devices and mobile services,

massive amounts of location sequences are being generated contin-

uously. Maintaining and querying small-sized representations of

raw trajectory data are needed for a wide variety of applications,

such as real-time traffic management [32] and intelligent transport

systems [4].

Existing trajectory compression methods do not address this

need for a number of reasons. First, many of them are defined for

edge sequences in a road network [14, 18, 21, 38]. They require

pre-processing steps of mapping raw GPS data to the road network

structure, followed by transforming the map-matched location data

to edge-based sequences. The mapping and transformation pro-

cesses reduce accuracy and result in limited support for detailed

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 14, No. 2 ISSN 2150-8097.

doi:10.14778/3425879.3425891

queries. Second, most solutions perform offline compression over

full trajectory data, with execution times usually undesirable for

online applications. There is a need for scalable online compres-

sion. Third, the existing compressed representations can not be

directly used to answer spatio-temporal queries without a costly

decompression process.

To address these challenges, we present PPQ-trajectory, a spatio-

temporal quantization-based solution to generate a compact repre-

sentation and support a wide range of queries over large trajectory

data. An overview of PPQ-trajectory is presented in Figure 1.

The first part of PPQ-trajectory is the partition-wise predic-

tive quantizer (PPQ) that generates an error-bounded summary,

consisting of the codebook and prediction coefficients for spatial

and autocorrelation-based partitions. The second part is the coor-

dinate quadtree coding (CQC) for the error space caused by the

quantization, which enables an accurate reconstruction of the tra-

jectories. These two parts form the summary for the trajectory data,

as illustrated in Figure 1. The third part is the temporal partition-

based index (TPI) for organizing the quantized spatio-temporal data.

Given a query, TPI is used to prune the data space and generate

a candidate list of trajectories, whose reconstructed points can be

computed from the summary. Overall, PPQ-trajectory generates

and uses an indexed summary over raw data sequences to support

efficient analysis, ranging from simple queries, such as vehicles

passing by a location (𝑥,𝑦) at a given time 𝑡 , to more complex

analytic tasks, such as predicting future positions of entities.

We evaluate PPQ-trajectory with respect to a number of per-

formance measures: the quality of approximate query results, effi-

ciency of exact queries, index building times, and compression ratio.

We implemented several baselines, including the widely-used prod-

uct quantization [19], residual quantization [8], REST [44], which

is a recent reference based trajectory compression method, and

TrajStore [10], an adaptive storage solution for trajectories.

Figure 1: An Overview of PPQ-trajectory

https://doi.org/10.14778/3425879.3425891
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3425879.3425891

This paper makes the following contributions: (1) A spatio-

temporal predictive quantizer, PPQ, is designed with an error-

bounded codebook for each of the partitions, which are incremen-

tally generated based on spatial and autocorrelation similarity. (2)

Utilizing a quadtree structure and a padding process, CQC is de-

veloped to encode the relative positions of trajectory points with

reconstructed ones for an accurate trajectory reconstruction. A

local search strategy is presented to identify exact query results.

(3) The temporal partition-based index dynamically reuses parts of

the past index to support efficient spatio-temporal queries. (4) PPQ-

trajectory answers spatio-temporal queries over raw data, without

a full reconstruction of trajectories or accessing all of the candi-

date trajectories. (5) Experimental results demonstrate significant

improvements achieved by PPQ-trajectory. For example, for ap-

proximate spatio-temporal queries, it is 3% − 52% more accurate,

compared to product quantization, residual quantization, and Traj-

Store. The mean absolute error (MAE) of PPQ-trajectory is a few or

tens of meters, while the alternative approaches’ MAE values are

orders of magnitude larger for the same size codebook. Significant

improvements are also observed for the efficiency, index building

times, and compression ratios.

The rest of the paper is organized as follows. The related work is

in Section 2. Section 3 presents PPQ. In Section 4, we present CQC

and the associated local search strategy. In Section 5, the temporal

organization for the quantized data is presented. The effectiveness

of PPQ-trajectory is verified via an extensive set of experiments in

Section 6. Conclusion is provided in Section 7.

2 RELATEDWORK
With the widespread adoption of location-based services, compress-

ing trajectory data has become a prevalent area with high practical

relevance [2, 21, 26]. While traditional compression methods aim to

reduce the reconstruction error and improve compression ratio, the

data management challenge is to design the compression method

with the objective of answering queries efficiently, and supporting

online querying directly over compressed data.

Road network-constrained trajectory compression has gained

significant attention [14, 18, 21, 25, 36, 38]. The common approach

is to map raw trajectories to road networks and compress the map-

matched trajectories [20]. There is also significant attention on

raw trajectory compression. SQUISH and SQUISH-E use a priority

queue to remove redundant points [30, 31]. A bounded quadrant

system (BQS) is developed in [25], which uses convex hull bounding

to achieve trajectory compression. Based on BQS, [26] achieves

streaming trajectory compression, and aging history data without

overwriting. Another recent method transforms trajectories into

vehicle state vector functions and generates an inverted index based

on the road segments [4]. This approach requires road segment

information and matching each road id with corresponding objects.

The solutions that we included in our experiments are TrajStore

[10] and REST [44]. TrajStore aims compression via an adaptive

spatial index and clustering the sub-trajectories. It recursively up-

dates the index by merging, splitting or appending. REST is a recent

compression-based method which compares trajectories with the

sub-trajectories of a reference set. Generating a representative set

is challenging especially under changing conditions, where it can

fail to represent data from regions that lack enough samples.

Early work in this area applies traditional index structures for

trajectory data. For example, STRIPES uses quadtrees to index the

predicted positions of moving objects [35]. In [3], an index for tra-

jectories is developed by indexing the coefficients of Chebyshev

polynomials that represent trajectories. Most those methods focus

on similarity queries and do not address efficient spatio-temporal

database queries. Zheng et al., [45] index the reference-based tra-

jectories with IR-tree [24], which is based on R-tree referring to the

inverted files for sub-trajectories.

Quantization is a popular method for traditional compression,

and for nearest neighbor searches on multi dimensional data, es-

pecially for multimedia and computer vision applications [12, 27,

33, 40, 43]. Predictive quantization has been applied for online

summarization of multiple one-dimensional data streams [1]. The

correlation among consecutive points is employed to predict cur-

rent points, then the prediction errors are summarized into a smaller

number of bits [1]. Product Quantization and Residual Quantization

[8, 15, 19] have made significant impact on approximate nearest

neighbor searching in computer vision applications. We included

these two methods in our performance evaluation. There have been

some work to use quantization for encoding trajectories [7], trans-

forming differential trajectory points into strings for compression

[29], and retaining information for trajectory prediction [5]. These

methods adopt compression but with no particular support for effi-

cient querying over compressed trajectories. Our goal is to quantize

dynamic trajectories into an error-bounded and query friendly rep-

resentation, where there is neither need to fully reconstruct nor

traverse the full trajectories. Trajectory data is summarized online,

exploiting their large-scale nature, for the purpose of efficient query

processing.

3 ONLINE QUANTIZATION IN
PPQ-TRAJECTORY

In this section, we present our spatio-temporal quantization based

summarization process. The performancemeasures are the accuracy

of results when the summary is used directly to provide approxi-

mate query results, the spatial deviationwithwhich spatio-temporal

path queries can be answered when the summary is used as an in-

dex, and the time taken to construct the summary. The quality of

the summary and the compression ratio are also related measures.

Table 1 summarizes the notation used throughout the paper. Basic

definitions of trajectories and codebooks are as follows.

Definition 3.1. (Trajectory) A trajectory 𝑇 is a finite sequence

of time-stamped positions in the form of ((𝑥1, 𝑦1, 𝑡1), (𝑥2, 𝑦2, 𝑡2), ...,

(𝑥𝑛 , 𝑦𝑛 , 𝑡𝑛)), where 0 ≤ 𝑡𝑖 ≤ 𝑡 𝑗 ≤ 𝑡𝑛 with 0 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛.

Definition 3.2. (Error-bounded Codebook) Consider a codebook

𝐶 = {𝐶1, ...,𝐶𝑛} where the set of trajectory points T 𝑖
is indexed by

codeword 𝐶𝑖 . For any trajectory point 𝑇 𝑡
𝑗
∈ T 𝑖

, if

∥︁∥︁∥︁𝑇 𝑡
𝑗
−𝐶𝑖

∥︁∥︁∥︁
2

≤ Y1,

then the codebook 𝐶 is bounded with Y1.

3.1 Error-bounded Predictive Quantization
We first present the error bounded predictive quantizer (E-PQ) to

obtain a compact codebook for trajectories. Predictive quantization

(PQ) has been successfully applied for one-dimensional data streams

Table 1: Summary of Notation

Variable Definition
𝑇𝑖 the 𝑖-th trajectory

𝑇 𝑡
𝑖

trajectory point of 𝑇𝑖 at time 𝑡

𝑇 𝑡
trajectory points at time 𝑡ˆ︁𝑇 𝑡

𝑖
reconstructed trajectory point of 𝑇 𝑡

𝑖˜︁𝑇 𝑡
𝑖

predicted trajectory point of 𝑇 𝑡
𝑖

𝑒𝑡
𝑖 prediction error of 𝑇 𝑡

𝑖
, i.e., 𝑇 𝑡

𝑖
− �̃� 𝑖

𝑓 a prediction function

𝐶 error bounded codebook

𝑏𝑡
𝑖

codeword index for 𝑒𝑡
𝑖

Y1 spatial deviation threshold

Y𝑀
1

Y1 under the geographic coordinate system

Y𝑝 partition threshold for PPQ

Y𝑠 partition threshold for constructing index

𝑇
𝑡
𝑖
′

reconstruction of 𝑇 𝑡
𝑖
considering CQC

by quantizing the error of the estimate of the sample at time 𝑡 with

previous𝑘 samples, i.e.,˜︁𝑥 [𝑡] = 𝑓 (𝑥 [𝑡−1], 𝑥 [𝑡−2], ..., 𝑥 [𝑡−𝑘]) [1, 13].
A prediction function 𝑓 is learned over training data, and a codebook

is generated via a vector quantizer [40] on the prediction errors by

assigning them to the nearest centroids of their clusters. The range

of the error 𝑒 [𝑡] = 𝑥 [𝑡] − ˜︁𝑥 [𝑡] is narrower than the original data

which enables the errors to be quantized more effectively than the

original data [1].

To estimate the trajectory points using their correlations, we

define a prediction function as an extension to the case for one-

dimensional streams [1]. For ease of demonstration, we define 𝑓 as

a linear model that predicts 𝑇 𝑡
𝑖
using the previous 𝑘 samples. The

prediction is computed as:

min

𝑓

𝑁∑︂
𝑖=1

∥︁∥︁∥︁𝑇 𝑡
𝑖 − 𝑓 (𝑇 (𝑡−𝑘 :𝑡−1)

𝑖
)
∥︁∥︁∥︁
2

(1)

where 𝑇 𝑡
𝑖
represents the position (𝑥𝑡 , 𝑦𝑡) of 𝑇𝑖 at time 𝑡 , 𝑇

(𝑡−𝑘 :𝑡−1)
𝑖

is the sequence of the trajectory 𝑇𝑖 at time interval [𝑡 − 𝑘, 𝑡 − 1],
and 𝑓 denotes the prediction model.

The prediction error 𝑒𝑡
𝑖
is defined as:

𝑒𝑡𝑖 = 𝑇 𝑡
𝑖 − ˜︁𝑇 𝑡

𝑖 ,
˜︁𝑇 𝑡
𝑖 =

𝑘∑︂
𝑗=1

𝑃 𝑗 [𝑡]ˆ︁𝑇 𝑡−𝑗
𝑖 (2)

where ˜︁𝑇 𝑡
𝑖
is the prediction of 𝑇 𝑡

𝑖
, 𝑃 𝑗 [𝑡] is the 𝑗-th prediction coeffi-

cient of 𝑓 , and ˆ︁𝑇 𝑡−𝑘
𝑖

is the reconstruction of 𝑇 𝑡−𝑘
𝑖

.

