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Abstract

Person Re-identification (Person Re-ID) is one of the fundamental and critical tasks

of the video surveillance systems. Given a probe image of a person obtained from

one Closed Circuit Television (CCTV) camera, the objective of Person Re-ID is to

identify the same person from a large gallery set of images captured by other cameras

within the surveillance system. By successfully associating all the pedestrians, we

can quickly search, track and even plot a movement trajectory of any person of

interest within a CCTV system. Currently, most search and re-identification jobs

are still processed manually by police or security o�cers. It is desirable to automate

this process in order to reduce an enormous amount of human labour and increase

the pedestrian tracking and retrieval speed. However, Person Re-ID is a challenging

problem because of so many uncontrolled properties of a multi-camera surveillance

system: cluttered backgrounds, large illumination variations, di↵erent human poses

and di↵erent camera viewing angles.

The main goal of this thesis is to develop deep learning based person re-

identification models for real-world deployment in surveillance system. This thesis

focuses on learning and extracting robust feature representations of pedestrians. In

this thesis, we first proposed two supervised deep neural network architectures. One

end-to-end Siamese network is developed for real-time person matching tasks. It

focuses on extracting the correspondence feature between two images. For an o✏ine

person retrieval application, we follow the commonly used feature extraction with

distance metric two-stage pipline and propose a strong feature embedding extraction

network. In addition, we surveyed many valuable training techniques proposed

recently in the literature to integrate them with our newly proposed NP-Triplet

xiii



loss to construct a strong Person Re-ID feature extraction model. However, during

the deployment of the online matching and o✏ine retrieval system, we realise the

poor scalability issue in most supervised models. A model trained from labelled

images obtained from one system cannot perform well on other unseen systems.

Aiming to make the Person Re-ID models more scalable for di↵erent surveillance

systems, the third work of this thesis presents cross-Dataset feature transfer method

(MMFA). MMFA can train and transfer the model learned from one system to

another simultaneously. Our goal to create a more scalable and robust person re-

identification system did not stop here. The last work of this thesis, we address the

limitation of MMFA structure and proposed a multi-dataset feature generalisation

approach (MMFA-AAE), which aims to learn a universal feature representation from

multiple labelled datasets. Aiming to facilitate the research towards Person Re-ID

applications in more realistic scenarios, a new datasets ROSE-IDENTITY-Outdoor

(RE-ID-Outdoor) has been collected and annotated with the largest number of

cameras and 40 mid-level attributes.
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Chapter 1

Introduction

Due to the increasing number of terrorist attacks and riots all over the world in recent

years, there are strong public calls for greater surveillance systems to thwart acts of

terror preemptively. Many governments and agencies are seriously concerned about

public security in areas such as airports and shopping malls. To accomplish this goal,

Closed Circuit Television (CCTV) is playing a key role in public area surveillance

and has become an integral part of national security. Hundreds and thousands of

surveillance camera networks have already been deployed in many public places to

address various kind of security issues such as forensic investigations, crime preventing,

safeguarding the restricted areas, etc. These surveillance cameras generate a large

amount of video recordings per day. Currently, these recorded videos have to be

analysed manually by the surveillance operators to detect any specific incident or

anomaly. In recent years, surveillance camera networks are rapidly deployed all over

the world, and the conventional manual analysing is unable to cope with the rapid

expansion of camera networks. Intelligent video surveillance systems (IVSS) aim to

automate the video monitoring and analysing to assist the surveillance operators

quickly extracting relevant information from the recorded videos. Therefore, it is

one of the most active and challenging research area in computer vision (CV) and

machine learning (ML). This field of research enables various applications such as

on-line people/object detection and tracking [24, 93, 94], recognising a suspicious
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action/behaviour [47, 48]; and o↵-line suspect images retrieval from video frames

[92, 108, 136, 155].

In video surveillance systems, one primary task for operators is to identify

and track the same individuals across di↵erent cameras, also known as person re-

identification (Person Re-ID). To replace the human jobs in video surveillance, an

e↵ective IVSS should be able to track the appearance of a person and re-identify the

same individual if he or she re-appears in other cameras. Figure 1.1 gives an example

of re-identifying people in a non-overlapping multi-camera network. The red dot

and the green dot in Figure 1.1 represent two di↵erent persons who are assigned

ID2 and ID3 by the system. As they move from the location near Camera 2 to a

place near Camera 1, the system needs to be able to recognise them as pedestrian 2

(ID2) and 3 (ID3) by using the information obtained previously in Camera 2. By

continuously and successfully re-identifying the selected persons across all cameras

in the system, the trajectories of the multiple targets can be reconstructed for

further investigation. This re-identification process seems simple and intuitive for a

human to operate, but it is di�cult for CV to accomplish due to numerous open

issues. In particular, since each camera captures the people of interest from di↵erent

angles, distances, and lighting conditions, the same person may look very di↵erent in

di↵erent cameras. Moreover, the occlusion, the colour calibration between cameras

and diverse backgrounds will also a↵ect the extraction of the visual features.

Person Re-ID is a challenging problem, but it is a vital part of IVSS. In

recent years, Person Re-ID has received a large amount of attention in the computer

vision research communities. Fundamentally, the goal of Person Re-ID is to match

images of humans from one surveillance camera to the other. Figure1.2 (a) shows

example images of three di↵erent people captured by a network of 6 cameras. Given

a query image of a particular person captured by one camera, the goal of Person

Re-ID is to retrieve the images of the same person from the other cameras (Figure

1.2 (c)). By integrating this function into the current surveillance system, it will

help to save an enormous amount of manual labour in cross-camera people tracking
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Figure 1.1: Demo of re-identify the same person in a non-overlapping multi-camera
network (figure provided in [7])

within a CCTV system. Besides, it can also be extended to other applications such

as multi-camera person retrieval, plotting the trajectory of a subject’s movement and

many other real-time and forensic applications. Current researches rely on several

publicly available datasets captured under restricted settings. The largest public

dataset consists of images captured from a network of 15 cameras [122]. The images

are captured with minimal occlusion, and several junk/distractor images are present

due to miss-detections by the pedestrian detector. Di↵erent taxonomies are used in

various research works for classifying the existing person re-identification methods.

Single-shot recognition refers to a one-to-one matching of a pair of images from two

cameras. Multi-shot recognition refers to matching two sets of images obtained from

two di↵erent cameras. The two sets of images are obtained by capturing multiple

frames from the motion trajectory of the pedestrians, as shown in Figure1.2 (b). In

the multi-shot recognition experiments, multiple images can provide more visual

information of a query person compared to a single-image recognition setting. Hence,

multiple-images recognition is a relatively less challenging problem and usually yields
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a higher retrieval rate. However, the multi-shot recognition setting requires multiple

images of a person from each camera. This requirement forces the Person Re-ID

system to use more processing time in order to capture multiple images of each

person. Hence, the Re-ID model developed for multiple-images recognition is di�cult

to be integrated into the real-time person re-identification applications. As a result,

in this thesis, we focus on the more challenging and single-image Person Re-ID

problem and conduct experiments mostly in the single-shot setting.
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Figure 1.2: (a) Sample images captured by a network of 6 cameras (From Market-1501
dataset [1]), (b) Image sequence of an identity from a single camera (c) Example
re-identification scenario with a query image and the retrieved matches.
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1.1 Challenges and Motivations

Person re-identification is an inherently challenging task due to several reasons. Some

of the major challenges are listed below.

1. Intra-class Variation: In the typical person re-identification setting, images

are captured by di↵erent cameras with non-overlapping fields of view. Hence

the environmental conditions such as background, illumination, the viewing

angle at one location may not be necessarily the same as other cameras at

di↵erent locations. This will result in a substantial intra-class variations as the

appearance of the images in di↵erent views may substantially di↵er from the

original appearance. As shown in Figure1.3 (a) and Figure1.3 (b), the images

in view 1 and view 2 are significantly di↵erent from each other.

2. Occlusion in Crowded Scenes: Public places such as railway stations,

streets and shopping malls can often be very crowded. Re-identifying people in

these environments is extremely challenging to extract the pedestrian bounding

box for a subject without any occlusion. Since many public datasets employ

automatic pedestrian detectors, this will result in miss detections or wrong

detections. All the above conditions make the re-identification very challenging

in crowded scenes as the full appearance of the subject is unavailable. Figure1.3

(c) shows some example cases with occlusion.

3. Generalisation capability and scalability: Supervised single-dataset per-

son re-identification models often over-fit to the training dataset. Once trained

from images of one particular video system in a supervised fashion, most models

do not generalise well to another system with di↵erent viewing conditions. If

we directly deploy a model trained from a public dataset to a new CCTV

system, the model usually su↵erers from considerable performance degradation.

Hence, it requires a large number of labelled matching pairs obtained from

the new system for training. Such a setting severely limits their scalability in
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real-world applications where annotating every camera systems is a costly and

time-consuming job.

4. Long-term Re-identification: Long-term person re-identification can pose

challenges in two main ways. First, tracking a pedestrian from location 1

to location 2 becomes increasingly di�cult as the separation in space and

time increases. To search a person in real-time becomes challenging to decide

the search space as well as the time frame to conduct the search. Though

exhaustive searching across all cameras can be a solution, it becomes tedious

considering the scalability of the re-identification algorithms. Second, it poses

a higher possibility that there may be some changes in the appearance of

the pedestrians (i.e. change of clothes, accessories etc.). Due to these issues,

collecting a person re-identification dataset is extremely time-consuming and

tedious work.

Figure 1.3: Summary of major challenges in Person Re-identification.

This thesis mainly focuses on addressing the first and the third challenges. The first
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aim is to learn robust representations which are invariant to illumination, pose and

viewpoint changes. Instead of addressing each of these problems individually, the

focus is to develop a holistic approach that can handle the problem of large intra-class

variations. The fundamental idea is to learn the feature representations where the

distance between the similar pairs (i.e. images of subjects belonging to the same

identity) is lesser compared to the distance between dissimilar pairs (i.e. images of

subjects belonging to di↵erent identities). The second aim of this thesis is to address

the limited scalability issue in many Person Re-ID models. We first proposed a cross-

dataset feature transfer method which can transfer from a pre-trained existing model

from one system to another. Later, we proposed a multi-dataset feature generalisation

model which aim to learn a universal domain invariant feature representation by

leveraging the labelled data from multiple available datasets.

1.2 Thesis Contributions

Motivated by the ideas mentioned in Section 1.1, this thesis focuses on learning

robust and invariant image representations for the real-world of Person Re-ID

applications. This thesis proposed four Person Re-ID approaches from a constrained

single-dataset setting to a more scalable cross-dataset and multi-dataset setting. The

main contributions of the thesis can be summarised as follows.

• We propose an end-to-end deep mid-level feature correspondence network that

learns to find the common mid-level salient features of people. As an end-to-end

architecture, the output of the network can be used to provide the similarity

score between the query and gallery images directly. The similarity score

from our model can be used for the online person matching task and real-time

cross-camera pedestrian tracking application.

• Person Re-ID model can also be used for person retrieval from a large gallery of

human images obtained from several historical video files. For person retrieval

application, we proposed a robust and simple feature extraction network

8



based on our novel negative competing triplet loss function (NC-Triplet). Our

proposed method also integrate with several data refinements and training

techniques proposed in recent years.

• The existing public datasets are collected from a very limited number of cameras

(ranging from 6 to 15), compared to hundreds of cameras in a real-world video

surveillance system. Most of these datasets are collected without any privacy

consideration. Hence, we collected and annotated a new Person Re-ID dataset

called Rose-IDentification-Outdoor (Re-ID-Outdoor). Our dataset is collected

from 50 real surveillance cameras and come with privacy consideration from all

participants. Overall, our Re-ID-Outdoor dataset is currently the most realistic

and also the only privacy-aware public dataset for Person Re-ID research.

• To address the scalability problem in these supervised single-dataset Person

Re-ID models, we proposed a cross-dataset feature transfer network which

utilises the mid-level attributes of the person to bridge the domain gap between

two di↵erent CCTV system (di↵erent datasets). By aligning the distribution

of each attribute from the source dataset to the target dataset, the network

can simultaneously learn the feature representation from the source dataset

and adapt to the target datasets.

• The cross-dataset transfer learning approaches require a large amount of unable

data from the target domain. The adaptation process also introduces additional

training time before deployment. Therefore, we proposed a novel domain

generalisation network. It leverages the images from multiple Person Re-ID

datasets to generate a more robust and well-generalised feature representation.

This setting simulates the real-world scenario in which a strong feature learner

is trained once and deployed to multiple camera networks without further data

collection or adaptive training.
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1.3 Thesis Outline

This thesis is organised as follows.

• Chapter 2: Literature Review

This chapter describes various research studies and works carried out by

researchers to tackle the problem of person re-identification. It provides a

comprehensive overview of the state-of-the-art Person Re-ID deep learning

algorithms from threes di↵erent perspectives:

– Single-Dataset Supervised Learning

– Cross-Dataset Domain Adaptation

– Multi-Dataset Domain Generalisation.

We also include detailed distributions and statistical summary of several popular

Person Re-ID datasets used in this thesis and many other research works.

• Chapter 3: Single-Dataset Supervised Feature Learning (Online

Matching)

This chapter presents an end-to-end single-dataset supervised mid-level feature

correspondence learning network for Person Re-ID. The previous siamese struc-

ture deep learning approaches focus only on pair-wise matching between feature

maps of two images. They rarely discuss the internal relationship between

feature maps. In our method, we considered the latent relationship between

di↵erent combinations of multiple mid-level features and proposed a network

structure to automatically construct the correspondence features from all input

features without a pre-defined matching function. The detailed architecture

and experimental results are demonstrated in this chapter. The advantage of

the end-to-end network structure is suitable for the online person matching

task. Base on this model, we have developed a real-time functional person

matching application using real-world surveillance cameras.
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• Chapter 4: Single-Dataset Supervised Feature Learning (O✏ine Re-

trieval)

Chapter 4 focuses on developing an o✏ine person retrieval application. The

proposed two-stage framework divides the Person Re-ID process into feature

extraction stage and similarity ranking stage. As a result, the feature em-

bedding of the gallery images can be stored and reused for di↵erent query

images. We train the ResNet50 backbone network based on our novel negative

competing triplet loss function (NC-Triplet). By integrating several data refine-

ments and training techniques, we proposed a simple and robust Person Re-ID

model for o✏ine person retrieval applications. In addition, due to the recent

implementation of General Data Protection Regulation (GDPR) in Europe

and some investigation on the DukeMTMC [95, 152] dataset in the US, it has

drawn much public attention on the privacy issue in most of the Person Re-ID

datasets. Besides, all existing Person Re-ID datasets only contain extremely

limited the number of cameras (ranging from 6 to 15), compared to hundreds

of cameras in a real-world video surveillance system. To address the privacy

concern and collect a new dataset from a real-world size camera network, we

proposed a new privacy-aware Person Re-ID dataset collection strategy. By

following this strategy, we successfully collected a new large-scale dataset called

Re-ID-Outdoor from a total of 50 outdoor surveillance cameras. The new

Re-ID-Outdoor dataset is currently the most realistic and most challenging

dataset for Person Re-ID.

• Chapter 5: Cross-Dataset Feature Transfer

The most significant drawback of the supervised method is the requirement of a

large amount of labelled data for training. In the real world scenarios, collecting

images of the same person across hundreds and thousands of CCTV cameras is

extremely expensive and time-consuming. Chapter 5 focuses on leveraging the

publicly available datasets and proposed a novel domain adaptation framework:
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Multi-task Mid-level Feature Alignment (MMFA) network. It can adapt the

model from a labelled source dataset to any unlabelled datasets in an unsu-

pervised manner. The proposed MMFA network shows a useful performance

improvement compared to the direct model transfer and outperforms most of

the state of the art methods.

• Chapter 6: Multi-Dataset Feature Generalisation

Cross-dataset domain adaptation solves many problems of the practical de-

ployment of Person Re-ID models. However, domain adaptation still requires

an adaptation process before it can be applied to a new system. We believe

the most practical Person Re-ID algorithm should generate a robust model

which could perform well on any video surveillance system out of the box. In

Chapter 6, we re-think the Person Re-ID algorithm as a multi-dataset feature

generalisation problem. We proposed a multi-domain generalisation framework:

Multi-domain Mid-level Feature Alignment Adversarial Auto-Encoder Net-

work (MMFA-AAE) which leverages labelled data from multiple datasets and

learns a universal feature representation for any unseen system. The detailed

experimental results demonstrate the e↵ectiveness of the proposed method.

• Chapter 7: Conclusion and Future Directions

Chapter 7 provides the concluding remarks of this thesis. The limitations and

recommendations for future work are discussed to provide opportunities for

further research and improvement in the area of Person Re-ID.
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Chapter 2

Literature Review

In this chapter, a survey of related works in Person Re-ID is presented. Section 2.1

begins by laying out the basic concept of person re-identification and discusses two

primary issues in the research of the person re-identification problem. In Section 2.2,

related hand-crafted approaches are presented. Section 2.3 first gives an overview

of the deep learning approaches for many computer vision tasks and provide a

general structure for the convolutional neural network (CNN). Then, we discuss the

recent deep learning approaches for Person Re-ID from three di↵erent perspectives:

single-dataset feature learning, coss-dataset feature transfer and multi-dataset feature

generalisation. The single-dataset feature learning methods focus on learning the

robust feature representation from one dataset in a fully supervised manner. The

section of coss-dataset feature transfer discusses the recent research transition from

fully unsupervised person re-identification to cross-dataset transfer learning. The

last multi-dataset feature generalisation learning is a large underexposed research

domain in Person Re-ID. Section 2.4 provides a list of famous person re-identification

benchmark datasets, followed by the concluding remarks in Section 2.5.
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Figure 2.1: The system diagram for a typical person re-identification process

2.1 Person Re-identification Overview

With the prevalence of surveillance systems, there has been much research and

study on the problems of person detection, person tracking, and the most recent

Person Re-ID. The main objective of Person Re-ID is to match pedestrians across

multiple CCTV cameras. The general schematic steps of a person re-identification

system are demonstrated in Figure 2.1. In a multi-camera surveillance network,

the images or videos obtained from each camera need to be analysed for detecting

the presence of people. Once a person is detected, person tracking algorithms are

used to detect the bounding boxes of every people in each video frame. This step

removes the most irrelevant background and reduces the data size for the following

processes. Then, imagery features are extracted from each pedestrian. Based on

these features, a descriptor is generated for the ensuing metric learning and matching

process. The first two steps: person detection and multiple people tracking are

challenging problems with their own hurdles. A significant amount of work has gone

into addressing issues of person detection over the years [8, 21]. Multiple Object

Tracking (MOT) within a single camera has also been widely researched, and many

algorithms have been proposed over the past two decades [56, 88]. Although person

detection and multiple person tracking have achieved a significant improvement in

terms of e�ciency, accuracy and robustness in recent years [101, 127], sustained
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tracking across cameras with varying observation environments remains an open

problem. Therefore, the primarily focuses on people re-identification research are

the last three steps, highlighted in the red box in Figure 2.1:

1. Finding imagery features that are more robust and concise than raw pixels.

2. Constructing feature descriptors or representations which are capable of both

describing and discriminating individuals, yet invariant to illumination, view-

point and colour calibration.

3. Developing a matching procedure, optimised for the previous features descriptors.

Each step in Person Re-ID entails various requirements on the algorithm and system

design. These requirements lead to both the development of new and the exploita-

tion of existing computer vision techniques for addressing the problems of features

representation and model matching. The majority of the existing research in human

re-identification concentrates on two aspects of the problem: developing a feature

representation [12, 19, 29, 44, 58, 67, 75, 121, 134, 145] and learning a distance

metric [15, 42, 53, 57, 58, 60, 87, 105, 124, 130, 144].

Feature Representations: Contemporary approaches to re-identification typically

exploit low-level features such as colour [44, 60, 76, 134, 144, 145, 147], texture

[75, 144, 145], spatial structure [6], etc. It is because these features provide a reason-

able level of inter-person discrimination together with inter-camera invariance. Such

features are further encoded into fixed-length person descriptors, e.g. in the form of

histograms [90], covariances [3] or Fisher vectors [74]. In recent deep learning ap-

proaches [1, 54, 117, 151], the feature embeddings extracted from the fully connected

(FC) layer usually used as the feature descriptors for similarity measurement. This

thesis primarily focuses on extracting robust deep feature representations for various

Person Re-ID applications. Section 2.2 and Section 2.3 will present a comprehensive

survey on various feature learning methods from hand-craft feature engineering to
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deep learning approaches.

