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23 Abstract

24 Plantain virus X was first recognized by the ICTV as a species in the genus Potexvirus 

25 in 1982. However, because no sequence was available for plantain virus X (PlVX), 

26 abolishing the species was proposed to the Flexiviridae working group of the ICTV in 

27 2015. This initiated efforts to sequence the original isolates from Plantago lanceolata 

28 samples. Here we report the full genome sequencing of two original isolates of PlVX, 

29 which have demonstrated the virus to be synonymous to Actinidia virus X a species 

30 previously reported from kiwifruit (Actinidia sp.) and blackcurrant (Ribes nigrum). PlVX 

31 was previously noted to be widespread in the UK in P. lanceolata. This report 

32 additionally presents novel data on the distribution and diversity of PlVX, collected at the 

33 same site as the original UK isolates, and from three independent surveys, two in The 

34 Netherlands and one in Belgium. This study also includes two new host records for 

35 PlVX, Browallia americana and Capsicum annuum (sweet pepper), indicating the virus 

36 is more widespread and infects a broader range of hosts than previously reported. This 

37 stresses the importance of surveys of non-cultivated species to gain insight into viral 

38 distribution and host range. This study also demonstrates the value of generating 

39 sequence data for isolates retained in virus collections. Additionally, it demonstrates the 

40 potential value in pre-publication data-sharing for giving context to virus detections such 

41 as the four independent studies here which, when combined, give greater clarity to the 

42 identity, diversity, distribution and host range of plantain virus X. 

43

44
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45 Introduction

46 By 1982, Plantago species were known to support natural infection by at least 30 

47 distinct viruses from diverse families, and to be experimental hosts to at least 13 more 

48 (Hammond, 1982, Kostin & Volkov, 1976). More recently five additional viruses have 

49 been reported from Plantago lanceolata in Finland, together with fragmentary 

50 sequences of an apparent ophiovirus and an endornavirus (Susi et al., 2017, Susi et al., 

51 2019), although a caulimovirus may be the same as one reported by Hammond 

52 (Hammond, 1981). P. lanceolata was first reported as a natural host of the potexvirus 

53 plantain virus X (PlVX) in 1981 (Hammond, 1981, Hammond, 1982, Hammond & Hull, 

54 1981). PlVX was detected in 51 of 130 plants during a survey of P. lanceolata collected 

55 from eight of nine distinct regions of England (United Kingdom, UK) sampled, from 

56 southwest Cornwall, east to Berkshire, Cambridgeshire, Essex and Norfolk, north to 

57 Warwickshire, Cumbria and Northumberland. The virus, which induces no symptoms in 

58 P. lanceolata was purified and physically and biologically characterized (Hammond & 

59 Hull, 1981). It was first recognized by the ICTV as a species in the genus Potexvirus in 

60 1982 (initially described as plantago virus X, corrected to Plantain virus X in 1991). 

61 However, because no sequence was available, abolishing the species was proposed to 

62 the Flexiviridae working group of the ICTV in 2015, prompting an effort to sequence the 

63 original isolates from the samples collected in Cambridge, England, which had been  

64 deposited in the collection of the late Alan Brunt, currently held at University of Warwick, 

65 UK. A further reason to obtain sequence from PlVX was to evaluate the possibility that 

66 PlVX might be synonymous with another potexvirus, Plantago asiatica mosaic virus, 
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67 which was reported infecting P. asiatica in the Russian Far East (Kostin & Volkov, 1976) 

68 at about the same time as PlVX was being studied in the UK.

69 In 2007 in New Zealand, virus research on symptomatic kiwifruit (Actinidia chinensis) 

70 identified the presence of a novel potexvirus, recognized by the ICTV as Actinidia virus 

71 X (Pearson et al., 2011, Blouin et al., 2013). Although actinidia virus X (AVX) was 

72 inoculated to herbaceous indicators on three occasions, attempts to inoculate back to 

73 Actinidia showed a rapid decrease of virus titre on systemic leaf to become 

74 undetectable after two months suggesting that Actinidia may not be a suitable host. The 

75 virus was later reported from a blackcurrant (Ribes nigrum) intercepted on entry to 

76 Canada (James & Phelan, 2016), however the geographic source of this plant was not 

77 reported. 

78 This study reports the full genomes of two original isolates of PlVX stored in a virus 

79 collection for 43 years and sequenced using high-throughput sequencing (HTS). These 

80 sequence data unexpectedly demonstrated Plantain virus X to be synonymous to 

81 Actinidia virus X. In addition, contemporary isolates of PlVX were collected from the 

82 same sample sites in Cambridge, UK, as originally sampled. Isolates of PlVX from three 

83 independent studies in mainland Europe are also presented. One study in The 

84 Netherlands was investigating the potential presence and distribution of PlVX in P. 

85 lanceolata. A second study in The Netherlands was investigating the potential risk of 

86 viral inoculum present in wildflower banks where the virus was also revealed infecting P. 

87 lanceolata. A study in Belgium was an HTS metagenomic based survey of the viral 

88 status of the family Solanaceae, which revealed the presence of PlVX in Browallia 

89 americana. An additional isolate sequence was identified from a reexamination of a viral 
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90 sequence from a Capsicum annuum sample imported from Ethiopia into the 

91 Netherlands in 2011. These studies were brought together through pre-publication data-

92 sharing amongst the European plant health virology community. The sequences of all 

93 these isolates are presented here enhancing the knowledge of the distribution, diversity 

94 and identity of PlVX. 