The prediction errors {𝑒𝑡
𝑖
} can be summarized into an error-

bounded codebook 𝐶 as:

min|𝐶 |
s.t.

∥︁∥︁𝑒𝑡𝑖 −𝐶 (𝑏𝑡𝑖)∥︁∥︁2 ≤ Y1, 𝑏
𝑡
𝑖 ∈ {1, ...,𝑉 }

(3)

where 𝐶 = {𝐶1,𝐶2, ...,𝐶𝑉 } is the error-bounded codebook, 𝑉 de-

notes the size of 𝐶 , 𝑏𝑡
𝑖
is the codeword index for 𝑒𝑡

𝑖
, and 𝐶 (𝑏𝑡

𝑖
)

denotes the codeword assigned to represent 𝑒𝑡
𝑖
. Every codeword

𝐶𝑖 ∈ 𝐶 is a cluster centroid, obtained by partitioning the data space

to facilitate indexing and compression. Equation 3 aims to achieve

a minimal error-bounded codebook 𝐶 for the given Y1, which is

Algorithm 1 Error-bounded Predictive Quantization

Input: {𝑇 𝑡
𝑖
}, Y1

Output: {𝑃 𝑗 [𝑡]}, 𝐶 , {𝑏𝑡𝑖 }
1: t = 1

2: while {𝑇 𝑡
𝑖
} is not empty do

3: Derive {𝑃 𝑗 [𝑡]} based on Equation 1

4:
˜︁𝑇 𝑡
𝑖
=
∑︁𝑘

𝑗=1 𝑃 𝑗 [𝑡]ˆ︁𝑇 𝑡−𝑗
𝑖

5: {𝑒𝑡
𝑖
} = {𝑇 𝑡

𝑖
} − {˜︁𝑇 𝑡

𝑖
}

6: 𝐶 , {𝑏𝑡
𝑖
} = 𝐼𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡𝑎𝑙_𝑄𝑢𝑎𝑛𝑡𝑖𝑧𝑒𝑟 ({𝑒𝑡

𝑖
}, 𝐶 , Y1)

7: 𝑇
𝑡
𝑖 =

˜︁𝑇 𝑡
𝑖
+ 𝐶 (𝑏𝑡

𝑖
)

8: t = t + 1

non-convex. For dynamic databases, 𝐶 needs to be incrementally

updated with evolving 𝑡 values. In order to get the approximate

solution, at time 𝑡 + 1, if part of the prediction errors {𝑒𝑡+1
𝑖
} can not

satisfy the threshold, the additional codewords are added to update

𝐶 to guarantee the boundary requirement continuously.

The reconstructed 𝑇 𝑡
𝑖
, 𝑇

𝑡
𝑖 , is obtained where:ˆ︁𝑇 𝑡

𝑖 = ˜︁𝑇 𝑡
𝑖 +𝐶 (𝑏

𝑡
𝑖) (4)

The procedure of quantizing dynamic trajectories is summa-

rized in Algorithm 1. In Line 3, the prediction coefficient 𝑃 𝑗 [𝑡]
can be solved in a standard manner [1, 16]. Line 4 denotes the

prediction of the 𝑡-th trajectory point by its previous 𝑘 recon-

structed points. For the time 𝑡 ≤ 𝑘 , 𝑃 𝑗 [𝑡] is set to zero. At Line

6, 𝐼𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡𝑎𝑙_𝑄𝑢𝑎𝑛𝑡𝑖𝑧𝑒𝑟 represents the quantization process of

Equation 3. E-PQ maps the trajectory data into {𝑃 𝑗 [𝑡]}, 𝐶 , {𝑏𝑡𝑖 }.

3.2 Partition-wise Predictive Quantization
We now present our quantizer that partitions trajectory points

and applies E-PQ for each partition. The partition-wise predictive

quantization (PPQ) is formulated as:

N𝑡 = {N𝑡
1
, ...,N𝑡

𝑞 } (5)

min

∑︂
𝑖∈N𝑡

𝑗

∥︁∥︁∥︁𝑇 𝑡
𝑖 − 𝑓𝑗 (𝑇 𝑡−𝑘 :𝑡−1

𝑖)
∥︁∥︁∥︁
2

,N𝑡
𝑗 ∈ N

𝑡

(6)

In Equation 5, 𝑁 trajectory points {𝑇 𝑡
𝑖
} are partitioned into 𝑞 sub-

sets, whereN𝑡
𝑗
denotes the set of trajectory IDs assigned to the 𝑗-th

partition. 𝑓𝑗 ∈ {𝑓1, ...𝑓𝑞} is the prediction function for N𝑡
𝑗
. This en-

ables the use of a single prediction function 𝑓𝑗 for trajectory points

of N𝑡
𝑗
, and is resolved by Equation 6. Via {𝑓1, ...𝑓𝑞}, the correlation

among consecutive trajectory points in every N𝑡
𝑗
∈ N𝑡

is modeled

by a specific 𝑓𝑗 , then the dynamic range of prediction errors is

further narrowed down. When 𝑞 = 1, Equation 1 and Equation 6

become the same. Similarly for the {𝑒𝑡
𝑖
} obtained from multiple

predictions, they are summarized with Equation 3.

3.2.1 Partitioning for Grouped Modeling. We partition the trajec-

tory points using their spatial and autocorrelation similarities. To-

bler’s first law of geography indicates “everything is related to

everything else, but nearby things are more related than distant

things" [39]. Hence, assigning trajectory points based on spatial

proximity is a natural approach to be able to use the same 𝑓𝑗 to

model them. However, as the role of 𝑓𝑗 is to capture the correla-

tions between consecutive trajectory points, assigning trajectory

points with similar autocorrelations to N𝑡
𝑗
can enable a more ac-

curate prediction by 𝑓𝑗 . In our setting, the correlation between 𝑇 𝑡
𝑖

and 𝑇 𝑡−𝑘 :𝑡−1
𝑖

follows an autoregressive process of order 𝑘 (AR(𝑘))

[9, 34], where the current trajectory point (𝑇 𝑡
𝑖
) is linearly related to

the lagged 𝑘 points (𝑇 𝑡−𝑘 :𝑡−1
𝑖

). We derive the parameters of AR(𝑘)

as {𝑎𝑡
𝑖
} and utilize them to quantity the lag-𝑘 autocorrelation. As-

signing trajectory points with similar {𝑎𝑡
𝑖
} to the same partition

N𝑡
𝑗
allows 𝑓𝑗 to more effectively capture the correlations between

consecutive trajectory points.

The partitioning process is repeated until all partitions satisfy

Equations 7 and 8, for spatial and autocorrelation similarity, respec-

tively. For the spatial proximity, the deviation between any point

in N𝑗 and the centroid of N𝑗 should be less than Y𝑝 , otherwise, 𝑞

increases until Equation 7 is satisfied.∥︁∥︁∥︁𝑇 𝑡
𝑖 − 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑𝑆 (N

𝑡
𝑗)
∥︁∥︁∥︁
2

≤ Y𝑝 , for all N𝑡
𝑗 ∈ N

𝑡 , 𝑖 ∈ N𝑡
𝑗 (7)

Similarly, for the autocorrelation similarity, the partitions satisfy

Equation 8, where 𝑎𝑡
𝑖
represents the lag-𝑘 autocorrelation of𝑇 𝑡

𝑖
, and

𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑𝐴 (N𝑡
𝑗
) is the centroid of the autocorrelation of trajectory

points in N𝑗 .∥︁∥︁∥︁𝑎𝑡𝑖 − 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑𝐴 (N𝑡
𝑗)
∥︁∥︁∥︁
2

≤ Y𝑝 , for all N𝑡
𝑗 ∈ N

𝑡 , 𝑖 ∈ N𝑡
𝑗 (8)

The setting of Y𝑝 is based on the size of the region that trajectories

span (for spatial proximity), or the magnitude and distribution of

autocorrelation coefficients (for autocorrelation similarity).

The computational complexity for 𝑞 partitions is O(𝑞𝑚𝑁𝑙) as
shown in Lemma 1, where 𝑁 is the number of trajectory points,𝑚

denotes the rounds of increasing 𝑞 to satisfy Equation 7 or 8, and 𝑙

represents the number of iterations to obtain the given number of

partitions by K-means [28]. The complexity is proportional to 𝑞.

3.2.2 Incremental Temporal Partitioning. Consider the partitions at
time 𝑡 , i.e., N𝑡 = {N𝑡

1
, ...,N𝑡

𝑞 }. Instead of performing partitioning

from scratch, an incremental partitioning for time 𝑡 + 1 is per-

formed with the following steps. First, every trajectory point at

time 𝑡+1, i.e., {𝑇 𝑡+1
𝑖
}, is assigned to the same partition as𝑇 𝑡

𝑖
. Second,

when a partition, N𝑡+1
𝑗

, does not satisfy the requirement for Y𝑝 , a

new partitioning is performed over trajectory points in N𝑡+1
𝑗

until

the resultant partition satisfies the requirement. Third, with N𝑡+1
𝑗

andN𝑡+1
𝑗 ′ , if

∥︁∥︁∥︁𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑𝑆/𝐴 (N𝑡+1
𝑗
) − 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑𝑆/𝐴 (N𝑡+1

𝑗 ′)
∥︁∥︁∥︁
2

≤ Y𝑝 , we

merge N𝑡+1
𝑗
′
to N𝑡+1

𝑗
to avoid too many fragmented partitions.

Specifically, for every partition N𝑡+1
𝑗

, we only allow merging at

most once, as excessive merging might influence the preciseness

of partitioning and the quantization performance. If there are 𝑁 ′

trajectory points at 𝑡 + 1 that do not satisfy the requirement for

Y𝑝 , 𝑞
′
new partitions are generated via an𝑚′ rounds of checking

with Equation 7 or 8, then the computational complexity of the

incremental temporal partitioning is O(𝑞′𝑚′𝑁 ′𝑙 + 𝑞′𝑞), which is

presented in LEMMA 2. 𝑞′ is only relevant to the distribution of the

𝑁 ′ trajectory points. 𝑁 ′ gets smaller when the points among the

consecutive timestamps are highly similar in autocorrelations or

Figure 2: An error space example for the reconstructed tra-
jectory point (�̂�, �̂�)

spatially close. In the worst case, when all the 𝑁 trajectory points

at time 𝑡 + 1 do not satisfy the 𝑞 partitions at time 𝑡 , i.e., 𝑁 = 𝑁 ′,
the computational complexity of incremental temporal partitioning

becomes O(𝑞𝑚𝑁𝑙).

Lemma 1. The computational complexity of partitioning {𝑇 𝑡
𝑖
} into

𝑞 partitions (Section 3.2.1) is O(𝑞𝑚𝑁𝑙).

Proof. Let 𝑞𝑖 (𝑖 ∈ [1,𝑚]) be the number of partitions at the 𝑖-th

round, which increases by 𝑎 at every round until all the partitions

satisfy Equation 7 or 8. Hence, 𝑞 = 𝑞𝑚 =𝑚𝑎. For the 𝑖-th round, the

computational complexity is the same as partitioning 𝑁 trajectory

points into 𝑞𝑖 clusters, i.e., O(𝑞𝑖𝑁𝑙). Then, the overall computa-

tional cost is 𝑎𝑁𝑙 + ... +𝑚𝑎𝑁𝑙 =
𝑎𝑚 (1+𝑚)

2
𝑁𝑙 , i.e., O(𝑞𝑚𝑁𝑙). □

Lemma 2. The computational complexity of incremental temporal
partitioning for {𝑇 𝑡+1

𝑖
} is O(𝑞′𝑚′𝑁 ′𝑙 + 𝑞′𝑞).