Similarity Metrics: Once a suitable representation of features has been obtained,

a similarity metric is needed to measure the similarity between two samples. Many

prominent similarity learning algorithms [42, 53, 57, 87, 123] have been proposed for

person re-identification. Local Fisher Discriminant Analysis (LFDA) was proposed

for person re-identification in [87]. The objective is to maximise the inter-class

separability and to minimise the within-class variance. To address the non-linearities

in feature space, kernel-based dimensionality reduction techniques were proposed

in [123]. Support Vector Machine (SVM) learning was proposed in [57], and the

idea is to learn decision boundaries that are adaptive to the data samples. In

[130], several kernel-based metric learning methods for person re-identification were

evaluated, and kernel-based LFDA was found to be the best performing algorithm

for several re-identification datasets. Recently, a subspace and metric learning

method called Cross-view Quadratic Discriminant Analysis (XQDA) was proposed

in [60]. The algorithm is an extension of the Keep It Simple and Straight-forward

Metric Learning (KISSME) approach [42] to the cross-view metric learning. Another

prominent metric learning algorithm: Positive Semi Definite (PSD) logistic metric

learning was introduced in [58]. It uses an e�cient asymmetric sample weighting

strategy. Most of the metric learning methods mentioned above can also be trained

from the features extracted from deep neural networks. However, they introduce

an additional training process in the training of the deep learning models. Also,

because the recent deep learning Person Re-ID approaches can generate more robust

feature representations, direct application of the preliminary distance metrics such

as Euclidean distance or Cosine distance on the deep features can achieve excellent

performance. This thesis focuses on the Person Re-ID feature extraction from the

neural network and utilise the Euclidean distance and Cosine distance for a fair

comparison with other deep learning approaches.
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2.2 Hand-crafted Person Re-ID Features

Most of the Hand-crafted features for person re-identification are focusing on com-

bining the low-level colour [44, 60, 134, 144, 145, 147], texture [75, 144, 145] or

interest point detectors [144, 145] information. Features such as Colour Histograms

[60, 130, 144, 145], Local Binary Patterns (LBP) [114, 130], Colour Names [134, 147],

Scale Invariant Feature Transforms (SIFT) [70, 144, 145], Scale Invariant Local

Ternary Pattern (SILTP) [58, 60] are commonly used in Person Re-ID. Gabor-like

edges extracted from the Hue, Saturation and Value (HSV) channels for each image

have also been used in [75]. In [144, 145], local patches on a dense grid are extracted

and 128 dimensional SIFT features are computed for each patch of size 10 ⇥ 10

at a stride of 5. LBP histogram features on horizontal stripes are extracted for

each image in [130]. Image is divided into horizontal stripes to handle the pose

changes across views. In [58, 60], SILTP features are used in conjunction with

colour histograms. Image is divided into 10⇥ 10 blocks at a stride of 5 and SILTP

histograms are extracted at two scales. The maximal occurrence of each pattern

in a horizontal stripe is computed to address the viewpoint changes. The resulting

histogram features called Local Maximal Occurrence (LOMO) features achieve some

invariance to viewpoint changes and demonstrate impressive performance on several

benchmark datasets.

Alongside the research progress of the low-level feature analysis, some of the

works also focus on removing the irrelevant background. One background removal

approach, Symmetry-Driven Accumulation of Local Features (SDALF), is proposed

by exploiting human body shape. As the human body is naturally symmetrical, the

backgrounds rarely show such coherent and symmetric patterns. SDALF uses this

symmetric and asymmetric di↵erence between human and background to extract

meaningful body parts, as shown in Figure 2.2. Besides, the SDALF approach gives

higher weights to features extracted near the vertical and horizontal axis, which will

further reduce the potential background feature contamination [6]. This method
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Figure 2.2: Examples of foreground segmentation and symmetry-based partitions
(SDALF)

shows excellent robustness when used in conjunction with colour and texture features.

The perfromace of SDALF for the CUHK03 dataset and Market-1501 dataset is

shown in Table 2.1.

In recent years, some of the hand-crafted feature learning works move from

low-level features to mid-level features such as salient regions of the human body.

Salient regions are the discriminative areas, which make a person standing out from

their companions, as shown in Figure 2.3. These prominent regions provide valuable

information for boosting the performance of Person Re-ID models. An innovative

approach in this direction is developed by Zhao et al. [145]. Each image is broken

down into patches. Features such as Colour Histogram and SIFT are extracted from

each patch. These features will be categorised into regular groups and salient groups

by the K-Nearest Neighbour(KNN) algorithm. As the salient patches possess an

uniqueness property than other regular patches, salient patches can only have a very
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limited number of neighbours, and each salient patch group is distributed far away

from normal patch groups. The distance to the normal patch group will be the score

of the salient. The result is shown in Figure 2.4 below. By discovering the salient

patches of each individual, more weight will be given to the features extracted from

these locations. It improved the robustness of the person re-identification system.

Figure 2.3: A salient region could be a body part or an accessory being carried.
Some salient regions of pedestrians are highlighted with yellow dashed boundaries.

This local salient region analysis is based on only one or two features. Similar

to other existing techniques [80, 90, 123], those features are pre-defined or globally

selected. The weight of each feature is implicitly determined. However, because

of di↵erent conditions and situations, not all the features are equally useful for

person re-identification. Some features such as colour are more discriminative for

identity. Features like texture are more tolerant to illumination. The concept of

finding the most distinctive region can be further developed for selecting the most

salient features of di↵erent images at di↵erent circumstances. The weighting for each

feature for the specific dataset can be learned through boosting [29], ranking [90] or

distance metric learning [123]. The top section in Table 2.1 illustrates the Person

Re-ID performance for several state-of-the-art hand-crafted feature based methods.

2.3 Deep Neural Network Feature

In the previous sections, features extraction methods are designed and hand-crafted

by the human. The system designer is telling the system which features the operator
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Figure 2.4: A illustration of patch-based person re-identification with salient estim-
ation. The dashed line in the middle divides the images observed in two di↵erent
camera views. The salience maps of exemplar images are also shown

wants to extract from the pedestrian images. Due to the recent breakthrough in

the deep learning area [43], deep neural network structures such as CNN [46] can

give the system the ability to learn visual features automatically during the training

stage. The emergence of Graphics Processing Units (GPU) and big datasets also

help boost the speed and accuracy of the deep learning approaches. In recent years,

the deep learning based approaches has been widely used in Person Re-ID area. The

bottom section of Table 2.1 demonstrates performance of the Deep Learning based

models on the CUHK03 [54] and Mark-1501 dataset [147]. It is clear that the deep
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Methods
CUHK03 Market-1501

R-1 R-5 R-10 R-1 mAP

Hand-crafted

SDALF 4.9 21.0 31.7 20.5 8.2

KISSME 11.7 33.3 48.0 40.5 19.0

LOMO+XQDA 46,3 79.0 88.6 43.8 22,2

Deep Learning

FPNN 20.7 50.1 64.3 19.90 -

IDLA 45.0 75.6 83.3 - -

PCB 63.7 80.6 86.9 93.8 81.6

MGN 66.8 - - 95.7 86.9

Table 2.1: Performance comparison on CUHK03 and Market-1501 dataset for hand-
craft feature approaches and deep feature approaches

learning feature can provide a much better Person Re-ID performance compared to

the conventional hand-crafted feature methods

2.3.1 Deep Convolutional Neural Network Overview

The advancements in deep learning methods for computer vision tasks have been

constructed and imporved with time, primarily over one particular algorithm: the

CNN [46]. A CNN model usually consists of one or more convolutional layers (often

with a pooling step) followed by one or more fully-connected layers as in a standard

multi-layer neural network. The CNN architecture is designed to take advantage of

the 2D structure of an input image. It constructs hierarchical connected translation-

invariant features directly learn from the training dataset. Besides, CNN models

are easier to train and have much fewer parameters compared to fully connected

networks with the same number of hidden layers and neurons.

Convolution: The initial layers that receive an input signal are called convolution

filters. Instead of assigning di↵erent weights per each pixel of an image, some kernel

filters that are smaller than the input picture can slide through it. By applying

the same set of weights to di↵erent parts of the picture (also called weight sharing),

the same patterns in di↵erent parts of the image can be detected. By connecting

multiple convolution layers, the network tries to label the input signal by referring
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to what it has learned in the past.

Convolution has the nice property of being translation-invariant. Intuitively,

this means that each convolution filter represents a feature of interest (e.g from edge

detector to eyes and noses). By hierarchically connecting these convolution filters,

the CNN algorithm can learn a robust feature combination which can comprise the

resulting reference (i.e. face). The output signal strength is not dependent on where

the features are located, but on whether the features are present. Hence, a face

could be located in di↵erent positions, and the CNN algorithm would still be able

to recognise it. Moreover, we need to specify other important parameters such as

channel depth, stride, and zero-padding. The channel depth corresponds to the

number of filters we use for the convolution operation. The more filters we have, the

more image features are extracted and the better the network becomes at recognising

patterns in unseen images. Stride is the number of pixels (i.e. displacement) by

which we slide our filter matrix over the input matrix. When the stride is 1, then we

move the filters by one pixel at a time. When the stride is 2, then the filters jump 2

pixels at a time as we slide them around. Having a larger stride will produce smaller

feature maps. Sometimes, it is convenient to pad the input matrix with zeros along

the border, so that we can apply the filter to bordering elements of our input image

matrix. A useful feature of zero padding is that it allows us to control the size of the

feature maps.

Pooling: The outputs from the previous convolutional layer need to lower the sens-

itivity to noise before processing by other operation. A commonly used process in

many CNN architectures is pooling (also called sub-sampling). It can be achieved

by taking the average or maximum value over a kernel filter. Such spatial pooling

reduces the dimensionality of each feature map but retains the most important

information. In the case of max-pooling shown in Figure 2.5, we define a spatial

neighbourhood with a 2⇥ 2 window and take the largest element from the rectified

feature map within that window. Instead of taking the largest element, the average
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pooling computes the mean value of all elements in that window. In Chapter 4 of

this thesis, max-pooling has been shown to obtain better performance.

Figure 2.5: The max pooling operation.

Non Linearity Activation: The activation layer controls how the processed signal

flows from one layer to the next. It emulates how neurons are activated in the

network. The outputs which are strongly associated with past layer would activate

more neurons. It enables the signals to be propagated more e�ciently for the design

task. CNN is compatible with a large variety of complex activation functions to

model signal propagation. The most common function is the Rectified Linear Unit

(ReLU) [83], which is favoured for its faster training speed. Its output is given by:

f(x) = max(0, x) (2.1)

ReLU is an element-wise operation (applied per pixel) and replaces all negative pixel

values in the feature map by zero. Figure 2.6 provides a line plot of ReLU for both

negative and positive inputs. The purpose of ReLU is to introduce non-linearity in

the CNN model since most of the real-world data we would want the network to

learn would be non- linear. However, convolution is a linear operation (element-wise

matrix multiplication and addition). Hence, we have to account for non-linearity by

introducing a non-linear function like ReLU into the network.
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Figure 2.6: A line plot of ReLU for negative and positive inputs

Fully Connected (FC) Layer: The last layers in the network are usually a layer with

fully connected neurons. It means that neurons of preceding layers are connected to

every neuron in subsequent layers. The outputs from the convolutional and pooling

layers represent high-level features of the input images. The purpose of the Fully

Connected (FC) layer is to use these features for classifying the input image into

various classes. Apart from the classification purpose, adding a fully-connected layer

is also an easy method to learn non-linear combinations of these features.

Dropout: Dropout is a popular regularisation technique for neural network models

proposed by Srivastava et al. [104]. A fully connected layer makes the neurons

co-dependent to each other, which suppresses the individual power of each neuron

leading to over-fitting of training data. The dropout mechanism can randomly

select neurons and ignore them during the training phase, as shown in Figure 2.7.

By shutting down neurons randomly, it can prevent the network over-reliant on

a few active neurons. Each neuron has the opportunity to leans a useful feature

representation and overall improving the generalisation ability of the network. In

many deep learning approaches, dropout is usually applied before the final fully
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connected layer to alleviate the over-fitting problem. A typical deep convolutional

neural network (CNN) architecture usually consists multiple groups of convolution,

non-linearity activation and spatial pooling follow by one or two Fully Connected

(FC) Layers with Dropout, as shown in Figure 2.8.

Figure 2.7: Dropout Neural Net Model. Left: A standard neural net with 2 hidden
layers. Right: An example of a thinned net produced by applying dropout to the
network on the left. Crossed units have been dropped. (figure provided in [104])

Figure 2.8: Key operations in typical deep CNN architectures

2.3.2 Single-Dataset Deep Feature Learning

Since Krizhevsky et al. [43] won ILSVRC12 by using a CNN-based model, deep

learning approaches have been widely used in various computer vision tasks. Several

deep learning methods such as ”FPNN”[54] and ”IDLA”[1] are developed based on

implementing the deep neural network into the person re-identification system for

features extraction and matching tasks [54]. Generally speaking, most of supervised

deep learning based approaches can be categorised in to two types of CNN structures.
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The first is the classification model as used in image classification [43] and object

detection [25], as shown in Figure 2.9a. The second type is the Siamese model using

image pairs [92] or triplets [96] as inputs, as shown in Figure 2.9b and Figure 2.9c.

Models based on Siamese Network

In the early stage, Siamese network models have been widely employed due to lack

of training instances. Unlike traditional networks, Siamese networks are modelled

in a pairwise setting, i.e. inputs are taken as pairs as opposed to single inputs in

other conventional networks. The Siamese neural network contains two or more sub-

networks which share the same network architecture and the same weight parameters,

as shown in Figure 2.9b and Figure 2.9c. The objective of most of the Siamese

networks [9, 32] is to learn an embedding such that the same class objects are closer

to each other with the di↵erent classes objects are far apart. Hence, Hadsell et al. [32]

proposed the contrastive loss function to learn an invariant mapping. The objective

of this loss function is to separate objects belonging to di↵erent classes by a margin

distance while keeping the images of objects belonging to the same class as close as

possible in the embedding space.
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(a) Identification / Classification Network

(b) Siamese (Pairwise) Network

(c) Siamese (Triplet) Network

Figure 2.9: Di↵erent types of CNN structure for Person Re-ID

The first Siamese architecture for person re-identification was proposed by Yi

et al. [138]. In [138], the network consists of a set of 3 CNNs for di↵erent regions

of the image and the features are combined by using the cosine similarity as the

connection function. Binomial deviance is used as the cost function to optimise the

network end-to-end. Local body-part based features and the global features were

27



modelled by using a multi-channel CNN framework in [11]. Deep Filter Pairing

Neural Network (FPNN) was introduced in [54] to jointly handle misalignment,

photo-metric and geometric transformations, occlusion and cluttered background.

Later, the IDLA method Ahmed et al. [1] improved the FPNN by introducing a cross-

input neighbourhood di↵erence module to extract the cross-view relationships of the

features and have achieved impressive results in several benchmark datasets. [116]

also attempts to model the cross-view relationships by jointly learning sub-networks to

extract the single image as well as the cross image representations. In [98], a Siamese

network takes a CNN learning feature pair and outputs the similarity value between

them by applying the cosine and Euclidean distance functions. This CNN framework

employed to obtain deep feature of each input image pair, and then, each image is

split into three overlapping colour patches. The deep network built in three di↵erent

branches and each branch takes a single patch as its input. Finally, the three branches

are concluded by an FC layer. One recent work named Pyramid Person Matching

Network (PPMN) [78] proposed a two-channel convolutional neural network with the

new Pyramid Matching Module component. The Pyramid Matching Module aimed

to learn the corresponding similarity between semantic features based on multi-scale

convolutional layers. In Chapter 3 of this thesis, we also utilise the Siamese network

structure to create an end-to-end mid-level deep features correspondence learning,

which specially designed for real-time person re-identification and matching [62]

Models based on Classification

One biggest drawback of the Siamese model is that it does not make full use of

person id annotations. In fact, the Siamese model or triplet model only needs to

consider pairwise (or triplet) labels. Telling whether an image pair is similar (belong

to the same identity) or not is a relatively weak label for training a deep neural

network. Due to the recent release of two large-scale training set: Market-1501

[147] and DukeMTMC-reID [152], the most recent works start to utilise the identity

labels and train the Person Re-ID model in the classification/identification setting.
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Zheng et al. [149] and [148] directly use conventional fine-tuning approaches on the

Image-Net [43] pre-trained classification network. The CNN embeddings from their

classification networks can outperform many Siamese structured methods. The PDC

method [107] then integrate the identification with pose-estimation in order to handle

the misalignment and pose variations of pedestrians images. The APR method [65]

integrated the identity information with attributes to obtain more robust feature

representations. The Embedding method [151] combined both the identification loss

from the person ID classification network and verification loss from the Siamese

network. Currently, most of the state of the art methods such as MGN [117] and

BFE [14] use both identification loss and verification loss in order to achieve the best

performance. In Chapter 4, we developed a two-stage baseline network tailored to the

o✏ine person retrieval task. In the proposed model, we utilise both the identification

loss and verification loss integrated with various training techniques from multiple

state-of-the-art approaches. We also improve the triplet loss function by introducing a

batch-based adversarial competing mechanism to enhance the discriminability of the

feature embedding. By using our proposed triplet loss function with many training

techniques and data refinements, our simple and e↵ective person re-identification

model can achieve state-of-the-art performance.

2.3.3 Cross-Dataset Feature Transfer Learning

A brief overview of the related works in supervised single-dataset person re-identification

is presented in Section 2.3.2. However, in the real-world Person Re-ID system de-

ployment, supervised methods usually su↵er from poor scalability due to the lack

of training dataset obtained from the new system. Therefore, some unsupervised

Person Re-ID methods have been developed based on hand-crafted features with

dictionary learning. [40, 41, 118, 145]. Kodirov et al. [40] proposed to formulate

unsupervised Person Re-ID as a sparse dictionary learning problem. To regularise

the learned dictionary, they utilise graph Laplacian regularisation and iteratively

updated the graph Laplacian matrix. Later, they introduced an l1-norm graph
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Laplacian to learn the graph and the dictionary jointly [41]. Wang et al. [119] use

a kernel subspace learning model to learn cross-view identity-specific information

from unlabeled data. Yang et al. [135] propose a weighted linear coding method

to learn multi-level descriptors from raw pixel data in an unsupervised manner.

These unsupervised methods, due to the absence of the pairwise identity labels,

cannot learn robust cross-view discriminative features and usually yield much weaker

performance compared to the supervised learning approaches.

Because of the poor person Re-ID performance of the single dataset unsuper-

vised learning, many of recent works are focusing on developing the cross-dataset

transfer learning methods [16, 45, 73, 89, 120]. These approaches leverage the pre-

trained supervised Re-ID models and adapt these models to the target dataset.

Early proposed cross-dataset person Re-ID domain adaptation approaches rely on

weak label information in target dataset [45, 73]. Therefore, these methods can

only be considered as semi-supervised or weakly-supervised learning. The recent

cross-dataset works such as UMDL [89], SPGAN [16] and TJ-AIDL [120] do not

require any labelled information from the target dataset and can be considered as

fully unsupervised cross-dataset domain adaptation learning. The UMDL method

[89] tries to transfer the view-invariant feature representation via multi-task dic-

tionary learning on both source and target datasets. The SPGAN approach [16]

uses the generative adversarial network (GAN) to generate new training dataset

by transferring the image style from the target dataset to the source dataset while

preserving the source identity information. Hence, the supervised training on the new

translated dataset can be automatically adapted to the target domain. The TJ-AIDL

approach [120] individually trains two models: an identity classification model and

an attribute recognition model. The domain adaptation in TJ-AIDL is achieved by

minimising the distance between inferred attributes from the identity classification

model and the predicted attributes from the attribute recognition model. In [154],

Zhong et al. introduced a Hetero-Homogeneous Learning (HHL) method, which aims

to improve the generalisation ability of Person Re-ID models on the target set by

30



achieving camera invariance and domain connectedness simultaneously. Compared

to the previous single dataset unsupervised approaches, the recent cross-dataset

unsupervised domain adaptation methods yield much better performance. However,

the performance is still unsatisfactory compared with fully supervised approaches.

In Chapter 5 of this thesis, we proposed a Multi-task Mid-level Feature Alignment

(MMFA) Network [64]. With an assumption that the source and target datasets share

the same set of mid-level semantic attributes, our proposed model can be jointly

optimised under the people identity classification and the attribute learning task

with a cross-dataset mid-level feature alignment regularisation term. In this way, the

learned feature representation can be better generalised from one dataset to another,

which further improve the person re-identification accuracy. Experimental results on

four benchmark datasets demonstrate that our proposed method outperforms the

state-of-the-art baselines.

2.3.4 Multi-Datasets Domain Generalisation

Cross-Dataset domain adaptation increases the practicality of any pre-trained Person

Re-ID model deployed into any unseen system. However, it requires an additional

unsupervised or semi-supervised fine-tuning process on the target datasets. The

ultimate goal of an e↵ective Person Re-ID models should generalised to any new

unseen dataset/system. It has great value for real-world massive- scale deployment.

Specifically, when a customer purchases a Person Re-ID system for a specific camera

network, the system is expected to work out-of-the-box, without the need to go

through the tedious process of data collection, annotation and model updating or

fine-tuning. One possible way to achieve this goal is to utilise multiple existing

datasets to generalise a domain invariant feature representation. Surprisingly, there

is a very little prior study of this topic. To the best of author’s knowledge, only

two related works were specifically designed to using multiple datasets for models

generalisation purpose.
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Xiao et al. [128] proposed learning deep features representations from multiple

data sets by using CNNs to discover e↵ective neurons for each training data set. They

first produced a strong baseline model that works on multiple data sets simultaneously

by combining the data and labels from several Person Re-ID data sets together and

trained the CNN with a softmax loss. Next, for each data set, they performed the

forward pass on all its samples and computed the average impact of each neuron on

the objective function. Then, they replaced the standard Dropout operation with the

deterministic Domain Guided Dropout in order to discard useless neurons for each

data set, and continue to train the CNN model for several more epochs. The learned

generic embedding after domain-guided drop out yields competitive Person Re-ID

accuracy. Song et al. [102] on the other hand, proposed a Domain-Invariant Mapping

Network (DIMN) which produces a classifier using a single shot from the source

dataset. Once learned, for a target dataset, each gallery image is fed into the network

to generate the weight vector of a specific linear classifier for the corresponding

identity. A probe image is then be matched using the classifier by computing a simple

dot product between the weight vector and a deep feature vector extracted from the

probe. They follow a meta-learning pipeline and sample a subset of source domain

training tasks (identities) during each training episode for the domain-invariant

purpose. In Chapter 6, we proposed a new novel domain generalisation structure

(MMFA-AAE). The proposed network is based on adversarial auto-encoders to learn a

generalised latent feature representation across camera domains with Maximum Mean

Discrepancy (MMD) measure to align the distributions cross datasets. Extensive

experiments on both single-dataset and cross-dataset demonstrate the e↵ectiveness

of the proposed method.

