

warwick.ac.uk/lib-publications

Manuscript version: Author’s Accepted Manuscript
The version presented in WRAP is the author’s accepted manuscript and may differ from the
published version or Version of Record.

Persistent WRAP URL:
http://wrap.warwick.ac.uk/143427

How to cite:
Please refer to published version for the most recent bibliographic citation information.
If a published version is known of, the repository item page linked to above, will contain
details on accessing it.

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions.

Copyright © and all moral rights to the version of the paper presented here belong to the
individual author(s) and/or other copyright owners. To the extent reasonable and
practicable the material made available in WRAP has been checked for eligibility before
being made available.

Copies of full items can be used for personal research or study, educational, or not-for-profit
purposes without prior permission or charge. Provided that the authors, title and full
bibliographic details are credited, a hyperlink and/or URL is given for the original metadata
page and the content is not changed in any way.

Publisher’s statement:
Please refer to the repository item page, publisher’s statement section, for further
information.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Warwick Research Archives Portal Repository

https://core.ac.uk/display/337784673?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/143427
mailto:wrap@warwick.ac.uk

1

Robustness Estimation and Optimisation for
Semantic Web Service Composition with

Stochastic Service Failures
Chen Wang, Hui Ma, Gang Chen, Sven Hartmann and Jüergen Branke

Abstract—Service-oriented architecture (SOA) is a widely adopted software engineering paradigm that encourages modular and
reusable applications. One popular application of SOA is web service composition, which aims to loosely couple web services to
accommodate complex goals not achievable through any individual existing web service. Many approaches have been proposed to
construct composite services with optimized quality, Quality of Service (QoS) and/or Quality of Semantic Matchmaking (QoSM),
assuming that QoS of web services seldom or never changes. However, the composition services generated by these approaches may
not perform well when QoSs of their component services change, and even may not be executable at execution time due to the failure
of its component services. Therefore, it is important to build Web service compositions that are robust to stochastic service failures.
The challenges of building robust service compositions are to efficiently generate service composition with near-optimal quality in a
large search space of available services, and to efficiently and accurately measure the robustness of composite service considering all
possible failure scenarios. In this paper, we propose a two-stage GA approach to robust web service composition, which can generate
robust baseline composite services at the design phase, and efficiently and effectively handle stochastic service failures at execution
phase to maintain the good quality of the composite services. In particular, we propose an archive-based adaptive evolutionary control
over two sequential evolutionary stages to efficiently and effectively produce baseline solutions. Further, we develop an efficient
robustness measurement based on fewer carefully selected scenarios that serve as an important lower bound of the robustness over
all the possible scenarios. We have conducted experiments with benchmark datasets to evaluate the performance of our proposed
approach. Our experiments show that our method can produce high-robustness composite services, achieving outstanding
performance (i.e. high QoS and QoMS) consistently in the event of stochastic service failures, on service repositories with varying
sizes.

Index Terms—Web service composition, Robust optimisation, Combinatorial optimisation, Genetic Algorithm.

F

1 INTRODUCTION

W EB services are modular, self-describing, self-
contained applications that are available on the Inter-

net, serving as reusable software components in the domain
of service-oriented computing [1]. Since a single web service
often cannot satisfy users’ complicated requirements, web
service composition aims to provide added values by con-
structing a composite service via loosely coupling many web
services over the Internet. To ensure the validity of service
compositions, all the inputs of the coupled web services
must be fulfilled. In service composition, fully automated ser-
vice composition has attracted much attention, and it simulta-
neously constructs service workflows and selects services,
without strictly obeying any predefined workflows [2].
Many researchers in this field have been working on fully
automated service composition with the aim to optimise
the overall quality of composite services. This quality often
refers to the functional and non-functional requirements,
i.e., Quality of Semantic Matchmaking (QoSM) and Quality
of service (QoS). Many relevant studies [3, 4, 5, 6, 7, 8, 9]
focus on static web service composition, assuming that the
QoS of the elementary web services remains stable. Such

• Chen Wang, Hui Ma, and Gang Chen are with the School of Engineering
and Computer Science, Victoria University of Wellington, Wellington,
New Zealand.
E-mail: {chen.wang, hui.ma, aaron.chen}@ecs.vuw.ac.nz

• Sven Hartmann is with the Department of Informatics, Clausthal Univer-
sity of Technology, Germany.
E-mail: sven.hartmann@tu-clausthal.de

• Jüergen Branke is with the Warwick Business School, University of
Warwick, UK.
E-mail: Juergen.Branke@wbs.ac.uk

a rigid assumption makes these works less practical for
handling service composition problems in the context of a
dynamic service environment, where QoS is changing from
time to time. [10]. Therefore, dynamic web service composition
is introduced to emphasise on the challenges caused by the
dynamic and unpredictable nature of QoS in web service
composition at the run-time.

Services available for composition can experience QoS
changes at any time. On the one hand, new services are
published, and old ones are modified or removed due to the
changes in users’ demands [11]. In fact, newly published
services might be more suitable because they are faster,
cheaper and aggregate multiple functionalities required by
a composite service. Those changes either render existing
composite services invalid or present new opportunities
for building more desirable composite services. Therefore,
delivering composite services with reliable QoS is a critical
and significant challenge in the dynamic environment. In
practice, QoS changes can be related to many different
QoS criteria [12], such as response time, throughput, failure
probability, availability, price and popularity. Among these
QoS criteria, the stochastic failure of web services is the most
critical uncertainty [13]. This is because the composite ser-
vice discovered at the design phase can become completely
useless at the time of its execution if any component service
fails.

To consider stochastic service failures in service compo-
sition, many works [14, 15, 16] repair the composite services
while re-optimising QoS of composite services at the execu-
tion phase in the event of service failures, without abandon-
ing ongoing composite services completely. However, these

2

approaches ignore the importance of building robust com-
posite services at the design phase. These composite services
can handle stochastic service failures in a robust manner at
the execution phase. Therefore, our recent work [17] studied
robust service composition problem for effectively handling
stochastic service failures. This work constructed composite
service with the aim to optimise the robustness in terms of
expected QoS and QoSM at the design phase. Such a robust
solution serves as the blueprint/baseline and is expected
to continue to work reliably or be easily re-optimised with
negligible impact on quality at the execution phase. In this
paper, we will continue to investigate the same problem
that focuses on constructing robust composite services in
the event of stochastic service failures.

it is hard to measure the robustness of candidate so-
lutions in terms of expected QoS and QoSM, because it
is very time-consuming to calculate the true robustness of
an individual by enumerating all the failure scenarios. In
the literature, one conventional approach for measuring
the robustness is to simulate the scenarios exhaustively.
However, such a simulation method often requires large
computing resources. To tackle this issue, robustness es-
timation is usually employed to approximate the robust-
ness of candidate solutions. For example, Wang et al. [17]
estimated the robustness of candidate composite services
through Monte Carlo sampling [18], i.e., an unweighted
averaged fitness value over a set of randomly sampled
scenarios. However, Monte Carlo sampling often requires
a large sample size to be determined manually for a good
trade-off between algorithm performance and sample cost.
Moreover, this robust estimation method is only tested on
a small service composition benchmark, i.e., OWLS-TC [19].
OWLS-TC contains multiple composition tasks over a small-
size service repository with 946 web services, which also
indicates small dimensions of decision variables.

When dealing with service composition over a large
service repository (i.e., a service repository that consists of a
large number of services), the complexity of the fitness land-
scape will increase dramatically [20]. This complexity makes
the robustness of composite services much harder to be
estimated. This is known as the “curse of dimensionality”,
which may lead to the deterioration of the performance in
robustness estimation. For example, Monte Carlo sampling
can be computationally costly for evaluating a single solu-
tion. This is because it requires a much larger sampling size
to ensure the estimated robustness is sufficiently accurate.
When the dimension of decision variables grows, it becomes
actually infeasible to estimate the robustness.

In general, to tackle such a high-dimensional robust
optimisation problem, fitness approximation methods are
usually employed in evolutionary computation (EC). This
approximation-assisted approach aims to find a good
trade-off between the accuracy of estimation and the ef-
ficiency. Two critical technical challenges in designing an
approximation-assisted EC method are what fitness approxi-
mation method to be used for the fitness estimation, and how to
integrate the approximate method into the optimisation process.
We will discuss these two challenges for solving our robust
web service composition problem one by one.

Regarding the first challenge, three types of approxi-
mation methods, i.e., problem approximation, data-driven
functional approximation, and fitness inheritance, are usu-
ally employed in the literature [21, 22]. The first type of
approximation methods often uses an approximate, easier-

to-solve problem to replace the original problem. For exam-
ple, Monte Carlo sampling, instead of complete sampling,
is used to sample dynamic scenarios in our recent work
[17]. The second type of approximation methods trains ex-
plicit models (also called meta-models or surrogates) based
on historical solutions using various meta-modelling tech-
niques, such as polynomials or gaussian processes. How-
ever, adopting such a technique needs sufficient historical
data that maps between the design parameters and the qual-
ity of the design. The third type of approximate methods
estimates the fitness of one individual by the fitness of other
similar individuals. However, in our problem, it is hard to
define a similarity or distance measure between any two
composite services. This is because composite services that
serve the same functionality can differ in terms of both the
component services and workflow structures that integrate
the component services together. Moreover, when the di-
mension of decision variables increases, distance measures
can become less useful. In a nutshell, problem approxima-
tion can help because it can simplify the simulations over
service failures. However, a more accurate estimation with
fewer samples is one of the major challenges in this paper.

The second challenge is how to integrate the approx-
imate models into the optimisation process. Evolutionary
control is used to decide whether an actual or approxi-
mation method should be utilised for fitness evaluations
[21]. Jin et al. [21] grouped existing works into two cate-
gories: individual-based and generation-based evolutionary
control. The first category allows some of the individuals
to be evaluated by the actual model while the others are
evaluated based on the estimation model. The second cat-
egory restricts all the individuals in a certain generation to
be either evaluated by the actual model or the estimation
model. Although there are no clear advantages of one cat-
egory over the other, generation-based evolutionary control
is more suitable to be implemented in parallel and can
achieve good performance with fewer control interventions
based on generations, rather than individuals. Moreover, an
adaptive frequency over the generations should be consid-
ered because the fidelity of the approximate model may vary
significantly during the optimisation [21].

To address these two challenges above, we propose an
EC-based approach to robust web service composition with
fitness approximation that effectively handles stochastic ser-
vice failures. Genetic Algorithm (GA) is a popular EC tech-
nique that has enabled the tackling of several challenging
service composition problems [5]. Therefore, GA is utilised
as an EC technique to generate high-robustness baseline ser-
vices in this paper. This approach can achieve outstanding
performance in both effectiveness and efficiency when the
size of the service repository increases dramatically. These
outstanding performances are observed by comparing it
with some state-of-the-art works for finding robust com-
posite services using large benchmarks. The contributions
of this paper are listed below.