Proof. According to LEMMA 1, the complexity of partitioning

𝑁 ′ trajectory points into 𝑞′ partitions is O(𝑞′𝑚′𝑁 ′𝑙). For 𝑞′ new
partitions at time 𝑡 + 1, in the worst case, there will be 𝑞 + ... +

(𝑞 − (𝑞′ − 1)) = 𝑞′ (𝑞+(𝑞−(𝑞′−1)))
2

computations to check if a new

partition can be merged into the existing 𝑞 partitions. Hence, the

overall complexity is O(𝑞′𝑚′𝑁 ′𝑙 + 𝑞′𝑞). □

4 LOCAL CODING IN ERROR-BOUNDED
CODEBOOK

With the error-bounded codebook, the reconstructed value (�̂�, �̂�) is
guaranteed to be within the circle 𝑐1, as shown in Figure 2. While a

small Y1 is desirable for the accuracy of approximate query results,

an excessively small Y1 would degrade the effectiveness of quanti-

zation, both in terms of the efficiency of learning and the size of the

codebook. Here, we present the coordinate quadtree coding (CQC),

which encodes the spatial deviation between (𝑥,𝑦) and (�̂�, �̂�), to
reduce the information loss of the summary.

CQC consists of short binary codes that can be easily restored

to the relative position between (𝑥,𝑦) and (�̂�, �̂�) to obtain an ac-

curate trajectory reconstruction (�̂� ′, �̂�′). The construction of the

coordinate quadtree and getting the CQC are independent of the

dataset size when Y1 and 𝑔𝑠 are fixed.

Definition 4.1. (Coordinate Quadtree) A coordinate quad-tree

is a tree structure in which each internal node has four children

nodes, the value of a node is the coordinate of the subspace that

(a) (b)

(c) (d)

Figure 3: Padding Example

Algorithm 2 Coordinate_QuadTree(𝑐1, 𝑔𝑠)

Output: 𝐶𝑞
1: Get the minimum rectangle 𝑆 covering 𝑐1
2: 𝑆 is split into grids of equal size, 𝑆𝑔𝑠 .

3: 𝐶𝑞 = {} # Coordinate quadtree
4: 𝑏𝑢𝑖𝑙𝑑_𝑡𝑟𝑒𝑒 (𝑆𝑔𝑠 ,𝐶𝑞).

Function build_tree({S𝑔𝑠 ,𝑖 },𝐶𝑞)
Output: 𝐶𝑞.
1: for all each sub-region 𝑆𝑔𝑠 in {𝑆𝑔𝑠 ,𝑖 } do
2: 𝑠𝑥 , 𝑠𝑦 ← |𝑆𝑔𝑠 | # 𝑠𝑥 and 𝑠𝑦 are the number of grid cells of 𝑆𝑔𝑠

along the 𝑥- and 𝑦-axes respectively

3: if (𝑠𝑥 , 𝑠𝑦 = 1&𝑛𝑜_𝑝𝑎𝑑𝑑𝑖𝑛𝑔(𝑆𝑔𝑠)) or 𝑠𝑥 , 𝑠𝑦 = 0 then
continue

4: {�̇�𝑔𝑠 ,𝑖 }←partition_padding(𝑆𝑔𝑠)

5: 𝐶𝑞.𝑎𝑝𝑝𝑒𝑛𝑑 ({�̇�𝑔𝑠 ,𝑖 }).
6: 𝑏𝑢𝑖𝑙𝑑_𝑡𝑟𝑒𝑒 ({�̇�𝑔𝑠 ,𝑖 },𝐶𝑞)

the node represents, and the value over the edge is the quadrant

that its parent node is located in.

Definition 4.2. (Coordinate Quadtree Coding) Given a coordinate

quadtree, the coordinate quadtree coding (CQC) of a node 𝑛𝑞 is the

values of the edges from the root node to node 𝑛𝑞 as well as the

quadrant that 𝑛𝑞 is located in.

4.1 Coordinate Quadtree Coding
The process of building the coordinate quadtree, which is used as

the basis for CQC, is summarized in Algorithm 2. The first step is to

get the error space 𝑐1 and find the minimum rectangle 𝑆 covering

Function 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛_𝑝𝑎𝑑𝑑𝑖𝑛𝑔(𝑆𝑔𝑠)

Output: {𝑆𝑔𝑠 ,𝑖 }.
1: if ⌊ 𝑠𝑥

2
⌋ ≠ 𝑠𝑥

2
or ⌊ 𝑠𝑦

2
⌋ ≠ 𝑠𝑦

2
then

2: 𝑆 ′𝑔𝑠 ←padding(𝑆𝑔𝑠)

3: Partitioning 𝑆 ′𝑔𝑠 into {𝑆𝑔𝑠 ,𝑖 }

4: else
5: Partition 𝑆𝑔𝑠 into {𝑆𝑔𝑠 ,𝑖 } # four equal partitions

𝑐1 in Line 1. The second step is to divide 𝑆 into grid cells of equal

size, 𝑆𝑔𝑠 , in Line 2, where 𝑔𝑠 is the size of a cell. The third stage

is to build the coordinate quadtree via Function 𝑏𝑢𝑖𝑙𝑑_𝑡𝑟𝑒𝑒 . Its

stopping condition is either when the subspace is empty, or the

input subspace is size one and without any padding grid cells,

as shown in Line 3. For any 𝑆𝑔𝑠 , its partitions are generated by

𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛_𝑝𝑎𝑑𝑑𝑖𝑛𝑔 in Line 4. An example is given in Figure 3. For

simplicity, we omit 𝑔𝑠 and use 𝑆
′
𝑖
and 𝑆𝑖 to demonstrate the example.

For function 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛_𝑝𝑎𝑑𝑑𝑖𝑛𝑔, if 𝑆 does not satisfy Line 1, we pad

𝑆 as 𝑆 ′ so that 𝑆 ′ can be partitioned into four equal partitions. To

avoid conflicts of partitions at different rounds, we design specific

padding rules for different quadrants. We have a 5 × 5 grid 𝑆 in

Figure 3a, 𝑆 is expanded to a 6 × 6 grid 𝑆 ′ to obtain four equal size

subspaces. According to Definition 4.1, the values (-3,2), (2,2), (-3,-3)

and (2,-3) represent the size and quadrant for every subspace. The

quadrants are encoded as 00, 01, 10 and 11 separately. As shown

in Figure 3b, the subspace 𝑆1 at quadrant 00 is expanded towards

the upper left as 𝑆 ′
1
which can be further partitioned. Similarly, the

subspaces at quadrant 10 and 11, i.e., 𝑆3 and 𝑆4, are padded towards

the bottom left and bottom right respectively, as shown in Figure

3c and Figure 3d. However, there is no need to pad 𝑆2 as it can be

directly partitioned into four subspaces of equal size following Line

5. The full process of building a coordinate quadtree for 5 × 5 grids

is shown in Figure 4a. The corresponding coordinate quadtree can

be observed in Figure 4b. The value in every square corresponds

to the coordinate of a subspace it denotes, which is denoted as 𝑆𝐶 .

“𝑋 ” denotes the empty padding grid. According to Definition 4.2,

the CQC for the 𝑛1 in Figure 4 is 001110.

For a CQC, the real coordinate is the sum of the values of the

nodes it visits, as shown in Equation 9.

𝑐𝑐𝑞𝑐 =

𝑚∑︂
𝑗=1

1

2

𝑆𝐶 ′𝑗 (9)

𝑆𝐶 ′ =

{︄
𝑆𝐶 |𝑥 | = |𝑦 | = 1

2

⌈︂
max(|𝑥 |, |𝑦 |)

2

⌉︂
· (sgn(𝑥), sgn(𝑦)) otherwise

(10)

where 𝑆𝐶 ′ denotes the 𝑆𝐶 of the padded subspace. 𝑆𝐶 ′ is obtained
by Equation 10. For example, in Figure 4b, a 𝑆𝐶 is (-3,2), its 𝑆𝐶 ′ is
(-4,4) by Equation 10. According to Equation 9, the real coordinate

for 𝑛1 is (
−3
2
, 1
2
).

If 𝑆𝑔𝑠 cannot be partitioned into four subspaces with the same

number of grid cells, the traditional approach for quadtrees [37]

would extend 𝑆𝑔𝑠 and maintain the empty grids. However, the

padding process guarantees to produce four equally sized parti-

tions. We utilize the coordinate of the subspace, to keep track of

the real size of every subspace and the relative displacement of

grid cells among the subspaces at different levels, and make sure

(a) Coordinate Quadtree Partitioning Process

(b) Coordinate Quadtree

Figure 4: Coordinate Quadtree Coding Example

one can reversely restore the real position of any grid cell in 𝑆𝑔𝑠 by

Equation 9–10.

4.2 Trajectory Reconstruction with CQC
When Y1 and 𝑔𝑠 are given, (𝑥 , 𝑦) is fixed at the center cell of 𝑆𝑔𝑠 , i.e,

𝑛2 in Figure 4. Its CQC is represented as 𝑐𝑞𝑐1. The CQC of (�̂�, �̂�) is
denoted as 𝑐𝑞𝑐2. With 𝑐𝑞𝑐1 and 𝑐𝑞𝑐2, the reconstructed trajectory

point for (𝑥,𝑦) is obtained as:

(�̂� ′, �̂�′) = (�̂�, �̂�) + 𝑔𝑠 · (𝑐𝑐𝑞𝑐1 − 𝑐𝑐𝑞𝑐2) (11)

where 𝑐𝑐𝑞𝑐1 and 𝑐𝑐𝑞𝑐2 are CQC of (𝑥,𝑦) and (�̂�, �̂�), obtained by

Equation 9.

As shown in Figure 4b, (𝑥,𝑦) is denoted as 𝑛2, (�̂�, �̂�) is repre-
sented as 𝑛1. According to Equation 9, the real coordinates of (𝑥,𝑦)
and (�̂�, �̂�) at the 𝑆𝑔𝑠 are 𝑐𝑐𝑞𝑐1 = (− 1

2
,− 1

2
) and 𝑐𝑐𝑞𝑐2 = (− 3

2
, 1
2
), respec-

tively. Then, when (�̂�, �̂�) is known, the reconstructed point, (�̂� ′, �̂�′),
can be obtained using Equation 11. Given Y1 and 𝑔𝑠 , a unified and

fixed coordinate quadtree is obtained. The coordinate quadtree is

stored as a template to recover the position with the given CQC.

For any original trajectory points (𝑥,𝑦), they have the same CQC,

i.e., 𝑐𝑞𝑐1, as they are always located at the center of the same grid

of 𝑆𝑔𝑠 . Hence, only the coding of (�̂�, �̂�), i.e., 𝑐𝑞𝑐2, is stored for every
trajectory point sample. (�̂�, �̂�) is recovered from the summary pro-

duced by our approach. It is easy to prove that deviation has been

reduced within

√
2

2
𝑔𝑠 as shown in Lemma 3.

Lemma 3. Given the grid size 𝑔𝑠 , the trajectory point (𝑥,𝑦), the
error of the accurate reconstructed trajectory (�̂� ′, �̂�′) does not exceed√
2

2
𝑔𝑠 , i.e., 0 ≤ ∥(𝑥,𝑦) − (�̂� ′, �̂�′)∥2 ≤

√
2

2
𝑔𝑠 .