2.3.5 Deep Learning Person Re-ID Methods Summary

Table 2.2 shows the performance the state-of-the-art deep learning Person Re-ID

methods which discussed in the previous sections.
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Methods
VIPeR PRID Market-1501 DukeMTMC-reID

R-1 R-1 R-1 mAP R-1 mAP

Single-Dataset IDLA 34.8 - - - - -

APR - - 84.3 64.7

PDC 51.2 - 84.1 63.4 - -

Embedding - - 79.5 59.9 - -

MGN - - 95.7 86.9 88.7 78.4

BFE 94.4 85.0 88.8 75.8

Cross-Dataset TJ-AIDL (Market) 38.5 26.8 - - 44.3 23.0

SPGAN (Market) - - - - 41.1 22.3

TJ-AIDL (Duke) 35.1 34.8 58.2 26.5 - -

SPGAN (Duke) - - 51.1 22.8 - -

Multi-Dataset DIMN 51.2 39.2 - - - -

DualNorm 53.9 60.4 - - - -

Table 2.2: Summary on the deep learning Person Re-ID methods

2.4 Datasets and Evaluation Protocols

2.4.1 Person Re-identification Datasets

This section contains a list of the datasets used for training and testing person

re-identification systems. In order to properly evaluate Person Re-ID models, a good

person re-identification dataset has to mirror the actual video surveillance setting in

a real-world scenario: viewpoint changes, di↵erences in illumination, di↵erences in

background and camera characteristics. A realistic dataset should include images

taken from di↵erent surveillance cameras to capture the same identity from di↵erent

viewpoint and trajectories, demonstrated in Figure 2.10. However, due to the security

concern and privacy issue, most existing person re-identification datasets are collected

from point-and-shoot cameras mounted on tripods. In this section, we provide a

brief description of 6 famous and commonly used public Person Re-ID datasets.

VIPeR

The VIPeR dataset [28] is one of the oldest Person Re-ID dataset. It contains 632

identities taken from two camera views with pose and illumination changes. Due

to its low resolution and large variation in illumination and viewpoints, the VIPeR
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Figure 2.10: Camera setup for a person re-identification dataset construction.

dataset is one of the most challenging and widely used datasets for Person Re-ID

model evaluation. The images are all cropped and scaled to be 128 ⇥ 48 pixels.

Figure 2.11 provide sample images of three di↵erent identities in the dataset. Each

identity has two images under two camera views.

Figure 2.11: Sample images from the VIPeR dataset. Each identity has two images
under two camera views.

PRID

The PRID dataset [35] is specially designed for Person Re-ID focusing on the single-

shot scenario. It consists of 934 identities generated from two camera views. There

are 385 identities in View A and 749 identities in View B, but only 200 identities

appear in both views. The images are cropped and resized to be 128 ⇥ 64 pixels.
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Figure 2.12 provides some sample images selected from 200 common identities in the

PRID dataset. By analysing the image quality in Figure 2.12, the colour profiles of

the two capture cameras are very di↵erent. Due to the large colour profile di↵erence

between cameras, the PRID is also a challenging dataset.

Figure 2.12: Sample images selected from 200 common identities of the PRID dataset.
the common identities has images under two camera views.

CUHK

The CUHK datasets are collected by Chinese University of Hong Kong. It contains

three di↵erent partitions: CUHK01 [53], CUHK02 [52], and CUHK03 [54]. The

CUHK01 dataset includes 1,942 images of 971 pedestrians. It has only two images

captured from two disjoint camera views, as shown in Figure 2.13. Camera A mainly

used for capturing the frontal view and the back view of each identity. Camera B has

more variations of viewpoints and poses. All images are re-sized to 160⇥ 60 pixels.

Figure 2.13: Sample images from the CUHK01 dataset.

The CUHK02 dataset contains 1,816 individuals grouped by five pairs of
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camera views (P1-P5 with ten camera views). Each camera pair includes 971,

306, 107, 193 and 239 individuals, respectively. Each individual has two images

in each camera view. Similar to CUHK01, all images in CUHK02 are re-sized to

160⇥ 60 pixels. This dataset is also the first Person Re-ID work, which evaluates the

performance when the camera views in the test are di↵erent from those in training.

Some sample images in each pair of camera views are illustrated in Figure 2.14.

Figure 2.14: Sample images from the CUHK02 dataset from 5 pairs of camera views

Finally, CUHK03 is the first person re-identification dataset that is large

enough for training a deep learning model. It includes 13,164 images from 1,360

pedestrians. Each identity is observed by two disjoint camera views and has an

average of 4.8 images in each view, as shown in Figure 2.15. Unlike CUHK01 and

CUHK02, the CUHK03 dataset contains images with various image sizes.

The CUHK03 is also the first dataset which utilises an automatic person

detection algorithm for detecting the bounding boxes of the people. It is composed of

two versions with the same identities: CUHK03-labelled and CUHK03-detected. The

CUHK03-labelled is composed by bounding boxes manually cropped like other Person

Re-ID dataset mentioned above. The bounding boxes in the CUHK03-detected are
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Figure 2.15: Sample images of one identity in the CUHK03 dataset.

detected by using the Deformable Part Models detector (DPM) [20]. The di↵erences

are showed in Figure 2.16. Due to the imprecision of the DPM detector with respect

to the manually cropping, manually cropped pedestrian images exhibit illumination

changes, misalignment, occlusions and body part missing. Hence, CUHK03-detected

is more challenging compared to CUHK03-labelled. Since CUHK02 and CUHK03

are very similar in the data collection setting, most of the Person Re-ID methods

only train and evaluated on the more challenging CUHK03 dataset.

Figure 2.16: In each pair on the left the image manually cropped, on the right the
image automatically detected.

Market-1501

The Market-1501 dataset [147] contains 32,668 images of 1,501 pedestrians. 751

identities are selected for training, and 750 remaining identities are for testing.

Each identity was captured by at most 6 non-overlapping cameras. It also uses

the Deformable Part Models detector (DPM) to detect the bounding box of person

automatically. All images are re-sized to 128 ⇥ 64 pixels. Figure 2.17 gives some
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sample images of the Market1501 dataset.

Figure 2.17: Sample images from the Marekt1501 dataset.

DukeMTMC-reID

The DukeMTMC-reID dataset [152] is the redesign version of pedestrian tracking

dataset DukeMTMC [95] for Person Re-ID task. It is one of the few Re-ID datasets

collected from actual surveillance cameras. The DukeMTMC-reID dataset contains

34,183 image of 1,404 pedestrians. 702 identities are used for training, and the

remaining 702 are for testing. Each identity was captured from 8 non-overlapping

cameras. Figure 2.18 gives some sample images of the DukeMTMC-reID dataset.

Due to unconstrained image size, a large number of camera, large illumination

changes and occlusions, the DukeMTMC-reID is much more challenging compared

to the Matket1501 dataset.

Figure 2.18: Sample images from the DukeMTMC-reID dataset.
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Summary

Table 1 below provides a statistical information and characteristics summary of

each dataset. The number of identities and the total number of images increase

Dataset Year # Identities # Cameras # Images Label Method Crop Size

VIPeR 2007 632 2 1,264 Manual 128X48

PRID 2011 934 2 1,134 Manual 128X64

CUHK01 2012 971 2 3,884 Manual 160X60

CUHK02 2013 1,816 10 (5 Pairs) 7,264 Manual 160X60

CUHK03 2014 1,467 10 (5 Pairs) 13,164 Manual/DPM Vary

Market-1501 2015 1,501 6 32,217 Manual/DPM 128X64

DukeMTMC-reID 2017 1,812 8 36,441 Manual Vary

Re-ID-Outdoor 2020 805 50 67,050 YOLO V3 Vary

Table 2.3: Summary on benchmark person re-identification datasets

significantly over the year. However, the number of cameras did not increase as much.

The 6-8 cameras cannot fully represent the actual camera number in the real-world

surveillance systems. As a result, we collected a new large-scale Person Re-ID

Dataset: Re-ID-Outdoor. This new dataset is collected from a total of 50 cameras

cover sophisticated scene transformations, background changes and illumination

variance.

2.4.2 Evaluation Protocols

The cumulative matching characteristics (CMC) curve is the most common metric

used for evaluating Person Re-ID performance. This metric is adopted since Person

Re-ID is intuitively posed as a ranking problem. Each image in the gallery is ranked

based on its comparison to the probe. The probability that the correct match in the

ranking equal to or less than a particular value is plotted against the size of the gallery

set [28]. Due to the slow training time of deep learning models, the CMC curve

comparisons for recent deep Re-ID methods are simplified to only comparing Rank

1, Rank 5, Rank 10, Rank 20 retrieval rates. Figure 2.19 illustrate the conversion

between CMC curve to Rank 1, 5, 10. Rank 1,5,10 can be considered as a simplified

version of the CMC curve.
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Figure 2.19: CMC curve to Rank 1, 5, 10 conversion

However, the CMC curve evaluation is valid when only one ground truth

match for each given query image. The recent datasets such as Market-1501 and

DukeMTMC-reID usually contain multiple ground truths for each query images.

Therefore, Zheng et al. [147] have proposed the mean average precision (mAP) as a

new evaluation metric. For each query image, the average precision (AP) is calculated

as the area under its precision-recall curve. The mean value of the average precision

(mAP) will reflect the overall recall of the Person Re-ID algorithm. The performances

of current Person Re-ID methods are usually examined by combining the CMC curve

for retrieval precision evaluation and mAP for recall evaluation.

2.5 Concluding Remarks

In this chapter, a brief overview of the related works in person re-identification is

presented. It covers from the early hand-crafted feature engineering to the recent

deep learning methods. As the deep learning methods show a superior performance

compared to hand-crafted feature methods, as shown in Table 2.1. The methods

proposed in this thesis are all based on deep convolutional neural network. This

thesis focuses on building real-world applications for person re-identification. We

specially designed two di↵erent models for the real-time person matching application

and o✏ine person retrieval application. As most of the existing Person Re-ID models
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are trained from a single dataset (a single camera system). Most of the existing

Person Re-ID models [1, 14, 54, 117] are su↵ered from dataset over-fitting and show

very limited generalisation ability to other camera system. Hence, to address the

scalability problem in the existing Person Re-ID models, this these also proposes two

methods via a domain adaptation approach and a domain generalisation approach.

In addition, all the existing Person Re-ID datasets [54, 122, 147, 152] contains very

limited number of cameras, as shown in Table 2.3. We also create a new real-world

sized Person Re-ID dataset: Re-ID-Outdoor. Out dataset also address the privacy

issue in all existing Person Re-ID dataset by following the European General Data

Protection Regulation (GDPR).
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Chapter 3

Single-Dataset Feature Learning

(Online Matching)

3.1 Introduction

Person Re-ID applications can be categorised into two types: online person match-

ing and o✏ine person retrieval. Online person matching across di↵erent cameras

is the fundamental procedure for the real-time person tracking in a multi-camera

CCTV system. O✏ine person retrieval, on the other hand, does not have the pro-

cessing time constraints. It is concern more with the feature embedding extraction,

storage and ranking, rather than meeting the real-time requirement. This chapter

focuses on developing a Person Re-ID model for the real-time person matching

applications.

In order to automatically track a person in a video surveillance network,

the system should be able to quickly and correctly match the same person across

multiple cameras and assign a consistent ID to him/her. Figure 3.1 demonstrates

the process of the online person matching. The probe image can be a picture of the

suspect uploaded manually by the operator or a bounding box of a person obtained

from other surveillance cameras. The online matching Person Re-ID model should

generate the similarity scores for every person in the current video frame based on
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Figure 3.1: This figure shows the online person matching process. The red bounding
boxes are the correct matchings with high similarity scores. The blue bounding
boxes are di↵erent persons with low similarity scores.

the target person’s appearance. In Figure 3.1, the red bounding boxes indicate the

correct matching persons with over 0.9 similarity score. The remaining pedestrians

in the blue bounding boxes only show less than 0.6 similarity score in our model.

Base on the similarity score di↵erence, we can easily separate the probe person from

other pedestrians.

Many Person Re-ID models [11, 14, 98] use a two-stage pipeline: 1) feature

extraction stage and 2) similarity measuring stage, as shown in Figure 3.2a. However,

online person re-identification applications require the matching process completed

in real-time. To maximise the processing speed, we propose an end-to-end mid-level

deep feature correspondence learning network which merges the feature extraction

and metric learning stages into one single network. The proposed network can

produce the similarity score directly from an image pair, as shown in Figure 3.2b.

43



(a) The conventional person re-identification pipeline

(b) The end-to-end person re-identification pipeline

Figure 3.2: Di↵erent types of person re-identification pipelines

3.2 Problem Definition

A practical real-time Person Re-ID model should learn a robust feature representation

which needs to be invariant to di↵erent camera viewpoints, illumination or human’s

poses. There are many Person Re-ID models developed by exploiting low-level

features such as colour [44, 60, 134, 144, 145, 147], texture [75, 144, 145], salient

region [144, 145] or spatial structure [6]. However, these low-level visual features

are not robust to variations in illumination, viewpoint, misalignment, etc. In

human perception, di↵erent people can be easily recognised by their mid-level visual

features such as gender, hair length, clothing colours or additional accessories. These

attributes can represent the mid-level semantics of a person which are more robust to

misalignment and camera variation comparing to low-level local features. However,

manual annotation of these mid-level semantics features can be very expensive and

44



time-consuming for a large camera network. As a result, it is di�cult to acquire

enough training data with a large set of attributes.

Our proposed method uses an alternative approach to obtain the mid-level

features. In recent years, deep CNN have contributed to a significant improvement

in performance in solving many computer vision tasks. There are also many studies

analysing the features obtained by CNNs. As the features from a CNN architecture

are structured in a hierarchical nature, the lower layer behaves in a manner similar

to low-level local feature extractors such as edge or colour filters. At higher layers,

the features start showing significant variation and become more class-specific [140].

In our proposed method, we use the feature maps obtained from the mid-layer of the

CNN architecture as an alternative to the actual mid-level semantic attributes. By

finding the correspondence between the feature maps, the network can be trained to

capture the most distinctive features of a person. Many existing approaches focus on

constructing the correspondence distributions between each pair of the same feature

map between the probe image and gallery images [13, 53]. However, we contend

that the mid-level feature correspondences should not be limited to the regional

feature map matching. The potential relationship between these mid-level features

should also be taken into consideration. In this chapter, we proposed a new strategy

for establishing a feature correspondence by considering di↵erent combinations of

mid-level deep features. In our proposed network, each correspondence feature is not

limited to the correlation between feature maps obtained from two images, but from

the multiple feature maps of two images.

One example of our system prediction result is shown in Figure 3.3. By

using the Inception network [110] as the mid-level feature extractor, the proposed

method can adaptively discover the distinctive mid-level deep features. The similarity

scores are calculated by analysing the relationship between these correspondence

features. These mid-level features and their latent relationships are learned through

a data-driven approach. Furthermore, as the parameters are initialised from an

ImageNet pre-trained model, the training process of our network can be considered
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as a fine-tuning process for transforming the deep mid-level features from an object

classification problem into a similarity matching task. As a result, it improves the

discriminative power and generalisation ability of these features.

Figure 3.3: This figure shows one of our predicted results in the CUHK01 dataset.
The ground-truth images are marked by the red bounding boxes. The second row
shows one mid-level feature map with the highest activation value for this person
obtained by our network. The highlighted white hoodie hat region is one of the
distinctive mid-level features to re-identify the person with the probe image.
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3.3 Mid-level Deep Features Correspondence and Rela-

tionship Learning

3.3.1 Network Architecture

The overview of our network architecture is demonstrated in Figure 3.4. The network

can be divided into three components:

Deep Mid-level Feature Extraction: The feature extraction network is modified

from Google’s Inception network by removing the last Inception module: (Incep-

tion 5). The feature maps extracted from the (Inception 4) module are used as

mid-level deep features.

Correspondence and Relationship Learning: The mid-level feature correla-

tions between two images and the correspondence relationship between related

features are learned by using multi-layer convolution operations on the concatenated

feature maps.

Metric for Similarity Measure: The metric network with three fully connected

layers is utilised for computing the similarity score.

Figure 3.4: The network architecture for correspondence and relationship learning of
mid-level deep features
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3.3.2 Deep Mid-level Feature Extraction

In our proposed network architecture, the Inception network [111] is used as the

basic deep neural network architecture for creating the Siamese network structure.

Two networks serve as the feature extractors for obtaining the mid-level feature

maps of each input image. In order for the features to be comparable, the weights of

all convolutional layers for the feature extraction process are shared. The existing

person Re-ID datasets are too small to train a well-generalised model. To prevent

over-fitting to the specific dataset, we transferred the weight from an ImageNet

pre-trained model [43] as a good starting point for the later network training and

fine-tuning.

As our training objective di↵ers from the ImageNet classification task, the

input image shape is not restricted to the 256⇥ 256 image shape from the ImageNet.

In our architecture, we decide to normalise all the input images to 160⇥ 80 which

is similar to the height-width ratio of the images in many person re-identification

datasets [28, 52, 53] and generates less distortion to the original images. In our

architecture, we decided to use the mid-level feature maps obtained from the ”In-

ception 4” module instead of the last Inception layer (Inception 5 ) as our mid-level

feature outputs. There are two reasons:

• With the 160⇥ 80 input shape, the size of the last convolutional layer outputs

will be 5⇥ 2 which loses too much spatial structure information. The feature

maps from the ”Inception 4” are relatively larger with the 10⇥ 5 in shape.

• The last convolutional layer of the deep learning model produces high-level

features. In the person re-identification situation, mid-level features are more

suitable for the task. Therefore, we use the feature maps from a lower level

convolutional layer to represent the mid-level deep features.
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3.3.3 Features Correspondence and Spatial Relationship Learning

Given a probe image from camera A and a gallery image from camera B, each image

is represented by 832 feature maps after the mid-level feature extraction process,

detailed in the section 3.3.2 above. Let X
A
i and X

B
i represent the ith mid-level

feature map (1  i  832) extracted from two input images. The similarity between

the people in the probe and gallery can be learned by analysing the correspondence

betweenX
A
i andX

B
i of the image pair. The previous approaches focus on learning the

correspondence features by calculating pair-wise matching probabilities. For example,

the first feature maps from probe and gallery images, XA
0 and X

B
0 are divided into

patches. The correspondence feature of the first feature map is obtained by dense

patch matching [97] or local searching in the neighbourhood of the given location

[1], as shown in Figure 3.5a. However, with these approaches, each correspondence

feature is obtained from only a pair of respective feature maps like [XA
0 , XB

0 ] or [XA
1 ,

X
B
1 ]. They assume the extracted feature maps are independent and fail to address

the possible latent relationship among di↵erent feature maps. For example, feature

maps 1, 3 and 6 can be grouped together to give a better correspondence feature:

[XA
1,3,6, X

B
1,3,6].

In our proposed method shown in Figure 3.5b, our correspondence features

are obtained by using a convolutional layer:

C = f⇤

�⇥
X

A
, X

B
⇤
,⇥

�
(3.1)

where f⇤ denotes the convolution operation. [XA
, X

B] is the concatenation of two

mid-level feature maps with shape 1664 ⇥ 10 ⇥ 5. With kernel size of 3, padding

1 and stride 1, the output feature maps can maintain the shape of 10 ⇥ 5. The

number of output feature maps is set to be the same as the mid-level feature maps, to

represent the 832 correspondence features. As the convolution operation is performed

on all mid-level feature maps, every kernel filters used for convolutional operation

are applied to the feature maps of the two images. The output feature from each
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kernel can be considered as one possible feature correlation between all feature maps

of each image pair. In our proposed method, the correspondence features are not

limited to the specific pair of two feature maps but learned from the combinations

of many di↵erent feature maps. All the weights for combination and convolutional

filters are automatically learned in a data-driven manner.

One of the biggest problems in Person Re-ID is person misalignment. Since

the convolution operation applies on the entire feature maps, we added another

convolutional layer to learn the spatial relationship between all these correspondence

features. The input and output shapes are the same (832⇥ 10⇥ 5) with a kernel size

of 3, padding 1 and stride 1. To deal with viewpoint variation and misalignment,

the max-pooling layer is used to reduce the spatial size of the representation further.

With a small representation, correspondence features can represents a large region of

a human body. Hence, it eliminate the needs for correspondence alignment between

images.

3.3.4 Metric Network

Inspired by the MatchNet [33], our similarity metric between features is modelled by

using three fully-connected layers with the ReLU non-linearity activation function.