1) To perform an efficient and accurate robustness es-
timation for handling stochastic service failures, we
introduce a new fitness approximation method via
fewer selected scenarios for calculating the robustness
of service composition at the design phase. Different
from using randomly sampled scenarios for robustness
estimation in [17], this method carefully selects scenar-
ios with the aim to reduce the variance of the robustness
estimation, especially when a high-dimensional robust

3

optimization problem is considered. Moreover, to lever-
age the influence of the various selected scenarios, the
weights of these selected scenarios are considered to
measure the importance of the selected scenarios in the
robustness estimation.

2) To further reduce the computation time of GA with
the fitness approximation and maintain its effectiveness
in finding robust composite services, a two-stage GA,
denoted GA-2Stage, is proposed with an adaptive evo-
lution control mechanism. Particularly, in stage one, ef-
ficient evaluations (i.e., comprehensive quality for mea-
suring the overall quality of composite service under
static service composition environment) are employed
to find good solutions that are likely to be robust in
the event of stochastic service failures. In stage two,
these solutions can be further evolved to improve their
robustness using our proposed robustness estimation
method. Moreover, an archive-based evolutionary con-
trol is proposed to determine at which generation stage
two should start. Meanwhile, the first generation in
stage two is initialised with the archive, which stores
good solutions found in stage one. Note that the adap-
tive evolutionary control mechanism is not introduced
in our previous work [17]

3) To demonstrate the effectiveness and efficiency of our
GA-2Stage algorithm, we conduct experiments to com-
pare it against three GA-based approaches: one method
only employs GA with our proposed robustness es-
timation method over all the generations (henceforth
referred to as GA-RE); the other two existing state-of-
the-art methods: one is Monte Carlo sampling-based
method that has recently been developed in [17] (hence-
forth referred to as GA-MC); the other is Fixed Length
GA [5] (henceforth referred to as FL) that achieves
outstanding performance in finding high-quality solu-
tions in static composition environment. Our experi-
ment results show that our method can produce high-
robustness composite services, achieving outstanding
performance (i.e. high QoS and QoMS) consistently in
the case of stochastic service failures, regardless of the
size of the service repository.

2 RELATED WORK

In this section, we review some state-of-the-art EC-based
approaches for web service composition with the objectives
of optimizing QoS or QoSM of composite services. After-
wards, we discuss some state-of-the-art works in develop-
ing robustness measures and a few EC works with fitness
estimation methods.

2.1 Literature on web service composition problem
EC techniques have been used to automatically gener-
ate composite services with optimized QoS and/or QoSM
[3, 5, 4, 23, 7, 8, 9]. These works can be divided into two
groups based on the assumptions on QoS: QoS of web
service are either static or dynamic.

The first group usually assumes that the QoS of web
services seldom changes or does not change at all. In this
group, QoS often refers to the mean values of the historical
QoS, which is accessible to service users. This field has
been widely studied in the past few years, focusing on
developing effective and efficient EC techniques to find

composite services with optimised QoS. To achieve such
a goal, researchers have been working on developing new
and effective representations of composite services for EC
techniques, such as DAG-based [24, 17, 25, 26], tree-based
[4, 7, 27, 28, 29], tree-like based [7], and permutation-based
representations [5, 23, 8]. The majority of these works also
propose different representation-dependent genetic opera-
tors to explore large searching spaces, while some of them
[8, 17] propose new sampling techniques for breeding new
promising solutions from the learned distributions (i.e.,
Node or Edge Histogram Matrix) of historical solutions.
However, all these works may not achieve desirable run-
time performance as a result of using component services
with changing QoS.

The second group focuses on handling dynamic QoS.
Dynamic QoS values vary in bounded-interval values or
can be estimated based on the past QoS distributions. For
example, some works [14, 15, 16] rely on the bounded-
interval QoS values to simulate periodically changed QoS
while re-optimising the QoS of composite services periodi-
cally. However, the QoS changes that are assumed to happen
after every fixed time are the victim of idealisation. Several
concurrent works, such as [30], propose a fuzzy-based QoS
model based on the bounded-interval QoS values to mea-
sure the uncertainties in QoS. A few works [31, 32, 33, 34]
assume that the changes of QoS follow some historical
patterns and can be predicted in the future. For example,
[31, 34] assume that the QoS follows a known probability
distribution, and can be estimated based on the past QoS
values. However, these approaches do not consider the im-
pact of time on QoS. To address this limitation, [35] consider
time-varying QoS by proposing a time-series prediction
model while optimising the predictive QoS of composite
services. Such a problem is formulated as predictive-trend-
aware service composition by the same authors in [36]. They
further conduct extensive case studies with diverse ran-
domly-generated composition workflows. Although these
works are capable of handling QoS in the future in a predic-
tive manner, they often require sufficient historical data that
are not always available for newly registered web services.
Therefore, their prediction model may become less reliable
to predict the QoS in the future.

In this paper, we study the robust web service com-
position problem at the design phase. A robust composite
service is expected to continue to work reliably or be easily
repaired with negligible impact on quality through a fast lo-
cal search technique. Our preliminary study of this problem
has been reported in [17]. Some interesting ideas have been
explored in some works that handle service failures through
distributed service deployment [37, 38]. For example, a suffi-
cient number of duplicated services can be jointly deployed
to prevent un-predicted service failures. These works are
related but clearly targeted to address a different problem
than our paper. Moreover, some dynamical reconfiguration
methods [13, 39] have been investigated by searching for
a replacement of the failed component services and/or
some of their neighbouring services at the execution phase.
Similar ideas are also explored to simultaneously consider
forward and backward recovery, and service cancellability
at execution phase in [40, 41]. However, those methods
do not focus on simultaneously addressing multiple con-
cerns in dynamic web service composition, which include:
(1) handling fully-automated service composition problem,
where a service composition workflow is unknown, (2)

4

taking into account the importance of building robust com-
posite services at the design phase, (3) optimizing QoS in
the event of service failures.

2.2 Literature on fitness approximation and EC with
fitness estimation

Fitness approximation has been widely used to solve com-
putationally expensive single-objective and multi-objective
problems [21, 22]. Existing fitness approximation techniques
can be classified into three types: problem approximation,
data-driven functional approximation, and fitness inheri-
tance in the literature [21, 22]. As we discussed in Sect.1,
problem approximation can better serve our needs to esti-
mate the robustness of composite services. In the literature,
fitness approximation has been utilised to find solutions
with optimised robustness. This optimisation problem is
called a robust optimisation problem. In fact, decision-
makers concern not only the performance of the solution
but also the sensitivity of performance with respect to small
changes in the environment. In robust optimisation prob-
lems, each solution evaluation can be computed based on
the simulations, which can be highly time-consuming. For
example, EC techniques usually employ the expected fitness
over disturbances via either explicit averaging or implicit
averaging techniques [21] for finding high-robustness solu-
tions. Such techniques based on the averaged fitness values
are not always practical due to the required computational
resources [42]. Therefore, fitness approximation is used for
reducing the number of evaluations.

Fitness approximation is utilised in the evolutionary
optimisation of expensive problems for the purpose of re-
ducing computational time. In EC with fitness approxima-
tion, evolutionary control is a technique to manage fitness
approximation for the evaluation of individuals. Evolu-
tionary control aims to achieve a good trade-off between
less accurate fitness evaluations and computational cost by
replacing costly fitness functions with the fitness approxi-
mation. Techniques in evolutionary control can be grouped
into individual-based and generation-based [21, 22]. In the
individual-based, some of the individuals are evaluated us-
ing the fitness approximation while the others are evaluated
using the real fitness function. For example, [43] proposed
an evolutionary control that ensures individuals with good
estimated fitness values will be re-evaluated on the real
fitness function. These good individuals are selected from
individuals in each individual cluster of each population.
In contrast, in the generation-based evolutionary control, all
individuals in one generation are either evaluated using the
fitness approximation or the real fitness function. Recently,
much attention has been paid to adaptive adjustment of
the frequency of using the fitness approximation in either
individual-based or generation-based evolutionary control.
As we discussed in Sec. 1, a fixed evolutionary control
frequency can be unpractical as the fidelity of the approxi-
mate model may vary significantly during the optimisation
[21]. For example, an adaptive generation-based evolution-
ary control is proposed based on the error of the fitness
approximation [44].

In our work, like many real-world robust optimisation
problems, “real fitness function” actually does exist, but it
is not feasible to compute the robustness of the composite
services over all possible events of service failures. There-
fore, a fitness approximation method will be proposed and

play the role of “real fitness function”. Besides that, an effi-
cient comprehensive quality evaluation method is suggested
in some generations to further reduce the overall execution
time of our EC-based approach. This comprehensive quality
evaluation will be utilised to efficiently find good solutions
that are likely to have high robustness. Consequently, these
two evaluation methods are adaptively employed based on
our proposed generation-based evolutionary control in this
paper.

3 PRELIMINARIES

3.1 Web Service Composition Problem
Table 1 shows a list of abbreviations and acronyms used in
the formulations of web service composition problem.

TABLE 1: List of Abbreviations and Acronyms.

Abbreviation Description
C Composite service

typelink matchmaking type of a robust causal link
MT matchmaking type of a composite service

simlink semantic similarity
SIM semantic similarity of a composite service
prS Service failure probability

QoSM Quality of semantic matchmaking
QoS Quality of service

tS , cS , rS , aS Response time, cost, reliability, and availability of S
prS Failure probability of S

rC , aC , ctC , tC Aggregated response time, cost, reliability, and availability of C
fcq Overall quality of composite services
rLB Lower bound robustness estimation
rMC Monte Carlo robustness estimation

S Semantic web service
SR Service repository

A semantic web service (service, for short) is a tuple
S = (IS , OS , QoSS) where IS is a set of service inputs
that are consumed by S, OS is a set of service outputs that
are produced by S, and QoSS = {tS , ctS , rS , aS , prS} is
a set of non-functional attributes of S. The inputs IS and
outputs OS are parameters modelled through concepts in
a domain-specific ontology O. The attributes tS , ctS , rS , aS
and prS refer to the response time, cost, reliability, avail-
ability, and service failure probability respectively [12]. The
first four attributes are commonly used QoS attributes [45].
However, in practice, the execution of a composite service
is usually confronted with stochastic service failures [12]. A
service failure probability prS can be approximated by divid-
ing the number of failed invocations by the total number
of invocations conducted in the past on service S [10]. Also,
prS of newly published web services can be estimated as the
prS of web services hosted by the same service providers
in the same location. For any service S hosted by different
service providers, its failure probability is assumed to be
independent.

A service repository SR is a finite collection of services
supported by a common ontology O.

A composition task (also called service request) over a given
SR is a tuple T = (IT , OT) where IT is a set of task inputs,
and OT is a set of task outputs. IT and OT are parameters
that are semantically described by concepts in the ontology
O. Two special atomic services Start = (∅, IT , ∅) and
End = (OT , ∅, ∅) are always included in SR to account
for the input and output of a given composition task T .