95 Materials and methods

96 The virus isolates reported here are gathered from a range of sources. Each of the 

97 collaborating laboratories detected virus isolates independently of each other and these 

98 originated from historic isolate collections, prior laboratory interceptions, field survey 

99 studies and targeted sampling of P. lanceolata in the UK, The Netherlands and Belgium. 

100 Each laboratory conducted a combination of HTS and conventional sequencing, 

101 however, specific methods differed between each laboratory. High throughput 

102 sequencing was carried out by either A range of metagenomic-based approaches were 

103 used, aincluding ribosomal RNA depleted total RNA or Virion-Associated Nucleic Acids 

104 (VANA) approachfollowed by HTS (Illumina). Conventional PCR was carried out by 

105 either broad spectrum RT-PCR for potexviruses (Van der Vlugt & Berendsen, 2002) or 

106 specific RT-PCR (primers from this study). The methods used relating to each sample 

107 have been highlighted in table 1. and detailed in Supplementary information S.1-S.7. 

108

109 Historic isolates of PlVX

110 Sample references 76/16 and 77/48: A subset of the original samples collected from 

111 Cambridge, England, had been stored dried over Calcium chloride and were deposited 
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112 in the collection of the late Dr Alan Brunt. This collection was subsequently deposited 

113 with The University of Warwick. Two isolates labelled PlVX 76/16 and 77/48 were 

114 subsampled, and the subsamples were sent to Fera Science Ltd, York, UK, for high 

115 throughput sequencing by a ribosomal RNA-depleted total RNA approach.  (see 

116 Supplementary information S.1). RNA was extracted from the two sub-samples using an 

117 RNeasy plant mini kit (Qiagen, UK).  Indexed TruSeq complete plant libraries, including 

118 RNA depletion step, were produced from the RNA and sequenced using a MiSeq V2 

119 600 cycle kit (Illumina). The resulting data was then analyzed as described in Fox et al. 

120 (2019). Phylogenetic trees were produced using the Maximum likelihood algorithm and 

121 500 bootstraps in MEGA 7 (Kumar et al., 2016). Pairwise identities were calculated 

122 using the same software.

123

124

125 Collection of contemporary samples of P. lanceolata from the United Kingdom

126 Sample references FR3, FR4, FR6, FR9, WC1, WC3 and WC5: Contemporary samples 

127 of P. lanceolata were collected in September 2018 from, and near, the same sites in 

128 Cambridge, England, as originally sampled in 1976-78. Fourteen plants from two sites 

129 within less than 1 km of each other near Cambridge were tested at Fera Science Ltd, 

130 York UK. Nine plants came from the Fulbourn Road (FR prefix) and a further five from 

131 Worts Causeway (WC prefix). Samples were tested as both bulked sub-samples and 

132 individual samples using conventional RT-PCR (Van der Vlugt & Berendsen, 2002) and 

133 sequencing of PCR product (see Supplementary information S.2).  Initially plants were 

134 sub-sampled and tested as three bulked samples: A (WC 1-5), B (FR 1-5), C (FR 6-9), 
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135 and after all three tested positive by RT-PCR (Van der Vlugt & Berendsen, 2002) for the 

136 presence of potexviruses the samples were extracted and tested individually. Leaves 

137 were sampled randomly from around each plant to a total subsample of approximately 

138 0.5 g (actual sample weights ranged from 0.25 g-1.47 g), these were diluted 1 in 10 in 

139 extraction buffer (Adams et al., 2013) by weight, and subsequently ground in 

140 homogenization bags (BIOREBA, Switzerland). RNA extraction was done by magnetic 

141 bead extraction using Invimag Virus DNA/RNA mini‐kit (Invitek GmbH). The samples 

142 were tested using general potexvirus PCR primers (Van der Vlugt & Berendsen, 2002). 

143 RT-PCR was carried out using Thermo Scientific Verso 1-Step RT-PCR Hot-Start Kit 

144 (ThermoFisher) following the manufacturer’s instructions, but using 25 µM of primers 

145 and an annealing temperature of 52 °C (Van der Vlugt & Berendsen, 2002). PCR 

146 products were analysed by electrophoresis using 1% agarose gel stained with ethidium 

147 bromide; an amplicon of approximately 600 bp was obtained and sequenced by 

148 Eurofins (Germany) to enable sequence identification.  

149

150

151 Collection and testing of contemporary samples of P. lanceolata from the Netherlands

152 Sample references 614590 and 39014434: In the Netherlands, an investigation was 

153 conducted to try and identify the presence of PlVX. Leaf samples were collected in four 

154 different regions (Wageningen, Haaksbergen, Klarenbeek and Buren). Twenty leaf 

155 samples were collected from each region and bulked in one sample. These were 

156 submitted to the National Reference Laboratory of the Netherlands (NPPO-NL), 
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157 Wageningen, Netherlands. Two samples tested positive using conventional RT-PCR 

158 (Van der Vlugt & Berendsen, 2002) and sequencing of PCR product. (see 

159 Supplementary information S.3). RNA was extracted from about 1 g frozen leaf tissue 

160 according to (Botermans et al., 2013) iConventional RT-PCR was carried out for the 

161 presence of potexviruses (Van der Vlugt & Berendsen, 2002). RT-PCR reactions were 

162 carried out using SuperScript One-Step RT-PCR with Platinum Taq DNA Polymerase 

163 (Invitrogen). Two samples gave positive results (references 614590 and 39014434), 

164 PCR products were bi-directionally sequenced (Van De Vossenberg & Van der Straten, 

165 2014) to enable (partial) identification by sequence analysis.