Proof. As shown in Figure 2, the continuous subspace is quan-

tized into the grid cell of size 𝑔𝑠 . Any points falling into the same

grid cell are quantized into the same value, e.g., the center of that

grid cell. Hence, the maximum error between the quantized value

and the real value is

√
2

2
𝑔𝑠 , i.e., half of the length of the grid diagonal.

According to Equation 11, the deviation over the quantized values

has been kept by CQC. With CQC, the unmeasured error is just the

deviation introduced by the quantized process of (�̂�, �̂�), i.e., the max-

imum is

√
2

2
𝑔𝑠 . Hence, we get 0 ≤ ∥(𝑥,𝑦) − (�̂� ′, �̂�′)∥2 ≤

√
2

2
𝑔𝑠 . □

5 ONLINE QUERYING OVER QUANTIZED
TRAJECTORIES

The last part of PPQ-trajectory is the organization of quantized

spatio-temporal data for online querying to obtain the candidate

set without the reconstruction of all trajectories. A simple spatio-

temporal query example is to search vehicles that travel through

location (𝑥 , 𝑦) at time 𝑡 , and estimating their next 𝑙 positions. We

focus on two commonly used spatio-temporal queries, as presented

later in the paper.

Since the parameters in the system ({𝑃 𝑗 [𝑡]}, 𝐶 , {𝑏𝑡𝑖 }, CQC) are
enough to reproduce any trajectory, the naive solution is to recon-

struct the trajectories from time 1 to 𝑡 and return the trajectories

that match the query conditions. In Section 5.1, we propose a tem-

poral partition-based organization to enable direct access to the

relevant trajectory IDs at time 𝑡 , and get their next 𝑙 positions in

an online manner. In Section 5.2, we illustrate the spatio-temporal

query process over quantized trajectories, and a local search strat-

egy motivated by CQC is introduced to achieve the accurate query.

5.1 Temporal Partition-based Index
Given the non-uniformnature of trajectory data, a temporal partition-

based index (TPI) over the quantized trajectories is constructed to

prune the search space. TPI can actually be applied for any of

𝑇 𝑡
𝑖
, 𝑇

𝑡
𝑖
′
and ˆ︁𝑇 𝑡

𝑖
, for simplicity, we use 𝑇 𝑡

𝑖
to illustrate, which is in-

terchangeable with 𝑇
𝑡
𝑖
′
and ˆ︁𝑇 𝑡

𝑖
. The process of constructing the

partition-based index (PI), at time 𝑡 , is described in Algorithm 3. An

example for PI at 𝑡 is given in Figure 5a. In Line 1, the trajectory

points at time 𝑡 , i.e.,𝑇 𝑡
, are partitioned into 𝑞𝑠 subsets following the

same principles as Equation 7 while replacing Y𝑝 with Y𝑠 , where Y𝑠
is the partition threshold for region 𝑅. Specifically, the setting of Y𝑠
depends on the size of the region 𝑅 we operate on. For every subset

N𝑡
𝑗
, we find theminimum rectangle𝑅𝑛 to cover the trajectory points

ofN𝑡
𝑗
, as shown in Line 5. For example, points in Figure 5a are split

into two partitions, i.e., N𝑡
1
and N𝑡

2
. The minimum rectangle 𝑅1 is

found to cover trajectory points of N𝑡
1
. Note that overlap between

𝑅𝑛s might exist. In Lines 7–8, to avoid duplicate indexes for some

points, the overlapping region is removed, then the left polygon is

separated into non-overlapping rectangles by the approach in [17],

which is denoted by the function 𝑟𝑒𝑚𝑜𝑣𝑒_𝑜𝑣𝑒𝑟𝑙𝑎𝑝 . As shown in Fig-

ure 5a, 𝑅2 overlaps with 𝑅1, the overlapping region is removed, and

the left polygon is separated into 𝑅2, 𝑅3 and 𝑅4. As shown in Line

11, we build a grid index [41, 42] for the set {𝑅1, ..., 𝑅𝑛} by Function
𝑔𝑟𝑖𝑑_𝑖𝑛𝑑𝑒𝑥 . Specifically, for every subregion 𝑅 𝑗 , it is partitioned

into cells of 𝑔𝑐 [23]. Every trajectory point𝑇
𝑡
𝑖
is then mapped to the

corresponding grid cell, and its trajectory ID is stored into the grid

Algorithm 3 PI

Input: 𝑇 𝑡
, partition threshold Y𝑠 , grid size 𝑔𝑐

Output: 𝑝𝑖𝑡
1: Get 𝑞𝑠 partitions {N𝑡

1
, ...,N𝑡

𝑞𝑠
} #following Equation 7 while

replace Y𝑝 with Y𝑠
2: 𝑟𝑒𝑔𝑖𝑜𝑛_𝑙𝑖𝑠𝑡 = {}, 𝑛 = 0

3: for each N𝑡
𝑗
in {N𝑡

1
, ...,N𝑡

𝑞𝑠
} do

4: 𝑛 = 𝑛 + 1

5: Find the minimum rectangle 𝑅𝑛 covering trajectory points

of N𝑡
𝑗
.

6: if 𝑅𝑛 overlaps with rectangles in 𝑟𝑒𝑔𝑖𝑜𝑛_𝑙𝑖𝑠𝑡 then
7: {𝑅𝑛, ..., 𝑅𝑛+𝑙−1}=𝑟𝑒𝑚𝑜𝑣𝑒_𝑜𝑣𝑒𝑟𝑙𝑎𝑝(𝑅𝑛),

8: 𝑟𝑒𝑔𝑖𝑜𝑛_𝑙𝑖𝑠𝑡 .append({𝑅𝑛, ..., 𝑅𝑛+𝑙−1}), 𝑛=𝑛+𝑙-1.
9: else
10: 𝑟𝑒𝑔𝑖𝑜𝑛_𝑙𝑖𝑠𝑡 .append(𝑅𝑛)

11: {𝑅1,𝑔𝑐 , ..., 𝑅𝑛,𝑔𝑐 } = 𝑔𝑟𝑖𝑑_𝑖𝑛𝑑𝑒𝑥({𝑅1, ..., 𝑅𝑛})
12: return 𝑝𝑖𝑡={𝑅1,𝑔𝑐 , ..., 𝑅𝑛,𝑔𝑐 }

(a) A PI example at 𝑡

(b) “Re-build” case at 𝑡 + 1

(c) “Insertion” case at 𝑡 + 1

Figure 5: An illustrative example of TPI

cell. To reduce the storage cost, we compress trajectory IDs mapped

to the grid cell by delta encoding and Huffman codes, following the

approach in the other works [19, 22, 42]. The PI at time 𝑡 , i.e., 𝑝𝑖𝑡 ,

is returned as shown in Line 12.

We avoid building PI from scratch for every timestamp to effi-

ciently maintain dynamic trajectories. For example, at time 𝑡𝑠 , 𝑇
𝑡𝑠

are indexed by 𝑝𝑖𝑡𝑠 . At time 𝑡𝑒 , part of 𝑝𝑖𝑡𝑠 might be reused for

𝑇 𝑡𝑒
, as the distributions among consecutive timestamps might not

change sharply.

Algorithm 4 TPI

Input: Trajectory dataset 𝑇 , density error threshold Y𝑑 , partition

threshold Y𝑠 , TRD dropping rate threshold Y𝑐 , grid size 𝑔𝑐
Output: Time periods {𝑝𝑒𝑟𝑖𝑜𝑑 𝑗 } and PIs {𝑝𝑖 𝑗 }
1: 𝑡𝑠 = 1, 𝑡𝑒 =1, j = 1

2: 𝑝𝑖 𝑗 = 𝑃𝐼 (𝑇 𝑡𝑒 , Y𝑠 , 𝑔𝑐)
3: 𝑡𝑒 = 𝑡𝑒 + 1.

4: while data input at 𝑡𝑒 do
5: 𝑇 𝑡𝑒

= 𝑇
𝑡𝑒
𝑐 ∪𝑇 𝑡𝑒

𝑢𝑐

6: if ADR(𝑡𝑠 ,𝑡𝑒 ,Y𝑐) > Y𝑑 then
7: 𝑝𝑒𝑟𝑖𝑜𝑑 𝑗 .s = 𝑡𝑠 , 𝑝𝑒𝑟𝑖𝑜𝑑 𝑗 .e = 𝑡𝑒 -1.

8: 𝑗 = 𝑗 + 1, 𝑡𝑠 = 𝑡𝑒 .

9: 𝑝𝑖 𝑗 = 𝑃𝐼 (𝑇 𝑡𝑒 , Y𝑠 , 𝑔𝑐) # Re-build
10: else if 𝑇 𝑡𝑒

𝑢𝑐 is non-empty then
11: 𝑝𝑖 𝑗 .append(𝑃𝐼 (𝑇

𝑡𝑒
𝑢𝑐 , Y𝑠 , 𝑔𝑐)) #Insertion

12: 𝑡𝑒 = 𝑡𝑒 + 1

13: return {𝑝𝑒𝑟𝑖𝑜𝑑 𝑗 } and {𝑝𝑖 𝑗 }

Definition 5.1. (Trajectory Region Density (TRD)) Given 𝑇 𝑡
and

its PI 𝑝𝑖𝑡={𝑅1,𝑔𝑐 , ..., 𝑅𝑛,𝑔𝑐 }, for 𝑅𝑖,𝑔𝑐 , its TRD is 𝑑 (𝑅𝑖,𝑔𝑐 , 𝑡) =
𝑁𝑅𝑖,𝑡

|𝑅𝑖,𝑔𝑐 |
,

where |𝑅𝑖,𝑔𝑐 | denotes the size of rectangle 𝑅𝑖 , 𝑁𝑅𝑖,𝑡 is the number

of trajectories indexed by 𝑅𝑖,𝑔𝑐 at time 𝑡 .

The definition of TRD quantifies the occupancy rate of subre-

gions, providing the basis of building the temporal index flexibly.

According to Definition 5.1, we compute the average dropping rate

(ADR) of TRD by Equation 12, to measure reusing the previous

index 𝑝𝑖𝑡𝑠 or constructing a new index. For example, at time 𝑡𝑠 , its

index is 𝑝𝑖𝑡𝑠 = {𝑅1,𝑔𝑐 , ..., 𝑅𝑛,𝑔𝑐 }. The TRD of subregion 𝑅𝑖,𝑔𝑐 at time

𝑡𝑠 , i.e., 𝑑 (𝑅𝑖,𝑔𝑐 , 𝑡𝑠), is obtained. For trajectory points at time 𝑡𝑒 , the

new TRD 𝑑 (𝑅𝑖,𝑔𝑐 , 𝑡𝑒) is computed. For 𝑅𝑖,𝑔𝑐 , the dropping rate of its

TRD from 𝑡𝑠 to 𝑡𝑒 can be obtained with Equation 13. For 𝑅𝑖,𝑔𝑐 , if the

dropping rate of its TRD, i.e., ℎ1 (𝑅𝑖,𝑔𝑐 , 𝑡𝑒 , 𝑡𝑠), exceeds the threshold
Y𝑐 , then it counts for ADR since the occupancy rate of 𝑅𝑖,𝑔𝑐 drops

too much, which is achieved by Equation 14.