We use matchmaking types to describe the level of a match
between outputs and inputs [46]. For concepts a, b in O
the matchmaking returns exact if a and b are equivalent
(a ≡ b), plugin if a is a sub-concept of b (a v b), subsume
if a is a super-concept of b (a w b), and fail if none
of previous matchmaking types applies. In this paper we

5

TABLE 2: QoS calculation for a composite service C

C = rC = aC = ctC = tC =

•(C1, . . . , Cd)
d∏

k=1

rCk

d∏
k=1

aCk

d∑
k=1

ctCk

d∑
k=1

tCk

‖ (C1, . . . , Cd)
d∏

k=1

rCk

d∏
k=1

aCk

d∑
k=1

ctCk
MAX{tCk

|k ∈ {1, ..., d}}

+(C1, . . . , Cd)
d∏

k=1

pk · rCk

d∏
k=1

pk · aCk

d∑
k=1

pk · ctCk

d∑
k=1

pk · tCk

∗C0 rC0
` aC0

` ` · ctC0
` · tC0

are only interested in exact and plugin matches for robust
compositions, see [47]. As argued in [47] plugin matches
are less preferable than exact matches due to the overheads
associated with data processing. For plugin matches, the
semantic similarity of concepts is suggested to be considered
when comparing different plugin matches.

A robust causal link [48] is a link between two matched
services S and S′, denoted as S → S′, if an output a
(a ∈ OS) of S serves as the input b (b ∈ OS′) of S′

satisfying either a ≡ b or a v b. For concepts a, b in O,
the semantic similarity sim(a, b) is calculated based on the
edge counting method in a taxonomy like WorldNet [49].
Advantages of this method are simple calculation and good
semantic measurement [49]. As discussed in [48], we use
matchmaking type (typelink) and semantic similarity (simlink)
to denote robust causal link, which is defined as follows:

typelink =

{
1 if a ≡ b (exact match)
p if a v b (plugin match)

(1)

simlink = sim(a, b) =
2Nc

Na + Nb
(2)

with a suitable parameter p, 0 < p < 1, and withNa,Nb and
Nc, which measure the distances from concept a, concept b,
and the closest common ancestor c of a and b to the top
concept of the ontology O, respectively. If more than one
pair of matched output and input exist from service S to
service S′, typee and sime will take on their average values.

The QoSM of a composite service measured by match-
making type (MT) and semantic similarity (SIM) is obtained
by aggregating all robust causal links as follows:

MT=

m∏
j=1

typelinkj
(3)

SIM=
1

m

m∑
j=1

simlinkj
(4)

Formal expressions as in [50] are used to represent ser-
vice compositions. The constructors •, ‖, + and ∗ are used to
denote sequential composition, parallel composition, choice,
and iteration, respectively. The set of composite service expres-
sions is the smallest collection SC that contains all atomic
services and that is closed under these constructors. That
is, whenever C0, C1, . . . , Cd are in SC then •(C1, . . . , Cd),
‖ (C1, . . . , Cd), +(C1, . . . , Cd), and ∗C0 are in SC, too. Let
C be a composite service expression. If C denotes an atomic
service S then its QoS is given by QoSS . Otherwise the QoS
of C can be obtained inductively as summarized in Table 2.

Herein, p1, . . . , pd with
d∑

k=1
pk = 1 denote the probabilities

of the different options of the choice +, while ` denotes the
average number of iterations. Therefore, QoS of a service
composition solution, i.e., availability (A), reliability (R),

execution time (T), and cost (CT) can be obtained by
aggregating aC , rC , tC and ctC as in Table 2.

In the presentation of this paper, we mainly focus on
two constructors, sequence • and parallel ‖, similar to most
automated service composition works [8, 25, 28, 27, 51],
where a composite service is often represented in the form
of a directed acyclic graph (DAG, denoted as G). In a
DAG, nodes represent web services (also called component
services) and edges represent robust causal links. A com-
posite service can also be indirectly represented as a per-
mutation Π = (π0, π1, . . . , πn−1), elements of which are
{0, 1, . . . , n − 1} such that πi 6= πj for all i 6= j. Each
element in Π represents a unique index of a web service
in the service repository. According to [8], a permutation Π
needs to be interpreted, and can be further decoded into a
G (denoted as Π ⇒ G). Such a decoding process can ensure
the validity of composite services if Π ⇒ G holds, see details
in Sect. 4.3.

In a static composition environment, QoS of composite
services seldom change. To involve multiple quality criteria
in decision making in such a static composition environ-
ment, the fitness of a solution is defined as a weighted sum
of all individual criteria in Eq. (5), assuming the preference
of each quality criterion based on its relative importance is
provided by the user [52]:

fcq(Π) =

w1M̂T + w2

ˆSIM + w3Â + w4R̂+

w5(1− T̂) + w6(1− ĈT) if Π ⇒ G
0 otherwise

(5)

with
∑6

k=1 wk = 1. This objective function is defined as
a comprehensive quality, denoted as fcq , for service compo-
sition. We can adjust the weights according to the user’s
preferences. M̂T , ˆSIM , Â, R̂, T̂ , and ĈT are normalized
to the range from 0 to 1 using Eq. (6). To simplify the pre-
sentation we also use the notation (Q1, Q2, Q3, Q4, Q5, Q6)
= (MT,SIM,A,R, T,CT). Q1 and Q2 have minimum
value 0 and maximum value 1. The minimum and max-
imum value of Q3, Q4, Q5, and Q6 are calculated across
all the relevant services. Note that relevant services are
discovered based on the composition task over the service
repository SR using greedy search, see details in [5, 27, 28].

Q̂k =

Qk−Qk,min

Qk,max−Qk,min
if k = 1, . . . , 4 and Qk,max −Qk,min 6= 0,

Qk,max−Qk

Qk,max−Qk,min
if k = 5, 6 and Qk,max −Qk,min 6= 0,

1 otherwise.
(6)

The goal of the static web service composition is to find a
composite service C? that maximises the objective function
in Eq. (5) for a given composition task T .

3.2 Robust web service composition
In this paper, we consider Robust Web Service Composition
for handling stochastic Service Failures (henceforth referred

6

One Baseline
Solution Π

One repaired
Solution Π !

Two-Phase Robust Service
Composition

Objective

Robustness
Measure

Design Phase
(Offline Phase)

Genetic Algorithm

Execution Phase
(Online Phase)
Local Search

Objective

Comprehensive
Quality

Yes
If

invocation
on Π
fails

No

Service
Repository

Ontology

Composition	
Task

Service Providers

Service Requester

Register

Send

Domain Expert

Provide

Scenarios
ℚ

System outputs

Switch

System Inputs

Fig. 1: two-phase robust web service composition and execution process

to as RWSC-SF). We recently modelled this problem as a
two-phase web service composition problem, consisting of
the design phase and the execution phase [17]. In the design
phase, it aims to construct baseline composite services (i.e.,
services to be deployed over the Internet) with optimised
robustness by explicitly considering stochastic service fail-
ures. The baseline solution is further tested in the execution
phase. Note that “tested” in this paper refers to simulated
evaluations of a composite service for its execution. Such a
solution is expected to continue working reliably or be easily
repaired during testing.

To explicitly consider robustness in the design phase,
scenario-based simulation methods are often used to eval-
uate the robustness through the use of a continuous or
discrete scenarios set [53]. Our recent work [17] defined the
robustness of a composite service in the presence of stochastic
service failures that create a discrete set of scenarios Q.
A scenario Q ∈ Q corresponds to a set of services {Sj}
that remain accessible during the execution of a composite
service, where

∑
Q∈Q Pr(Q) = 1. Let L (Π, Q) be a local

search operator (i.e., an efficient re-optimization technique)
that produces a new feasible composite solution Π′ for Q
through applying local changes to Π. The robustness is
defined as the expected quality of a composite service across
all possible scenarios and can be directly estimated through
Monte Carlo sampling [18] as follows:

r(Π) =
∑
Q∈Q

fcq(L (Π, Q))Pr(Q) ≈
1

N

N∑
i=1

fcq(L (Π, Qi)) (7)

where N is the sample size. Particularly, in Eq. (7), Π is eval-
uated N times based on N sampled Qi. fcq(Π) measures
the comprehensive quality of a composite service defined in
Eq. (5).

Our two-phase robust web service composition system
is illustrated in Fig. 1. This composition system requires
three inputs: a composition task initialised by the service
requester, a service repository provided by the service
providers, and an ontology defined by the domain experts.
At the design phase, a global searching technique, such
as an EC method can be utilised to efficiently search for
a baseline solution Π with optimised robustness using a
fitness function based on any proposed robustness measure,
such as Eq. (5). This robust composite service Π serves as
an output of a robust service composition system. At the

execution phase, the baseline solution will be executed if
none of its component services fails. Otherwise, this baseline
solution will be repaired through a local search technique to
resume its feasibility, and its execution continues thereafter.
This repairing process does not guarantee that the solution
Π can always be repaired because no composition services
G could be decoded from Π for some scenarios, i.e., Π ⇒ G
does not hold. In contrast, for other scenarios, a repaired
solution Π′ is returned and does not depend on any failed
services at the time of the execution. Note that the same
local search operator is used in both the design phase and
execution phase.

4 A GA-2STAGE APPROACH TO RWSC-SF
In this section, we first present our fitness approximation
method in Sect. 4.1. Subsequently, we will outline the main
steps of our two-stage GA-Based approach to robust web
service composition in Sect. 4.2. We will also discuss some
essential steps in detail, such as representation of composi-
tion solutions, evolutionary control, genetic operators, and
simulation-based evaluations.

Fitness approximation has been applied with some re-
cent success to estimate the robustness of composite solu-
tions for handling stochastic service failures using Monte
Carlo sampling, performing a cheap but not necessarily
accurate fitness estimation in the frame of evolutionary
computation. The success, however, strongly depends on
the accuracy (i.e., the size of sampling) of the approximation
that must be investigated in advance to ensure a reliable
survival strategy in an evolutionary optimisation process.
Apart from the accuracy, the cost of sampling must be
determined to ensure a good trade-off. However, when
the size of the service repository increases, Monte Carlo
sampling may become computationally very expensive for
reliably approximating the fitness. This is because a very
large sampling size is required to ensure the approximated
fitness to be used to distinguish individuals in the evo-
lutionary process. Therefore, a new scenario-based fitness
estimation method with fewer sampled scenarios, rather
than randomly sampled scenarios, should be developed to
achieve an ideal trade-off among accuracy and sampling
cost. Particularly, we define an important lower bound of
expected fitness as an approximated fitness to be max-
imised. We expect that improvement in lower bound leads

7

Current Generation Archive

No

Improvement
on Robustness

in 𝑔"#$ Generations?