166

167

168 Sample reference AVX-2018-001: A separate project was conducted by Wageningen 

169 University and Research (WUR), The Netherlands, to examine the potential of wild-

170 flower strips to act as a source of virus inoculum for crops. Samples of P. lanceolata 

171 were taken from a 3-year old flower strip, located on a blueberry farm in the Overijssel 

172 region of The Netherlands. Plant samples were ground in a phosphate inoculation buffer 

173 and mechanically inoculated onto a set of four test plants, i.e. Chenopodium quinoa, 

174 Nicotiana benthamiana, N. glutinosa, and N. occidentalis ‘P1’. These inoculated 

175 (indicator) plants developed heavy necrosis in the N. occidentalis plants and chlorotic or 

176 necrotic local lesions in the C. quinoa plants. Electron microscopy on samples of the 

177 necrotic N. occidentalis plants clearly indicated the presence of filamentous particles of 

178 approximately 500 nm in length, indicating infections with a member of the genus 

179 Potexvirus (family Alphaflexiviridae). A sample from symptomatic (necrotic) N. 

Page 8 of 32

plantpath@bspp.org.uk

Plant Pathology



For Peer Review

9

180 occidentalis ‘P1’ was tested using high throughput sequencing by a ribosomal RNA-

181 depleted total RNA approach (see Supplementary information S.4).. A sample from 

182 symptomatic (necrotic) N. occidentalis ‘P1’ was extracted using the RNeasy plant mini 

183 kit (Qiagen) according the manufacturer’s guidelines, and tested by conventional RT-

184 PCR using the generic potexvirus primers Potex-5 (fw) and Potex-2RC according to 

185 Van der Vlugt and Berendsen (2002) using the Access RT-PCR system (Promega) and 

186 visualisation of the amplicon on a 1% Agarose gel stained with GelRed (Biotium). The 

187 obtained amplicon was directly sequenced by Sanger sequencing using the same 

188 primers at Macrogen Europe (Amsterdam, The Netherlands). Additionally, total RNA 

189 was DNase treated and ribosome depleted using the Ribo-zero rRNA removal plant leaf 

190 kit (Illumina) and two dual unique indexed libraries produced using the TruSeq stranded 

191 total RNA library prep kit (Illumina) as per the manufacturer’s instruction. The resulting 

192 library was pooled with other indexed libraries, diluted to 10pM, mixed with 5% PhiX 

193 library (Illumina) and sequenced on an Illumina MiSeq using a 500 cycle V2 kit at 

194 Wageningen University and Research. Reads were split per sample by corresponding 

195 molecular identifiers (MIDs) using CASAVA 1.8 software (Illumina) with no mismatch in 

196 the MID region allowed. Data analysis was performed using CLC Genomics Workbench 

197 12.0.2 (Qiagen). After quality trimming (settings: quality limit 0.05%; short reads <100 nt 

198 and broken pairs were discarded), reads were used for de novo assembly. Contigs with 

199 a minimum length of 500 nt were subsequently analyzed, using BLASTn and BLASTx. 

200 The 3’UTR of the RNA segment was determined by sequencing RT-PCR fragments 

201 generated using segment-specific forward primers corresponding to sequences located 

202 at the 3’ end of ORF5 in combination with an oligo dT primer. The 5’UTR was 

Page 9 of 32

plantpath@bspp.org.uk

Plant Pathology



For Peer Review

10

203 determined using a Roche 5′/3′ RACE Kit according to the manufacturer’s protocol. In 

204 this case, the reverse primers were based on the 5’ region of ORF1. Sanger sequencing 

205 was performed by Macrogen Europe (Amsterdam, The Netherlands).

206

207

208 Capsicum annuum sample ex. Ethiopia, imported into the Netherlands

209 Sample reference 5422861: Another study was a re-examination of a viral sequence 

210 obtained previously: In 2011, symptoms were observed on a Capsicum annuum sample 

211 imported from Ethiopia into the Netherlands. The leaves showed mild mottle symptoms. 

212 A leaf sample of C. annuum was ground in a phosphate inoculation buffer and 

213 mechanically inoculated onto a set of eight test plants, i.e. Ca. annuum ‘Westlandse 

214 Grote Zoete’, C. quinoa, Datura stramonium, N. benthamiana, N. glutinosa, and N. 

215 occidentalis ‘P1’, N. tabacum ‘White Burley’ and Solanum lycopersicum ‘Money-maker’. 

216 These inoculated (indicator) plants showed small necrotic local lesions and systemic 

217 mild mottle in the Ca. annuum plants, small necrotic local and systemic lesions and 

218 systemic growth reduction in the N. occidentalis ‘P1’ plants, chlorotic or necrotic local 

219 lesions and systemic vein clearing in the C. quinoa plants, systemic rugosity on the 

220 lower leaf of one N. benthamiana. On N. glutinosa, N. tabacum ‘White Burley’, S. 