𝐴𝐷𝑅(𝑡𝑠 , 𝑡𝑒 , Y𝑐) =
n∑︂
i=1

h(h1 (Ri,gc , te, ts), Yc)
n

(12)

ℎ1 (𝑅𝑖,𝑔𝑐 , 𝑡𝑒 , 𝑡𝑠) =
𝑑 (𝑅𝑖,𝑔𝑐 , 𝑡𝑒) − 𝑑 (𝑅𝑖,𝑔𝑐 , 𝑡𝑠)

𝑑 (𝑅𝑖,𝑔𝑐 , 𝑡𝑠)
(13)

ℎ(𝑥, Y𝑐) =
{︄
1 𝑥 < 0 𝑎𝑛𝑑 |𝑥 | > Y𝑐

0 others

(14)

Algorithm 4 presents the TPI. For 𝑇 𝑡
, the initial index 𝑝𝑖𝑡 is

obtained by PI (lines 1–3). As mentioned above, Figure 5a shows

a PI example at time 𝑡 . At next timestamp 𝑡𝑒 , 𝑇
𝑡𝑒

is partitioned

into two parts, i.e., 𝑇
𝑡𝑒
𝑐 and 𝑇

𝑡𝑒
𝑢𝑐 (line 5), where 𝑇

𝑡𝑒
𝑐 is the set cov-

ered by 𝑝𝑖 𝑗 , 𝑇
𝑡𝑒
𝑢𝑐 is the set that are not covered by 𝑝𝑖 𝑗 . For the

covered trajectory set 𝑇
𝑡𝑒
𝑐 , if its ARD exceeds Y𝑑 , the current index

𝑝𝑖 𝑗 can not index 𝑇 𝑡𝑒
efficiently. Then a new PI is built for 𝑇 𝑡𝑒

as

shown in Line 6–9, which is denoted as “Re-build” in the exper-

imental study. Otherwise, we only construct the new 𝑃𝐼 for 𝑇
𝑡𝑒
𝑢𝑐 ,

i.e., “Insertion” in the experiments, and according to Line 10–11,

the current index, 𝑝𝑖 𝑗 , is updated. Finally, we obtain a set of time

periods {𝑝𝑒𝑟𝑖𝑜𝑑 𝑗 } and corresponding PIs {𝑝𝑖 𝑗 }. A larger Y𝑑 would

lower the frequency of “Re-build”, i.e., a higher tolerance for de-

creasing of TRD reduces “Re-build”s. A smaller Y𝑑 , the operation

of “Re-build” will be more frequent due to the strict constraints for

ADR. An example is presented in Figure 5, with Y𝑐 = 0.5, Y𝑑 = 0.5,

|𝑅𝑖,𝑔𝑐 | = 1 (in Definition 5.1), and 𝑑 (𝑅𝑖,𝑔𝑐 , 𝑡) = 𝑁𝑅𝑖,𝑡 , i.e., the number

of nodes in 𝑅𝑖,𝑔𝑐 at time 𝑡 . As shown in Figure 5b, TRD at 𝑡 + 1 has
changed, i.e., 𝑑 (𝑅𝑖,𝑔𝑐 , 𝑡 + 1), and according to Equation 12–14, we

get 𝐴𝐷𝑅(𝑡, 𝑡 + 1, Y𝑐) = 0.75 > Y𝑑 , i.e., the average dropping rate

of TDR exceeds the threshold, which means the PI at 𝑡 can not be

further reused to index trajectories at time 𝑡 +1, hence a PI is rebuilt.
However, in Figure 5c, 𝐴𝐷𝑅(𝑡, 𝑡 + 1, Y𝑐) = 0.25 < Y𝑑 , then we can

hold the PI at 𝑡 , i.e., {𝑅1,𝑔𝑐 , 𝑅2,𝑔𝑐 , 𝑅3,𝑔𝑐 , 𝑅4,𝑔𝑐 }, and only build a new

PI for trajectory points that are not covered by PI at 𝑡 , i.e., indexing

the uncovered trajectory points 𝑇 𝑡+1
𝑢𝑐 in 𝑅5,𝑔𝑐 , which is “Insertion”.

The merits of TPI are two-fold. First, based on the dynamic

trajectory density, spatio-temporal trajectories are indexed as a set

of periods, which lowers the frequency of partitioning the spatial

region. Second, with TPI, the accuracy of the partitions within a

certain time period is guaranteed by the measurement of ARD.

For disk-resident data, the trajectory points within a time period

can be written into several pages and the corresponding part of

the summary, i.e., ({𝑃 𝑗 [𝑡]}, 𝐶 , {𝑏𝑡𝑖 }, CQC), is assigned to the corre-

sponding page. A lightweight index for the assigned page number

is used to record the assigned pages for the trajectory points of

𝑝𝑒𝑟𝑖𝑜𝑑 𝑗 , and the corresponding summary, i.e., (𝑝𝑒𝑟𝑖𝑜𝑑 𝑗 , starting

page number, relative page number).

5.2 Spatio-temporal Query Processing
Wenowpresent howPPQ-trajectory answers spatio-temporal queries.

We illustrate our approach using Spatio-temporal Range Query

(STRQ) and Trajectory Path Query (TPQ).

Definition 5.2. (Spatio-temporal Range Query (STRQ)) Given

time 𝑡 and location (𝑥,𝑦), STRQ retrieves trajectories which are

located at the grid cell that (𝑥,𝑦) is in at time 𝑡 .

For STRQ, given a query (𝑥,𝑦, 𝑡1), if 𝑡1 ∈ 𝑝𝑒𝑟𝑖𝑜𝑑 𝑗 , the sub-regions
of 𝑝𝑖 𝑗 are obtained, e.g., 𝑅𝑖,𝑔𝑐 . (𝑥,𝑦) is mapped to a grid of 𝑅𝑖,𝑔𝑐 ,

then a list of trajectory IDs at time 𝑡1 is returned.

Definition 5.3. (Trajectory Path Query (TPQ)) Given time 𝑡 , loca-

tion (𝑥,𝑦) and the path duration 𝑙 , the trajectory IDs of the STRQ

of (𝑥,𝑦, 𝑡) are first retrieved, then their sub-trajectories at the time

interval [t,t+𝑙] are returned.

For TPQ, given time 𝑡 , location (𝑥,𝑦) and path duration 𝑙 , the list

of trajectory IDs is first returned from STRQ by searching (𝑥,𝑦, 𝑡),
the next 𝑙 positions of the retrieved trajectories are then directly

reproduced by the indexed summary.

Local Search using CQC. For a trajectory point (𝑥,𝑦), its accurate
reconstructed trajectory point is (�̂� ′, �̂�′). According to Lemma 3,

(�̂� ′, �̂�′) might be any point within a circle of which radius is

√
2

2
𝑔𝑠

and (𝑥,𝑦) is the center. With the CQC, the deviation has been

narrowed to

√
2

2
𝑔𝑠 which is a smaller distance. In order to further

improve the accuracy of queries using the summary, we introduce

a local search strategy. There are two situations for the local search.

(1) When

√
2

2
𝑔𝑠 > 𝑔𝑐 , as shown in Figure 6a, when all the grid cells

𝑔𝑐 that are covered by the circle are scanned, the full actual result

(a) (b)

Figure 6: Illustrating the Query Space with CQC

can be retrieved successfully. (2) When

√
2

2
𝑔𝑠 ≤ 𝑔𝑐 , as shown in

Figure 6b, the worst case is that (�̂� ′, �̂�′) falls out of the grid cell

𝑔𝑐 as (𝑥,𝑦) happens to be adjacent to the border of the grid cell.

Hence, in order to guarantee that the actual result is retrieved, the

quantized trajectory points of which distance to (𝑥,𝑦) is less than√
2

2
𝑔𝑠 in the grid cells that are adjacent to the grid cell (𝑥,𝑦) mapped

to are all scanned. Specifically, the second case is more general, i.e.,

𝑔𝑠 is smaller, as the aim of introducing 𝑔𝑠 is to further reduce the

information loss. For 𝑔𝑐 , it serves for the index part, i.e., TPI, hence,

it is usually larger.

With the local search, the returned candidate list contains all

the trajectory IDs for STRQ, which makes the recall 1. However,

the candidate list may include the trajectory IDs of which true

position is at the boundary of adjacent cells of 𝑔𝑐 while mapped

to 𝑔𝑐 . The (�̂� ′, �̂�′) whose distance to (𝑥,𝑦) is larger than
√
2

2
𝑔𝑠 has

been filtered out according to LEMMA 3. The precision for STRQ

can be improved to be 1 by accessing the original trajectory of the

candidate list of which size is relatively small due to the accuracy

of (�̂� ′, �̂�′).

6 EXPERIMENTAL EVALUATION
We conduct a range of experiments to evaluate the effectiveness

of PPQ-trajectory and compare it with a variety of alternative ap-

proaches. Our methods and all the alternative approaches are im-

plemented in Matlab R2019a. All experiments are executed on a

Ubuntu 19.04 with an Intel i5-8500 3.00 GHZ GPU and 31GB RAM.

6.1 Experimental Setting
Datasets. The experiments are performed on the publicly available

trajectory datasets, Porto [11] and GeoLife [46]. We select the trajec-

tories with the length being at least 30. The selected Porto dataset

contains 1.2 million trajectories, with 74.3M trajectory points and

the longest trajectory consisting of 3881 location points. The Geo-

Life dataset retains 17,932 trajectories with the maximum length of

92,645, containing 24.8M trajectory points.

Compared Methods.We implemented the extended versions of

alternative methods from the literature: Product Quantization [19],

Residual Quantization [8], REST [44] and TrajStore[10]. We com-

pare with one of the variations of REST, i.e., trajectory redundancy

reduction, which was shown to perform best in their work [44]. We

also test simple baselines as well as variants of PPQ-trajectory to

quantify the improvements of each step.

Product Quantization and Residual Quantization are popularly

used for approximate nearest neighbor (ANN) queries. However,

they normally do not offer an effective index structure to support

pruning for efficient querying. For fairness, we extended these

methods with our indexing approach used in PPQ-trajectory.

For REST to work properly, the dataset needs to contain a highly

repeating set of patterns between the trajectory set for building

the reference set and the matched trajectory. This is not the case

for most of the real-world data, including the datasets we use. To

be able to compare with REST, we constructed another dataset.

We first randomly selected 20,000 trajectories from Porto dataset,

then for every trajectory we created four more similar trajectories

by down-sampling and adding noise following the procedure in

[23]. This process gives a dataset with 100,000 trajectories that

is suitable for REST. Specifically, 2,000 trajectories are randomly

selected for compression, we name this dataset as sub-Porto, while

other trajectories are used to build a reference set for REST.

TrajStore builds an index with the spatial regions and recursively

updates the spatial index by merging, splitting or appending. To

align with the experimental setting, we implemented TrajStore to

be able to get streaming trajectory points as input, and dynamically

build the spatial index with time increasing.

We also implemented different variants of PPQ-trajectory to

understand the effect of its building blocks. PPQ-S uses the spatial

proximity for partitioning, PPQ-A uses the autocorrelations based

similarities. PPQ-S-basic and PPQ-A-basic use the quantizers but

not CQCs. As other baselines, we include comparisons with E-PQ,

and also with a basic version of PPQ-trajectory, by skipping the

prediction part, and name it as Q-trajectory.

Parameter Settings. The default quantization deviation threshold

is Y1 = 0.001, which is Y𝑀
1
≈ 111 meters under the geographic

coordinate system [6]. In the following experiments, we directly use

Y𝑀
1

to describe the comparative study. For the partition threshold Y𝑝 ,

its setting varies on the autocorrelation and spatialproximity-based

partitions. For the spatial proximity-based solution, Y𝑝 defaults

to 0.1 for Porto and 5 for Geolife. In the case of autocorrelation

similarity, Y𝑝 defaults to be 0.01 for both datasets. For TPI and PI,

the grid cell size 𝑔𝑐 is set to 100m.𝑔𝑠 defaults to 50m, which denotes

the size of the grid cell for CQC. The threshold of the dropping

rate of TRD, Y𝑐 is defaulted to be 0.5. The default setting of the

threshold of ADR, i.e., Y𝑑 , is 0.5. Y𝑠 defaults to 0.1, which represents

the partition threshold for constructing index.