Fitness Evaluation
on Comprehensive
Quality

Current Generation

Breed

Yes

Evolutionary Control

Update

Stage One Stage Two

Next Generation Next Generation

Breed

Re-Initialize

Fitness Evaluation
on Robustness

Fig. 2: Two-stage GA with fitness approximation for solving RWSC-SF

to improvement in true robustness with a high probability.
This is achieved by carefully selecting different scenarios,
each of which only considers one service failure that is more
likely to happen, see details in Sect. 4.1. Consequently, the
robustness is estimated based on these selected scenarios
with weights that measure their importance.

Moreover, to further reduce the computation time with-
out decreasing algorithm effectiveness, a two-stage GA
with fitness approximation will be introduced along with
the proposed fitness approximation method above. The
robustness of evolved composite services in the first stage
is more roughly estimated based on individuals’ compre-
hensive quality when no services will become unavailable,
while solutions in the second stage are more accurately
estimated based on our newly proposed fitness approxi-
mation method. More specifically, stage one tries to effi-
ciently find good individuals that are more likely to have
high robustness. This is because composite solutions found
in stage one can be evolved into solutions with a small
number of component services using evaluations on their
comprehensive quality. Such solutions found in stage one
are unlikely to be affected in the event of service failures
due to their relatively small number of component services.
Consequently, these good solutions can contribute to better
robustness. Therefore, they are stored in an archive and
utilised to initialise the first population in stage two. Such
initialisation is more beneficial in both effectiveness and effi-
ciency, compared to GA-RE that only employs our proposed
robust approximation method through all the generations.

The generation updates and evolutionary control over
the two sequential stages of our method are illustrated
in Fig. 2. In stage one, an archive is utilised to measure
solution improvement in terms of their average robustness.
Once the archive does not have any improvement on the
robustness in ginc consecutive generations, stage two will
start by re-initialising the current generation with solutions
in the archive.

4.1 Fitness approximation
As shown in Eq. (7), the robustness is defined as the ex-
pected quality of a composite service across all possible sce-
narios. As discussed previously, we define a lower bound of
expected fitness as an approximated fitness to be maximized
below:

r(Π) =
∑
Q∈Q

fcq(L (Π, Q))Pr(Q)

>
∑

Q?∈Q?

fcq(L (Π, Q?))Pr(Q?)

=
∑

Q?∈Q?

fcq(L (Π, Q?))prSi

∏
j 6=i

(1− prSj
) (8)

where Q? ⊆ Q are selected scenarios that only have one
service failure, and any Q? ∈ Q? are not identical to each
other. Therefore, the total number of scenarios in Q? equals
to |SR|. Let Si be the failed service in every scenario,
Pr(Q?) can be calculated based on a joint probability of
services in SR. Note that, when service repository is very
big, this joint probability might result in an arithmetic
numerical overflow. To avoid this issue, we can calculate
this joint probability in logarithmic space. Thus it becomes
a sum.

4.2 Outline of GA-2Stage

Our proposed method is outlined in ALGORITHM 1. GA-
2Stage takes five inputs: service composition task T =
(IT , OT), an ontology O that describes all the parameters
of the web services, and the number of neighbours nnb to
be exploited for repairing each solution in the scenarios. In
ALGORITHM 1, we start with initializing an empty archiveA
that plays the role of evolutionary control, and population
P0 with m randomly generated permutations Πg

k (where
k = 1, . . . ,m), see details in Sect. 4.3. In Step 3, we evaluate
each permutation in the initialized population by decoding
it into an interpreted DAG. The decoding method is actually
an application of a forward graph-building algorithm in
[5, 8], see details in Sect. 4.3. The DAG enables an easy
calculation of the comprehensive quality defined in Eq. (5).
The purpose of utilizing this evaluation method has already
been discussed at the beginning of this section. In Step 4, we
adaptively set up the generation number g?, at which stage
two begins based on an archive-based evolutionary control,
see details in Sect. 4.4. The iterative steps (Steps 5 to 15) will
be repeated until the maximum number of generations has
been reached. During each iteration, g? can be adaptively
updated to control the lengths of stage one (i.e. g < g?) and
stage two (i.e. g ≥ g?). In stage one, we produce m new

8

ALGORITHM 1. GA-2Stage for RWSC-SF.
Input : composition task T , Ontology O, service

repository SR, and the number of
neighbors nnb

Output: a baseline solution
1: Set generation counter g ← 0;
2: Initialize an empty archive A and a Pg with m

random permutations, each represented as a Πg
k

(where k = 1, . . . ,m);
3: Evaluate each permutation in Pg using Eq. (5) based

on its decoded DAG, Ggk ;
4: Set g? based on a updated A from Pg ;
5: while g < gmax do
6: if g < g? then // stage one
7: Populate Pg+1 with m permutations from Pg

through the use of genetic operators;
8: Evaluate each permutation in Pg+1 using

Eq. (5);

9: if g = g? then // stage two starts
10: Populate Pg+1 with m permutations from A;
11: Evaluate each permutation in Pg+1 using

Eq. (8);

12: if g > g? then // stage two
13: Populate Pg+1 with m permutations from Pg

through the use of genetic operators;
14: Evaluate each permutation in Pg+1 using

Eq. (8);

15: Set g ← g + 1;

16: Select the best solution Πopt in Pg as a baseline;

permutations to form the next generation Pg+1 by genetic
operators, see details in Sect. 4.5. All the permutations in the
newly formed population are then evaluated using Eq. (5).
The initial population in stage two is constructed from the
archive, and all the permutations in Pg+1 are then evaluated
using the fitness approximation given in Eq. (8). Finally,
the best solution with the highest fitness is returned as a
baseline solution at the end of the evolutionary process.

4.3 Permutation-based representation
Service permutations have been successfully utilized as
indirect representations in the domain of fully automated
service composition [5, 8]. Such a permutation, however,
needs to be interpreted. For that, a decoding algorithm is
used to map a permutation to a DAG. The decoded DAG
presents users with a complete workflow of service execu-
tion and also allows easy calculation of fitness in Eq. (5).

Example 4.1. Let us consider a composition task T =
({a, b}, {e, f}) and a service repository SR consisting of
six atomic services. S0 = ({e, f}, {g}, QoSS0

), S1 =
({b}, {c, d}, QoSS1), S2 = ({c}, {e}, QoSS2), S3 =
({d}, {f}, QoSS3), S4 = ({a}, {h}, QoSS4) and S5 =
({c}, {e, f}, QoSS5). The two special services Start =
(∅, {a, b}, ∅) and End = ({e, f}, ∅, ∅) are defined by a
given composition task T . Fig. 5 illustrates an example of
producing a DAG from a given permutation [4, 1, 0, 2, 3, 5].

In Fig. 5, we check the satisfaction on the inputs of
services in the permutation from left to right. If any services
can be immediately satisfied by the provided inputs of com-
position task IT , we remove it from the permutation and
add it to the DAG with a connection to Start. Afterwards,

𝑺𝟑
Input: d
Output: f

3

𝑺𝟏
Input: 𝑏

Outputs: c,d

1

𝑺𝟎
Inputs: e,f
Output: g

0

𝑺𝟐
Input: c

Output: e

2

𝑺𝟒
Input: a

Output: h

4

4

1

2

3

Start End

𝑰𝑻: { a, b } 𝑂+ 	: { e, f }

1st

2nd

3rd

4th

𝑺𝟓
Input: c

Output: e, f

5

Fig. 3: Decoding a permutation into a DAG

we continue checking on the inputs of services by using the
IT and outputs of the services and add satisfied services
to the DAG. We continue this process until we can add
End to the graph. In the last phase of the decoding process,
some redundant services whose outputs contribute nothing
to End will be removed.

4.4 Archive-based adaptive evolutionary control
The archive-based evolutionary control proposed in our
GA-2Stage algorithm is used to adaptively update the
generation number g?, at which stage two should begin.
Specifically, g? should be increased by ginc generations
based on the robustness changes in the archive, starting
with a predefined generation number. Such an updating
mechanism for g? allows evolved solutions at the updated
generation g? achieve the highest possible robustness with
the least computation resources due to the cheap evaluation
method assigned to stage one.

ALGORITHM 2. Generating g? based on an adaptive
archive-based evolutionary control.

Input : archive A with maximal size m, population
Pg , initial generation number g? and
generation increment step ginc

Output: generation number g?

1: Set generation counter g ← 0;
2: if g < g? then
3: Update A with Pg ;

4: if g = g? then
5: Evaluate each permutation in A using Eq. (8);
6: Calculate average robustness R for permutations

in A;
7: Update A with Pg ;
8: Evaluate each permutation in A using Eq. (8);
9: Calculate average robustness R

′
for

permutations in A;
10: if R

′
> R then

11: g? ← g? + ginc;

12: return g?;

This evolutionary control is outlined in ALGORITHM 2.
This algorithm takes three inputs: an archive of size m that
stores good individuals, the current population Pg , the gen-
eration g? at which stage two should start, and generation
increment step ginc for g?. When g < g?, this algorithm up-
dates the archive by storing all distinct composite services
from Pg based on the comprehensive quality in a descend-
ing order. Subsequently, when g = g?, we evaluate the ro-
bustness of each permutation in the archive using Eq. (8)

9

and calculate the average robustness of all the permutations
as R. After calculating the average robustness R, we cal-
culate the average robustness again as R

′
after updating

the archive. The archive is updated in the same way as we
discussed above. Consequently, we increase g? by ginc if
R
′
> R. Otherwise, g? remains unchanged.

4.5 Genetic Operators
We utilize order crossover [54] and one-point swap mutation
to drive the evolution of robust composite services. Fig. 4
illustrates an example of crossover and mutation for the
selected parent solutions. Particularly, in a crossover, two
children are produced from two parents, and each child
preserves a part of one parent while its remaining elements
are filled by another parent. For example, Child 1 preserves
positions 3 and 4 of Parent 1 while the other parts are filled
from left to right with 1, 5, 2 and 6 that are obtained from
Parent 2 from its left to right. In a mutation, one child
is produced by swapping two elements of the parent. For
example, Child 3 is produced by swapping 2 and 4 in Parent
1.

1 2 3 4 5

3 1 4 5 2

1 5 3 4 2

1 2 4 5 3

Crossover

Parent 1

Parent 2

Child 1

Child 2

1 2 3 4 5

1 4 3 2 5

Mutation

Parent 1

Child 3

6

6

6

6

6

6

Fig. 4: Crossover and mutation

4.6 Fitness approximation based on selected scenar-
ios
In ALGORITHM 3, we outline the calculation process of
the robustness of each permutation Π in a population Pg

using Eq. (8). We firstly produce |SR| scenarios, each of
which only considers one service failure, and is different
from each other. That is followed by identifying the best-
repaired solution (i.e., a neighbouring solution associated
with the highest comprehensive quality obtained through
nnb explored neighbours from Step 4 to Step 6). In step 7,
we calculate Pr(Q) as the weight of scenario Q. After an
iteration over all the scenarios, comprehensive quality of all
the best-repaired solutions over all the scenarios with differ-
ent weights Pr(Q) are summed up according to Eq. (8).