221 lycopersicum and D. stramonium no symptoms were observed. Electron microscopy on 

222 a sample of an N. benthamiana plant clearly indicated the presence of filamentous 

223 particles of approximately 575 nm in length, indicating infections with a member of the 

224 genus Potexvirus (family Alphaflexiviridae). Subsequently, RNA was extracted from 
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225 about 1 g leaf tissue of a symptomatic N. benthamiana and processed as described for 

226 the P. lanceolata from the Netherlands (Supplementary information S.3), in order to 

227 obtain sequence data (not presented). Additionally, whole genome sequence was 

228 obtained using high throughput sequencing by a ribosomal RNA-depleted total RNA 

229 approach (see Supplementary information S.5). Total RNA from frozen C. annuum 

230 (5422861) leaf sample was DNase treated and sent to GenomeScan (Leiden, the 

231 Netherlands) for generation of 2 Gb Illumina RNAseq 150PE (paired-end) data per 

232 sample. The RNA extract was ribosome depleted using the Ribo-zero rRNA removal 

233 plant leaf kit (Illumina). The Ultra II Directional RNA Library Prep Kit for Illumina (New 

234 England Biolabs, MA, USA) was used to process the samples according to the protocol 

235 "NEBNext Ultra II Directional RNA Library Prep Kit for Illumina”. Quality and yield after 

236 sample preparation were measured with a Fragment Analyzer (Agilent, CA, USA) prior 

237 to pooling for sequencing on an Illumina NovaSeq (Illumina, CA, USA).

238 RNAseq data were analyzed in CLC Genomics workbench v11.0.1 (Qiagen, Germany) 

239 and run in a custom workflow build for detection of de novo assembled viral contigs. 

240 First, a quality trim (quality limit = 0.05; ambiguous limit = 2) was performed, followed by 

241 a de novo assembly (map reads back to contigs = on; length fraction = 0.8; similarity 

242 fraction = 0.8, minimum contig length = 200) and consensus sequences extraction (low 

243 coverage threshold= 10; remove regions with low coverage = on; post-remove action = 

244 split). The de novo assembled contigs (>100 nt) were analyzed using BLASTn 

245 (maximum alignments per database sequence = 5; maximum E-value = 1e-6, minimum 

246 identity = 70%) and DIAMOND (Buchfink et al., 2015) with a local installation of the 

247 NCBI nr(/nt) databases. Blast results were visualized in Krona (bit score threshold = 25) 
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248 (Ondov et al., 2011). The same pipeline was repeated with 1% of all reads as de novo 

249 assembly of high coverage contigs can be problematic resulting in fragmented 

250 assemblies. Viral sequences were analysed in Geneious R11 (Biomatters, New 

251 Zealand).

252

253  

254 Survey of solanaceous species in Belgium

255 Sample reference ‘GBVC_AVX_01’: In Belgium, during a survey of viruses in 

256 Solanaceae, 21 species belonging to twelve genera (Supplementary information Table 

257 1) were collected from the Meise Botanic Garden (province of Flemish Brabant) by 

258 ILVO. Samples were tested in bulk using a VANA approach. (see Supplementary 

259 information S.6) The samples were pooled together (200 mg per plant) as a bulked 

260 sample and virions were purified as Virion-Associated Nucleic Acids (VANA) after 

261 Palanga et al. (2016). In brief, the pooled samples were ground in 10 volumes of Hank's 

262 buffered salt solution (HBSS; 0.137 M NaCl, 5.4 mM KCl, 0.25 mM Na2HPO4, 1 g/L 

263 glucose, 0.44 mM KH2PO4, 1.3 mM CaCl2,1.0 mM MgSO4, and 4.2 mM NaHCO3). 

264 The extract was clarified by centrifugation (8,000 g for 10 minutes), and filtration (0.45 

265 µm). The virions were collected by ultracentrifugation, using 10,5 mL of the filtrate on 1 

266 mL 30% sucrose cushion (2 hours ~150,000 g Beckman 50 Ti rotor). The pellet was 

267 suspended in 1 mL of HBSS. From the resuspension, 200 µL were digested by 15 U of 

268 bovine pancreas DNase I (Euromedex) and 1.9 U of RNase A suspension (90 minutes 

269 incubation at 37°C) to degrade non-encapsidated nucleic acid. Total nucleic acids were 
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270 extracted with PureLink Viral RNA/DNA kit (Invitrogen) and reverse transcribed (for the 

271 RNA) with Superscript III (Life technologies) into DNA. The second strand of cDNA was 

272 synthetized with the use of large Klenow fragment polymerase (Promega). Individual 

273 barcodes (Tagged dodecamers) were added to each pool in the RT and Klenow steps, 

274 and the corresponding MID was used in the PCR. Finally, an amplification step (PCR) 

275 was performed using HotStarTaq (Qiagen). After the library preparation with the TruSeq 

276 mRNA stranded kit, the samples were then sequenced on the Illumina NextSeq500 at 

277 GIGA Genomics (University of Liege, Belgium). The resulting sequence reads were 

278 trimmed from the adaptor, paired and merged using the Geneious R11 software 

279 platform (https://www.geneious.com) and de novo assembled with SPAdes (Bankevich 

280 et al., 2012).

281 and iIndividual plant infections were confirmed using specific primers designed for the 

282 detection of the target nucleic acid and sequence analysis of the PCR product. (see 

283 Supplementary information S.7) Primers AcVX 4,544 F 

284 (GCACGCCAGTATCATGCTCCAGA) and AcVX 4,782 R 

285 (TGCTGGTGCCTTCTTGTCCTGTC) were designed in the polymerase region from the 

286 sequence obtained by HTS, in order to identify the infected plants. The 21 samples 

287 were screened by RT-PCR using RNA extracted from the frozen samples with RNeasy 

288 plant mini kit (Qiagen). Reverse transcription was performed with the enzyme Tetro 

289 (Bioline) with random hexamers and PCR was carried out with Mango Taq (Bioline) for 

290 40 cycles of 94°C for 15 seconds, 60°C for 20 seconds and 72°C for 20 seconds, 

291 preceded by an initial incubation of 1 minute at 94°C and followed by a final extension at 

Page 13 of 32

plantpath@bspp.org.uk

Plant Pathology



For Peer Review

14

292 72°C for 3 minutes. The anticipated amplicon size is 239 bp. Sanger sequencing was 

293 performed by Macrogen Europe (Amsterdam, The Netherlands).