6.2 Query Performance
6.2.1 Spatio-temporal Range Query. The quality of the approxi-

mate results for STRQ is evaluated in terms of precision and recall.

The precision is the ratio of the correctly retrieved trajectory IDs

to the returned candidate list, and the recall is the ratio of the cor-

rectly retrieved trajectory IDs to all the trajectory IDs that match

the query. We also measure the MAEs of the summaries over the

datasets, i.e., the mean absolute errors between the reconstructed

trajectory points and the original trajectory points.

For STRQ, we learn𝐶 independently for every timestamp guaran-

teeing the same number of codewords is given to trajectory points

at the same time across all methods. We randomly select 10,000

queries. The comparative results are summarized in Table 2. For

MAE, the PPQ-trajectory significantly performs better than other

methods. As the time increases, PPQ-trajectory is able to gradually

quantize a narrower range, whereas, residual and product quantiza-

tion do not improve over time. The summary process of Trajstore

cannot start until the spatial index has been updated with trajectory

points of all the timestamps. To ensure fairness, the codewords are

assigned in proportion to the number of trajectory points for every

spatial cell of TrajStore.

With the same number of bits, PPQ-trajectory obtains signifi-

cantly higher recall and precision values. For Geolife, autocorrelation-

based partitioning (in PPQ-A and PPQ-A-basic) helps to achieve

smaller MAEs compared to the spatial proximity based solution

(PPQ-S and PPQ-S-basic), while PPQ-S-basic outperforms PPQ-A-

basic on Porto dataset. We observe that autocorrelation similarity

possesses some advantages upon capturing correlations and ob-

taining a narrower dynamic range of prediction errors. This result

provides a useful insight also for other partitioning tasks and appli-

cations of spatio-temporal data, which is discussed in Section 3.2.1.

PPQ-S and PPQ-A use CQC, which bounds the error within

√
2

2
𝑔𝑠

as shown in Lemma 3 and reduces the MAEs.

Using the local search strategy in Section 5.2, the precision and

recall of PPQ-S and PPQ-A are all 1. TrajStore has smaller MAEs

and achieves higher recall and precision compared to the other

baselines, as the spatially close trajectory points are finely indexed

by the same cell. However, TrajStore makes use of the pre-built

spatial index, and the summarization is not efficiently generated

with time evolving.

For the Geolife dataset, the MAEs of Q-trajectory, product quan-

tization and residual quantization are extremely large, even around

20,000 meters that are unacceptable for the task of STRQ. Their cor-

responding precision and recall values are significantly lower than

the alternatives. Hence, their precision and recall are marked with

“×” in Table 2. The large spatial region spanning of Geolife leads to

extremely large MAEs for Q-trajectory, residual quantization and

product quantization.

6.2.2 Trajectory Path Query. TPQ involves querying timestamps

and trajectory IDs of the STRQ results and reconstructing their next

10–50 trajectory points. According to Definition 5.3, the retrieved

sub-trajectories of TPQ depends on the returned trajectory IDs of

the STRQ. Different methods might retrieve sub-trajectories for

different trajectory IDs, as observed in their different recall and

precision values presented in Table 2. For fairness, we select 10,000

same trajectory IDs for all the methods to measure the MAEs of the

retrieved sub-trajectories by comparing each to the corresponding

original sub-trajectory.

The comparative results are summarized in Table 3. The MAEs

for the sub-trajectories increase with the increasing TPQ lengths,

because more spatial deviations are accumulated when querying

longer sub-trajectories. The PPQ-trajectory and E-PQ significantly

perform better than other methods, while the MAEs of E-PQ are

smaller than that of PPQ-A-basic and PPQ-S-basic. The MAEs of Q-

trajectory, residual quantization and product quantiztion increase

significantly with the increasing query length, because their MAEs

on the datasets have been extremely large (Table 2). We notice the

MAEs of TrajStore over Porto get relatively large with 𝑙 increasing

while its MAE on the full dataset is smaller (Table 2). The codewords

are assigned in proportion to the number of trajectory points for

Table 2: Quality of summaries and STRQ evaluation

Dataset Porto Geolife

Performance Measure MAE(m) Precision Recall MAE(m) Precision Recall

PPQ-A 18.35 1.000 1.000 4.85 1.000 1.000
PPQ-A-basic 51.92 0.951 0.948 6.17 0.987 0.987

PPQ-S 23.30 1.000 1.000 7.89 1.000 1.000
PPQ-S-basic 44.41 0.944 0.939 14.72 0.976 0.976

E-PQ 76.60 0.931 0.926 15.06 0.962 0.961

Q-trajectory 1752.29 0.425 0.427 29105 x x

Residual Quantization 868.96 0.675 0.675 22590 x x

Product Quantization 641.34 0.736 0.725 21228 x x

TrajStore 152.13 0.917 0.919 617.76 0.8535 0.8547

every spatial cell of TrajStore (Section 6.2.1), hence, a larger spatial

cell with a smaller number of trajectory points scattering in will be

assigned a smaller number of codewords, then there will be larger

deviations of summarizing the trajectory points of this spatial cell,

even though the average deviations over all the spatial cells are

smaller.

6.2.3 Filtering for Exact Match Queries. We now present the aver-

age ratios of trajectories visited when the summary is used as an

index for exact match queries. After pruning irrelevant data, only

a set of candidates is accessed. We randomly select 10,000 queries,

and the average ratios of trajectories visited in their second step are

presented. To ensure fairness, we learn 𝐶 independently for every

timestamp guaranteeing the same importance is given to trajectory

points at different times which will not influence the filtering ratios

for different timestamped queries. Table 4 compares the MAE and

ratios of trajectories visited for alternative approaches, varying the

size of 𝐶 from five to nine bits. TrajStore summarizes trajectory

points within each cell of the spatial index, while the spatial in-

dex is built with the trajectory points of all timestamps. Hence,

for TrajStore, we cannot fairly summarize the trajectory points of

every timestamp independently with the fixed size 𝐶 . Hence, the

comparison with TrajStore is not considered in this experiment.

PPQ-A performs the best under this performance measure. With

the selected queries, it can directly access the trajectories mapped

to the adjacent grid cells designed using Y1 and 𝑔𝑠 . The ratios of

trajectories visited are the same with different sizes of 𝐶 due to the

accurate reconstructed representation. The same applies to PPQ-S.

For other methods, we notice their ratios gradually decrease with

the size of 𝐶 increasing, because the accuracy that 𝐶 can provide

increases, which helps filter more candidate results. Similar per-

formance is observed for Geolife, especially, we observe the same

average ratios of trajectories visited for PPQ-S and PPQ-A. The cor-

responding MAE is also presented in Table 4. MAE decreases with

the number of bits increasing for most of the methods. However,

the MAEs of PPQ-A and PPQ-S do not strictly decline with the size

of 𝐶 increasing, because their spatial deviation is not fully decided

by the quality of 𝐶 , but also slightly influenced by CQCs.

6.3 Building Time Efficiency
6.3.1 Summary Efficiency. We evaluate the running times of gen-

erating the summary for different solutions with spatial deviations

as 200m, 400m, 600m, 800m and 1000m. According to Lemma 3, the

spatial deviation of PPQ-A and PPQ-S are

√
2

2
𝑔𝑠 . In the experiment,

we set Y𝑀
1

= 2𝑔𝑠 for PPQ-A and PPQ-S. For the other methods, the

spatial deviation of their summary is simply determined by Y𝑀
1
.

Table 3: MAE against different lengths of TPQ (1.0𝑒3m)

Dataset Porto Geolife

TPQ length (𝑙) 10 20 30 40 50 10 20 30 40 50

PPQ-A 0.046 0.081 0.111 0.136 0.158 0.011 0.021 0.031 0.040 0.050
PPQ-A-basic 0.357 0.657 0.935 1.194 1.437 0.073 0.139 0.205 0.271 0.337

PPQ-S 0.160 0.295 0.402 0.491 0.566 0.019 0.037 0.054 0.070 0.086

PPQ-S-basic 0.338 0.623 0.890 1.140 1.374 0.135 0.257 0.378 0.500 0.621

E-PQ 0.068 0.119 0.162 0.198 0.229 0.031 0.059 0.086 0.113 0.139

Q-Trajectory 24.90 44.55 62.02 77.54 91.75 190.2 360.5 530.0 697.5 861.1

Residual Quantization 3.684 6.641 9.252 11.59 13.66 150.7 288.0 423.7 558.6 692.6

Product Quantization 1.813 3.263 4.518 5.631 6.600 48.78 932.6 1377 1831 2289

TrajStore 5.665 10.32 14.66 18.56 22.04 7.703 14.93 22.15 29.22 36.17

Table 4: Average ratio of trajectories visited andMAEagainst
different sizes of 𝐶 (1.0𝑒−3 | m)

Dataset

Porto Geolife

5bits 6bits 7bits 8bits 9bits 5bits 6bits 7bits 8bits 9bits

PPQ-A

0.019 0.019 0.019 0.019 0.019 0.067 0.067 0.067 0.067 0.067
17.53 18.08 19.16 21.08 23.10 24.45 25.83 26.82 27.48 27.85

PPQ-A-basic

0.046 0.032 0.025 0.024 0.021 0.077 0.077 0.076 0.076 0.076

62.03 41.46 26.81 17.64 18.55 31.27 12.94 6.180 3.000 1.610

PPQ-S

0.022 0.022 0.022 0.022 0.022 0.067 0.067 0.067 0.067 0.067
19.52 19.72 19.86 19.38 19.76 18.93 14.99 6.650 2.970 1.620

PPQ-S-basic

0.039 0.033 0.026 0.023 0.020 0.077 0.077 0.077 0.077 0.077

64.51 40.97 30.08 21.05 17.88 34.18 15.08 6.220 8.960 1.620

E-PQ

0.112 0.057 0.042 0.028 0.028 0.280 0.215 0.176 0.150 0.149

118.3 73.00 45.58 29.44 19.16 46.04 30.71 23.98 22.99 22.12

Q-trajectory

0.675 0.488 0.372 0.320 0.293 51.83 23.38 8.741 3.254 1.297

1008 671.8 438.6 278.4 173.0 6601 3110 1585 827.0 482.0

Residual

Quantization

0.502 0.174 0.066 0.030 0.020 62.80 62.30 17.01 3.070 0.504

639.0 329.0 160.0 74.21 33.29 22244 9373 3235 929.0 308.7

Product

Quantization

5.655 5.587 5.286 4.994 4.627 26.70 23.62 18.81 11.44 5.830

3693 3560 3430 3259 3024 79904 38094 16907 7186 3096

Table 5: Running time against different spatial deviation (s)

Dataset Porto Geolife

spatial deviation (m) 200 400 600 800 1000 200 400 600 800 1000

PPQ-A 802.0 579.3 486.8 445.3 417.8 706.0 557.0 534.7 477.5 345.6
PPQ-A-basic 1617 1502 1405 1399 1316 1201 678.9 533.8 525.7 518.1