Example 4.2. Let us consider a composition task T =
({a, b}, {e, f}) and a service repository SR consisting of
six atomic services. S0 = ({e, f}, {g}, QoSS0

), S1 =
({b}, {c, d}, QoSS1

), S2 = ({c}, {e}, QoSS2
), S3 =

({d}, {f}, QoSS3
), S4 = ({a}, {h}, QoSS4

) and S5 =
({c}, {e, f}, QoSS5

). The two special services Start =
(∅, {a, b}, ∅) and End = ({e, f}, ∅, ∅) are defined by a
given composition task T . Fig. 5 illustrates an example of
6 selected scenarios that only consider one service failure
at one time, and each service failure is different from each
other. In this example, we use Scenario 6 to demonstrate

ALGORITHM 3. Simulation-based evaluation with
local search (Step 11 and 14 in ALGORITHM 1).

Input : population Pg , the number of neighbor nnb
and service repository SR

Output: evaluated Pg

1 for each Π in Pg do
2 Sample |SR| scenarios based on the number of S

in SR;
3 foreach scenario Q in the |SR| sampled scenarios do
4 Produce another permutation Π? that

encodes Π based on Q;
5 Generate a size nnb of neighbors from Π? by

local search operator;
6 Identify the best neighbor Π′ with the highest

fitness based on Eq. (5);
7 Calculate Pr(Q) as the weight for scenario Q;

8 Set the robustness of Π as a weighted-sum fitness
value of |SR| Π′ based on Eq. (8);

9 return evaluated Pg ;

how a new permutation (i.e., Π?) is produced as a starting
solution point of our local search.

Based on the size of the given service repository SR, we
can produce 6 scenarios. Let {S1, S2, S3, S4, S5} be a pro-
duced scenario with S0 becoming inaccessible. Therefore,
{1, 2, 3, 4, 5} is a set of service indexes corresponding to one
sampled scenario in Fig. 5. In a similar way, {0, 1, 2, 3, 4}
is a set of service indexes corresponding to one sampled
scenario representing the failure of S5. To demonstrate the
repairing process, we also take an arbitrary permutation Π =
[4, 1, 0, 2, 3, 5] as an example solution to the service compo-
sition problem. To encode scenarios for a given permutation
Π, we produce another permutation Π? for each scenario
by only removing the service indexes of failed services from
the permutation, keeping the order of other elements in the
permutation. By doing this, the newly produced permuta-
tion Π? can keep some promising component services from
the candidate Π. For example, two permutations with two
decoded DAGs are created for encoding two scenarios Q1

and Q6 respectively. In the two decoded DAGs, we can see
that the promising service index 1 of the decoded G? from
Π? is inherited from that of the G decoded from Π in Fig. 5.
On the other hand, the decoded DAG G? in Q1 remains the
same as the original G as the failure of S0 has no impact on
the execution of the original G. In such a case, a repairing
process is not involved. On the other hand, the decoded
DAG G? in Q1 is not identical to the original G, as the failure
of S5 prevents the successful execution of the original G.
Therefore, a repairing process will be involved by preparing
a starting point for local search — a tidy-up permutation.

The tidy-up permutation is crucial to the repairing pro-
cess and used to set a good starting point for the local
search. In Fig. 5, we tidy up permutation [4, 1, 0, 2, 3] into
[1, 2, 3, |4, 0] (| is just displayed for the courtesy of the reader,
but not part of the representation) as an input of local search.
We produce this permutation by combining two parts, one
part [1, 2, 3] is service indexes of component service in G?,
sorted based on the longest distance from Start to every
component services of G? while the second part [4, 0] is
indexes of remaining services that are available but not
utilised by G?.

Let Π? = (π0, . . . , πt, |πt+1, . . . , πn−1) be the produced

10

0.02

4
31

0.24 2

0.01

0

0.02

0.21

5

0.35

Given a 𝑆𝑅 consisting of a set of 𝑆 with 𝑝𝑟% :

Produce
521

3 4

Scenario 1: only 𝑆& fails

4 1 5 0 2 3

Given a candidate permutation Π with its decoded 𝒢	:

4

1 5Start End

𝑰𝑻: { a, b } 𝑂- 	: { e, f }

1st

2nd

3rd
Remove it

... 210

3 4

Scenario 6: only 𝑆. fails

Deployed solution remains the same

6 scenarios

Π can be
invocated as
𝑆& fails

Π cannot be
invocated as
𝑆. fails

4 1 0 2 3

A permutation Π∗ corresponding to Scenario 6 is constructed, where local search starts:

4

1

2

3

Start End

𝑰𝑻: { a, b } 𝑂-	: { e, f }

1st

2nd

3rd

4th

Remove it

1 2 3 4 0

Unused servicesUsed services

Permutation Π∗:

Tidy up permutation Π∗

Fig. 5: An example of 6 selected scenarios involved in the lower bound robustness estimation and a new permutation Π?

produced from Scenario 6 as a starting solution point for local search

permutation in Step 4, elements of the permutation are
{0, . . . , t, t + 1, . . . , n − 1} such that πi 6= πj for all i 6= j.
Particularly, {0, . . . , t} are service indexes (i.e., id number)
of the component services in the corresponding G, and is
sorted based on the longest distance from Start to every
component services of G, while {t+1, . . . , n−1} are indexes
of remaining services in SR not utilised by G. Subsequently,
we apply a stochastic local search operator (layer-based
constrained one-point swap, see details in [55]) to Π?. To
perform this local search, the layer information (i.e., differ-
ent layers include different web services as layer members)
must be utilised. Generally speaking, layer information
indicates the order of a service being considered for the
inclusion into a DAG of a composite service, starting from
the input of a composition task IT . For example, the first
layer L1 includes services that can be immediately executed
based on the input of the composition task IT . The second
layer L2 contains those services that can be executed by
using IT and outputs produced by services in L1. Other
layers can be discovered in a similar way, see the layer
discovery technique in [5, 55]. Therefore, a neighbouring
permutation is produced by swapping two selected service
indexes Πa and Πb in the permutation. Particularly, one
service index Πa, where 0 ≤ a ≤ t, is selected, and one
layer Lk, where Lk s.t. Πa ∈ Lk, is identified. Afterwards,
another service index Πb is randomly selected from the
index set Lk ∩ {Πt+1, . . . ,Πn−1}.

Example 4.3. Let us consider a layer-based constrained
one-point swap, starting from the produced permutation
[1, 2, 3, |4, 0] in Example 4.2. Fig. 6 illustrates a process of
producing a neighboring permutation from the given per-
mutation.

For the permutation [1, 2, 3, |4, 0], one service index (e.g.,
1) is firstly randomly selected before the | in the permutation
(i.e., 1, 2 or 3). Then we get the layer information of service
index 1 (e.g., layer L1 contains 1). Afterwards, another ser-
vice index (e.g., 4) is randomly selected from the intersection
set of service indexes in L1 and the service indexes after the
|. Consequently, 1 and 4 are swapped to generate a new

Layer: 𝐿"

Neighbor:

∩2 3 4 0

Unused servicesUsed services

1 4 04 1

Unused services

2 3 1 04

Permutation Π∗:

Fig. 6: A local search operator is performed on the
permutation Π? to produce a neighboring permutation, for

the purpose of searching a high-quality solution under
Scenario 6 in Fig. 5

permutation.

5 EXPERIMENTAL EVALUATION

We conduct experiments to evaluate the performances of
GA-2Stage, GA-RE, GA-MC and FL. GA-2Stage, GA-RE
and GA-MC aim to generate composite services with near-
optimal robustness using Eq. (8) and/or Eq. (7). On the other
hand, FL only focus on generating composite services with
near-optimal comprehensive quality using Eq. (5). We use
three service composition benchmarks (i.e., OWL-S TC [19],
WSC-08 [56] and WSC-09 [57]) to test the performance of the
methods. OWL-S TC has five composition tasks (i.e., OWL-
S TC1 to OWL-S TC5) with services that are collected from
the real-world. One service repository with 946 web services
is used by the five composition tasks. Unlike OWL-S TC,
WSC-08 and WSC-09 includes eight and five composition
tasks respectively with web services that are simulated for
Web Service Challenges competition. Particularly, WSC08
contains 8 composition tasks with increasing size of service
repository, i.e., 158, 558, 608, 1041, 1090, 2198, 4113, and 8119,
and WSC09 contains 5 composition tasks with increasing
size of service repository, i.e., 572, 4129, 8138, 8301, and
15211, respectively. Moreover, each service in OWL-S TC,
WSC-08 and WSC-09 is extended with real-world QoS at-
tributes obtained from QWS dataset [58]. Apart from that,
each service is also associated with a separate service failure

11

TABLE 3: Mean fitness values tested based on the baseline solutions for
GA-2Stage in comparison to GA-RE, FL and GA-MC

(Note: the higher the fitness the better)

Task GA-2Stage GA-RE FL GA-MC
OWLS-TC 1 0.922788± 0.000179 0.922862± 0.00018 0.922791± 0.000311 0.910623± 0.033122
OWLS-TC 2 0.931586± 0.002107 0.932095± 0.000277 0.929618± 0.005009 0.915558± 0.025327
OWLS-TC 3 0.863518± 0.003623 0.863061± 0.00725 0.854218± 0.00779 0.862459± 0.003403
OWLS-TC 4 0.789396± 0.00857 0.791174± 0.004451 0.779121± 0.012348 0.789101± 0.005596
OWLS-TC 5 0.826731± 0.005054 0.826509± 0.005275 0.812852± 0.012388 0.824296± 0.013078

WSC08-1 0.397971± 0.002975 0.398896± 0.003538 0.395194± 0.002782 0.383523± 0.005433
WSC08-2 0.576417± 0.00378 0.576716± 0.00289 0.568166± 0.005362 0.572707± 0.006905
WSC08-3 0.025494± 0.00295 0.02501± 0.001415 0.025118± 0.001333 0.02509± 0.001424
WSC08-4 0.274788± 0.00295 0.275631± 0.002872 0.271112± 0.004133 0.268906± 0.003492
WSC08-5 0.275513± 0.002107 0.275814± 0.003147 0.275259± 0.002625 0.272394± 0.003412
WSC08-6 0.072178± 0.002047 0.072036± 0.001605 0.072017± 0.002114 0.071496± 0.002028
WSC08-7 0.216909± 0.003111 0.217957± 0.00322 0.216321± 0.003162 0.214177± 0.00333
WSC08-8 0.053596± 0.002047 0.054259± 0.001909 0.0536± 0.002007 0.053406± 0.001992