294

295

296 Results

297 Analysis of HTS results from historic samples

298 Genome sequencing of PlVX 76/16 and 77/48 yielded 474,188 and 427,300 paired end 

299 reads of 300 nt respectively. Assembly of these reads yielded contigs of 6805 nt (PlVX 

300 76/16, NCBI GenBank accession no MN334616) produced from 1042 reads (~46x 

301 coverage)  and 6850 nt (PlVX 77/48, access no. MN334615)  produced from 2734 

302 reads (~120x coverage). These contigs had   high identity to the reference sequence of 

303 actinidia virus X (access no. NC_028649.1).  

304

305 Results from contemporary P. lanceolata samples using RT-PCR and Sanger 

306 sequencing

307 Initially, the samples from the United Kingdom were screened in three bulks. All three 

308 bulks tested positive in RT-PCR and produced consensus sequences (access no. 

309 MN557306- MN557312, data not presented). To determine how many plants were 

310 infected, the plants were then extracted and tested individually. In total six plants tested 

311 positive, four plants from along Fulbourn Road (FR3, FR4, FR6 and FR9) and two from 

312 along Worts Causeway (WC1 and WC5) (see table 1).
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313 Two out of four Dutch samples from Klarenbeek (6144590) and Buren (39014434), 

314 province Gelderland, tested positive in RT-PCR and produced consensus sequences 

315 (access no. MN432890 and MN432891; see table 1).

316

317 Results on The Netherlands isolate AVX-2018-001

318 The Netherlands isolate from the wild-flower strip in the region Overijssel gave a 

319 positive reaction in the generic potexvirus RT-PCR. BLASTn analysis on the sequence 

320 derived from direct Sanger sequencing on the obtained amplicon indicated 90% identity 

321 to isolate L5 of AVX (access no. KC568202) and 85% to isolate RV3124 (access no. 

322 NC_028649). The isolate was then designated AVX-2018-01. HTS genome Genome 

323 sequencing of AVX-2018-001 yielded 8,775,250 740,070 nt paired end reads. Assembly 

324 of these reads yielded in a contig of 6868 nt with high identity to AVX (access no. 

325 NC_028649.1). This contig was mapped by 1,605 616 reads (~50x coverage). The 

326 UTRs were confirmed by 5’ and 3’ RACE, which resulted in a full-length sequence of 

327 6882 nt (AVX-2018-001, NCBI access no. MT123349).

328

329 Results on Capsicum annuum sample

330 Capsicum leaf sample (5422861) tested positive in RT-PCR producing amplicons of the 

331 expected size. In 2011 the species name Actinidia virus X was not yet described, and 

332 no sequences were available in NCBI GenBank, the resulting consensus sequences 

333 appeared to belong to an undescribed species in the genus Potexvirus and could not be 

334 further identified. After reexamination of the sequence in 2019, however, it showed 
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335 highest identity with AVX (access no. KC568202). The subsequent Illumina sequencing 

336 of sample 5422861 yielded 5,422,861 16,546,406 paired end reads of 150 nt. Assembly 

337 of these reads yielded a contig of 6882 nt   produced from 204,280 reads (~4432x 

338 coverage 5422861, access no. MN756626) with high identity to the reference sequence 

339 of AVX (access no. NC_028649.1) and 100% nt identity to the fragment which was 

340 obtained in 2011. Additionally, a contig of 15,666 nt with highest identity to sequences 

341 of bell pepper endornavirus was obtained.

342

343 Results from survey of solanaceous species in Belgium 

344 In total, 720,220 unique reads were obtained from the pooled solanaceous samples. 

345 Large contigs were obtained from the de novo assembly. One 7,004 nt contig matched 

346 AVX when compared to the NCBI GenBank virus RefSeq database by tBLASTx. This 

347 contig was mapped by 97,173 reads (~2000x coverage) using Geneious R11 

348 (www.geneious.com)

349 From the PCR confirmation, only one of the 21 samples, originating from a B. 

350 americana plant was found infected by AVX. The B. americana plant was sampled in 

351 October and the plant was already deteriorating due to autumn conditions. There were 

352 no specific symptoms that indicated virus presence. A 239 bp amplicon was Sanger 

353 sequenced and the sequence was submitted to GenBank (access no. MT150906). The 

354 sequence was identical to that obtained from the original sample pool by HTS. The full 

355 genome showed 89% nt identity to the corresponding fragment of the full genome of the 
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356 kiwifruit isolate (access no. KC568202) and 83% identity to the Ribes isolate (access 

357 no. KR872420.1). 