PPQ-S 633.4 428.5 381.2 367.8 348.1 799.5 591.1 518.7 504.0 445.5

PPQ-S-basic 1663 956.2 547.3 511.7 439.5 1244 1102 980.5 729.5 644.3

E-PQ 6543 3110 1775 1503 1157 647.4 597.9 550.8 497.6 459.0

Q-Trajectory 16027 7530 4347 3100 2789 10698 8387 6168 4692 4152

Residual Quantization 4765 2557 1727 1269 1094 13199 8489 6876 5538 4655

Product Quantization 4883 2870 2753 2667 2353 21113 8728 4181 3354 3073

TrajStore 12826 7448 5908 5355 4870 44588 33058 29261 27835 27063

The building time is summarized in Table 5, which gradually

decreases as the spatial deviation increases. This is because the

quantization process finishes with fewer iterations when the error

is larger. The running times of PPQ-trajectory are much smaller

than those of Q-trajectory, residual quantization, product quanti-

zation, and TrajStore. In our solution, the dynamic range of the

prediction errors that needs to be quantized is decreasing with time

𝑡 evolving, hence its running time is smaller. PPQ-A and PPQ-S are

more efficient than PPQ-A-basic and PPQ-S-basic, respectively on

both datasets, because for the same spatial deviation, the setting

of Y𝑀
1

for PPQ-A and PPQ-S is larger than that of PPQ-A-basic

and PPQ-S-basic, which needs fewer iterations to obtain the sum-

mary. For Porto dataset, the running time of our solution is up to

25 times faster than residual quantization, product quantization,

Q-trajectory, and TrajStore, while E-PQ is faster than PPQ-A-basic

when the spatial deviation is larger. The running time of E-PQ is

comparatively high on Porto, which is even larger than residual

quantization. It shows the E-PQ cannot work as efficiently as our so-

lutions on the large datasets, because E-PQ executes one prediction

on the whole datasets, the prediction errors will be larger and need

Table 6: Number of codewords in 𝐶 against different spatial
deviation (×104)

Dataset

Porto(m) Geolife(m)

200 400 600 800 1000 200 400 600 800 1000

PPQ-A 0.283 0.172 0.113 0.088 0.069 0.375 0.264 0.218 0.181 0.156
PPQ-A-basic 0.651 0.371 0.279 0.227 0.183 0.560 0.422 0.349 0.324 0.288

PPQ-S 0.284 0.148 0.112 0.093 0.082 0.487 0.311 0.242 0.208 0.183

PPQ-S-basic 0.877 0.415 0.265 0.198 0.162 0.927 0.605 0.475 0.390 0.344

E-PQ 3.182 1.457 0.892 0.648 0.500 0.804 0.530 0.401 0.325 0.280

Q-trajectory 16.37 7.689 4.667 3.275 2.501 29.66 16.02 11.16 8.646 7.157

Residual Quantization 5.329 2.510 1.566 1.120 0.864 29.74 16.05 11.23 8.688 7.179

Product Quantization 5.175 2.444 1.527 1.092 0.845 29.24 15.72 10.95 8.453 6.982

TrajStore 7.617 3.620 2.287 1.589 1.173 35.64 18.75 12.71 9.539 7.724

Table 7: Statistics of TPI on different Y𝑐

Index Size(MB) Time Cost No.Periods No.Insertions

Y𝑐 Porto Geolife Porto Geolife Porto Geolife Porto Geolife

0.2 863.1 250.0 1346 7003 1245 14627 4367 71448
0.4 860.1 241.6 544 3792 656 10100 7207 89492

0.6 859.4 237.6 458 3028 485 7117 7198 95308

0.8 859.1 237.3 418 2935 421 6876 6637 101187

Table 8: Statistics of TPI on different Y𝑑

Index Size(MB) Time Cost No.Periods No.Insertions

Y𝑑 Porto Geolife Porto Geolife Porto Geolife Porto Geolife

0.2 862.0 249.2 1252 6535 1136 13958 4457 55951
0.4 860.0 238.2 497 4445 625 7953 5716 66400

0.6 859.9 236.5 480 3145 355 5670 6613 88033

0.8 857.4 235.1 465 2848 245 3567 7326 90554

more iterations to satisfy the spatial deviation requirement. For

Geolife dataset, the running time of our solution is 4-78 times faster

than residual quantization, product quantization, Q-trajectory, and

TrajStore, while E-PQ is slightly faster than PPQ-trajectory for

some spatial deviations. The running time of residual quantization,

product quantization and Q-trajectory drops quickly with the spa-

tial deviation increasing. However, their running time is extremely

high when the spatial deviation is 200m, as the time span of Geolife

is relatively large, which needs even more iterations to summarize.

The running time of TrajStore is extremely high for all spatial

deviations. Its running time includes both the time of building the

spatial index and compression for every spatial cell, because Traj-

Store depends on the spatial index to conduct the summarization,

and the process of building the index is time-consuming due to the

frequent merging, splitting, and appending operations.

6.3.2 Dynamic Data Organization. In this section, we analyze the

proposed partition-based index (PI) and temporal PI (TPI) on {𝑇𝑖 }
with different Y𝑐 and Y𝑑 , in terms of building time cost, the number

of partitioned time periods,“Insertion" and “Re-build".

Table 7 reports that as Y𝑐 increases, the index size gradually

decreases, since a higher Y𝑐 provides a higher tolerance of reusing

the previous structure by performing "insertions”. Similar results

are observed for Y𝑑 in Table 8, i.e., a higher Y𝑑 allows a PI reused

for more timestamps.

6.3.3 Temporal Partitioning Efficiency. In this section, we evaluate

the efficiency of the incremental temporal partitioning (Section

3.2.2), and analyze how the number of partitions change with time,

with respect to different Y𝑝 values.

Figure 7 illustrates that the running time of the temporal parti-

tioning component reduces as Y𝑝 increases, since a smaller number

0.01 0.03 0.05

15

20

25

30

Y𝑝

R
u
n
n
i
n
g
t
i
m
e
(
s
)

Porto

0.01 0.03 0.05

26

28

30

Y𝑝

R
u
n
n
i
n
g
t
i
m
e
(
s
)

Geolife

(a) PPQ-A

0.1 0.3 0.5

20

30

40

Y𝑝

R
u
n
n
i
n
g
t
i
m
e
(
s
)

Porto

1 3 5

25

30

35

40

Y𝑝

R
u
n
n
i
n
g
t
i
m
e
(
s
)

Geolife

(b) PPQ-S

Figure 7: Temporal partitioning running time against differ-
ent Y𝑝

(a) PPQ-A (b) PPQ-A

(c) PPQ-S (d) PPQ-S

Figure 8: Number of partitions 𝑞 against different Y𝑝

of partitions is produced when Y𝑝 gets larger. In Figure 8, we also

present the number of partitions that is maintained will gradually

get stable with time increasing. For example, in Figure 8a, we get

the maximum number of partitions, 83, on Porto dataset at 𝑡 = 1072.

6.4 Compression Ratio
In this section, the compression ratios of different methods are

measured for different values of spatial deviation, following the

same parameters setting as Section 6.3.1. The comparative results

are presented in Figure 9. For the Porto dataset, our solution outper-

forms Q-trajectory, residual quantization, and product quantization.

The compression ratios of PPQ-A-basic and PPQ-S-basic slightly

outperform PPQ-A and PPQ-S, respectively, because PPQ-A and

PPQ-S need additional space to store CQC. The size of codebooks

of E-PQ and TrajStore is up to 11 and 27 times larger, respectively,

than PPQ-trajectory (Table 6), however, they achieve compression

ratios that are higher than PPQ-trajectory, because we need addi-

tional space for multiple partitions, prediction coefficients {𝑃 𝑗 [𝑡]}
as well as CQC. Residual quantization and product quantization

produce smaller sizes of codebooks compared to TrajStore, however,

their compression ratios are 35%–51% smaller than that of TrajStore,

because they need more space to store additional codeword indexes

for restoring trajectory points from their summary. For Geolife

dataset, PPQ-A-basic outperforms most of the alternatives in terms

200 400 600 800 1000

5

10

spatial deviation (m)

C
o
m
p
r
e
s
s
i
o
n
R
a
t
i
o

PPQ-A PPQ-A-basic

PPQ-S PPQ-S-basic

E-PQ Q-Trajectory

Residual Quantization Product Quantization

TrajStore

(a) Porto

200 400 600 800 1000

5

10

15

spatial deviation (m)

C
o
m
p
r
e
s
s
i
o
n
R
a
t
i
o

PPQ-A PPQ-A-basic

PPQ-S PPQ-S-basic

E-PQ Q-Trajectory

Residual Quantization Product Quantization

TrajStore

(b) Geolife

200 400 600 800 1000

0

10

20

spatial deviation (m)

C
o
m
p
r
e
s
s
i
o
n
R
a
t
i
o

PPQ-A PPQ-A-basic

PPQ-S PPQ-S-basic

E-PQ Residual Quantization

Q-Trajectory Product Quantization

REST

(c) sub-Porto

Figure 9: Compression ratio against different spatial devia-
tion

Table 9: Disk-based index performance

Index Size(MB) No.I/Os Response Time(s) Building Time(s)

Dataset Porto Geolife Porto Geolife Porto Geolife Porto Geolife

TPI 857.4 235.1 1225 2230 24 285 465 2848
PI 870.5 271.9 338 301 18 121 1572 32009

TrajStore 857.4 233.5 13803 35233 147 378 4244 24372

of the compression ratio, including Q-trajectory, residual quantiza-

tion, product quantization and TrajStore. However, E-PQ produces

compression ratios that are slightly higher than PPQ-trajectory

when the spatial deviation is larger than 600m.

As mentioned in the experimental setting, REST have certain

assumptions that do not hold for the general case we focus in this

work. Hence, we only investigate the compression ratio on the sub-

Porto dataset that is suitable for REST. The compression ratios for

different spatial deviations are shown in Figure 9c. The comparative

results with respect to different spatial deviations are presented in

Figure 9c. When the spatial deviation is 200–600m, the compression

ratios of PPQ-A-basic and PPQ-S-basic are two times that of REST.

The gap decreases as the spatial deviation increases. REST’s com-

pression ratio depends on the correlation between the compressed

trajectory and the reference set, the compressed trajectory cannot

always bematched well with the offline learned reference set, which

directly influences the compression ratio. However, PPQ-trajectory

is able to flexibly extend codewords when the compressed trajectory

can not be matched well with the existing codebook.

6.5 Further Comparison with TrajStore
In this section, we provide disk-based comparisons of temporal

partition-based index (TPI) with TrajStore in terms of the index

size, query response times, the number of I/Os during queries, and

building times. The index of TrajStore is built on the raw trajec-

tory points, for fairness, we align disk-based TPI with TrajStore to

directly build index over the raw trajectory points in accordance

with the end of Section 5.1. We followed the same process in the

TrajStore[10], bounding the data on disk and setting the page size

as 1MB. We randomly select 10,000 spatio-temporal queries and

sort them in the order of their starting times. The parameters for

TPI are Y𝑑=0.8 and Y𝑐=0.5.

These experimental results are presented in Table 9. The index

size and building time of PI are larger than that of TPI and TrajStore

for both datasets, while its response time and I/Os are the smallest

among the three methods on both datasets. For Porto, the size of TPI

is the same as TrajStore, while the index size of TrajStore for Geolife

is slightly smaller than that of TPI. However, TPI continuously

outperforms TrajStore in terms of the number of I/Os and query

response times. Given a query, TPI can quickly target the relevant

𝑝𝑒𝑟𝑖𝑜𝑑 𝑗 and filter out more irrelevant trajectory points in terms of

time. However, for TrajStore, the quadtree-based index structure is

shared by all timestamps, and a spatial cell can include trajectory

points of a large time range, which might be stored on different

pages. Hence, given a spatio-temporal query, for TrajStore several

pages are likely to be visited, this is why the number of I/Os for

TrajStore is over the number of queries we evaluate on.

Building of TPI is more efficient than TrajStore. TrajStore recur-

sively updates the spatial index by merging, splitting or appending

with trajectory points updated. However, when we get updates for

TPI, it is only relevant to the trajectory points within a smaller

range of timestamps, i.e., a 𝑝𝑒𝑟𝑖𝑜𝑑 𝑗 .