WSC09-1 0.514032± 0.005805 0.514389± 0.006263 0.501957± 0.005435 0.509053± 0.007493
WSC09-2 0.272445± 0.00309 0.272217± 0.002653 0.272905± 0.002886 0.269513± 0.003516
WSC09-3 0.387672± 0.003014 0.386712± 0.002356 0.384879± 0.002562 0.378036± 0.005318
WSC09-4 0.068139± 0.002223 0.067328± 0.001968 0.067515± 0.002214 -
WSC09-5 0.108845± 0.002602 0.109347± 0.002619 0.107809± 0.002011 0.108056± 0.002067

rate. The failure rate of a service is generated from the
normal distribution N (µ, σ2) truncated to the interval [0, 1]
with mean µ and variance σ2. According to the failure rates
reported in [10] and by using 15 000 failure probabilities
observed by 150 users on 100 web services collected from
publicly available real-world WSDL-based web services on
the Internet, µ and σ are set to 0.0405 and 0.1732. The
benchmark data sets and the source code of GA-2Stage
algorithm have been made publicly available online under
MIT License 1

To perform fair comparisons among GA-2Stage, GA-RE,
GA-MC and FL, we follow the parameter setting reported in
the literature [5]: population size m is set to 30, tournament
size is set to 2 and elitism is set to 2. The crossover and
mutation rates are inspired by Koza’s operator settings [59]
and are set to 0.95 and 0.05, respectively. In Eq. (8), for
each solution, the number of scenarios equals the size of
the service repository, and the number of scenarios that
trigger local search equals to the number of component
service utilized by the solution. Therefore, to ensure a fair
comparison with GA-MC, the number of scenarios N in
Eq. (7) for GA-MC does not follow the reported size 50
in [17]. Instead, we ensure a doubled number of scenarios
that employ local search in GA-MC for a more reliable
estimation of robustness. To do that, we keep sampling
scenarios randomly until twice the number of scenarios that
have triggered the local search. Moreover, according to [17],
we set the maximum generation to 100, and the number of
local search steps (i.e., nnb) to 10 for empirically producing
a good compromise between computation cost and service
quality. For the archive-based evolutionary control, the ini-
tial generation number g? and increased generation number
ginc are set to 60 and 6 respectively. For Eq. (5), all weights
are set to balance quality criteria in both QoSM and QoS, i.e.,
w1 and w2 are set to 0.25, and w3, w4, w5 and w6 to 0.125
[8] according to the settings in [8]. We have also conducted
tests with other weight settings and generally observed the
same behaviour.

We run GA-2Stage, GA-RE, GA-MC and FL 30 times
with 30 different random seeds. We then test each baseline
composite service obtained by every run of every algorithm
over 200 different simulated scenarios according to [17].

1. Benchmark data sets, and source code of GA-2Stage are available
from https://github.com/chenwangnida/GAPlusGARobustSurrogate

TABLE 4: Summary of statistical significance tests for mean
fitness values, where each column shows the

win/draw/loss score of one method against a competing
one for all tasks of OWLS-TC, WSC08 and WSC09.

Dataset Method GA-2Stage GA-RE FL GA-MC

OWLS-TC
(5 tasks)

GA-2Stage - 0/5/0 0/1/4 0/3/2
GA-RE 0/5/0 - 0/1/4 0/3/2

FL 4/1/0 4/1/0 - 2/3/0
GA-MC 2/3/0 2/3/0 0/3/2 -

WSC08
(8 tasks)

GA-2Stage - 0/8/0 0/5/3 0/3/5
GA-RE 0/8/0 - 0/5/3 0/3/5

FL 3/5/0 3/5/0 - 0/3/5
GA-MC 5/3/0 5/3/0 5/3/0 -

WSC09
(5 tasks)

GA-2Stage - 0/5/0 0/3/2 0/1/4
GA-RE 0/5/0 - 0/2/3 0/1/4

FL 2/3/0 3/2/0 - 1/1/3
GA-MC 4/1/0 4/1/0 3/1/1 -

For example, let us consider a service repository of 6 web
services {S0, S1, S2, S3, S4, S5} that is discussed in Exam-
ple 4.2. Every single web service may experience service
failure, so there are 26 different failure scenarios that could
be tested for the execution phase. In other words, when
testing we also consider those scenarios where multiple web
services fail at the execution phase. Note that, scenarios
considered at the design phase are different from those 200
simulated scenarios sampled for testing, such differences
are important because we want to accurately measure the
robustness of any composite service during the execution
phase. Subsequently, we use two-sample t-test with a sig-
nificance level of 5% to verify the observed difference in
the mean fitness values and the execution times tested on
the baselines found by GA-2Stage, GA-RE, GA-MC and FL.
Lastly, we further study the benefits of the robust estimation
models, i.e., the lower bound robust estimation in Eq. 8 and
the Monte Carlo estimation in Eq. 7, and demonstrate their
accuracy in ranking candidate solutions using Kendall’s Tau
test with a significance level of 5%.

5.1 Comparison of the effectiveness
To study the effectiveness of GA-2Stage, GA-RE, FL and
GA-MC in finding robust baseline solutions, Table. 3 shows
the mean fitness values and standard deviations obtained
from testing on baseline solutions for GA2-Stage, GA-RE, FL
and GA-MC over 30 runs, and each run is tested over 200
random scenarios of service failures at the execution phase.
We verify the significant differences in the fitness values

12

using two-sample t test, and the winner is highlighted in
the table. In particular, we use pairwise comparisons among
GA-2Stage, GA-RE, GA-MC and FL using independent-
sample T-test with a significance level of 5% to verify
the observed differences in performance concerning fitness
values. Afterwards, the top performances are identified, and
its related value is highlighted in green color in Table 3.
The pairwise comparison results for fitness are summa-
rized in Table 4, where win/draw/loss shows the scores
of one method compared to all the others, and displays
the frequency that this method outperforms, equals or is
outperformed by the competing method. This testing and
comparison methods are also used in Sect 5.2. Note that all
the P-values are lower than 0.001, and any “−” in the tables
means results cannot be collected since the related testing
instances has been running for more than 16 days for the
design phase.

Compared to FL and GA-MC, GA-2Stage and GA-RE
outperform these two methods as evidenced by the per-
formance, summarised in Table 4. Particularly, baseline so-
lutions produced by GA-2Stage and GA-RE both achieve
consistently good performance for all the tasks in OWLS-TC,
WSC-08, and WSC-09 as top performers regardless of the
size of the service repository. Therefore, composite services
produced by GA-2Stage and GA-RE are more likely to main-
tain a good quality despite stochastic service failures. This

finding matches well with our expectation that our fitness
approximation in GA-2Stage and GA-RE is very effective in
dealing with service composition tasks with both small and
large service repositories. Moreover, the effectiveness of GA-
2Stage and GA-RE are very comparable to each other. This
observation agrees with our expectation that GA-2Stage
can maintain the effectiveness of GA-RE in finding robust
composite services by our cheap two-stage evaluations,
without performing fitness approximation throughout all
the generations.

Moreover, for the two baseline methods FL and GA-MC,
GA-MC outperforms FL in OWLS-TC benchmark while the
same performance cannot be observed from WSC08 and
WSC-09 benchmarks. This is because the robustness mea-
sure using Eq. (7) in GA-MC presents low variances for the
OWLS-TC benchmarks with small service repository size.
This robustness measure can be reliable to distinguish good
or bad solutions during the evolutionary process, compared
to that in the WSC-08 and WSC-09 benchmarks with large
service repository size. In other words, for large bench-
mark datasets, such as WSC-08 and WSC-09, the robustness
measure in GA-MC presents high variances and cannot be
reliably used as fitness values in any EC technique.

TABLE 5: Mean execution time (in s) observed for
GA-2Stage in comparison to GA-RE, FL and GA-MC at the design phase

(Note: the shorter the time the better)

Task GA-2Stage GA-RE FL GA-MC
OWLS-TC 1 101.009067± 23.07637 221.854233± 63.968435 2.279767± 0.594116 319.139533± 76.385136
OWLS-TC 2 35.9972± 31.302637 51.851± 34.814491 1.502733± 0.163235 115.441333± 71.247137
OWLS-TC 3 13.0314± 4.849419 27.075967± 14.63108 1.4005± 0.132212 55.393333± 24.899348
OWLS-TC 4 173.224267± 116.190079 468.054967± 342.97007 13.785767± 21.966587 786.6216± 365.605208
OWLS-TC 5 336.6059± 206.179729 901.813933± 598.884817 19.577733± 71.642104 1263.4348± 807.615199

WSC08-1 362.312133± 77.091671 1153.114633± 157.16768 14.593633± 7.036069 2401.1046± 290.709963
WSC08-2 136.833233± 32.808761 346.3632± 88.461812 9.5453± 5.685242 630.930267± 98.000929
WSC08-3 5445.803933± 2356.34388 20646.882333± 2831.701793 297.080867± 50.772516 8243.711267± 827.243178
WSC08-4 363.368233± 46.265638 946.272833± 116.302594 22.1297± 5.09158 1223.7892± 119.670871
WSC08-5 5411.626833± 1754.906719 21636.348867± 2504.446328 287.389433± 69.087335 33964.1487± 5147.121731
WSC08-6 58857.504067± 42330.514059 309276.646467± 36848.385724 3056.054767± 744.411865 304471.121333± 37767.070623
WSC08-7 8399.0462± 2735.343313 26800.4088± 4888.82274 477.589233± 166.107954 36787.8031± 5155.913198
WSC08-8 10500.235667± 4032.270104 39111.0008± 5217.311172 572.005833± 96.59887 22512.887867± 2243.886478

WSC09-1 327.1701± 80.081116 943.368733± 269.944223 15.832667± 12.600583 1633.791± 284.342794
WSC09-2 11490.332567± 3504.752592 40003.2077± 5467.541146 499.271067± 183.33795 61763.3132± 7293.294917
WSC09-3 6117.213533± 1423.425485 17718.882467± 3384.984318 401.276233± 238.865704 38380.1644± 7324.715594
WSC09-4 223757.395885± 192691.648686 1420123.714684± 292166.614721 11110.008733± 2371.111691 -
WSC09-5 50052.6394± 17629.244248 174415.461533± 34932.061346 1972.0222± 713.868674 160876.807733± 16575.127178

TABLE 6: Mean execution time (in ms) per scenario by local search based on
the baseline solutions found by GA-2Stage in comparison to GA-RE, FL and GA-MC

(Note: the shorter the time the better)

Task GA-2Stage GA-RE FL GA-MC
OWLS-TC 1 0.185822± 0.075933 0.155067± 0.06195 0.194944± 0.095481 2.339717± 6.703382
OWLS-TC 2 0.95495± 1.129079 0.456811± 0.323291 1.173133± 1.618681 4.135078± 7.997827
OWLS-TC 3 1.160528± 0.836618 0.788439± 0.574859 1.363739± 0.892455 0.926944± 0.666366
OWLS-TC 4 8.860739± 5.273149 9.315556± 7.508798 10.824494± 5.943972 10.265489± 6.760639
OWLS-TC 5 15.748111± 12.911706 12.694856± 10.350321 22.812806± 21.672252 16.579461± 22.341204