358

359 Sequence analysis of near whole genomes of historic and contemporary isolates of 

360 plantain virus X 

361 Figure 1 shows a phylogenetic tree produced from the genomes of PIVX, AVX and 

362 related potexviruses. The AVX-like contig produced from PlVX 77/48 has open reading 

363 frames for the five coding regions expected for a potexvirus and also has an open 

364 reading frame related to the ORF6 reported for the Ribes isolate of  AVX (James & 

365 Phelan, 2016). The contig from PlVX 76/16 contains the same ORFs but lacks the last 

366 few amino acids from the ORF5 which was not completely sequenced. Comparison 

367 between the two nucleotide sequences (PlVX 77/48 and PlVX 76/16) shows they have 

368 99.7% identity. All the PlVX genomes from this study and the Actinidia AVX genome 

369 have more than 91% identity to each other, except that the Ribes AVX isolate (access 

370 no. KR872420.1) is an outlier with 83-84% identity to the other PlVX / AVX isolates. The 

371 ICTV species demarcation for the genus Potexvirus suggests coat protein or 

372 polymerase gene sequences with less than about 72% constitute different species. The 

373 coat protein genes of PlVX / AVX have more than 84% identity and the polymerase 

374 genes more than 82% identity. The PlVX and AVX isolates form a clade with the Ribes 

375 AVX isolate (James & Phelan, 2016) (access no. KR872420.1) as the sister to the rest 

376 of the PlVX and AVX isolates. 

377
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378 Sequence analysis of partial nucleotide sequence of a potexvirus from contemporary 

379 and historic samples 

380 The sequences produced from the contemporary United Kingdom and Netherlands P. 

381 lanceolata samples encode part of the polymerase gene. A comparison of these 

382 sequences with all of the PlVX and AVX full genomes shows that all sequences have 

383 greater than 85% nucleotide identity. Figure 2 shows a phylogenetic tree produced from 

384 the partial polymerases of PIVX, AVX and related potexviruses. The diversity of the 

385 contemporary isolates from Cambridge almost encompassed all of the Dutch, Belgian, 

386 original PlVX isolates, and the Actinidia isolate of AVX, with only the Ribes isolate of 

387 AVX falling outside the group of FR and WC isolates, but clearly closely related (Figure 

388 2). Interestingly the two historic isolates (76/16 and 77/48) were more closely related to 

389 each other despite greater geographic separation than the more recent isolates.

390

391 Discussion

392 This report presents the first sequence of the complete coding region of plantain virus X  

393 from 43 year old preserved samples of the virus collected when the virus was first 

394 described (Hammond, 1981, Hammond, 1982, Hammond & Hull, 1981). Additionally, 

395 samples of P. lanceolata which were sampled over 40 years apart and from different 

396 geographic regions were shown to be infected with the same virus. On the basis of the 

397 data presented it is likely that PlVX is more widespread and naturally occurring in P. 

398 lanceolata. Whereas PlVX was previously reported only from eight regions of England, it 

399 has now been identified in P. lanceolata from two regions in the Netherlands and in two 
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400 new (Solanaceous) hosts namely Browallia americana from Belgium and Capsicum 

401 annuum imported from Ethiopia into the Netherlands. The biological impact of the virus 

402 on B. americana is unclear, since no clear symptoms were present at the time of 

403 sampling, as is also the case in P. lanceolata. Although the leaves of the C. annuum 

404 plant showed mild mottle symptoms, the impact of the PlVX isolate is unclear since it 

405 was in mixed infection with bell pepper endornavirus, although this virus is typically 

406 regarded as symptomless (Otulak-Kozieł et al., 2020). It is probable that the virus has 

407 not been previously reported to be more widespread because it does not seem to evoke 

408 clear symptoms. It is unusual to test plants for asymptomatic infections and surveys of 

409 non-cultivated species are rare (Roossinck & Garcia-Arenal, 2015). 

410 An additional motivation for seeking fresh cultures of PlVX to sequence was the 

411 possibility that PlVX might prove to be synonymous with Plantago asiatica mosaic virus 

412 (Genus Potexvirus). Plantago asiatica mosaic virus (PlAMV) was initially isolated from 

413 P. asiatica in the Russian Far East (Kostin & Volkov, 1976). PlAMV was subsequently 

414 reported to infect naturalized lilies (Lilium maximowiczii; syn. of L. leichtlinii var. 

415 maximowiczii) in Japan in 2006 (Ozeki et al., 2006). PlAMV was then discovered 

416 infecting commercial Asiatic and Oriental lily hybrids in the Netherlands (EPPO, 2011), 

417 however, the sequence of the Dutch isolate and many similar ‘European-type’ isolates 

418 detected in commercially-grown lilies from various other countries around the globe fall 

419 into a clade distinct from those of the original Japanese lily isolates, various other 

420 isolates from wild plants in Japan, isolates from P. asiatica from Russia and Korea, and 

421 ‘Nandina mosaic’ isolates from the USA and Japan (Komatsu et al., 2017, Hammond & 

422 Reinsel, 2018). The origin of the ‘European-type’ infection in lilies is therefore unknown, 
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423 but as P. lanceolata is a common weed of agricultural fields across Europe, there was a 

424 possibility that it might have been the source of PlAMV infection in lilies in the 

425 Netherlands. PlAMV has not (to our knowledge) been reported to naturally infect P. 

426 lanceolata, but does infect this host experimentally (Hammond, 2018, Kock et al., 2011). 

427 In the UK, PlAMV has not been previously reported except for interceptions of infected 

428 imported lilies (Harju et al., 2018), and as such is still subject to plant health regulation. 

429 Should PlVX have proven to be synonymous with PlAMV, and present in the wider 

430 environment in Europe, then regulatory controls on PlAMV would be no longer 

431 necessary. Importantly, from a plant health perspective the sequence data presented in 

432 this report confirm that PlVX is not synonymous with plantago asiatica mosaic virus, so 

433 in areas where PlAMV has not been reported to occur plant health monitoring and 

434 action against this virus may still be justified.

435 Naturally, PlVX might also have proven to be synonymous with another potexvirus such 

436 as one of the two other potexviruses reported naturally infecting Plantago species. 