The output of the last fully-connected layer will be two values in the range of

[0,1]. They can be interpreted as the probability whether the two input images

are capturing the same person or not. Besides, we also add a dropout layer after

the first and second fully-connected layers. The dropout mechanism can randomly

select neurons and ignore them during the training phase. By shutting down neurons

randomly, it can prevent the network over-reliant on a few active neurons. Each

neuron has the change to learn a useful feature representation and overall improve

the generalisation ability of the network and alleviate the over-fitting problem.
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3.3.5 Loss Function

Our network is trained and optimised by minimising the cross-entropy error of the

output labels using stochastic gradient descent (SGD):

E = �
1

N

NX

n=1

[yn · log (ŷn) + (1� yn) · log (1� ŷn)] (3.2)

N refers to the number of image pairs used in a mini-batch during training. Here yn

is the ground truth of image pair xn. yn = 1 indicates the image pair is the same

person and yn = 0 means negative matching. ŷn is the Softmax activation computed

based on the output value from the two nodes in the last fully-connected layer v0(xn)

and v1(xn):

ŷn =
e
v1(xn)

ev1(xn) + ev0(xn)
(3.3)

In summary, our proposed method can adaptively obtain the mid-level features,

automatically construct the correspondence features with their relationship and finally

learn the similarity metric. Comparing to previous one-to-one feature map matching

approaches, we considered the latent relationship between features when learning

the correspondence features. In addition, we eliminated the distance metric stage

and proposed an end-to-end similarity measure network which should help reduce

the person matching time for the real-time Person Re-ID applications.

3.4 Experiments

3.4.1 Datasets and Settings

Three publicly available datasets are used to evaluate the performance of the proposed

Re-ID network: VIPeR [28], CUHK01[53] and CUHK03[54]. The VIPeR dataset is

the oldest and the most tested benchmark for Person Re-ID problem. It contains 632

identities and two images for each identity. Because of the low resolution and large

variation in illumination and viewpoints, the VIPeR dataset is a very challenging
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dataset. The CUHK01 was captured from two camera views as well. It has 971

persons, and each person has two images from camera A, and the other two from

camera B. Camera A takes a frontal view and Camera B, the side view. The CUHK03

dataset contains 13,164 images of 1,360 pedestrians, captured by six surveillance

cameras. Each identity is observed in two disjoint camera views. On average, there

are 4.8 images per identity from each view. The statistics of these datasets are

summarised in Table 3.1 below.

Table 3.1: Statistics of each dataset

Dataset #ID #Image #Camera label

VIPeR 632 1264 2 hand

CUHK01 971 3884 2 hand

CUHK03 1360 13164 2 hand/DPM

In the training process, the training image pairs are divided into mini-batches

of size 96. Therefore, the total number of batches are over one hundred thousand. The

stochastic gradient descent (SGD) is used as the optimisation method for minimising

the cross-entropy error. The learning rate is set to 0.01 with polynomial decay. The

momentum is set to 0.9 with the weight decay of 0.0002.

3.4.2 Balancing Training Data

For each person in the datasets, there are only a few positive matching images with

a vast amount of negative matching images. Therefore, during the training process,

the number of positive image pairs will be much less than negative pairs, which

can lead to data imbalance and over-fitting. To reduce the potential over-fitting

problem, we also implemented two commonly used pre-processing methods [1]. The

data augmentation and hard negative mining as explained below.
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Data Augmentation

The original training images are reshaped with a random 2D a�ne transformations

around the image center to obtain an additional five augmented images. Then all

these images are further augmented by a horizontal flip, which doubles the size of

the training sample. This process not only mitigates the data imbalance problem

but also generates more training samples.

Hard Negative Mining

Data augmentation increases the number of positive pairs, but the training dataset

is still imbalanced with many more negatives than positives. If we train the network

with this imbalanced dataset, it might learn to predict every pair as negative.

Therefore, we randomly down-sample the negative sets to get just twice as many as

the positives (after augmentation). So in every batch, there will be 32 positive image

pairs and 64 negative image pairs. The converged model obtained is not optimal

since it has not seen all possible negatives. We run the pre-trained model to classify

all of the negative pairs and choose the highest similarly scored negative pairs (hard

negative sample). We then retrain our network with these hard negative samples to

boost the robustness of our model.

3.4.3 Visualisation of Deep Mid-level Features

Figure 3.6 gives a visualisation of the mid-level feature learned after the training

process. They are the highest weighted feature map from the ”Inception 4e/output”

layer when extracting the mid-level features from two images of the same person.

The region with very light colour means high activation values. In this case, the most

activated region is highlighted around her green handbag. From this experiment, we

realised that many mid-level feature maps obtained from our proposed network have

semantic meanings which can be very useful for later feature correspondence learning.

As a result, it proves that our network can successfully learn useful mid-level features
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to representation pedestrian’s appearance.

3.4.4 Performance Evaluation

In this section, the performance of our model is compared with several state-of-the-art

methods developed in recent years such as KISSME [42], SalMatch [144], FPNN

[54], IDLA [1], LMNN [124], DML [138] and XQDA+LOMO [60]. To evaluate the

performance of these Person Re-ID algorithms, the cumulative matching character-

istics (CMC) curve is used in our experiment. CMC represents the probability that

a query identity appears in a large gallery of images. This metric is adopted since

Re-ID is intuitively posed as a ranking problem, where each image in the gallery

is ranked based on its comparison to the probe. The probability that the correct

match in the ranking is equal to or less than a particular value is plotted against the

size of the gallery set [28].

Experiments on CUHK01

The CUHK01 dataset contains 3884 images of 971 identities from two di↵erent

cameras. Previous state-of-the-art approaches normally have two di↵erent settings for

this dataset: 100 test IDs and 486 test IDs [60, 144]. As the deep learning approaches

require a large dataset for training, we did not perform the 486 test IDs experiment.

In our experiment, we only focus on 100 randomly selected identities for testing.

The remaining identities are used for training. Table 3.2 is the comparison of our

proposed method with the recent state-of-the-art results. Our method outperforms

the IDLA [1] in this setting by a large margin. The CMC curves of all these methods

are shown in Figure 3.7.
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Table 3.2: Comparison with the state-of-the-art methods on CUHK01 dataset

Methods Rank 1 Rank 5 Rank 10

SDALF 9.9 41.2 56.9

LMNN 21.2 48.5 62.9

FPNN 27.9 48.5 63.0

KISSME 29.4 60.2 74.4

SalMatch 28.5 45.0 55.0

XQDA+LOMO 63.2 83.9 90.0

ImprovedReID 65.0 89.0 94.0

Proposed 81.2 95.8 97.4

Experiments on CUHK03

The CUHK03 dataset contains 13164 images of 1360 identities from six di↵erent

cameras. This dataset has two di↵erent pedestrians datasets. One is manually

labelled while the other is extracted with the Deformable Parts Model (DPM) human

detector [20]. Our model is tested based on the manually labelled dataset. Table

3.3 is the comparison of our methods with the recent state-of-art results. Overall

deep learning approaches such as FPNN and IDLA show better results on large

datasets when compared to many traditional handcrafted features and learning

metrics approaches. Our model still outperforms the IDLA from 55% to 72% in

rank-1 accuracy and yields over 90% rank-5 accuracy. The detail CMC performance

comparison with other models are shown in Figure 3.8.

Table 3.3: Comparison with the state-of-the-art methods on CUHK03 labelled dataset

Methods Rank 1 Rank 5 Rank 10

SDALF 5.6 23.5 36.1

LMNN 7.3 19.6 30.7

FPNN 20.6 50.9 67.1

KISSME 14.7 37.3 52.2

XQDA+LOMO 52.2 82.2 93.9

IDLA 54.7 86.5 93.9
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Figure 3.8: CMC curves on CUHK03 labelled dataset

Experiments on VIPeR

Due to the small number of images in the dataset, VIPeR alone cannot provide

enough training data for deep learning methods to coverage well enough. Therefore,

the IDLA and our proposed method have to be pre-trained on the combination of

the CUHK03 and CUHK01 datasets, then fine-tuned on VIPeR training data. The

rest of the traditional approaches such as KISSME and XQDA+LOMO follow the

commonly applied 50% training and 10 fold cross-validation evaluation. Table 3.4

below illustrates the overall performance of our model. It outperforms the state-of-art

methods significantly even on a small fine-tuned training sample. The detailed CMC

performance comparisons with other models are shown in Figure 3.9.

Cross-dataset Evaluations

As our model can adaptively obtain the excellent correspondence of the mid-level

features and learn the relationship between them, we would like to know whether it

has the ability to generalise to distinctive features and a similarity metric network

for person re-identification tasks in the cross-dataset scenario. In the experiment, our

model after training on the full CUHK03 dataset can achieve 64.2% rank-1 accuracy
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Table 3.4: Comparison with the state-of-the-art methods on VIPeR dataset

Methods Rank 1 Rank 5 Rank 10

SDALF 19.8 39.3 49.7

KISSME 19.6 48.0 62.2

SalMatch 30.2 52.0 65.5

LMNN+LOMO 29.4 59.8 73.5

KISSME+LOMO 34.8 60.4 77.2

XQDA+LOMO 40.0 68.1 80.5

DML 28.2 59.3 73.5

IDLA 34.8 63.6 75.6

Proposed 42.5 71.4 80.6

when tested on the full CUHK01 dataset (similar performance to the XQDA+LOMO

model on the CUHK01 dataset) and 14.5% rank-1 accuracy on the VIPeR. It gave a

comparable performance to the KISSME model on the VIPeR dataset. Although

it surpasses many popular methods in a supervised setting, it cannot be directly

deployed to a real-world system and requires a lot of optimisation and fine-tuning.

3.5 Real-World Implementation

In order to test out our proposed method performance in a real-world CCTV system,

we have developed a real-time cross-camera person matching application using the

surveillance cameras in the School of Electrical and Electronic Engineering Building

(EEE) of Nanyang Technological University (NTU). We selected 12 cameras in the

two central corridors of the S1 Building B3 floor, as shown in Figure 3.10.

The detailed system process flow is illustrated in Figure 3.11. In our system,

we use YOLOv3 [93] as the person detection to process the real-time video streams

from every surveillance cameras. The probe image is the image of a person we want

to search on. It can be manually uploaded by the operator or directly selected

from one of the video streams. These people detected from surveillance cameras

are processed by our end-to-end person re-identification network. Our proposed
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Re-ID model will compute the similarity score for every image pair. During our

implementation, we have run several test in the surveillance system and discover

that the 0.75 is the best threshold value to achieve a relatively consistent person

matching performance. So the person in the video frame with the similarity score

above 0.75 will be treated as the same person and highlighted by the red bounding

box. Those below 0.75 will be labelled by blue bounding boxes.

The end-to-end Re-ID model used in this system is trained in a fully supervised

setting from the ROSE-IDENTITY-Indoor (Re-ID-Indoor) dataset which is collected

in the same locations (NTU EEE Build) with 104 cameras in total. During the

real-world deployment, we used 4 individual desktop computers with two Nvidia

GTX 1070 GPUs installed. One GPU is only used for people detection; another one

is dedicated purely for the person re-identification task. This hardware setup can

achieve 15 frames per second (fps) processing speed with one full 1080p resolution

(1920⇥ 1080) video streams. In order to monitor the entire 12 cameras, we lower the

video resolution to 960⇥ 576. With this setting, each PC can process three real-time

video streams simultaneously. In our experiment, our system can achieve nearly 85%

matching accuracy overall. However, because of the low threshold value we set, the

false detection rate some times can research 30% if other pedestrians are wearing

very similar outfits with the probe person.

3.6 Conclusion

Our proposed approach can learn and fuse mid-level deep features to handle the

misalignment and viewpoint variation problems across two camera views. In contrast

to many previous deep learning approaches, our model considers the possible latent

relationship between mid-level features when generating the feature correspond-

ences. As an end-to-end network, our network can simultaneously learn the deep

mid-level features, feature correspondences and automatically assign the similarity

scores from a metric learning network in one single process. We have evaluated
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the proposed approach on three publicly available person re-identification datasets:

VIPeR, CUHK01 and CUHK03 and demonstrated superior performance compared

to several state-of-the-art approaches. Benefiting from our latent mid-level feature

correspondences learning, the proposed method achieves promising results on assign-

ing feature correspondences score of an image pair. In addition, we also extend the

model to the real-world cross-camera matching application and achieve 15 frames

per second processing speed with one GTX 1070 GPU.

Our proposed end-to-end deep mid-level feature network can directly assign

the similarity score for every image pair. It is extremely e�cient in dealing with

the real-time cross-cameras person matching. However, when performing the person

search from thousands of terabyte (TB) video archives, it needs to perform the

person matching scoring pair by pair all over again. For the person retrieval task, the

most e↵ective way is to store the pre-processed feature embedding of each image and

only perform distance matching when it is needed. So in the next chapter, we will

focus on the person retrieval part of the Person Re-ID problems and explore a simple

and e�cient baseline for person re-identification for the retrieval tasks. In addition,

fusing the mid-level deep feature and finding the corresponding matching region

provide promising performance in a single-dataset supervised setting. However, the

extracted features show poor performance on the cross-dataset scenario. Chapter 5

will address this issue by proposing a cross-dataset Person Re-ID model based on a

novel domain adaptation strategy.
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(a) ImprovedReID correspondence learning

(b) Proposed method correspondence and relationship learning

Figure 3.5: Correspondence learning di↵erence between IDLA and proposed method
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Figure 3.6: The 171th activation feature map from inception 4e/output detecting
the handbag

Figure 3.7: CMC curves on CUHK01 dataset
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Figure 3.9: CMC curves on VIPeR dataset

Figure 3.10: 12 Camera Locations in the S1 building B3 floor of EEE, NTU
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Figure 3.11: The system flow chart of person online matching
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Chapter 4

Single-Dataset Feature Learning

(O✏ine Retrieval)

4.1 Introduction

The previous chapter proposed an end-to-end mid-level feature correspondence

network for solving the real-time online person matching problem. This chapter

focuses on the Person Re-ID problem for o✏ine person retrieval. O✏ine person

retrieval aims at retrieving images of a specified pedestrian from a large gallery of

human images obtained from several historical video files. The single-stage end-to-

end network proposed in Chapter 3 is suitable for the real-time person matching task

because it combines the feature extraction and similarity scoring in one single stage,

which reduces the processing time. However, in the o✏ine person retrieval task,

the operators usually need to search for multiple di↵erent subjects. The end-to-end

framework we proposed in Chapter 3 requires both query image and gallery images

as the input. For every retrieval request, it needs to re-process the entire gallery

images again, as shown in Figure 4.1a. Much time and the computational resource

are wasted on re-processing the feature of the gallery images.
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(a) How an end-to-end network is used for the person retrieval task. For every new retrieval
request, the network needs to process the same gallery images again.

(b) How a multi-stage network is used for the person retrieval task

Figure 4.1: The comparison between the single-stage and the multi-stage framework
for the person retrieval task. The multi-stage framework separates the feature
extraction stage and distance metric stage. As a result, the gallery images only need
to be processed once.
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The multi-stage framework, on the other hand, separates the feature extraction

step and distance metrics step. As a result, the feature embedding of the gallery

images can be reused for di↵erent query persons, as shown in Figure 4.1b. In our

o✏ine person retrieval application, we store pre-processed feature embeddings of all

the gallery images. For every retrieval request, we only need to process the query

person’s image and match him/her with the stored gallery feature embeddings. It

significantly reduces the retrieval time for our application. In this chapter, we focus on

building a simple and robust feature extractor base on our novel negative competing

triplet loss function (NC-Triplet). Additionally, we provide a comprehensive ablation

study of several data refinements and training techniques.

4.2 Problem Definition

Person Re-ID with deep neural networks has made progress and achieved high

performance in recent years. However, many state-of-the-art methods design complex

network structures and concatenate multi-branch features [14, 132, 142]. This chapter

explores a simple and e�cient Person Re-ID feature extractor trained from our newly

proposed negative competing triplet loss function. In addition, we collected and

evaluated some e↵ective training techniques or refinements which appeared in several

papers published in the past two years. A practical Person Re-ID model needs to be

simple and e↵ective rather than concatenating lots of local features into a multifarious

output. In pursuit of high accuracy, researchers combine several local features or

utilise the semantic information from pose estimation [14, 132] or segmentation

models [59, 132]. Such methods involve too many additional computational processes.

Also, large feature embeddings greatly reduce the speed of the retrieval process. The

overall contribution of this work can be summarised as follows:

1. We proposed a new negative competing triplet loss (NC-Triplet) function,

which improves the mean average precision (mAP) performance of the Person

Re-ID model.
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2. Using our NP-Triplet loss function combined with these training techniques,

we established a strong baseline for researchers to achieve higher accuracies in

the future Person Re-ID works.

3. Address the limited camera number and lack of privacy concern in the existing

Person Re-ID datasets, we collected a more realise and more challenging Re-ID-

Outdoor dataset. It is the first Person Re-ID dataset with a privacy declaration

form singed by all participants.

4.3 Network Architecture

Figure 4.2: Our proposed network architecture

Figure 4.2 shows the network architecture for our Person Re-ID baseline model. We

use the ResNet50 [34] as the backbone structure for our feature extractor. The

2048 feature maps obtained from the last residual module will undergo a Global

Average Pooling (GAP) or a Global Max Pooling (GMP) layer to form a 2048-size

1-dimensional feature vector. This feature vector is used to compute the triplet loss.

The 2048 feature vector of each image will then be passed through a bottleneck layer
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to compute the softmax loss based on its corresponding person ID label. Section

4.5 below will give detailed explanations of the GAP/GMP layer and the bottleneck

layer. Overall, the models used for our experiments follow the pipeline below:

1. The ResNet50 backbone network is initialised with pre-trained parameters on

the ImageNet [43] dataset.

2. For the softmax loss based model, we use B number of images in one single

batch. For the triplet loss based model, we randomly sample P identities and

K images per person to constitute a triplet loss training. The final batch size

equals to B = P ⇥K. For example, we set P = 16 and K = 4. The final batch

size B will be 64

3. Unlike Market1051 dataset, the images in the DukeMTMC-reID dataset have

various height and width ratio. We re-size all images into (266⇥ 138) pixels

with 10 pixels padding, then randomly crop them into a (256⇥ 128) size. In

our experiment, we also test our model with a larger input size of (384⇥ 128).

4. Each image can be randomly flipped horizontally with 0.5 probability [43].

This process enlarges the training sample size and makes the model invariant

to the horizontal direction changes.

5. The ResNet50 backbone network we used is initialised by training the ImageNet

dataset. Hence, we apply the same image pre-processing for the ImageNet

training to the Person Re-ID model training which normalises RGB channels

of all input images by subtracting 0.485, 0.456, 0.406 and dividing by 0.229,

0.224, 0.225, respectively [43].

6. We change the dimension of the last fully connected layer to N neurons. N

denotes the number of human identities in the training dataset. Our model

will output the Person Re-ID feature f from the GAP/GMP layer and their

ID prediction logit p.
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7. The Person Re-ID feature f is used to compute the proposed NP-triplet loss.

In each batch, we also use the hard-negative mining strategy mentioned in

Chapter 3. ID prediction logits p is used to calculate the softmax loss.

8. The optimisation method we adopted for training our model is Adam [39]. For

a fair comparison with other state-of-the-art methods [51, 72], we follow the

same Adam learning rate setting. The initial learning rate is set to be 0.00035.

Then, the learning rate is decreased by 0.1 at the 40th epoch and 70th epoch,

respectively. Totally, there are 120 training epochs.

4.4 Loss Function

Many recent Person Re-ID models use a weighted sumation of the softmax loss with

triplet loss.

4.4.1 Softmax Loss (Identification Loss)

In 2016, Zheng et al. [151] proposed the ID Embedding (IDE) network. They con-

sidered the training of the person re-identification model as a human id classification

task. The objective of the feature embedding learning from the network should be

able to successfully map the images to their corresponding identity labels (ID labels).

Hence, they adopted the widely used softmax loss in their model. As shown in Figure

4.3, the last layer of IDE is a fully connected (FC) layer with a hidden size equal to

the number of persons N in the training set.
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Figure 4.3: The softmax loss in the ID embedding network

Given an image i and N is the number of persons in the training set, we

denote the pi and qi as the ground truth and the predicted probability. The softmax

loss is computed as:

LSoftmax =
NX

i=1

�pi log (qi) (4.1)

The softmax loss is suitable for the case that inter-class distance is much

larger than intra-class distance, such as the classification task on ImageNet dataset

[43]. However, this loss function does not consider the intra-class and inter-class

distance. In fact, the appearance of the same individual varies greatly and di↵erent

people may be similar across views. The softmax loss alone is not suitable for the

person re-identification task. Therefore, it needs the help of other loss functions,

which considers intra-class and inter-class distance.

4.4.2 Triplet Loss (Verification Loss)

Triplet loss is a commonly used loss function which considers intra-class and inter-

class distance. In 2005, Schro↵ and Philbin developed the FaceNet model [96] for

face recognition and clustering. They proposed a modified “Large Margin Nearest

Neighbor Loss” [124] called “triplet loss”. The triplet loss has been adapted in many

recent Person Re-ID works [11, 14, 72, 99, 117]. The softmax loss considers the

Person Re-ID training as learning an ID label classification model. The triplet loss

approaches treat the Person Re-ID training as learning a person verification model.
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Figure 4.4: Illustration of the distance changes of the positive and the negative
feature embedding pairs after training with the triplet loss

To train a triplet loss model, one feature embedding f
i
a of an image of person i

is used as an anchor of the triplet. f i
p denotes a feature embedding of the same person

i (positive pair to the anchor image). f j
n denotes a feature embedding of a di↵erent

person j (negative pair to the anchor image). The training process encourages the

model to make the l2 distance between the positive pair Dap = D(f i
a, f

i
p) smaller

than the negative pair Dan = D(f i
a, f

j
n) by a distance margin ↵, as shown in Figure

4.4. The triplet loss function of one triplet can be defined as

LTriplet = max {0, Dap �Dan + ↵}

= max
�
0, D(f i

a, f
i
p)�D(f i

a, f
j
n) + ↵

 (4.2)

where Dap and Dan are the l2 distances of the positive pair and the negative pair. ↵

is the margin of the triplet loss. Our experiments follow the same setting of most

triplet based models which set the distance margin ↵ to 0.3.