WSC08-1 21.327167± 2.756077 21.454789± 2.873897 20.090467± 2.6058 25.159133± 3.281322
WSC08-2 12.451461± 3.029406 12.090028± 3.017539 12.761439± 2.55482 11.707733± 3.262212
WSC08-3 32.899689± 3.254111 33.112011± 4.172865 32.191772± 3.75622 33.462789± 4.481216
WSC08-4 16.180183± 2.256799 14.979589± 1.932228 15.879867± 2.083646 16.741572± 2.032044
WSC08-5 179.797372± 17.259394 175.223117± 20.767383 184.219939± 17.570621 184.892367± 24.642377
WSC08-6 911.157344± 121.979441 891.088928± 75.58605 929.152878± 85.605171 907.872372± 84.003491
WSC08-7 214.58365± 25.636885 207.045233± 21.754379 205.707067± 23.674507 221.702394± 32.026932
WSC08-8 88.189956± 10.84816 88.570883± 7.407168 88.2868± 8.049778 91.657628± 8.401898

WSC09-1 25.138389± 6.636436 25.804± 6.851249 24.943722± 5.962107 29.2981± 7.077208
WSC09-2 297.721911± 33.783551 315.269294± 31.808168 297.211728± 21.107784 312.352106± 38.903679
WSC09-3 302.659394± 57.691578 306.980983± 35.572703 297.8739± 42.378935 315.209356± 48.449898
WSC09-4 3411.716628± 447.572982 3560.59905± 449.65906 3528.859594± 620.60136 -
WSC09-5 603.66355± 117.838659 606.873822± 67.904197 581.632528± 64.545121 608.908839± 50.244834

13

5.2 Comparison of the efficiency
To study the efficiency of GA-2Stage, GA-RE, FL and GA-
MC at both design phase and execution phase, Tables 5
and 6 show execution times observed for design phase
and execution phase, respectively, over 30 runs. We keep
employing pairwise comparisons with two-sample T test to
detect any noticeable differences in the experiment results
in the efficiency, see Tables 7 and 8.
TABLE 7: Summary of statistical significance tests for mean

execution time, where each column shows the
win/draw/loss score of one method against a competing

one for all tasks of OWLS-TC, WSC08 and WSC09.

Dataset Method GA-2Stage GA-RE FL GA-MC

OWLS-TC
(5 tasks)

GA-2Stage - 0/0/5 5/0/0 0/0/5
GA-RE 5/0/0 - 5/0/0 0/0/5

FL 0/0/5 0/0/5 - 0/0/5
GA-MC 5/0/0 5/0/0 5/0/0 -

WSC08
(8 tasks)

GA-2Stage - 0/0/8 8/0/0 0/0/8
GA-RE 8/0/0 - 8/0/0 0/0/8

FL 0/0/8 0/0/8 - 0/0/8
GA-MC 8/0/0 8/0/0 8/0/0 -

WSC09
(5 tasks)

GA-2Stage - 5/0/0 0/0/5
GA-RE 5/0/0 - 5/0/0 0/0/5

FL 0/0/5 0/0/5 - 0/0/5
GA-MC 5/0/0 5/0/0 5/0/0 -

TABLE 8: Summary of statistical significance tests for mean
execution time per scenario, where each column shows the
win/draw/loss score of one method against a competing

one for all tasks of OWLS-TC, WSC08 and WSC09.

Dataset Method GA-2Stage GA-RE FL GA-MC

OWLS-TC
(5 tasks)

GA-2Stage - 0/5/0 0/5/0 0/5/0
GA-RE 0/5/0 - 0/5/0 0/5/0

FL 0/5/0 0/5/0 - 0/5/0
GA-MC 0/5/0 0/5/0 0/5/0 -

WSC08
(8 tasks)

GA-2Stage - 0/8/0 0/8/0 0/8/0
GA-RE 0/8/0 - 0/8/0 0/8/0

FL 0/8/0 0/8/0 - 0/8/0
GA-MC 0/8/0 0/8/0 0/8/0 -

WSC09
(5 tasks)

GA-2Stage - 0/5/0 0/5/0 0/5/0
GA-RE 0/5/0 - 0/5/0 0/5/0

FL 0/5/0 0/5/0 - 0/5/0
GA-MC 0/5/0 0/5/0 0/5/0 -

At the design phase, see Tables 5 and Tables 7, we can
observe that FL consistently takes significantly less execu-
tion time (in seconds) comparing to all the other methods.
This is because the fitness evaluation in FL through Eq. (5)
is far more efficient than GA-Stage, GA-RE and GA-MC.
On the other hand, GA-MC consistently requires the most
execution time in the design phase, while GA-RE requires
the second most execution time in the design phase. This
is because a single evaluation of one candidate solution
involves N calculations of comprehensive quality using
Eq. (7). This N is much larger than the number of scenarios
in GA-RE using Eq. (8). As we discussed in Sect. 5.1, GA-MC
become less reliable when it is tested on a large benchmark.
Although we increase N in Eq. (7) to allow more accurate
robustness approximation, GA-MC does not outperform
GA-2Stage for finding high-robustness solutions.

GA-RE requires less significant execution time at the
design phase, compared to GA-MC. This is because the
efficiency of evolving robust composite services is further
improved with the help of fitness approximation used in
GA-RE. On the other hand, although GA-RE consumes
much longer execution time at the design phase, GA-RE
gains much higher quality against the stochastic service
failures at the execution phase, see the previous discussion
in Sect. 5.1.

In addition, GA-2Stage further improves the efficiency
of GA-RE by introducing a two-stage optimisation process
with adaptive evolutionary control. This is because the
majority of the generations in GA-2Stage employ a single
evaluation via comprehensive quality using Eq. (5), while
the rest of the generations employ the fitness approximation
using Eq. (8). Meanwhile, GA-2Stage can still maintain high
effectiveness in finding high-robustness baseline solutions.

At the execution phase, see Table 6, no results are high-
lighted in the tables since we do not observe any significant
difference among any two competing methods. This indi-
cates that baseline solutions produced by all the methods
for every task need a similar amount of time to be repaired
in the event of service failures. This amount of repair time
is independent of the design phase. Moreover, this amount
of repair time is far less than the execution required at
the training stage, and the frequency of producing baseline
solutions by all the methods is also far less frequent than
that of repairing the baseline solutions by local search.

5.3 Comparison of the accuracy in robustness estima-
tion
To study the accuracy of the lower bound robust estimation
(called rLB) in Eq. (8) and the Monte Carlo estimation
(called rMC) in Eq. (7), we compare each of them with the
testing results, which serve as the “ground truth” of the
robustness of any composite service in this study. Particu-
larly, we are interested in how accurate different estimation
methods are capable of ranking multiple composite services.
For this purpose, we firstly record the fitness values of 30
composite services measured by the lower bound robust
estimation, Monte Carlo estimation, and the “ground truth”,
for WSC09-1. Afterwards, we calculate the rank correlation
between the rLB and the “ground truth”, and between the
rMC and the “ground truth”, using Pearson, Kendall’s tau
and Spearman’s rho.

Table 9 shows the correlation coefficient values and P-
values of Pearson, Kendall’s tau and Spearman’s rho over
two pairs of ranks, i.e., rLB and the “ground truth”, and
rMC and the “ground truth”. We can see that both two
correlation tests reject the null hypothesis that the two ranks
are uncorrelated because all the P-values are less than 0.05.
In addition, we can observe that the correlation coefficient
between rLB and the “ground truth” is consistently higher
than that between rMC and the “ground truth”. This indi-
cates that lower bound robust estimation is more accurate
than the Monte Carlo robust estimation.
TABLE 9: Results of three statistical correlation tests using

Pearson, Kendall’s tau, and Spearman’s rho.

Method rLB rMC

Pearson Correlation coefficient 0.611078 0.426510
P-value 0.000334 0.018756

Kendall’s tau Correlation coefficient 0.452137 0.310345
P-value 0.000468 0.016017

Spearman’s rho Correlation coefficient 0.615333 0.493215
P-value 0.000296 0.005615

6 CONCLUSIONS

In this paper, we proposed a fitness approximation method
for measuring the robustness of composite services, and
two-stage GA with fitness estimation, namely GA-2Stage,
for handling stochastic service failures. In particular, we
proposed a robustness measure using a lower bound of
the expected fitness function. GA-2Stage is proposed with

14

an archive-based adaptive evolutionary control over two
sequential stages to efficiently and effectively produce base-
line solutions with high robustness regardless of the size of
the service repository. Such baseline solutions can handle
situations that some of the component services are not
available at the execution phase via an efficient local search
to find feasible and high-quality solutions at the execution
phase. Our experimental evaluation shows that GA-2Stage
can efficiently produce high-robustness baseline solutions
consistently compared to a state-of-the-art FL method that
merely focuses on searching high-quality solutions and a
recently proposed GA method based on Monte Carlo sam-
pling. Besides that, with the help of our proposed evolu-
tionary control, GA-2Stage can also achieve much higher
efficiency at the design phase with negligible impact on
finding high-robustness solutions. In the future, we can
study the applications of the proposed robustness estima-
tion and the adaptive evolutionary control mechanism in
other evolutionary algorithms.

REFERENCES

[1] F. Curbera, W. Nagy, and S. Weerawarana, “Web services: Why
and how,” in Workshop on Object-Oriented Web Services-OOPSLA,
vol. 2001, 2001.

[2] J. Rao and X. Su, “A survey of automated web service composition
methods,” in International Workshop on Semantic Web Services and
Web Process Composition. Springer, 2004, pp. 43–54.

[3] Y. Chen, J. Huang, and C. Lin, “Partial selection: An efficient
approach for QoS-aware web service composition,” in IEEE Int.
Conf. on Web Services. IEEE, 2014, pp. 1–8.

[4] P. Rodriguez-Mier, M. Mucientes, M. Lama, and M. I. Couto,
“Composition of web services through genetic programming,”
Evolutionary Intelligence, vol. 3, no. 3-4, pp. 171–186, 2010.

[5] A. S. da Silva, Y. Mei, H. Ma, and M. Zhang, “Evolutionary
computation for automatic web service composition: an indirect
representation approach,” J. Heuristics, pp. 425–456, 2018.

[6] S. Chattopadhyay, A. Banerjee, and N. Banerjee, “A fast and scal-
able mechanism for web service composition,” ACM Transactions
on the Web (TWEB), vol. 11, no. 4, p. 26, 2017.

[7] C. Wang, H. Ma, G. Chen, and S. Hartmann, “GP-based approach
to comprehensive quality-aware automated semantic web service
composition,” in Asia-Pacific Conf. on Simulated Evolution and Learn-
ing. Springer, 2017, pp. 170–183.

[8] ——, “Knowledge-driven automated web service composition —
an EDA-based approach,” in Int. Conf. on Web Information Systems
Engineering. Springer, 2018, pp. 135–150.

[9] H. Yin, C. Zhang, B. Zhang, Y. Guo, and T. Liu, “A hybrid
multiobjective discrete particle swarm optimization algorithm for
a SLA-aware service composition problem,” Mathematical Problems
in Engineering, 2014.