437 Plantago severe mottle virus was reported from P. major in Canada (Rowhani & 

438 Peterson, 1980), and initially recognized as a species of the genus Potexvirus, but due 

439 to lack of an extant culture and absence of any sequence data, the species was 

440 abolished in 2015 (Adams & Kreuze, 2015). Another potexvirus was isolated from P. 

441 major, Taraxacum officinale, and Callistephus chinensis in Argentina and provisionally 

442 named Argentine plantago virus (APlaV); APlaV was found to be serologically related to 

443 papaya mosaic, plantago severe mottle, and boussingaltia mosaic viruses (all four of 

444 which are now considered strains of papaya mosaic virus), but not to PlVX (Gracia et 

445 al., 1983). 
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446 Unexpectedly, the data presented here indicate that the closest match in the NCBI 

447 GenBank database is the potexvirus actinidia virus X (AVX) with a high degree of 

448 sequence homology in both the coat protein (93% nucleotide; 99% amino acid identity) 

449 and the polymerase (89% nucleotide; 98% amino acid identity), in addition to 83-91% 

450 genome nucleotide identity. As the ICTV criteria for species discrimination in the genus 

451 Potexvirus are less than ~72% nucleotide identity or ~80% amino acid identity between 

452 their respective CP or polymerase genes (ICTV 9th Report), the PlVX isolates detected 

453 in each sample and AVX belong to the same species. Actinidia virus X was first 

454 detected in 2005 (KC568202) following virus isolation from Actinidia chinesis cv. 

455 Hort16A (Kiwifruit) in New Zealand (Pearson et al., 2011, Blouin et al., 2013). The virus 

456 was subsequently reported from Ribes nigrum (blackcurrant) being tested during import 

457 to Canada for cultivation (Origin origin of material is not reported) (James & Phelan, 

458 2016). There are no further reports of the occurrence or distribution of this virus. As a 

459 (then-considered) non-European virus reported to infect soft-fruits such as Ribes, AVX 

460 could be considered to be a candidate for plant health regulatory status within the 

461 European Union, however, the data presented here confirm that the virus is already 

462 present and broadly distributed in the wider environment. Within this study, the P. 

463 lanceolata sample from a Netherlands Blueberry farm in the region Overijssel was found 

464 in an area planted as a flower strip  following a preceding cropping with blackcurrants 

465 and it was initially hypothesized that the infection present in the Plantago was likely to 

466 originate from the blackcurrants. However, the concurrent finding of PlVX infecting P. 

467 lanceolata samples from elsewhere in The Netherlands without this cropping history, 

468 and from contemporary samples from the UK with no obvious correlation to the 
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469 presence of Ribes spp., this is now considered likely to be coincidental rather than 

470 causal. 

471 These data demonstrate that Plantain virus X is synonymous with Actinidia virus X, and 

472 in light of the original dates of publication of the two viruses relative to each other, 

473 Plantain virus X should be considered to have precedence of nomenclature over 

474 Actinidia virus X. This is further supported by the findings that A. chinensis is not a 

475 preferred host (Blouin et al., 2013) and when A. chinensis was mechanically infected 

476 with the virus the titre fell rapidly and could not be detected after 2 months (Pearson et 

477 al., 2011). 

478 Given the presence of the same virus in naturally occurring infections in multiple 

479 cultivated and wild hosts, and from three continents, it is likely that the virus is more 

480 widespread than is currently reported and further work should be considered to 

481 investigate the distribution of this virus. We propose the sequence of the 1977 isolate 

482 77/48 as the reference sequence for PlVX (access no. MN334615), as that of isolate 

483 76/16 is missing a portion of ORF4, encoding the TGB3 protein. 

484 Contradicting statements have been made regarding diversity of virus populations in 

485 wild (or uncultivated) ecosystems relative to agricultural ecosystems. Roossinck et al. 

486 (2015) noted that plant virus diversity in wild ecosystems is far greater than in 

487 agricultural situations, and that most viruses affecting plants in communities of wild 

488 plants do not induce obvious symptoms in such hosts (as is also the case for PlVX in P. 

489 lanceolata). However, viral genetic diversity and virulence have also been reported to 

490 be greater in isolates from cultivated hosts than from wild hosts, as a result of selection 

491 pressures imposed on viruses under managed agricultural systems (Pagán, 2018). 
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492 Interestingly, the partial RdRp sequences of contemporary PlVX isolates from within 1 

493 km of each other near Cambridge show significant diversity within a clade that includes 

494 the two over 40 year-old PlVX isolates, the Actinidia AVX isolate from New Zealand and 

495 the Dutch samples, with only the Ribes isolate identified as AVX showing as slightly 

496 distinct to the group of contemporary PlVX isolates (Figure 2). That the level of diversity 

497 between current isolates from a single host species collected within less than 1km of 

498 each other is greater than that observed between three Dutch isolates from two regions, 

499 and other isolates separated in time, space, and two additional host species suggests 

500 the apparent plasticity of PlVX, and its potential ability to adapt to other taxonomically 

501 diverse hosts, nevertheless, more isolates need to be characterized to support this 

502 hypothesis.