Figure 4.5: Two-dimensional visualisation of sample distribution in the embedding
space supervised by (a) Softmax Loss, (b) Triplet Loss, (c) Softmax + Triplet Loss
(figure provided in [72])
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The softmax loss constructs several hyper-planes to divide the embedding

space into di↵erent sub-spaces. Hence, it separates the feature embeddings by

enlarging the cosine of angles between them. However, without explicit constraints

on the feature space distribution, the learned feature embeddings may not be optimal.

As shown in Figure 4.5(a), there is no constraint on the distribution in the embedding

space, which leads to a general spread. On the other hand, the triplet loss function

enhances the intra-class compactness and inter-class separability in the Euclidean

space, as shown in Figure 4.5(b). However, the triplet loss function does not have

a global optimal constraint. The inter-class feature embedding distance sometimes

may be smaller than intra-class distance. Combining the softmax loss and the triplet

loss can alleviate each others drawbacks. The softmax loss takes full advantages of

labels and optimises the cosine distances of the feature embedding. The triplet loss

considers intra-class and inter-class distance and optimises the Euclidean distance.

As a result, many of the recent Person Re-ID works [14, 38, 72, 99, 117] uses the

weight summations of two losses:

LCombine = �LSoftmax + (1� �)LTriplet (4.3)

4.4.3 Negative Competing Triplet Loss

The original triplet loss pushes the negative feature embedding f
j
n away from the

anchor embedding f
i
a, shown in Figure 4.4. However, once the negative pair is further

away than the positive pair + distance margin ↵, there will be no gain for the Person

Re-ID model for any improvement. To alleviate this problem, we proposed a new

negative competing triplet loss (NC-Triplet), which further enlarges the distance

between the positive and negative embeddings.

Our NC-Triplet is the sum of two di↵erent losses: original triplet loss and newly

proposed negative competing loss, as shown in Figure 4.6. The negative competing

loss ensure the distance of the positive-negative embedding pair Dpn = D(f i
p, f

j
n) is
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Figure 4.6: NC-Triplet loss combines the original triplet loss and an additional
negative competing loss. The negative competing loss pushes the positive embedding
further away from the negative one.

larger than the anchor-negative pair,Dan = D(f i
a, f

j
n), as shown in Figure 4.6. As

the anchor embedding and the positive embedding are from the same person in

the dataset, the negative competing loss further enlarges the embedding distance

between di↵erent pedestrians.

Figure 4.7: One example of the di↵erent order of the anchor image and positive
image under di↵erent training epoch and training batch

In addition, our deep convolutional neural network models are trained with
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random anchor image selection for each batch. So the anchor image of epoch 1

can also be the positive image in epoch 2 and vice versa. Figure 4.7 demonstrates

an example of the two image triplets in two di↵erent epochs during the training.

The three images are the same for two triplets with a di↵erent order of anchor and

positive images. The entire training process of the NC-Triplet loss can be considered

as the anchor images, and positive images are competing with each other to move

away from the negative images. As a result, we name this modified triplet loss

function as native competing triplet loss (NC-Triplet loss). Overall, the NC-Triplet

loss can be computed as:

LNC�Triplet = max {0, (Dap �Dan + ↵1) + (Dpn �Dan + ↵2)} (4.4)

where Dap and Dan are feature distances of the anchor-positive pair and the anchor-

negative pair. Dpn are feature distances between the positive and the negative feature

embeddings. ↵1 is the distance margin for triplet loss, and ↵2 is the distance margin

for negative competing loss. We set both distance margins ↵1 and ↵2 to 0.3 which

follow the same setting as triplet loss function used in ImpTripet [11].

4.4.4 Center Loss

The original triplet loss and our proposed NC-Triplet loss only consider the di↵erence

among Dap, Dan and Dpn. They ignore the absolute values of the feature distance.

For instance, when Dap = 0.3, Dan = 0.5, the triplet loss will be 0.1. In another

case, when Dap = 1.3, Dan = 1.5, the triplet loss also is 0.1. The triplet loss and

our NC-Triplet loss are computed from feature embeddings sampled randomly from

two di↵erent persons. It is di�cult to ensure that Dap < Dan in the whole training

dataset. Center loss proposed by Wen et al. [125] can simultaneously learn a center

for deep features of each class and penalises the distances between the deep features
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and their corresponding class centers. The center loss function is formulated as:

LCenter =
1

2

BX

i=1

kfi � cyik
2
2 (4.5)

where yi is the ID label of the ith image in one training batch. cyi denotes the

yith class center of deep features. B is the number of batch size. The objective of

this loss function is to reduce the square l2 norm distance between every sample

features and their corresponding feature centers. Hence, the formulation e↵ectively

characterises the intra-class variations. Finally, we formulate the overall loss function

by incorporating the weighted sum of the softmax loss, NC-Triplet loss and center

loss:

LFinal =
�1

�
LSoftmax +

�2

�
LNC�Triplet +

�3

�
LCenter ,while � = �1 + �2 + �3 (4.6)

For a fair compassion to the state-of-the-art methods, we follow the same setting of

many other methods [38, 72, 117] and empirically fixed the �1, �2 and �3 to 1.

4.5 Training Techniques and Refinements

In this section, we will introduce some e↵ective training techniques or refinements

used for training our models. These techniques are collected from the mainstream

conference proceedings and journal papers in recent years. The detailed ablation

studies will be discussed in Section 4.7.

4.5.1 Di↵erent Input Size

In our model, each image is re-sized to 256⇥ 128 pixels with an additional 10 pixels

padding. We then randomly crop them back to 256⇥128 rectangular shape. Random

cropping prevents a neural network from over-fitting to specific features by changing

the location of the apparent features in an image [112]. That is due to the fact that

the images in the Market1501 dataset are all re-sized with the 2:1 height-width ratio.
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Other datasets such as DukeMTMC-reID and MSMT17 have unconstrained image

sizes but close to the 3:1 height-width ratio. In our experiments, we have trained

two networks with di↵erent input sizes: 256⇥ 128 and 384⇥ 128 to determine which

size is more suitable for Person Re-ID task. The experimental results will be shown

in Section 4.7.

4.5.2 Warm-up Learning Rate

Using di↵erent learning rates have a great impact on the performance of most deep

learning models. Many recent Person Re-ID works [14, 64, 72, 117] use the multi-step

learning rate which reduces the learning rate after a certain epoch stage, shown as

the blue line in Figure 4.8. Goyal et al. [26] proposed a new warm-up learning rate

strategy. It uses a lower learning rate at the start of training and gradually increases

the learning rate for the first few epochs. It helps initialise the model well before

applying a large learning rate for optimisation. As a result, recent Person Re-ID

works use warm-up learning rate to train their models [18, 36, 72]. The red dotted

line in Figure 4.8 illustrates how the learning changes during our model training

process. The first 10 epochs linearly increase the learning rate from 3.5⇥ 10�6 to

3.5⇥ 10�4. Then, the learning rate is decreased to 3.5⇥ 10�5 and 3.5⇥ 10�6 at 40th

and 70th epoch, respectively. In our experiment, the learning rate warm-up strategy

can give a 1% increase in both CMC and mAP performance metrics.

4.5.3 Random Erasing Augmentation

In Person Re-ID, people in the images are sometimes occluded by other objects. To

address the occlusion problem and improve the generalisation ability of the models,

Zhong et al. [153] proposed a new data augmentation approach named as Random

Erasing Augmentation (REA). For an image I in a mini-batch, the probability of

it undergoing Random Erasing Augmentation is pe and the probability of it being

kept unchanged is (100%� pe). Then, REA randomly selects a rectangle region Ie
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Figure 4.8: Comparison of learning rate schedules. With warm-up strategy, the
learning rate is linearly increased in the first 10 epochs.

with size (We, He) in image I ,and erases its pixels with random values, as shown in

Figure 4.9. This augmentation mimics the common Person Re-ID problem: human

body occlusion. By training with images containing occlusion in di↵erent human

body parts, the trained model should be more robust to the occlusion and more

sensitive to the local region features.

4.5.4 Last Stride

In the previous chapter, we removed the last Inception module from the backbone

network to increase the size of the feature maps [62]. This process creates near

mid-level feature representation and enriches the granularity of the extracted features.

Another way to increase the size of the feature map is to remove the last spatial

down-sampling operation in the backbone network [109]. The default last spatial

down-sampling operation (Last Stride) in the ResNet50 is set to 2. With a 256⇥ 128
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Figure 4.9: Sampled examples of the random erasing augmentation of the Market1501
dataset. The first row shows five original training images. The processed images are
presented in the second low

size image as an input, the ResNet50 will output a feature map with the spatial size

of 8⇥ 4. By changing the last stride from 2 to 1, we can obtain a feature map with

a larger size of 16⇥ 8. This manipulation increases very little computation cost and

does not involve any extra training parameters. The performance improvement from

the higher spatial resolutions will be analysed in Section 4.7 later.

4.5.5 GAP and GMP

CNN perform convolution in the lower layers of the network. For classification,

the feature maps of the last convolutional layer are vectorised and fed into FC

layers followed by a softmax logistic regression layer. However, the fully connected

layers are prone to over-fitting, thus hampering the generalisation ability of the

overall network. Lin et al. [61] proposed a new strategy called global average pooling

(GAP) to generate a one-dimensional feature vector before feed to the traditional
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fully connected layers in CNN. Instead of adding fully connected layers on top of

the feature maps, GAP takes the average of each feature map and produces a one-

dimensional feature vector which is fed directly into the softmax layer. One advantage

of global average pooling is that it enforces the correspondences between feature

maps and labels (person id in Person Re-ID problem). Since there is no parameter

to optimise in the global average pooling, the over-filling problem is avoided at this

layer. In our baseline model, we also introduce the global max-pooling (GMP) layer

which takes the maximum value of each feature map. As the GMP layer takes the

maximum value of the feature map, it helps the model emphasise on the semantic

regions from the feature maps. In our GAP and GMP comparison experiment, GMP

usually outperforms the GAP by a small margin.

4.5.6 Bottleneck Layer

Our baseline model uses both the softmax loss and the triplet loss. The softmax

loss constructs several hyper-planes to divide the embedding space into di↵erent

sub-spaces. The features of each class are distributed in di↵erent sub-spaces. The

softmax loss function separates the feature embeddings by enlarging the cosine of

angles between them. On the other hand, the triplet loss enhances the intra-class

compactness and inter-class separability in the Euclidean space. The softmax loss

mainly optimises the cosine distances while the triplet loss focuses on the Euclidean

distances. If we use these two losses to optimise one feature vector simultaneously,

their goals may be inconsistent and conflicting with each other. To overcome the

aforementioned problem, Luo et al. [72] proposed a bottleneck structure shown in

Figure 4.10. The bottleneck layer adds an additional batch normalisation (BN) layer

between the GAP/GMP layer and the softmax classifier layer. By adding an extra

bu↵er layer, it reduces the constraint of the triplet loss from the softmax loss which

could alleviate the conflict between them.
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Figure 4.10: The bottleneck layer.

4.6 Rose-Identification-Outdoor Dataset

The existing public datasets have three main limitations that need to be addressed:

1. Small camera network size

2. Unrealistic surveillance environment

3. Lack of privacy consideration

Hence, we collected a new large-scale Person Re-ID dataset Rose-Identification-

Outdoor (Re-ID-Outdoor) to address these three problems.

4.6.1 Increase Camera Network Size

Much attention has been paid in recent years to the problem of Person Re-ID. Most

existing deep learning based Person Re-ID algorithms are typically trained and

evaluated on three large-scale public datasets: Market1501 [147], DukeMTMC-reID

[152] and the most recent MSMT17 [122]. All these datasets are obtained from a

very limited number of cameras ranging from 6 to 15, shown in Table 4.1 below.
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The small camera number reduces the variation and diversity of a person under

di↵erent backgrounds, illumination or camera colour profiles. Overall, it makes it

too easy for searching and matching people across di↵erent cameras. As a result,

many recently proposed Person Re-ID algorithms [14, 117] can achieve more than

90% rank-1 accuracy in both Market1501 and DukeMTC-reID. However, real-world

surveillance systems usually consist of hundreds of cameras. As a result, the images

obtained from them are much more dynamic in nature.

Datasets Market1501 DuketMTMC-reID MSMT17 Re-ID-Outdoor

# Cameras 6 8 15 50

Table 4.1: Number of cameras for recent Person Re-ID datasets and our Re-ID-
Outdoor dataset

The Re-ID-Outdoor dataset is collected within the Nanyang Technological

University (NTU) campus by using actual surveillance cameras installed on lamp

posts. There are a total of 34 camera locations, with each camera location installed

with one to four cameras pointing in di↵erent directions. The location of all cameras

can be found in Figure 4.11. During the data collection period, we selected the 50

cameras from 23 highly active camera locations. Overall, our Re-ID-Outdoor dataset

consists of a total of 50 di↵erent cameras covering the entire 2km2 NTU campus

area, which gives the most dynamic changes in the image background. The detailed

comparison with other public datasets are shown in Table 4.1.

4.6.2 More realistic Surveillance Environment

Another drawback of many existing Person Re-ID datasets such as VIPeR [28],

Market1501 [147] and MSMT17[122] are using non-surveillance cameras mounted

on tripods for video recording, which result in a near-horizontal point of view of

all captured persons, as shown in Figure 4.12(a). However, in actual surveillance

systems, cameras with wide-angle lens are mounted on lamp-posts or ceilings, which

81



Figure 4.11: An overview of our outdoor surveillance cameras

give unique top-down wide-angle views of passing pedestrians. In Re-ID-Outdoor

dataset, all the images are captured from actual surveillance cameras mounted on

lamp-posts with distinctive top-down wide-angle viewing, as shown in Figure 4.12(b).

Figure 4.12: Viewing angles of cameras used in Market1501, MSMT15 versus actual
surveillance cameras in Re-ID-Outdoor

In addition, most of the real-world surveillance systems run 24/7. However,

all existing public datasets only use the videos recorded during the daytime, which

limited the capability of the Person Re-ID models trained on them. In Re-ID-Outdoor

dataset collection, we take into consideration the di↵erence of a person during the
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daytime and nighttime by running all cameras 24 hours non-stop. In Re-ID-Outdoor,

the daytime videos and nighttime videos have very di↵erent colour profiles and image

quality shown in Figure 4.13. However,

Figure 4.13: Same person in the afternoon, evening and nighttime in our Re-ID-
Outdoor dataset

If we consider the period from 7am to 7pm as the daytime, 38.6% of the total images

in the Re-ID-Outdoor dataset are captured during the nighttime, shown in Figure

4.14.

Figure 4.14: Percentage of daytime images and nighttime images in our Re-ID-
Outdoor dataset
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4.6.3 Lack of Privacy Consideration

Most of the Person Re-ID datasets are collected and annotated from hours of video

footage recorded from several cameras set up in a public space. For example,

the Market1501 dataset [147] was collected in front of a supermarket in Tsinghua

University in 2015. DukeMTMC-reID [152] are the subset of a surveillance dataset

extracted from video footage taken on Duke University’s campus in 2014. They

annotated every single pedestrian walk passing the camera without their awareness

and consent. Their data collection approaches introduced a lot of controversies,

and some datasets are currently under investigation. As a result, Duke University

has shutdown the DukeMTMC dataset project on 2nd June 2019 and canceled the

computer vision surveillance workshop using the DukeMTMC dataset. DukeMTMC-

reID dataset as an extension of DukeMTMC has also been removed from the internet.

Currently, Market1501 dataset main page has been shutdown. The MSMT17 dataset

has to release a new version to mask up the faces of all pedestrian. There is a huge

demand for a privacy-aware dataset for future Person Re-ID research.

To address the privacy issue in the current Person Re-ID datasets, we proposed

a new Person Re-ID dataset collection method, and we call it privacy-aware user-

driven dataset collection strategy. We developed a mobile web app for the Re-ID-

Outdoor dataset collection. The design of our web app is demonstrated in Figure 4.15.

Every participant needs to read and agree with our privacy policy before register

for our data collection. Hence, they are willing to share their face and appearance

information for the research and commercial purpose. In the final public version of

the dataset, we removed the names and email addresses of all the participants and

assign a random number for them to preserve their anonymity.

By running our web application in the smart-phone, the GPS information

of the registered participant was analysed in the cell-phone background. When the

participant walk passes our surveillance cameras, The timestamps are automatically

recorded in the web app. With the actual time log information, it significantly reduces
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the searching window for our annotators. In addition, we also ask the participant to

self-annotate their appearance attributes. Hence, we don’t need another round of

attributes annotation, which saves us tremendous amount of time.

Figure 4.15: Mobile web app for the Re-ID-Outdoor dataset collection

There are three main advantages of our privacy-aware user-driven person

Re-ID dataset collection strategy:

1. Privacy Aware: We only collect images of the registered participants. All

registered participants have to accept our privacy policy which allows us to

use their appearances for research and commercial purposes.

2. User Driven: With our mobile web application, the participant can actively

report the time when they are passing each camera. It significantly reduces

the annotation di�culty in the large-scale camera network. In addition, the

participants also provide us their accurate appearance attributes.
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3. Long-term Person Re-ID: By using our collection strategy, we can have

di↵erent appearances of the same person on di↵erent days. A new long-term

Person Re-ID dataset could be derived from the Re-ID-Outdoor dataset for

long-term Person Re-ID research.

4.6.4 Comparison With Other Datasets

In this Re-ID-Outdoor dataset collection, 26,175 three-minutes long videos clips

have been extracted from the raw surveillance videos. From those video clips, a

total of 45,397 bounding box images of pedestrians have been successfully annotated

with 40 additional attribute labels. These images are collected from 805 di↵erent

appearances on multiple-days over an eight week period.

Datasets Re-ID-Outdoor MSMT17 DuketMTMC-reID Market1501

Surveillance

Camera
Yes No Yes No

# Cameras 50 15 8 6

Collection Period 8 Weeks 4 Days Single Day Singel Day

Time

Variant

24 Hours

Day and Night

Morning

Noon

Afternoon

- -

# Identities 805/278 4,101 1812 1501

# BBoxes 45,397 126.441 36,411 32,668

# distractors 0 0 >2000 2.793

# Attrribute 40 - 23 30

People

Dectection
YOLO V3 Faster RCNN DPM DPM

Table 4.2: Detailed comparison with existing large-scale Person Re-ID datasets

Table 4.2 gives a detailed comparison of our Re-ID-Outdoor Dataset with

three recent large-scale Person Re-ID datasets: MSMT17 [122], DukeMTMC-reID

[152] and Market1501 [147]. Re-ID-Outdoor has more bounding boxes of human

images compared to Market1501 and DukeMTMC. Although the MSMT17 dataset

has many more identities and human images for training and testing, the limited

camera number and horizontal viewing positions cannot fully represent the real-
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world outdoor surveillance system. On the other hand, the Re-ID-Outdoor dataset

is obtained from 50 real surveillance cameras and contains people with di↵erent

daytime and nighttime views. Hence, it is the most realistic dataset for Person Re-ID

tasks at present.

4.7 Experiments

4.7.1 Datasets and Evaluation Protocol

We evaluate our models on two newly released large-scale datasets: Market1501,

DukeMTMC-reID. The Market1501 dataset [147] contains 32,668 images of 1,501

pedestrians. 751 identities are selected for training and 750 remaining identities

are for testing. Each identity was captured by at most 6 non-overlapping cameras.

The DukeMTMC-reID dataset [152] is the redesigned version of pedestrian tracking

dataset DukeMTMC [95] for Person Re-ID tasks. It contains 34,183 image of

1,404 pedestrians. 702 identities are used for training and the remaining 702 are

for testing. Each identity was captured by 8 non-overlapping cameras. In our

experiments, we follow the proposed single-query evaluation protocols for Market1501

and DukeMTMC-reID [147, 152].

The re-identification of a query image is achieved by ranking the l2 distance

of the 2048-D feature embeddings (after the global max-pooling layer) between query

and gallery images. To evaluate the performance of these Person Re-ID algorithms,

the cumulative matching characteristics (CMC) curve is used in our experiments.

The cumulative matching characteristics (CMC) curve is the most common metric

used for evaluating person Re-ID performance. This metric is adopted since Re-ID

is intuitively posed as a ranking problem, where each image in the gallery is ranked

based on its comparison to the probe. The probability that the correct match in the

rankings equal to or less than a particular value is plotted against the size of the

gallery set [28]. Due to the slow training time of deep learning models, the CMC

curve comparisons for recent deep Re-ID methods are simplified to only comparing
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Rank 1, Rank 5, Rank 10, Rank 20 retrieval rates.

However, the CMC curve evaluation is valid when only one ground truth

match for each given query image. The recent datasets such as Market-1501 and

DukeMTMC-reID usually contain multiple ground truth images for the same person.

Therefore, Zheng et al. [147] proposed the mean average precision (mAP) as a new

evaluation metric. For each query image, the average precision (AP) is calculated as

the area under its precision-recall curve. The mean value of the average precision

(mAP) will reflect the overall recall of the person Re-ID algorithm. The performances

of our models are examined by combining the Rank-1 accuracy for retrieval precision

evaluation and mAP for recall evaluation.