7 CONCLUSIONS
We presented PPQ-trajectory which generates and maintains an

error-bounded summary for large-scale trajectory data analytics. A

partition-wise predictive quantizer (PPQ) for spatio-temporal data

is designed, which involves a spatial proximity and autocorrela-

tion based partitioning, followed by a local coding. A temporally-

quantized data organization is developed to process spatio-temporal

queries efficiently. The query performances, building times, and

compression capabilities of PPQ-trajectory significantly outperform

other solutions in most of the experiments. As a future work, the

quantization based approach can be enhanced to consider dynamic

traffic conditions, and utilize machine learning to more accurately

predict trajectory points and generate a more compact summary.

REFERENCES
[1] Fatih Altiparmak, Ertem Tuncel, and Hakan Ferhatosmanoglu. 2007. Incremental

maintenance of online summaries over multiple streams. IEEE Transactions on
Knowledge and Data Engineering 20, 2 (2007), 216–229.

[2] Richard E Bellman and Stuart E Dreyfus. 2015. Applied dynamic programming.
Vol. 2050. Princeton university press.

[3] Yuhan Cai and Raymond Ng. 2004. Indexing spatio-temporal trajectories with

Chebyshev polynomials. In Proceedings of the 2004 ACM SIGMOD international
conference on Management of data. 599–610.

[4] Zhi Cai, Fujie Ren, Juncheng Chen, and Zhiming Ding. 2017. Vector-based

trajectory storage and query for intelligent transport system. IEEE Transactions
on Intelligent Transportation Systems 19, 5 (2017), 1508–1519.

[5] Addison Chan and Frederick WB Li. 2012. Utilizing massive spatiotemporal

samples for efficient and accurate trajectory prediction. IEEE Transactions on
Mobile Computing 12, 12 (2012), 2346–2359.

[6] Kang-Tsung Chang. 2008. Introduction to geographic information systems. Vol. 4.
McGraw-Hill Boston.

[7] Minjie Chen, Mantao Xu, and Pasi Franti. 2012. Compression of GPS trajectories.

In 2012 Data Compression Conference. IEEE, 62–71.
[8] Yongjian Chen, Tao Guan, and ChengWang. 2010. Approximate nearest neighbor

search by residual vector quantization. Sensors 10, 12 (2010), 11259–11273.
[9] Jonathan D Cryer and Natalie Kellet. 1991. Time series analysis. Springer.
[10] Philippe Cudre-Mauroux, Eugene Wu, and Samuel Madden. 2010. Trajstore: An

adaptive storage system for very large trajectory data sets. In 2010 IEEE 26th
International Conference on Data Engineering (ICDE 2010). IEEE, 109–120.

[11] ECML-PKDD. 2015. Taxi Service Trajectory Prediction Challenge 2015. http:

//www.geolink.pt/ecmlpkdd2015-challenge/

[12] Hakan Ferhatosmanoglu, Ertem Tuncel, Divyakant Agrawal, and Amr El Abbadi.

2000. Vector approximation based indexing for non-uniform high dimensional

data sets. In Proceedings of the ninth international conference on Information and
knowledge management. 202–209.

[13] Alyson K Fletcher, Sundeep Rangan, Vivek K Goyal, and Kannan Ramchandran.

2007. Robust predictive quantization: Analysis and design via convex optimiza-

tion. IEEE Journal of selected topics in signal processing 1, 4 (2007), 618–632.

[14] Stefan Funke, Tobias Rupp, André Nusser, and Sabine Storandt. 2019.

PATHFINDER: storage and indexing of massive trajectory sets. In Proceedings of
the 16th International Symposium on Spatial and Temporal Databases. 90–99.

[15] Tiezheng Ge, Kaiming He, Qifa Ke, and Jian Sun. 2013. Optimized product

quantization for approximate nearest neighbor search. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. 2946–2953.

[16] Allen Gersho and Robert MGray. 2012. Vector quantization and signal compression.
Vol. 159. Springer Science & Business Media.

[17] Kevin Gourley and Douglas Green. 1983. A polygon-to-rectangle conversion

algorithm. IEEE Computer Graphics and Applications 1 (1983), 31–36.
[18] Yunheng Han, Weiwei Sun, and Baihua Zheng. 2017. COMPRESS: A comprehen-

sive framework of trajectory compression in road networks. ACM Transactions
on Database Systems (TODS) 42, 2 (2017), 11.

[19] Herve Jegou, Matthijs Douze, and Cordelia Schmid. 2010. Product quantization

for nearest neighbor search. IEEE transactions on pattern analysis and machine
intelligence 33, 1 (2010), 117–128.

[20] Georgios Kellaris, Nikos Pelekis, and Yannis Theodoridis. 2013. Map-matched

trajectory compression. Journal of Systems and Software 86, 6 (2013), 1566–1579.
[21] Satoshi Koide, Yukihiro Tadokoro, Takayoshi Yoshimura, Chuan Xiao, and Yoshi-

haru Ishikawa. 2018. Enhanced Indexing and Querying of Trajectories in Road

Networks via String Algorithms. ACM Transactions on Spatial Algorithms and
Systems (TSAS) 4, 1 (2018), 3.

[22] Daniel Lemire and Leonid Boytsov. 2015. Decoding billions of integers per second

through vectorization. Software: Practice and Experience 45, 1 (2015), 1–29.
[23] Xiucheng Li, Kaiqi Zhao, Gao Cong, Christian S Jensen, and Wei Wei. 2018. Deep

representation learning for trajectory similarity computation. In 2018 IEEE 34th
International Conference on Data Engineering (ICDE). IEEE, 617–628.

[24] Zhisheng Li, Ken CK Lee, Baihua Zheng, Wang-Chien Lee, Dik Lee, and Xufa

Wang. 2010. Ir-tree: An efficient index for geographic document search. IEEE
Transactions on Knowledge and Data Engineering 23, 4 (2010), 585–599.

[25] Jiajun Liu, Kun Zhao, Philipp Sommer, Shuo Shang, Brano Kusy, and Raja Jurdak.

2015. Bounded quadrant system: Error-bounded trajectory compression on the

go. In 2015 IEEE 31st International Conference on Data Engineering. IEEE, 987–998.
[26] Jiajun Liu, Kun Zhao, Philipp Sommer, Shuo Shang, Brano Kusy, Jae-Gil Lee, and

Raja Jurdak. 2016. A novel framework for online amnesic trajectory compression

in resource-constrained environments. IEEE Transactions on Knowledge and Data
Engineering 28, 11 (2016), 2827–2841.

[27] Xiaoyan Liu and Hakan Ferhatosmanoglu. 2003. Efficient k-NN search on stream-

ing data series. In International Symposium on Spatial and Temporal Databases.
Springer, 83–101.

[28] Stuart Lloyd. 1982. Least squares quantization in PCM. IEEE transactions on
information theory 28, 2 (1982), 129–137.

[29] Chengjiao Lv, Feng Chen, Yongzhi Xu, Junping Song, and Pin Lv. 2015. A tra-

jectory compression algorithm based on non-uniform quantization. In 2015 12th
International Conference on Fuzzy Systems and Knowledge Discovery (FSKD). IEEE,
2469–2474.

[30] Jonathan Muckell, Jeong-Hyon Hwang, Vikram Patil, Catherine T Lawson, Fan

Ping, and SS Ravi. 2011. SQUISH: an online approach for GPS trajectory com-

pression. In Proceedings of the 2nd International Conference on Computing for
Geospatial Research & Applications. 1–8.

[31] Jonathan Muckell, Paul W Olsen, Jeong-Hyon Hwang, Catherine T Lawson, and

SS Ravi. 2014. Compression of trajectory data: a comprehensive evaluation and

new approach. GeoInformatica 18, 3 (2014), 435–460.
[32] Zhaolong Ning, Jun Huang, and Xiaojie Wang. 2019. Vehicular fog computing:

Enabling real-time traffic management for smart cities. IEEE Wireless Communi-
cations 26, 1 (2019), 87–93.

[33] Mohammad Norouzi and David J Fleet. 2013. Cartesian k-means. In Proceedings
of the IEEE Conference on computer Vision and Pattern Recognition. 3017–3024.

[34] Athanasios Papoulis and S Unnikrishna Pillai. 2002. Probability, random variables,
and stochastic processes. Tata McGraw-Hill Education.

[35] Jignesh M Patel, Yun Chen, and V Prasad Chakka. 2004. STRIPES: an efficient

index for predicted trajectories. In Proceedings of the 2004 ACM SIGMOD interna-
tional conference on Management of data. 635–646.

[36] Iulian Sandu Popa, Karine Zeitouni, Vincent Oria, and Ahmed Kharrat. 2015.

Spatio-temporal compression of trajectories in road networks. GeoInformatica
19, 1 (2015), 117–145.

[37] Hanan Samet. 1984. The quadtree and related hierarchical data structures. ACM
Computing Surveys (CSUR) 16, 2 (1984), 187–260.

[38] Renchu Song, Weiwei Sun, Baihua Zheng, and Yu Zheng. 2014. PRESS: A novel

framework of trajectory compression in road networks. Proceedings of the VLDB
Endowment 7, 9 (2014), 661–672.

[39] Waldo R Tobler. 1979. Cellular geography. In Philosophy in geography. Springer,
379–386.

[40] Ertem Tuncel, Hakan Ferhatosmanoglu, and Kenneth Rose. 2002. VQ-index: An

index structure for similarity searching in multimedia databases. In Proceedings
of the tenth ACM international conference on Multimedia. ACM, 543–552.

[41] Sheng Wang, Zhifeng Bao, J Shane Culpepper, Timos Sellis, Mark Sanderson, and

Xiaolin Qin. 2017. Answering top-k exemplar trajectory queries. In 2017 IEEE
33rd International Conference on Data Engineering (ICDE). IEEE, 597–608.

[42] Sheng Wang, Zhifeng Bao, J Shane Culpepper, Zizhe Xie, Qizhi Liu, and Xiaolin

Qin. 2018. Torch: A Search Engine for Trajectory Data.. In SIGIR. 535–544.
[43] Roger Weber, Hans-Jörg Schek, and Stephen Blott. 1998. A quantitative analysis

and performance study for similarity-search methods in high-dimensional spaces.

In VLDB, Vol. 98. 194–205.
[44] Yan Zhao, Shuo Shang, YuWang, Bolong Zheng, Quoc Viet Hung Nguyen, and Kai

Zheng. 2018. Rest: A reference-based framework for spatio-temporal trajectory

compression. In Proceedings of the 24th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining. ACM, 2797–2806.

[45] Kai Zheng, Yan Zhao, Defu Lian, Bolong Zheng, Guanfeng Liu, and Xiaofang Zhou.

2019. Reference-based framework for spatio-temporal trajectory compression

and query processing. IEEE Transactions on Knowledge and Data Engineering
(2019).

[46] Yu Zheng, Lizhu Zhang, Xing Xie, and Wei-Ying Ma. 2009. Mining interesting

locations and travel sequences from GPS trajectories. In Proceedings of the 18th
international conference on World wide web. ACM, 791–800.

http://www.geolink.pt/ecmlpkdd2015-challenge/
http://www.geolink.pt/ecmlpkdd2015-challenge/

	Abstract
	1 Introduction
	2 Related Work
	3 Online Quantization in PPQ-Trajectory
	3.1 Error-bounded Predictive Quantization
	3.2 Partition-wise Predictive Quantization

	4 Local Coding in Error-bounded Codebook
	4.1 Coordinate Quadtree Coding
	4.2 Trajectory Reconstruction with CQC

	5 Online Querying over Quantized Trajectories
	5.1 Temporal Partition-based Index
	5.2 Spatio-temporal Query Processing

	6 Experimental Evaluation
	6.1 Experimental Setting
	6.2 Query Performance
	6.3 Building Time Efficiency
	6.4 Compression Ratio
	6.5 Further Comparison with TrajStore

	7 Conclusions
	References