503 Although PlVX was originally considered as a virus of little economic consequence, 

504 apparently restricted to a single host in which no significant symptoms were observed 

505 (Hammond, 1981, Hammond & Hull, 1981), it is now apparent that PlVX (as AVX) can 

506 naturally infect economically significant horticultural hosts and symptomatic infections 

507 have been observed in Actinidia (Blouin et al., 2013), Ribes (James & Phelan, 2016) 

508 and Capsicum (this study). This is comparable to the emergence and current economic 

509 importance of PlAMV, about 30 years after the first report in P. asiatica in the Russian 

510 Far East (Kostin & Volkov, 1976), and at about the same time in the USA under the 

511 name nandina mosaic virus (Moreno et al., 1976). PlAMV is currently known to naturally 

512 infect hosts from nine taxonomically diverse plant families (Hammond, 2018). The 

513 experimental host range of PlVX includes species in five taxonomically diverse plant 

514 families in addition to the Plantaginaceae (Hammond & Hull, 1981), with natural hosts in 
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515 the Actinidiaceae (Actinidia), Grossulariaceae (Ribes) and Solanaceae (Browallia, 

516 Capsicum) further extending the host taxonomic diversity, suggesting a probable ability 

517 to infect additional crop plants. Given the emergence of the two potexviruses PlVX and 

518 PlAMV from different species of Plantago over approximately the same timeframe, the 

519 essentially worldwide distribution of  Plantago species, and current knowledge of more 

520 than 30 viruses naturally infecting Plantago spp. (Kostin & Volkov, 1976, Hammond, 

521 1982, Susi et al., 2017, Susi et al., 2019), additional viruses can probably be expected 

522 to be revealed with potential consequences for taxonomically diverse economic crops 

523 under conditions of environmental and agricultural flux. Further surveys of the viruses in 

524 Plantago and other uncultivated species are therefore warranted. 

525 The contemporary samples collected from the Netherlands and Belgium were identified 

526 as being the same virus as being investigated in the UK through one-to-one data 

527 sharing between research groups. With the increasing adoption of HTS for both frontline 

528 diagnostics and baselining studies, this type of pre-publication data sharing becomes 

529 crucial for addressing the biosecurity implications of using the technology, such as 

530 mitigating the risks of unnecessary regulatory action (MacDiarmid et al., 2013). The 

531 concurrent detections of the same virus by separate research groups, in a range of 

532 samples, using multiple tools and sequencing strategies, gives a depth of internal 

533 validation to the findings that could not be achieved from groups working in isolation. To 

534 formalize this type of pre-publication data sharing, an initiative is now being taken 

535 forward through the Euphresco plant health research coordination network 

536 (www.Euphresco.net). The value of linking of historic isolates to give context to recent 

537 virus detections is evident from this report. A current project, Virus Curate, under the 
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538 Euphresco network (www.euphresco.net) aims to close the knowledge gap between 

539 viruses published on the basis of biological and serological data, and the generation of 

540 sequence data from isolates of these viruses held in virus collections. As demonstrated 

541 in this report, these data will become invaluable as HTS is increasingly applied for 

542 baseline and landscape scale virome studies to help give taxonomic context, host range 

543 and distribution data to support risk assessment of viruses revealed through such 

544 studies. 
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Table 1.  Sample references with origin host, source, and sequencing method 

(Supplementary information reference to the specific sequencing method) used for each 

sample. NCBI GenBank accession numbers for each sequenced isolate are also presented.

Sample reference Host Source Diagnostic/Sequencing 
method
(Supplementary files 
reference)

NCBI GenBank
Accession Number

76/16 Plantago 
lanceolata

Plant virus 
collection, 
University of 
Warwick, UK

HTS (S.1) MN334616

77/48 P. lanceolata Plant virus 
collection, 
University of 
Warwick, UK

HTS (S.1) MN334615

FR3 P. lanceolata Cambridgeshire. 
UK

PCR Product (S.2) MN557306

FR4 P. lanceolata Cambridgeshire. 
UK

PCR Product (S.2) MN557307

FR6 P. lanceolata Cambridgeshire. 
UK

PCR Product (S.2) MN557309

FR9 P. lanceolata Cambridgeshire. 
UK

PCR Product (S.2) MN557308

WC1 P. lanceolata Cambridgeshire. 
UK

PCR Product (S.2) MN557312

WC3 P. lanceolata Cambridgeshire. 
UK

PCR Product (S.2) MN557310

WC5 P. lanceolata Cambridgeshire. 
UK

PCR Product (S.2) MN557311

6144590 P. lanceolata Klarenbeek, 
Gelderland,
The Netherlands

PCR Product (S.3) MN432890

39014434 P. lanceolata Buren, 
Gelderland
The Netherlands

PCR Product (S.3) MN432891

AVX-2018-001 N. occidentalis ‘P1’, 
ex. 
P. lanceolata

Overijssel,
The Netherlands

HTS (S.4) MT123349

5422861 Capsicum annuum The Netherlands HTS (S.5) MN756626
GBVC_AVX_01 Browallia 

americana
Flemish Brabant, 
Belgium

HTS (S.6) MN923516

GBVC_AVX_01 B. americana Flemish Brabant, 
Belgium

PCR product (S.7) MT150906
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Figure 1. Maximum likelihood phylogenetic tree (500 bootstraps) produced from genomes of PlVX, AVX and 
related Potexvirus genomes. PlVX isolates include host species and countries of isolation (UK: United 

Kingdom, NZ: New Zealand, NL: The Netherlands) 
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Figure 2. Maximum likelihood phylogenetic tree (500 bootstraps) produced from partial polymerase 
nucleotide sequences of PlVX, AVX and related potexviruses. PlVX isolates include host species and countries 

of isolation (UK: United Kingdom, NZ: New Zealand, NL: The Netherlands) 
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