4.7.2 Performance Comparison of Triplet Loss and NC-Triplet Loss

The first experiment we conducted is to compare the performance di↵erence between

the conventional triplet loss and the proposed NC-Triplet loss. We have two di↵erent

loss function settings for the comparison:

• softmax+triplet loss vs softmax+NC-Triplet loss

• softmax+triplet+center loss vs softmax+NC-Triplet+center loss

Except for loss function di↵erence, all models are trained with the same training

configuration. The overall performance is demonstrated in Table 4.3. Our proposed

NC-Triplet consistently improves the mAP from 1.5 to 2%. It proves that the NC-

Triplet loss function can further increase the feature distance between the negative

image pairs. It allows our Person Re-ID model to generate more discriminative and

robust feature embeddings. As the proposed NC-Triplet loss only helps the negative

images more distinctive, it has no e↵ect on improving the Rank-1 accuracy. The

center loss, on the other hand, improves the Rank 1 accuracy of the model. Overall,

by replacing the triplet loss with our proposed NC-Triplet loss and combining with

the center loss, the two loss functions are complementary to each other and help the

Person Re-ID and achieve better performance.
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Loss Functions
Market1501 DukeMTMC-reID

Rank 1 mAP Rank 1 mAP

softmax + Triplet 93.2 85.3 85.9 75.3

softmax + NC-Triplet 93.2 86.8 86.0 76.7

softmax + Triplet + Center 94.2 85.7 86.4 76.1

softmax + NC-Triplet + Center 94.3 86.5 86.3 76.7

Table 4.3: The performance comparison of triplet loss and NC-Triplet loss.

4.7.3 Feature Visualisation: Triplet vs NC-Triplet

To further demonstrate the e↵ectiveness of our proposed NC-triplet loss function,

we provide a visualisation of the distributions of the feature embeddings trained

with the conventional triplet loss function and our NC-Triplet loss function. Due

to a large number of human IDs in the Person Re-ID datasets, it is di�cult to

visualise hundreds of classes in one t-SNE plot. We use a small MNIST dataset for

feature distribution visualisation. The MNIST dataset consists of 60,000 training

and 10,000 test images of 10 hand-written digits [43]. We used the same network

structure (AlexNet) to learning the feature embedding of the MNIST dataset with

the conventional triplet loss function and our NC-Triplet loss function. Figure 4.16 is

two t-SNE plots of the feature embeddings after 20 epochs. Compared to the normal

triplet loss function, the feature embeddings of the same class learned with the

NC-Triplet are more densely compacted. The di↵erent classes feature embeddings

learned with our NC-Triplet loss function are also more uniformly separated.

4.7.4 Comparison with State-of-the-Arts Methods

The results on the Market1501 and DukeMTMC-reID are shown in Table 4.4. All

experiments are conducted in a single query setting. The baseline model trained with

our proposed loss function outperforms all the classic deep learning approaches such

as IDE [149], SVDNet [108] and ImpTripet [11] by a large margin. It is superior to

many state-of-the-art methods such as AlignedReID [142], DuATM [99],PCB [126].
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(a) Triplet (b) NC-Triplet

Figure 4.16: The t-SNE visualisation of the feature embeddings from the MNIST
dataset trained with (a) triplet loss function and (b) NC-Triplet loss function

It also gives a comparable performance with the most recent BFE method [14] and

MGN method [117].

4.7.5 Ablation Studies

We also perform extensive experiments on Market-1501 and DukeMTMC-reID

datasets to analyse the e↵ectiveness of each training technique used in our model

training. Most of the experiments are conducted by using the softmax + triplet loss

only.

Influences of Di↵erent Image Sizes

The first experiment we conducted is to determine the influences of the di↵erent

input image size. We evaluate our models on both the Market1501 dataset and the

DukeMTMC-reID dataset. The Rank 1 accuracy and mean Average Precision (mAP)

are reported as evaluation metrics. In this experiment, we did not integrate any

other training techniques. The model used for this experiment is trained with only

the softmax loss and the original triplet loss with 64 images per batch. As shown in

Table 4.5, we can see the performance increases when the image size increases. The
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Method
Market1501 DukeMTMC-reID

Rank 1 mAP Rank 1 mAP

IDE 79.5 59.9 67.7 47.1

SVDNet 82.8 63.4 71.6 51.5

ImpTripet 84.9 69.1 73.0 56.6

AlignedReID 90.6 77.7 81.2 67.4

DuATM 91.4 76.6 81.2 62.3

PCB 93.8 81.6 83.3 69.2

BFE 94.4 85.0 88.7 75.1

MGN 95.7 86.9 88.7 78.4

Our 94.3 86.5 86.3 76.7

Table 4.4: Comparison of state-or-the-arts methods.

384⇥ 128 image size yields the best overall performance. Therefore, we decided to

use the 384⇥ 128 as the default input image size for our model.

Image Size
Market1501 DukeMTMC-reID

Rank 1 mAP Rank 1 mAP

256⇥ 128 87.7 74.0 79.7 63.7

384⇥ 128 88.1 75.4 80.2 64.1

Table 4.5: Performance of our Re-ID models with di↵erent image sizes.

Influences of Di↵erent Batch Size

One batch of images for the triplet loss based model includes B = P ⇥K images. P

and K denote the number of di↵erent persons and the number of di↵erent images

per person, respectively. One Nvidia Titan X (12G) GPU used for our experiments

cannot contain 128 images per batch. As a result, we limit the maximum number of

batch size to 128 (16⇥ 8). We only test 3 di↵erent batch size settings: 32, 64 and

128 with total 5 di↵erent configurations, as shown in Table 4.6. In this experiment,

we only used the softmax loss with the original triplet loss and did not include any

other techniques. The results are presented in Table 4.6. A slight trend we observed

is that the larger batch size is beneficial for the model performance. We contend
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that large K could help to generate hard positive pairs while large P may help to

generate hard negative pairs.

Batch Size Positive A⇥ Negative
Market1501 DukeMTMC-reID

Rank 1 mAP Rank 1 mAP

32 8⇥ 4 87.5 74.3 79.9 64.2

64 8⇥ 8 88.0 75.1 80.2 64.1

64 16⇥ 4 88.1 75.4 80.5 65.0

128 16⇥ 8 88.7 76.1 80.7 65.4

128 32⇥ 4 88.5 75.9 81.1 65.5

Table 4.6: Performance of our Re-ID models with di↵erent batch sizes.

Influences of GAP and GMP

Many Person Re-ID models proposed recently use the GAP layer after the CNN

backbone. The person re-identification task requires the model to capture the most

distinctive feature of a person. We contend that the GMP is more suitable for this

problem because it emphasises the semantic regions from the feature maps. In this

experiment, we trained two di↵erent models. One uses GAP layer, and another

one uses GMP layers. By replacing GAP with GMP, we can see an overall 1%

performance gains in terms of both Rank 1 accuracy and mAP. As a result, we

decided to use the global max-pooling (GMP) for our model.

Global Pooling
Market1501 DukeMTMC-reID

Rank 1 mAP Rank 1 mAP

GAP 88.1 75.4 80.5 65.0

GMP 89.3 76.4 80.8 66.1

Table 4.7: Performance comparison of our Re-ID models with GAP layer and GMP
layer.
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Influences of Other Training Techniques

In this experiment, we integrate the warm-up strategy, random erasing augmentation,

changing the last stride to 1, adding Bottleneck layer and label smoothing process into

our baseline model, one by one. Table 4.8 demonstrates the incremental performance

gain for each technique on the Market1501 dataset and the DukeMTMC-reID dataset.

Most of the techniques increase the CMC and mAP of our model by 0.5% to 1%.

techniques
Market1501 DukeMTMC-reID

Rank 1 mAP Rank 1 mAP

Baseline 89.3 76.4 80.8 66.1

+Warm Up 89.8 79.8 81.5 67.7

+Random Erasing 90.2 80.3 82.2 69.0

+Last Stride = 1 91.7 81.9 83.6 70.6

+Bottleneck Layer = 1 92.4 84.9 85.1 73.1

Table 4.8: The performance gain by the techniques.

4.8 Performance on Our Re-ID-Outdoor Dataset

We also tested our NC-Triplet model with two state-of-the-art methods (MGN [117]

and AANet [113]) on our Re-ID-Outdoor dataset. The performance comparison is

shown in Table 4.9.

Dataset
Re-ID-Outdoor MSMT17 DukeMTMC-reID Market1501

Rank 1 mAP Rank 1 mAP Rank 1 mAP Rank 1 mAP

NC-Triplet 66.0% 35.7% 74.6% 47.3% 86.3% 76.7% 94.3% 86.5%

MGN 63.2% 26.2% - - 88.7% 78.4% 95.7% 86.9%

AANet 65.4% 28.5% - - 87.7% 74.3% 93.9% 83.4%

Table 4.9: Performance comparison of state-of-the-art methods on di↵erent datasets

Our NC-Triplet is a relatively simple architecture which yields good per-

formance on all MSMST17, DukeMTMC-reID and Market1501 dataset. Based on

the performance of our NC-Triplet model, the new Re-ID-Outdoor give the lowest

93



Rank 1 and mAP scores compared to the other three datasets. It indicates that the

Re-ID-Outdoor dataset is the most challenging Person Re-ID dataset so far. The

MGN approach is one of the best Person Re-ID model currently with the highest

Rank 1 and mAP scores on the Market1051 dataset and the DukeMTMC-reID

dataset. It can only achieve the 63.2% Rank 1 accuracy on the Re-ID-Outdoor

dataset. The AANet approach combines the attribute attention mechanism with a

part-base pooling technique, which helps to boost the overall generalisation ability of

the Person Re-ID model. By integrating with the 40 attributes information from the

Re-ID-Outdoor, the AANet model can achieve over 65% Rank 1 accuracy. However,

this figure is far lower than what AANet can achieve on the other two datasets. This

again suggests the challenging nature of the RE-ID Outdoor dataset. Moreover, only

the NC-triplet methods can achieve over 30% mAP scores in the Re-ID-Outdoor

dataset.

4.8.1 Performance for Cross-dataset Scenario

To further explore the e↵ectiveness of our baseline model, we also conducted a cross-

dataset experiment, as shown in Table 4.10. Our model can achieves 27.7% and 47.4%

Rank 1 accuracy on the Market1501 to DukeMTMC-reID and the DukeMTMC-reID

to Market1501 settings.

Market1501 ! DukeMTMC-reID DukeMTMC-reID ! Market1501

Rank 1 mAP Rank 1 mAP

29.7 15.0 47.4 21.1

Table 4.10: The performance of our best model in a cross-dataset scenario. Mar-
ket1501 ! DuketMTMC-reID means that the model was trained on the Market1501
dataset and evaluate on the DukeMTMC-reID dataset, vice versa.
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4.9 Conclusion

In this chapter, we proposed a novel negative competing triplet loss (NC-Triplet),

which helps to discriminate the negative sample pairs further and significantly boost

the overall mAP score of many existing models. We also collected a more realistic

and challenging Person Re-ID dataset called: Re-ID-Outdoor. It is the first privacy-

aware Person Re-ID dataset. We conducted extensive experiments to demonstrate

the high performance of our NC-Triplet Person Re-ID models. Finally, only using

global features, our model can achieve 94.3% Rank 1 accuracy and 86.3% mAP on

Market1501 and yield the best result for our Re-ID-Outdoor dataset. Although our

Person Re-ID method can achieve impressive performance in the supervised learning

framework, the features extracted from our model still show poor performance on the

cross-dataset scenario. In the next chapter, we will alleviate this issue by proposing

a cross-dataset Person Re-ID model based on a novel domain adaptation strategy.
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Chapter 5

Cross-Dataset Feature

Adaptation

5.1 Introduction

In Chapter 3 and Chapter 4, we focused on creating deep learning models trained

from a single dataset in a fully supervised manner. However, similar to many other

Person Re-ID approaches [11, 14, 72, 142], the two models proposed also require a

large number of manually labelled datasets for learning the view-invariant feature

representation or the robust matching function. In the real-world Person Re-ID

application, a typical surveillance system usually consists of over one hundred cameras.

Manual annotating images from hundreds of cameras is prohibitively expensive. On

the other hand, if we directly deploy a model trained from a public dataset to a new

system, it usually su↵erers from considerable performance degradation. In Chapter

4, our model trained from the Market1501 dataset [147] can achieve 94% Rank 1

retrieval accuracy. However, when we test the same model on the DukeMTMC-reID

dataset [152], it can only achieve 37% Rank 1 accuracy. The limited scalability

severely hinders the applicability of the single-dataset supervised Person Re-ID

approaches in the real-world scenarios. One solution to make a Person Re-ID model

scaleable is designed an unsupervised algorithm which can train Person Re-ID models
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directly from the unlabelled data.

In recent years, some unsupervised methods have been proposed to extract the

view-invariant features and measure the similarity of images without label information

[40, 118, 119, 139]. Figure 5.1 demonstrates an example of a general clustering-

based unsupervised method. It analyses the unlabelled dataset and partitions them

into multiple clusters with the corresponding pseudo labels. These unsupervised

approaches [40, 118, 119, 139] generally yield poor Person Re-ID performance due

to the lack of active supervised tuning and optimisation.

Figure 5.1: Unsupervised feature learning

There are many Person Re-ID datasets available for training, and the unla-

belled data can also be easily obtained from a new camera network. In this chapter,

we address the scalability issue of Person Re-ID via an unsupervised cross-dataset

domain adaptation strategy. Figure 5.2 illustrates our unsupervised cross-dataset

domain adaptation framework. We leverage labelled data from an existing dataset

(known as the source domain) for training a base model. By analysing the properties

of the unlabelled images obtained from a new surveillance system (known as the

unlabelled target domain), the model will be modified to adapt to the new system.

The labelled source dataset images (source domain) help the model to learn a strong

feature representation and provide a foundation for the domain adaptation. The

unlabelled target system images (target domain) guide the model to perform the
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domain level fine-tuning and boost the performance for the cross-dataset scenario.

Figure 5.2: Unsupervised domain adaptation

5.2 Problem Definition

The images in a Person Re-ID dataset are usually taken under similar conditions,

such as camera setting, environment, weather. As a result, these features extrac-

ted from one particular dataset tend to form a compact statistical distribution.

However, di↵erent datasets are collected under di↵erent conditions. For example,

Market1501 dataset [147] was collected at Tsinghua University, China during the

summer. DukeMTMC was collected at Duke University, USA during the winter

time. So people’s appearances and outfits in these two datasets are very di↵erent,

as shown in Figure 5.3. As a result, there will be a large distributions di↵erence
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between the two datasets. One primary goal of domain adaption is to reduce the

di↵erence between the distributions of the source and target domain data, as shown

in Figure 5.4.

Figure 5.3: Majority of the people in the Market1501 dataset are wearing the summer
outfits. The DukeMTMC-reID dataset only contains the winter outfit appearances.

Figure 5.4: Domain Adaptation aims to reduce the distributions di↵erent between
the source and the target domain.

Most domain adaptation frameworks [68, 69] assume that the source domain

and the target domain contain the same set of class labels. Such an assumption

does not hold for person Re-ID because di↵erent Re-ID datasets usually contain

completely di↵erent sets of persons (classes). The pedestrian with ID 1 label in the

Market1501 dataset and the person with ID 1 label in the DukeMTMC-reID dataset
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are two di↵erent individuals. Therefore, most of the unsupervised cross-dataset

Re-ID methods proposed in recent years [16, 120, 122] did not use conventional

domain adaptation mechanisms. For example, [16] uses image-to-image translation

to transfer the style of images in the target domain to the source domain images for

generating a new training dataset. These newly generated samples which inherit the

identity labels from the source domain and the image style of the target domain can

be used for supervised Person Re-ID learning. [120] trains two individual models:

identity classification and attribute recognition and performs the domain adaptation

between two models.

Figure 5.5: MMFA reduces the domain distributions based on the mid-level attributes
such as gender and colour of clothing.

In our work, we reformated the assumption made by the unsupervised cross-

dataset Re-ID. Although the identity labels of the source and target datasets are

non-overlapping, many of the mid-level semantic features of people such as genders,

age-groups or colour and texture of the outfits are commonly shared between di↵erent

people across di↵erent datasets. Hence, these mid-level visual attributes of people

can be considered as the common labels between di↵erent datasets. If we assume

these mid-level semantic features are shared between the di↵erent domains, we can

then treat the unsupervised cross-dataset person Re-ID as a domain adaptation

transfer learning based on the mid-level semantic features from the source domain

to the target domain, as shown in Figure 5.5. Therefore, we proposed a Multi-task

Mid-level Feature Alignment network (MMFA) which can simultaneously learn
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the feature representation from the source dataset and perform domain adaptation

to the target dataset via aligning the distributions of the mid-level features. The

contributions of our MMFA model are summarised below:

• We propose a novel unsupervised cross-dataset domain adaptation framework

for Person Re-ID, which minimises the distribution variation of the source’s

and the target’s mid-level features based on the MMD distance [31]. Due to the

low dimensionality of attribute annotations, we also include mid-level feature

maps in our deep neural network as additional latent attributes to capture

a more completed representation of mid-level features of each domain. In

our experiments, the proposed MMFA method surpasses other state-of-the-art

unsupervised models on four popular unsupervised benchmarks datasets.

• The existing unsupervised domain adaptation Re-ID approaches based on deep

learning [16, 120] require two-stage learning processes: supervised feature learn-

ing and unsupervised domain adaptation. Di↵erent from those methods, our

MMFA model introduces a new jointly training structure which simultaneously

learns the feature representation from the source domain and adapts the feature

to the target domain in a single training process. Because our model does not

require a two-step training procedure, the training time for our method is much

less than many other unsupervised deep learning person Re-ID approaches.

5.3 The Proposed Methodology

One basic assumption behind domain adaptation is that there exists a feature space

which is commonly shared between the source and the target domains. Although

high-level information like a person’s identity is not shared between di↵erent Re-ID

datasets, the mid-level features such as visual attributes can be overlapped between

datasets. For example, the people in dataset A and dataset B are di↵erent people

with di↵erent ID labels, but some of the mid-level semantic information like genders,

age-groups, the colour of clothes or accessories could be similar. Hence, in our
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(a) Person ID 0585 (b) Person ID 0646 (c) Person ID 1091

Figure 5.6: In each of these three pairs of images, the one on the left-hand side
is randomly selected from the Market1501 dataset while the other one shows the
attention regions from highest activated feature maps (1749th, 511th and 1091th)
of the last convolutional layer. These feature maps highlight distinctive semantic
features such as green shorts, a red backpack, a red T-shirt. Best view in colour.

proposed method MMFA, we assume that the source and the target datasets contain

the same set of mid-level attribute labels. As a result, the unsupervised cross-dataset

person Re-ID can be transformed into an unsupervised domain adaptation problem

by regularising the distribution variance of the attribute feature space between the

source domain and the target domain.

Currently, there are a few attribute annotations available for some Re-ID

datasets. However, the number of these attribute labels are limited. There are 27

attribute labels for the Market1501 dataset and 23 for the DukeMTMC-reID dataset

[65]. The features obtained from 27 or 23 user-defined attributes alone cannot give

a good representation of the overall mid-level semantic features for both source

and target datasets. There may exist many shared mid-level visual clues between

domains which cannot be fully captured by those 27/23 user-defined annotations.

To obtain more attributes for representing the shared mid-level features, we start

to consider the feature-maps generated from the di↵erent convolutional layers. In

our experiment, we observed that those highly activated feature maps from the

last convolutional layer of an attribute-identity multi-task classification model could

capture many distinctive semantic features of a person, see Figure 5.6 for example.

Hence, we treat those feature maps as the attribute-like mid-level deep features in

our proposed MMFA model.
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Figure 5.7: The network architecture of the proposed MMFA model

5.3.1 Architecture

Our model is optimised by using Adam optimiser on mini-batches [39]. Each mini-

batch consists of nS of labelled images [IS,1, IS,2, ..., IS,nS ] from a source dataset

S and nT unlabelled images [IT,1, IT,2, ..., IT,nT ] from a target dataset T . Each

labelled image IS,i is associated with an identity label yS,i and a set of M attributes

AS,i = [a1S,i, a
2
S,i, ..., a

M
S,i]. Our model consists of one pre-trained ResNet50-based

backbone network [34] as the feature extractor with one fully connected layer for

identity classification and M individual fully connected layers for single attribute

recognition. The overview of our architecture is shown in Figure 5.7. Based on the

experimental results in Chapter 4, we change the last average pooling layer from

ResNet50 to a global max-pooling (GMP) layer. By taking the maximum value from

each feature map, the network can focus these highly activate feature maps.

HS = [hS,1,hS,2, ...,hS,nS ] and HT = [hT,1,hT,2, ...,hT,nT ] are the mid-

level deep features of the inputs from both the source domain and the target

domain obtained after the GMP layer, respectively. The identity features Hid
S =
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[hid
S,1,h

id
S,2, ...,h

id
Sn,S

] and Hid
T = [hid

T,1,h
id
T,2, ...,h

id
T,nT

] are the outputs from the fully

connected layer with HS and HT as inputs for identity classification (shown as

ID-FC in Figure 5.7). For a specific m-th attribute where m 2 M , the m-th attrib-

ute features Hattrm
S = [hattrm

S,1 ,hattrm
S,2 , ...,hattrm

S,nS
], Hattrm

T = [hattrm
T,1 ,hattrm

T,2 , ...,hattrm
T,nT

]

can be obtained from its corresponding fully connected layer with HS and HT as

input (shown as Attr-FC-m in Figure 5.7). Our model can be jointly trained in

a multi-task manner: two supervised classification losses for identity classification

and attribute recognition, one adaptation losses based on the attribute features and

another adaptation loss based on the mid-level deep features.

5.3.2 Multi-task Supervised Classification for Feature Learning

The view-invariant feature representations are learned from a multi-task identity

and attribute classification training. The additional attribute annotations provide

further regularisation and additional supervision to the feature learning process.