[10] Z. Zheng, Y. Zhang, and M. R. Lyu, “Investigating QoS of real-
world web services,” IEEE Trans. Services Computing, vol. 7, no. 1,
pp. 32–39, 2014.

[11] D. Kuropka, P. Tröger, S. Staab, and M. Weske, Semantic service
provisioning. Springer, 2008.

[12] A. M. Daniel and T. Menasc, “QoS issues in web services,” IEEE
Internet Computing, vol. 6, no. 6, pp. 72–75, 2002.

[13] F. Boudries, S. Sadouki, and A. Tari, “A bio-inspired algorithm
for dynamic reconfiguration with end-to-end constraints in web
services composition,” Service Oriented Computing and Applications,
vol. 13, no. 3, pp. 251–260, 2019.

[14] D. Ardagna and B. Pernici, “Adaptive service composition in
flexible processes,” IEEE Trans. Software Engineering, vol. 33, no. 6,
pp. 369–384, 2007.

[15] A. Mostafa and M. Zhang, “Multi-objective service composition in
uncertain environments,” IEEE Trans. Services Computing, 2015.

[16] L. Wang, J. Shen, and J. Luo, “Impacts of pheromone modification
strategies in ant colony for data-intensive service provision,” in
IEEE Int. Conf. on Web Services. IEEE, 2014, pp. 177–184.

[17] C. Wang, H. Ma, A. Chen, and S. Hartmann, “Towards robust
web service composition with stochastic service failures based
on a genetic algorithm,” in Australasian Joint Conf. on Artificial
Intelligence. Springer, 2019, pp. 445–459.

[18] R. Y. Rubinstein and D. P. Kroese, Simulation and the Monte Carlo
method. Wiley, 2016, vol. 10.

[19] U. Küster, B. König-Ries, and A. Krug, “Opossum-an online portal
to collect and share SWS descriptions,” in Semantic Computing,
2008 IEEE International Conference on. IEEE, 2008, pp. 480–481.

[20] W. Du, W. Zhong, Y. Tang, W. Du, and Y. Jin, “High-dimensional
robust multi-objective optimization for order scheduling: A deci-
sion variable classification approach,” IEEE Transactions on Indus-
trial Informatics, vol. 15, no. 1, pp. 293–304, 2018.

[21] Y. Jin, J. Branke et al., “Evolutionary optimization in uncertain
environments-a survey,” IEEE Transactions on evolutionary compu-
tation, vol. 9, no. 3, pp. 303–317, 2005.

[22] Y. Jin, “Surrogate-assisted evolutionary computation: Recent ad-
vances and future challenges,” Swarm and Evolutionary Computa-
tion, vol. 1, no. 2, pp. 61–70, 2011.

[23] C. Wang, H. Ma, A. Chen, and S. Hartmann, “Comprehensive
quality-aware automated semantic web service composition,” in
Australasian Joint Conf. on Artificial Intell. Springer, 2017, pp. 195–
207.

[24] N. Arunachalam and A. Amuthan, “Integrated probability multi-
search and solution acceptance rule-based artificial bee colony
optimization scheme for web service composition,” Natural Com-
puting, pp. 1–16, 2019.

[25] A. S. da Silva, H. Ma, and M. Zhang, “Graphevol: a graph
evolution technique for web service composition,” in Database and
Expert Systems Applications. Springer, 2015, pp. 134–142.

[26] S. Chattopadhyay and A. Banerjee, “Qos-aware automatic web
service composition with multiple objectives,” ACM Transactions
on the Web (TWEB), vol. 14, no. 3, pp. 1–38, 2020.

[27] A. S. da Silva, H. Ma, and M. Zhang, “Genetic programming for
QoS-aware web service composition and selection,” Soft Comput-
ing, pp. 1–17, 2016.

[28] H. Ma, A. Wang, and M. Zhang, “A hybrid approach using genetic
programming and greedy search for QoS-aware web service com-
position,” Trans. Large-Scale Data Knowledge-Centered Syst., vol. 18,
pp. 180–205, 2015.

[29] Y. Yu, H. Ma, and M. Zhang, “An adaptive genetic programming
approach to QoS-aware web services composition,” in 2013 IEEE
Congress on Evolutionary Computation, 2013, pp. 1740–1747.

[30] X. Jian, Q. Zhu, and Y. Xia, “An interval-based fuzzy ranking
approach for QoS uncertainty-aware service composition,” Optik-
International Journal for Light and Electron Optics, vol. 127, no. 4, pp.
2102–2110, 2016.

[31] S.-Y. Hwang, C.-C. Hsu, and C.-H. Lee, “Service selection for
web services with probabilistic QoS,” IEEE transactions on services
computing, vol. 8, no. 3, pp. 467–480, 2014.

[32] A. Amin, A. Colman, and L. Grunske, “An approach to forecasting
QoS attributes of web services based on arima and garch models,”
in IEEE Int. Conf. on Web Services. IEEE, 2012, pp. 74–81.

[33] M. Li, Z. Hua, J. Zhao, Y. Zou, and B. Xie, “Arima model-based
web services trustworthiness evaluation and prediction,” in Int.
Conf. on Service-Oriented Computing. Springer, 2012, pp. 648–655.

[34] S. Chattopadhyay and A. Banerjee, “QSCAS: QoS aware web
service composition algorithms with stochastic parameters,” in
2016 IEEE International Conference on Web Services (ICWS). IEEE,
2016, pp. 388–395.

[35] X. Sun, J. Chen, Y. Xia, Q. He, Y. Wang, X. Luo, R. Zhang,
W. Han, and Q. Wu, “A fluctuation-aware approach for predictive
web service composition,” in 2018 IEEE International Conference on
Services Computing (SCC). IEEE, 2018, pp. 121–128.

[36] X. Sun, S. Wang, Y. Xia, and W. Zheng, “Predictive-trend-
aware composition of web services with time-varying quality-of-
service,” IEEE Access, vol. 8, pp. 1910–1921, 2020.

[37] S. C. Geyik, B. K. Szymanski, and P. Zerfos, “Robust dynamic
service composition in sensor networks,” IEEE Trans. Services
Computing, pp. 560–572, 2013.

[38] F. Wagner, F. Ishikawa, and S. Honiden, “Robust service composi-
tions with functional and location diversity,” IEEE Trans. Services
Computing, vol. 9, no. 2, pp. 277–290, 2016.

[39] K.-J. Lin, J. Zhang, Y. Zhai, and B. Xu, “The design and imple-
mentation of service process reconfiguration with end-to-end qos
constraints in soa,” Service Oriented Computing and Applications,
vol. 4, no. 3, pp. 157–168, 2010.

[40] K. Rajaram, C. Babu, and A. Adiththan, “Dynamic transaction
aware web service selection,” International Journal of Cooperative
Information Systems, vol. 23, no. 03, p. 1450004, 2014.

[41] ——, “Tx-faith: A transactional framework for failure tolerant
execution of hierarchical long-running transactions in business
applications,” International Journal of Web Services Research (IJWSR),
vol. 11, no. 3, pp. 1–26, 2014.

[42] I. Paenke, J. Branke, and Y. Jin, “Efficient search for robust solu-
tions by means of evolutionary algorithms and fitness approxima-

15

tion,” IEEE Transactions on Evolutionary Computation, vol. 10, no. 4,
pp. 405–420, 2006.

[43] L. Gräning, Y. Jin, and B. Sendhoff, “Individual-based manage-
ment of meta-models for evolutionary optimization with appli-
cation to three-dimensional blade optimization,” in Evolutionary
computation in dynamic and uncertain environments. Springer, 2007,
pp. 225–250.

[44] Y. Jin, M. Hüsken, and B. Sendhoff, “Quality measures for approx-
imate models in evolutionary computation,” in GECCO, 2003, pp.
170–173.

[45] L. Zeng, B. Benatallah, M. Dumas, J. Kalagnanam, and Q. Z. Sheng,
“Quality driven web services composition,” in Proceedings of the
12th international conference on World Wide Web. ACM, 2003, pp.
411–421.

[46] M. Paolucci, T. Kawamura, T. R. Payne, and K. Sycara, “Semantic
matching of web services capabilities,” in International Semantic
Web Conference. Springer, 2002, pp. 333–347.

[47] F. Lécué, “Optimizing QoS-aware semantic web service composi-
tion,” in International Semantic Web Conference. Springer, 2009, pp.
375–391.

[48] F. Lécué, A. Delteil, and A. Léger, “Optimizing causal link based
web service composition.” in ECAI, 2008, pp. 45–49.

[49] K. Shet, U. D. Acharya et al., “A new similarity measure for
taxonomy based on edge counting,” arXiv preprint arXiv:1211.4709,
2012.

[50] H. Ma, K.-D. Schewe, B. Thalheim, and Q. Wang, “A formal
model for the interoperability of service clouds,” Service Oriented
Computing and Applications, vol. 6, no. 3, pp. 189–205, 2012.

[51] A. S. da Silva, Y. Mei, H. Ma, and M. Zhang, “Particle swarm

optimisation with sequence-like indirect representation for web
service composition,” in European Conference on Evolutionary Com-
putation in Combinatorial Optimization. Springer, 2016, pp. 202–218.

[52] C.-L. Hwang and K. Yoon, “Lecture notes in economics and math-
ematical systems,” Multiple Objective Decision Making, Methods and
Applications: A State-of-the-Art Survey, 1981.

[53] S. C. Leung* and Y. Wu, “A robust optimization model for stochas-
tic aggregate production planning,” Production planning & control,
vol. 15, no. 5, pp. 502–514, 2004.

[54] L. Davis, “Applying adaptive algorithms to epistatic domains.” in
IJCAI, vol. 85, 1985, pp. 162–164.

[55] C. Wang, H. Ma, G. Chen, and S. Hartmann, “Memetic EDA-based
approaches to comprehensive quality-aware automated semantic
web service composition,” arXiv preprint arXiv:1906.07900, 2019.

[56] A. Bansal, M. B. Blake, S. Kona, S. Bleul, T. Weise, and M. C. Jaeger,
“WSC-08: continuing the web services challenge,” in E-Commerce
Technology and the Fifth IEEE Conference on Enterprise Computing,
E-Commerce and E-Services, 2008 10th IEEE Conference on. IEEE,
2008, pp. 351–354.

[57] S. Kona, A. Bansal, M. B. Blake, S. Bleul, and T. Weise, “WSC-2009:
a quality of service-oriented web services challenge,” in 2009 IEEE
Conference on Commerce and Enterprise Computing. IEEE, 2009, pp.
487–490.

[58] E. Al-Masri and Q. H. Mahmoud, “Qos-based discovery and
ranking of web services,” in Int. Conf. on Computer Comm. Networks.
IEEE, 2007, pp. 529–534.

[59] J. R. Koza, Genetic programming: on the programming of computers by
means of natural selection. MIT press, 1992, vol. 1.