Identity Loss: We denote that pid(hid
S,i, yS,i) is the predicted probability on the

identity feature hid
S,i with the ground-truth label yS,i. The identity loss is computed

according to the softmax cross entropy function:

Lid = �
1

nS

nSX

i=1

log(pid(h
id
S,i, yS,i)) (5.1)

Attribute Loss: We denote that pattr(h
attrm
S,i ,m) is the predicted probability for

the m-th attribute feature hattrm
S,i with ground-truth label amS,i. The overall attributes

loss can be expressed as the average of sigmoid cross entropy loss of each attribute:

Lattr = �
1

M

1

nS

MX

m=1

nSX

i=1

(amS,i · log(pattr(h
attrm
S,i ,m))

+ (1� a
m
S,i) · log(1� pattr(h

attrm
S,i ,m)))

(5.2)
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5.3.3 MMD-based Regularisation for Mid-level Feature Alignment

As we make a shared mid-level latent space assumption in our MMFA model,

the domain adaptation can be achieved by reducing the distribution distance of

attribute features between the source domain and the target domain. Based on

the attribute features {Hattr1
S , ..,HattrM

S } and {Hattr1
T , ..,HattrM

T } obtained from the

supervised classification learning, we use the MMD measure [31] to calculate the

feature distribution distance of each attribute. The overall attribute distribution

distance is the mean MMD distance of all attributes:

LAAL =
1

M

MX

m=1

MMD(Hattrm
S ,Hattrm

T )2

=
1

M

MX

m=1

������
1

nS

nSX

i=1

�(hattrm
S,i )�

1

nT

nTX

j=1

�(hattrm
T,j )

������

2

H

(5.3)

�(·) is a map operation which projects the attribute distribution into a reproducing

kernel Hilbert space (RKHS) H [30]. nS and nT are the batch sizes of the source

domain images and target domain images. The arbitrary distribution of the attribute

features can be represented by using the kernel embedding technique [100]. It has

been proven that if the kernel k(·, ·) is characteristic, then the mapping to the

RKHS H is injective [103]. The injectivity indicates that the arbitrary probability

distribution is uniquely represented by an element in RKHS. Therefore, we have

a kernel function k(hattrm
S,i ,hattrm

T,j ) = �(hattrm
S,i )�(hattrm

T,j )| induced by �(·). Now,

the average MMD distance between the source domain’s and the target domain’s

attribute distributions can be re-expressed as:

LAAL =
1

M

MX

m=1

h 1

(nS)2

nSX

i=1

nSX

i0=1

k(hattrm
S,i ,hattrm

S,i0 )

+
1

(nT )2

nTX

j=1

nTX

j0=1

k(hattrm
T,j ,hattrm

T,j0 )

�
2

nS · nT

nSX

i=1

nTX

j=1

k(hattrm
S,i ,hattrm

T,j )
i
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In our MMFA model, the commonly used Radial basis function (RBF) characteristic

kernel with bandwidth ↵ is used as the kernel function for computing the MMD

distance [50]:

k(hattrm
S,i ,hattrm

T,j ) = exp(�
1

2↵

���hattrm
S,i � hattrm

T,j

���
2
) (5.4)

Due to the limited size of available attribute annotations, these attributes alone

cannot give a good representation of all domain-shared mid-level features. By

assuming the last feature maps after the feature extractor is attribute-like mid-level

features, we introduce the additional mid-level deep feature alignment to our model.

The mid-level deep features adaptation loss LMDAL is the MMD distance between

the source and the target mid-level deep features HS ,HT , similar to our attributes

feature adaptation loss:

LMDAL = MMD(HS ,HT )
2 =

������
1

nS

nSX

i=1

�(hS,i)�
1

nT

nTX

j=1

�(hT,j)

������

2

H

(5.5)

Finally, we formulate the overall loss function by incorporating the weighted summa-

tion of above components Lid, Lattr, LAAL and LMDAL:

Lall = Lid + �1Lattr + �2LAAL + �3LMDAL (5.6)

5.4 Experiments

5.4.1 Datasets and Settings

Person Re-ID Datasets

Four widely used person Re-ID benchmarks are chosen for experimental evaluations:

Market1501, DukeMTMC-reID, VIPeR and PRID. The Market-1501 dataset [147]

contains 32,668 images of 1,501 pedestrians. 751 identities are selected for training

and 750 remaining identities are for testing. Each identity was captured by at most
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6 non-overlapping cameras. The DukeMTMC-reID dataset [152] is the redesigned

version of pedestrian tracking dataset DukeMTMC [95] for person Re-ID task. It

contains 34,183 image of 1,404 pedestrians. 702 identities are used for training and

the remaining 702 are for testing. Each identity was captured by 8 non-overlapping

cameras. The VIPeR dataset [28] is one of the oldest person Re-ID dataset. It

contains 632 identities, but only two images for each identity. Due to its low resolution

and large variation in illumination and viewpoints, the VIPeR dataset is still a very

challenging dataset. The PRID dataset [35] consists of 934 identities from two camera

views. There are 385 identities in View A and 749 identities in View B, but only 200

identities appear in both views.

Person Re-ID Attributes

For Market-1501, there are 27 labelled attributes: gender (male, female), hair length

(long, short), sleeve length (long, short),length of lower-body clothing (long, short),

type of lower-body clothing (pants, dress), wearing hat (yes, no), carrying bag (yes,

no), carrying backpack (yes, no), carrying handbag (yes, no), 8 colours of upper-

body clothing (black, white, red, purple, yellow, grey, blue, green), 9 colours of

lower-body clothing (black, white, pink, purple, yellow, grey, blue, green, brown)

and age (child, teenager, adult, old). For DukeMTMC-reID, 23 labelled attributes

are provided: gender (male,female), shoe type (boots, other shoes), wearing hat (yes,

no), carrying bag (yes, no), carrying backpack (yes, no), carrying handbag (yes, no),

colour of shoes (dark, light), length of upper-body clothing (long, short), 8 colours

of upper-body clothing (black, white, red, purple, grey, blue, green, brown) and 7

colours of lower-body clothing (black, white, red, grey, blue, green, brown). Figure

5.8 displayed some sample images and their corresponding attribute labels.
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Figure 5.8: Example of person images and attribute labels. Each pair represents two
images of the same person.

Evaluation Protocol

We follow the proposed single-query evaluation protocols for Market1501 and

DukeMTMC-reID. For the VIPeR dataset, we randomly half-split the dataset into

training and testing sets. The overall performance on VIPeR is the average results

from 10 randomly 50/50 split testing. For the PRID dataset evaluation, we follow

the same single-shot experiments as [141]. Similar to the VIPeR dataset setting, the

final performance is the average of the experimental results based on 10 random

split testing. Since the VIPeR and PRID datasets are too small for training the

deep learning network, our MMFA model trains on the entire Market1501 or the

DukeMTMC-reID datasets. Similar to the experiment setting in Chapter 4, the Rank

1,5,10 retrieval accuracy and mean Average Precision (mAP) is used to evaluate the

performance of our MMFA model.

Implementation Details

The input images are randomly cropped and re-sized to (256,128,3). All the fully-

connected layers after global max-pooling layer are equipped with batch normalisation,

the dropout rate of 0.5 and the leaky RELU activation function. For all the adaptation

losses, we adopted the same mixture kernel strategy proposed by Li et al. [50] by
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averaging the RBF kernels with the bandwidth ↵ = 1, 5, 10. For Adam optimiser,

we use the same hyperparameter setting from our best supervised Re-ID model in

Chapter 4. The first 10 epochs linearly increase the learning rate from 3.5⇥ 10�6 to

3.5⇥ 10�4. Then, the learning rate is decreased to 3.5⇥ 10�5 and 3.5⇥ 10�6 at 40th

and 70th epoch, respectively. Totally, there are 120 training epochs. The person

Re-ID evaluation of the target domain is measured by the l2 distance of the 2048-D

mid-level deep features HT after the global max-pooling layer.

5.4.2 Parameter Validation

We first conducted several experiments to determine the best combination of para-

meter �1, �2 and �3 in the final loss function (Equation 5.6). Parameter �1 determines

the contribution of the attributes recognition loss. The value of �1 can be set based

on the performance of the model training and testing on the Market1501 dataset.

The performance variation on the Market1501 testing dataset is illustrated in Figure

5.9. The �1 = 0.4 yields the best performance for both Rank 1 accuracy and mAP

scores. Therefore, we fixed �1 = 0.4 for the following experiments.

The �2 and �3 parameters are used for the unsupervised domain adaptation.

The following experiments are used for analysis performance variation with di↵erent

�2 and �3 values on the target datasets. We use the Market1501 as the source

dataset and evaluate the performance on the DuketMTMC-reID dataset.

In the first experiment, we fix the �3 value to 1 and only change the �2 value

from 0 to 2 with 0.2 incremental steps. There is a slight increasing in performance

when �2 < 1. The performance researches the peak when �2 is between 0.8 to 1.2.

In the second experiment, we fix the �2 to 1 and only change the �3 value from 0 to

2 with 0.2 increments. We observed a quick increase in both Rank 1 and mAP when

�3 is increasing from 0 to 1.2. As a result, �1, �2 and �3 in the final loss function

(Equation 5.6) are empirically fixed to 0.4, 1, 1. Besides, our MMFA model is more

sensitive to the value of �3. Since the �3 controls the weight of the mid-level deep

feature alignment loss (LMDAL), we contend that deep mid-level feature contributes
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Figure 5.9: The Person Re-ID performance (Rank 1 accuracy and mAP) on the
testing set of Market-1501 when parameter �1 varies.

more for aligning the source and the target domain.

5.4.3 Comparisons with State-of-the-Art Methods

The performance of our proposed MMFA model is extensively compared with 16

state-of-the-art unsupervised person Re-ID methods as shown in Table 5.1. These

methods include: view-invariant feature learning methods SDALF [19] and CPS [12],

graph learning method GL [41], sparse ranking method ISR [66], salience learning

methods GTS [118] and SDC [146], neighbourhood clustering methods AML [137],

UsNCA [91], CAMEL [139] and PUL [17], ranking SVM method AdaRSVM [73],

attribute co-training method SSDAL [106], dictionary learning method DLLR [40]

and UDML [89], id-to-attribute transfer method TJ-AIDL [120] and image style

transfer method SPGAN [16]. These methods can be categorised into three groups:

1. hand-craft features approaches: SDALF,CPS,DLLR,GL,ISR,GTS,SDC
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Figure 5.10: The Market1501 trained model performance (Rank 1 accuracy and
mAP) on the DukeMTMC dataset with di↵erent parameter �2 values (�3 is fixed to
1)

2. clustering approaches: AML, UsNCA, CAMEL, PUL

3. domain adaptation approaches: AdaRSVM, UDML, SSDAL, TJ-AIDL, SP-

GAN

Our MMFA method outperforms most existing state-of-the-art models on

VIPeR, PRID, Market1501 and DukeMTMC-reID datasets. the Rank 1 accuracy in-

creases from 38.5% to 39.1% in VIPeR, from 34.8% to 35.1% in PRID and from 44.3%

to 45.3% in DukeMTMC-reID. The mAP performance of our approach surpasses

all existing methods by a good margin from 23.0% to 24.7% and 26.5% to 27.4% in

DukeMTMC-reID and Market1501 receptively. Although the Rank-1 accuracy of our

MMFA model on the Maket1501 dataset did not surpass the TJ-AIDL method, our

mAP score and the overall performance (Rank-5 to Rank-10 accuracy) are better

than TJ-AIDL. The complete comparisons with TH-AIDL and SPGAN are shown

in Table 5.2. It is worth noting that the performance of our MMFA is achieved in
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Figure 5.11: The Market1501 trained model performance (Rank 1 accuracy and
mAP) on the DukeMTMC dataset with di↵erent parameter �3 values (�2 is fixed to
1)

one single end-to-end training session. Our performance can be further improved

by implementing any pre- and post-processing techniques such as part-based local

max-pooling (LMP), attention mechanisms or re-ranking. For fair comparisons, the

performance results shown the Table 5.1 and Table 5.2 are all based on the basic

models without any pre or post-processing.

5.4.4 Component Analysis and Evaluation

We have also analysed each component of our MMFA model based on their con-

tributions to the cross-domain feature learning. The first set of experiments is the

unsupervised performance based on the feature representation learned from the

source domain attributes or identities, without any domain adaptation. In the top

section of Table 5.3, the attribute annotations alone cannot give a good representa-

tion of a person due to its low dimensionality, only 6.4% and 19.2% Rank1 accuracy
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Dataset VIPeR PRID Market1501 DukeMCMT-reID

Metric (%) Rank 1 Rank 1 Rank 1 mAP Rank 1 mAP

SDALF [19] 19.9 16.3 - - - -

CPS [12] 22.0 - - - - -

DLLR [40] 29.6 21.1 - - - -

GL [41] 33.5 25.0 - - - -

ISR [66] 27.0 17.0 40.3 14.3 - -

GTS [118] 25.2 - - - - -

SDC [146] 25.8 - - - - -

AML [137] 23.1 - 44.7 18.4 - -

UsNCA [91] 24.3 - 45.2 18.9 - -

CAMEL [139] 30.9 - 54.5 26.3 - -

PUL [17] - - 44.7 20.1 30.4 16.4

AdaRSVM [73] 10.9 4.9 - - - -

UDML [89] 31.5 24.2 - - - -

SSDAL [106] 37.9 20.1 39.4 19.6 - -

TJ-AIDLDuke [120] 35.1 34.8 58.2 26.5 - -

SPGANDuke [16] - - 51.1 22.8 - -

TJ-AIDLMarket [120] 38.5 26.8 - - 44.3 23.0

SPGANMarket [16] - - - - 41.1 22.3

MMFADuke 36.3 34.5 56.7 27.4 - -

MMFAMarket 39.1 35.1 - - 45.3 24.7

Table 5.1: Performance comparisons with state-of-the-art unsupervised person Re-ID
methods.The best and second best results are highlighted by bold and underline
receptively. The superscripts: Duke and Market indicate the source dataset which
the model is trained on.

achieved. The features from identity labels, on the other hand, yield much better

performance compared to attributes. When attribute and identity information are

jointly trained as a multi-objective learning task, the feature representations show a

better generalisation-ability. This experiment shows that the attribute annotations

do provide extra information to the system which serves as additional supervision

for learning more generalised cross-dataset features.

The lower section of Table 5.3 shows the unsupervised re-id performances

after aligning the mid-level feature distribution. After aligning the source and target

distributions of attributes features, mid-level features or both, we can see a large
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Source!Target Market1501 ! DukeMTMC-reID DukeMTMC-reID ! Market1501

Metric (%) Rank1 Rank5 Rank10 mAP Rank1 Rank5 Rank10 mAP

SPGAN 41.1 56.6 63.0 22.3 51.5 70.1 76.8 22.8

TJ-AIDL 44.3 59.6 65.0 23.0 58.2 74.8 81.1 26.5

MMFA 45.3 59.8 66.3 24.7 56.7 75.0 81.8 27.4

Table 5.2: Detail Comparison with SPGAN and TJ-AIDL

Source ! Target Market1501 ! DukeMTMC-reID DukeMTMC-reID ! Market1501

Metric (%) Rank1 Rank5 Rank10 mAP Rank1 Rank5 Rank10 mAP

Attribute Only 6.4 14.4 18.6 2.3 19.2 34.8 45.1 6.2

ID Only 37.6 54.9 61.6 20.6 48.2 66.1 73.3 21.6

Attribute+ID Only 41.7 57.5 63.6 23.3 52.2 69.1 75.7 23.5

Attribute with Attribute Feature Adaptation 15.8 26.0 48.2 5.7 35.5 55.3 64.0 12.7

ID with Mid-level Deep Feature Adaptation 42.1 57.7 63.9 24.3 53.4 70.2 76.4 25.2

Mid-level Deep Feature + Attribute Adaptation 45.3 59.8 66.3 24.7 56.7 75.0 81.8 27.4

Table 5.3: Adaptation performance on each model components

performance increase when compared with previously non-adapted features. It shows

that the proposed mid-level feature distribution alignment strategy is a feasible

approach for the unsupervised Person Re-ID task.

5.5 Conclusion

This chapter has presented a novel unsupervised cross-dataset feature learning and

domain adaptation framework MMFA for Person Re-ID. We utilised the multi-

supervision (identity and attributes) classifications to learn a discriminative feature

for Person Re-ID on the labelled source dataset. With a shared mid-level feature

space assumption, we proposed the mid-level feature alignment domain adaptation

strategy to reduce the MMD distance based on the source domain’s and the target

domain’s mid-level feature distributions. In contrast to most existing learn-then-adapt

unsupervised cross-dataset approaches, our MMFA is a one-step learn-and-adapt

method which can simultaneously learn the feature representation and adapt to the

target domain in a single end-to-end training procedure. Meanwhile, our proposed

method is still able to outperform a wide range of state-of-the-art unsupervised

Re-ID methods. Our MMFA framework improves the scalability of the Person Re-ID

models in real-world deployment. However, it needs a vast number of unlabelled
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images obtained from the new system. It also requires some additional adaptive

training to create a bespoke model for the new system. In the next chapter, we aim

to develop a robust feature learner which just needed to be trained once and can

be deployed to any camera networks without further data collection or adaptive

training required. We proposed a domain generalisation model which can leverage

the labelled images from multiple datasets to learn a universal representation of

people’s appearances.
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Chapter 6

Multi-Datasets Feature

Generalisation

In the previous chapter, we have proposed a novel domain adaptation approach to

transfer the Person Re-ID model from a labelled dataset to any unlabelled datasets.

It alleviates the performance degradation problem of the Person Re-ID model in the

cross-dataset scenario. However, in real-world deployment, there are two prominent

drawbacks of this approach, which slow down the speed of the Re-ID model.

1. When deploying the model in a new CCTV system, we need to extract a

massive amount of unlabelled pedestrian images from the cameras for training

our proposed MMFA network [64].

2. We need to train a bespoke model for every new CCTV system. The training

of the new models may take from hours to days completely depending on the

system scale. Besides, if there is any new camera integrated into the system,

the model must be retrained.

In recent years, many large scale Person Re-ID datasets have been collected. In this

chapter, we aim to learn an universal domain invariant feature representation by

leveraging the labelled data from multiple available datasets. A domain generalisable

Person Re-ID model has great value for real-world large- scale deployment. Specific-
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ally, when a company or an agency purchases a Person Re-ID system for a specific

camera network, the system is expected to work out-of-the-box without the need to

go through the tedious process of data collection, annotation and model fine-tuning.

6.1 Problem Definition

Conventional supervised single-dataset Person Re-ID models often over-fit to the

training dataset, hence they usually su↵ered from considerable performance degrada-

tion on the ’unseen’ new cameras or ’untrained’ new systems. In the previous chapter,

we alleviated the problem by using a cross-dataset domain adaption (DA) model

MMFA [64]. However, this approaches requires some unlabelled images from the tar-

get domain and introduces additional adaptation process, as shown in Figure 6.1(a).

In this chapter, we reformat the Person Re-ID problem as a domain generalisation

(DG) problem. Unlike our domain adaptation approach, the domain generalisation

model aim to develop a domain generalisation model which can leverage the labelled

images from multiple datasets to learn a domain-invariant feature representation,

as shown in Figure 6.1(b). Di↵erent datasets are often collected in very di↵erent

visual scenes (e.g., indoors/outdoors, shopping malls, tra�c junctions and airports).

Each dataset can be considered as a di↵erent system representing di↵erent domains.

Domain generalisation applying on the feature learned from these datasets could

help learn a representation which can be relatively well generalised to any unseen

surveillance system. This setting simulates the real-world scenario in which a strong

feature learner is trained once and deployed to multiple camera networks without

further data collection or adaptive training required.

However, there is a very minimal prior study on the domain generalisation for

the Person Re-ID task. Some existing Person Re-ID works occasionally evaluate their

models cross-dataset generalisation, but no specific design is attempted to make the

models more generalisable cross-datasets. Recently, unsupervised domain adaptation

(UDA) methods [16, 64, 120] such as our MMFA approach (mentioned in Chapter
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Figure 6.1: Di↵erence between cross-dataset domain adaptation and multi-dataset
domain generalisation

5) have been studied to adapt a Person Re-ID model from the source to the target

domain. However, UDA models update using unlabeled target domain data, so data

collection and model update are still required. Beyond Person Re-ID, the problem of

domain generalisation (DG) has been investigated in deep learning. Previous works

on domain generalisation focused on developing data-driven approaches to learn

invariant features among di↵erent source domains [49, 81, 82, 131, 133]. However,

these methods assume a fixed number of classes for target domains and are trained

specifically for that number using source data. They thus have limited e�cacy
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for Person Re-ID, where the target domain has a di↵erent and variable number of

identities.

In this chapter, we propose a novel framework for domain generalisation,

which aims to learn an universal representation across domains not only by minimising

the di↵erence between the multiple seen source domains but also by aligning the

distribution of mid-level features between them. In a high level, our proposed

framework can be considered as an extension of our proposed MMFA network [64],

in the multiple domain learning setting. We develop an algorithm to simultaneously

minimise loss of data reconstruction, identification and verification loss and domain

di↵erence via adversarial training. In the meanwhile, we also match the distribution

of the mid-level features across multiple datasets.

6.2 The Proposed Methodology

A basic assumption behind domain generalisation is that there exists a feature space

underlying the seen multiple source domains and the unseen target domain, on which

a prediction model learned with the training data from the seen source domains

can generalise well on the unseen target domain. In order to find this feature

space, we extend our previous work MMFA with recently proposed adversarial

auto-encoder (AAE) [77] to the multi-domain setting. We call it MMFA with

Adversarial Auto-Encoder (MMFA-AAE). Our proposed method aims to learn a

feature space underlying all the seen source domains by minimising the mid-level

feature distribution variance among them based on the MMD distance [31]. In this

section, we describe how our proposed MMFA-AAE network is designed for domain

generation.
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Figure 6.2: An overview of our proposed framework (MMFA-AAE) for Person Re-ID
multi-domain generalisation.

6.2.1 Architecture

The architecture of the proposed MMFA-AAE network is shown in Figure 6.2. In the

MMFA-AAE model, images from multiple domains will be the inputs for the same

ResNet50 backbone networks [34] with shared weights. The global max-pooling layer

will select the maximum value from every feature map and form a 2048 feature vector.

The feature vector will then pass into an adversarial auto-encoder. The adversarial

auto-encoder [77] is a probabilistic auto-encoder. It aims to perform variational

inference by matching the aggregated posterior of the hidden codes with an arbitrary

prior distribution using an adversarial training procedure. The objective of the

adversarial auto-encoder in our network is to produce a clean latent space among

multiple domains (multiple datasets). The reconstructed feature vectors will then

be used for Person Re-ID. In order to further generalise the feature representation

across multiple domains, we used MMD [31] regularisation to align the distribution

of the mid-level deep features between di↵erent domains. In the following section,
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we will describe how our proposed MMFA-AAE network generalise the feature

representations from multiple domains.

6.2.2 Instant Normalisation

In the recent studies of the generative adversarial networks (GANs), especially in the

style transformation area [84, 86], some image style information could be encoded

in the mean and variance of the convolutional feature maps inside the network [84].

Hence, the instance normalisation (IN) [115] which performs the normalisation on a

single image across all channels could potentially eliminate the appearance divergence

caused by style variances [86]. Hence, Pan et al. [86] proposed the IBN module, which

helps to enhance the generalisation capacities of the network for various computer

vision tasks. Jia et al. [37] applied this technique to the Person Re-ID problem and

yield an impressive Person Re-ID performance boost in the multi-dataset domain

generalisation setting. Hence, our MMFA-AAE network follows the same setting in

[37] and apply the IN in the first 6 blocks in MobileNetV2 and the fist 4 blocks in

ResNet50.

6.2.3 Reconstruction Loss

In the domain adversarial auto-encoder of our MMFA-AAE network, we have a

feature extractor Q(x) to map the feature embeddings to hidden codes and a decoder

P (h) to recover inputs from the hidden codes. The pair of encoder and decoder

are shared across all the domains. Let X = [x1, ..., xn] be the extracted feature

vectors (feature embeddings) from the backbone network. The hidden codes will

be H = Q (X) and the reconstructed feature embedding will be X̂ = P (H), the

reconstruction loss of the auto-encoder is defined as follows.

Lrec =
���X� X̂

���
2

2
(6.1)
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6.2.4 Adversarial Loss

The hidden nodes can create a common latent feature space for multiple domains.

Although, the Instance Normalisation help remove the domain style information. The

extracted feature vectors may still contain other kinds of domain-specific knowledge.

Hence, it may still exist a risk that certain hidden codes could be over-fitted to the

training datasets. Therefore, we impose a domain discriminator D. D can classify

which dataset the feature vector is drawn from. Suppose, we have K di↵erent Person

Re-ID datasets in total (K domains). Let X = [x1, ..., xn] be the extracted feature

vectors with batch size n. Y d =
⇥
y
d
1 , ..., y

d
n

⇤
, Y

d
2 {1, 2, ...,K} denotes the domain

labels of X. Thus, the domain discriminator D can be optimised by a standard

cross-entropy loss.

LD(D,Q) =
nX

l=l

log(D(Q(xi), y
d
i )) (6.2)

where D(·) denotes the predicted probability that the feature xi belongs to the

domain y
d
i . After training a strong domain discriminator, it can capture the hidden

domain information which can help the model determine the source domain of the

feature vector. We can then eliminate the domain information from the feature

vector via adversarial learning using the domain discriminator we trained on. The

overall adversarial learning process is a mini-max optimisation problem:

argmin
Q

max
D

LD(D,Q) (6.3)

Q needs to be minimised for learning a proper person identity mapping of the feature

vector. D, on the other hand, needs to be maximised to help the network suppress

the domain-related features. To simply the training process, we convert the mini-max

optimisation problem to a full minimisation optimisation by utilising the gradient

reversal layer [22]:

Ladv = �LD(D,Q) (6.4)
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6.2.5 MMD-based Regularisation

To further enhance the domain invariant of the hidden code, we follow our previous

MMFA architecture to use the Maximum Mean Discrepancy (MMD) [31] regulariz-

ation to align the distributions among di↵erent training datasets. Given a feature

embeddings from two domains Hl = [hl,1,hl,2, ...,hlnl
] and Ht = [ht,1,ht,2, ...,ht,nt ]

with a batch size n and unknown probability distributions. �(·) is a mean map

operation which projects the distributions into a reproducing kernel Hilbert space

(RKHS) H [30]. Let nl and nt are the batch sizes of Hl and Ht feature embeddings.

The MMD distance between domains l and t can be measured by the following

equation.

MMD(Hl,Ht)
2 =

������
1

nl

nlX

i=1

�(hl,i)�
1

nt

ntX

j=1

�(ht,j)

������

2

H

(6.5)

The arbitrary distribution of the hidden codes of di↵erent domains can be represented

by using the kernel embedding technique [100]. If the kernel k(·, ·) is characteristic,

the mapping to the RKHS H is injective [103]. The injectivity indicates that the

arbitrary probability distribution is uniquely represented by an element in RKHS.

Therefore, we have a kernel function k(hl,i,ht,j) = �(hl,i)�(ht,j)| induced by �(·).

MMD(Hl,Ht)
2 =

1

(nl)2

nlX

i=1

nlX

i0=1

k(hl,i,hl,i0)

+
1

(nt)2

ntX

j=1

ntX

j0=1

k(ht,j ,ht,j0)

�
2

nl · nt

nlX

i=1

ntX

j=1

k(hl,i,ht,j)

(6.6)

We follow the same setting with our previous domain adaptation MMFA model,

which uses the RBF characteristic kernel with bandwidth ↵ = 1, 5, 10 to computing

the MMD distance.

k(hl,i,ht,j) = exp(�
1

2↵
khl,i � ht,jk

2) (6.7)
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Since the MMFA-AAE network focuses on the feature generalisation on multiple

domains. The overall MMD regularisation term Lhidden on the hidden codes is

expressed as follows.

Lmmd (H1, . . . ,HK) =
1

K2

X

1i,jK

MMD(Hi,Hj) (6.8)

6.2.6 Training Procedure

The learning procedure of MMFA-AAE is similar to train an AAE network [77].

Unlike AAE, which only aims to minimise the reconstruction loss, our MMFA-AAE

aims to jointly minimise the identification loss, triplet loss, reconstruction loss as well

as the MMD regularisation on hidden codes. In our MMFA-AAE, the MMD-based

adversarial auto-encoder with the early layer instance normalisation enhances the

feature generalisation among di↵erent dataset domains. However, in order to learn a

robust feature representation for the Person Re-ID task, the network also needs to

incorporate the person identity loss and triplet loss. Our MMFA-AAE network uses

the same network structure as our baseline method proposed in the earlier section.

We use the same equation to compute the cross-entropy identity loss Lid and the

triplet verification loss Ltri. Unlike our baseline method, the MMFA-AAE model

introduces three additional loss functions. The reconstruction loss Lrec is used to

preserve the content information of the feature vectors while performing latent space

projection during the dimension reduction. The MMD regularisation LMMD help

align the distribution between di↵erent domains. The final feature training loss will

be a weight summation of all these losses. The adversarial loss Ladv is computed

from a strong domain discriminator. By maximising the domain classification loss, it

helps to guide network focus less on the domain-specific feature.

Similar to training other adversarial learning models, the training procedures for the

MMFA-AAE model can be divided into two training phrases:

1. Frozen the feature extractor, use the feature vectors extracted from the network

124



to train the domain discriminator D by minimising the LD. The domain

discriminator D aims to predict which dataset a feature map is extracted from

accurately.

2. Frozen the domain discriminator, training the feature extractor using the

identity loss Lid and triplet loss Ltri to accurately predict the identity labels

and minimise the triplet distance. Meanwhile, update parameters of the

network by minimising the reconstruction loss Lrec and MMD distance LMMD

between di↵erent domain features and adversarial loss Ladc. The overall loss

function can be expressed as:

Lfinal = Lid + �1Ltriplet + �2Lrec + �3Lmmd (6.9)

Let Cid and Ctriplet denotes the parameters for ID classifier and triplet classifier.

The overall algorithm of MMFA-AAE is illustrated in Algorithm 1.

Algorithm 1 Training MMFDA-AAE Network

Input: Multiple Dataset Domains D1,D2, . . . ,DK

Output: Learned parameters Q⇤, P ⇤ ,C⇤

id and D
⇤.

1: for t = 1 to max iteration do
2: Sample a domain Dl 2 {D1,D2, . . . ,DK}

3: Sample a mini-batch Xd with the corresponding IDd from X,ID. Where
X = {X1, . . . ,XK}, ID = {ID1, . . . , IDK} and {X, ID, } 2 Dl

4: Sample hd from the Laplace distribution.
5: Compute the gradient of Eq.(6.9) with respect to D on Xd and hd.
6: Use the gradient to update D for maximising the objective of Eq.(6.9).
7: Compute the gradient of Eq.(6.9) with respect to Q, P , Cid on Xd.
8: Use the gradient to update Q, P , Cid for minimising the objective of Eq.(6.9).
9: end for
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6.3 Experiments

6.3.1 Datasets and Settings

Person Re-ID Datasets

To evaluate our method, we follow the new experiment settings in DIMN method

[102], which was also adopted by the current state-of-the-art method DualNrom [37].

In the settings, multiple large-scale Person Re-ID benchmark datasets are combined

to train a model. The small-scale datasets are individually used to evaluate the

domain generalization ability of our MMFA-AAE model. The evaluation process

simulates a real-world scenario where a Person Re-ID model is trained on multiple

public datasets and deploy on an unseen camera system. In our experiments, we

select the CUHK02 [52], CUHK03 [54], Market-1501 [147], DukeMTMC-reID [152]

and CUHK-SYSU [129]. All these datasets have more than one thousand identities

and thousands of images. As the combined training dataset, we use all the images in

these datasets to train our model, regardless of their original training/testing splits.

The Person Re-ID models are trained with 121, 765 images from 18, 530 identities.

The statistics of the training dataset are shown in Table 6.1.

Dataset Total IDs Total Images

CUHK02 [52] 1,816 7.264

CUHK03 [54] 1,467 14,097

Market-1501 [147] 1,501 29,419

DukeMTMC-reID [152] 1,812 36,411

CUHK-SYSU [129] 11,934 34,574

Total 18,530 121,765

Table 6.1: The statistics of the training datasets

The evaluation of our model domain generalisation performance follows is

following the same setting in [37, 102] which are tested on the VIPeR dataset [28],
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Dataset
#Test IDs # Test Images

Probe Gallery Probe Gallery

VIPeR [28] 316 316 316 316

PRID [35] 100 649 100 649

GRID [71] 125 900 125 1025

i-LIDS [150] 60 60 60 60

MSMT17 [122] 3,060 3,060 9,716 82,161

Table 6.2: The statistics of testing datasets

the PRID dataset [35], the GRID dataset [71] and the i-LIDS dataset [150]. However,

these datasets are relatively small and have no more than one thousand identities. To

illustrate the more realistic real-world Person Re-ID performance, we also conducted

the test on currently the largest Person Re-ID dataset MSMT17 [122]. The overall

statistics of the testing datasets are shown in Table 6.2.

Evaluation Protocols

We follow the proposed evaluation protocols for VIPeR [28],PRID [35] GRID [71]

and i-LIDS [150]. For the VIPeR dataset, we randomly half-split the dataset into

training and testing sets. We only use the testing set for evaluation. The overall

performance on VIPeR is the average results from 10 randomly split testing set.

For the PRID dataset evaluation, we follow the same single-shot experiments as

[141]. Similar to the VIPeR dataset setting, the final performance is the average of

the experimental results based on 10 random split testing. Since the VIPeR and

PRID datasets contain only two images per person, the mean average precision

(mAP) metric cannot be used here. On GRID, we follow the standard testing split

recommended in [71]. On i-LIDS, two images per identity are randomly selected as

the probe image and the gallery image, respectively. For all the testing datasets,

the average results over 10 random splits are reported. For MSMT17 dataset, the
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dataset has already been split into training, query and gallery set. We follow the

single-query retrieval setting for the MSMT17 dataset evaluation.

The cumulative matching characteristics (CMC) curve is used for our per-

formance evaluation, as it is the most common metric used for evaluating person

Re-ID performance. This metric is adopted since Re-ID is intuitively posed as a

ranking problem, where each image in the gallery is ranked based on its comparison

to the probe. The probability that the correct match in the ranking equal to or less

than a particular value is plotted against the size of the gallery set [28]. To make

the comparison concise, we simplified the CMC curve to only comparing Rank 1,

Rank 5, Rank 10 successful retrieval rates. The CMC curve evaluation is valid when

only one ground truth match for each given query image. The MSMT17 dataset

contains multiple ground truth images for the same person. Therefore, we use the

mean average precision (mAP) proposed by [147] as an additional new evaluation

metric. For each query image, the average precision (AP) is calculated as the area

under its precision-recall curve. The mean value of the average precision (mAP) will

reflect the overall recall of the person Re-ID algorithm.

Implementation Details

For the auto-encoder sub-network, we follow the same setting as that reported in [23],

which uses a single hidden layer with a size of 512 neurons. The value of the hidden

layer is used as an input for both the adversarial sub-network and the classification

sub-network. The adversarial sub-network and the classification sub-network are

composed of two fully-connected (FC) layers. One FC layer is set to the same size

as the hidden layer; another is set to the same size as the ID labels. The weights

for ID loss and triplet loss are set as equal, i.e, �1 = 1. Through various testing, we

observed that the parameters �2 = 1,�3 = 0.002,�4 = 0.1 yield the best performance.

The Adam optimiser [39] is used for all our experiments. The initial learning rate is

set to 0.00035 with the warm-up training technique [26] and is decreased by 10% at

the 40th epoch and 70th epoch, respectively. Totally, there are 120 training epochs
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with the batch size of 64. We implement our model in PyTorch and train it on a

single Titan X GPU. The extracted features are L2 normalised before matching

scores are calculated.

6.3.2 Comparison against state-of-the-art methods

To demonstrate the superiority of our method, we compare with various state-of-

the-art methods under three di↵erent experimental conditions: fully supervised,

unsupervised domain adaptation and domain generalisation. In Table 6.3, the DG

methods are the multi-dataset domain generalisation approaches. The AGG methods

in the DG category are the domain aggregation baselines trained without any domain

generalisation layer or sub-network. S denotes a fully supervised method trained

using images and labels from the corresponding target dataset. The DA method

means a cross-dataset Person Re-ID approach by utilising unsupervised domain

adaptation techniques. It is important to note that the DA and S methods are

not fair competitors in the sense that they use more information about the target

domain than ours. We include them not as direct competitors, but to contextualise

our results.

Comparison with Domain Generalisation Methods

Domain generalisation is the most practical requirement for the Person Re-ID problem.

It assumes that a target dataset cannot be seen during training. Because of this

challenge, domain generalisation Person Re-ID methods have to learn general feature

representation from other datasets. However, there is a little prior study on the

domain generalisation for the Person Re-ID task. Only two methods have been

proposed [37, 102]. For a fair comparison with these methods, we followed the same

evaluation protocol and experiment setting. The lower part of Table 6.3 shows the

benchmark results of the methods. Our AGG baseline is slightly higher due to the

additional triplet loss during the supervised training. MMFA-AAE network can give

a 10% to 30% increase in the Rank 1 retrieval accuracy for all four datasets. Our
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Method Type
VIPeR PRID GRID i-LIDS

R-1 R-5 R-10 R-1 R-5 R-10 R-1 R-5 R-10 R-1 R-5 R-10

Ensemble [85] S 45.9 77.5 88.9 17.9 40.0 50.0 - - - 50.3 72.0 82.5

DNS [141] S 42.3 71.5 82.9 29.8 52.9 66.0 - - - - - -

ImpTrpLoss [11] S 47.8 74.4 84.8 22.0 - 47.0 - - - 60.4 82.7 90.7

GOG [79] S 49.7 79.7 88.7 - - - 24.7 47.0 58.4 - - -

MTDnet [10] S 47.5 73.1 82.6 32.0 51.0 62.0 - - - 58.4 80.4 87.3

OneShot [4] S 34.3 - - 41.4 - - - - - 51.2 - -

SpindleNet [143] S 53.8 74.1 83.2 67.0 89.0 89.0 - - - 66.3 86.6 91.8

SSM [2] S 53.7 - 91.5 - - - 27.2 - 61.2 - - -

JLML [55] S 50.2 74.2 84.3 - - - 37.5 61.4 69.4 - - -

MMFA(Market-1501) [64] DA 39.1 - - 35.1 - - - - - - - -

MMFA(DukeMTMC-reID) [64] DA 36.3 - - 34.5 - - - - - - - -

TJ-AIDL(Market-1501) [120] DA 38.5 - - 26.8 - - - - - - - -

TJ-AIDL(DukeMTMC-reID) [120] DA 35.1 - - 34.8 - - - - - - - -

SyRI [5] DA 43.0 - - 43.0 - - - - - 56.5 - -

AGG(DIMN) DG 42.9 61.3 68.9 38.9 63.5 75.0 29.7 51.1 60.2 69.2 84.2 88.8

AGG(DualNorm) DG 42.1 - - 27.2 - - 28.6 - - 66.3 - -

AGG(MMFA-AAE) DG 48.1 - - 27.7 - - 32.6 - - 67.3 - -

DIMN [102] DG 51.2 70.2 76.0 39.2 67.0 76.7 29.3 53.3 65.8 70.2 89.7 94.5

DualNorm [37] DG 53.9 - - 60.4 - - 41.4 - - 74.8 - -

MMFA-AAE DG 58.4 - - 57.2 - - 47.4 - - 84.8 - -

Table 6.3: Comparison results against state-of-the-art methods. (R: Rank, S:
Supervised training with a target dataset, DA: Domain Adaptation, DG: Domain
Generalisation, -: No report)

MMFA-AAE method outperforms the DIMN and DualNorm on VIPeR, GRID and

i-LIDS by a large margin. MMFA-AAE only fall 3% behind DualNorm in Rank 1

accuracy when testing the PRID dataset but still near 20% higher than the DIMN

method.

To further demonstrate our proposed MMFA-AAE’s superiority to other

methods in the real-world application, we also conduct the experiment on the largest

Person Re-ID benchmark at the moment: MSMT17. Table 6.4 provides a performance

comparison of our domain aggregation baseline, the current stat-of-the-art DualNorm

method and our MMFA-AAE network. All three methods use the ResNet50 backbone

to allow a fair comparison. The domain aggregation baseline without any domain

generalisation technique can only achieve 14.8% Rank 1 accuracy and 5.9% mAP

score. Both DualNorm and our MMFA-AAE can boost the baseline performance

by a large margin in both Rank 1 and mAP scores. Our MMFA-AAE consistently

surpass the DualNorm by 3 to 4% in Rank 1 accuracy. Overall, our MMFA-AAE can

achieve a much better performance out-of-box without any additional data collection
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and domain adaptation process.

Model
MSMT17

Rank 1 Rank 5 Rank 10 mAP

ResNet50 Baseline 14.8 27.8 37.6 5.9

DualNorm (ResNet50) 42.6 55.9 61.8 19.6

MMFA-AAE (ResNet50) 45.4 59.5 64.2 20.7

Table 6.4: Comparison results of domain aggregation baseline, ResNet50 DualNorm
and our MMFA-AAE with ResNet50 backbone on the MSMT17 dataset

Comparison with Domain Adaptation Methods

We also compare our MMFA-AAE with other unsupervised domain adaptation

methods. The multi-dataset domain generalisation approaches focus on learning

the universal feature representation from multiple di↵erent Person Re-ID datasets

and assume the model can learn well-generalised features for any unseen camera

network. On the other hand, the domain adaptation approaches focus on analysing

the images characterises between the images from label ed public datasets and images

obtained from the unseen cameras. Although, the training and experimentation

setting is di↵erent for DA and DG Person Re-ID models. Our MMFA-AAE model

without using any target domain image can still surpass the latest unsupervised

domain adaptation approaches such as TJ-AIDL [120], MMFA [64] and SyRI [5].

The performance results are shown in the middle section of Table 6.3. SyRI performs

the best among them by utilising a synthetic dataset. The MMFA-AAE outperforms

all of them on all the benchmark datasets without using any the images from the

target dataset and does not introducing additional adaptation process. This means

that our method can competitively use the feature learned from multiple large-scale

datasets.
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Comparison with Supervised Methods

Although many fully supervised Person Re-ID methods are reported to have high

performance on the large-scale datasets such as Market-1501 and DukeMTMC-reID,

their performance is still low when trained on a small-scale dataset. Many methods

have been proposed to address this issue [2, 4, 10, 11, 55, 79, 85, 141, 143]. We

have selected several supervised methods with reports on any of the four benchmark

datasets (labeled as S in Table 6.3): Ensemble [85], DNS [141], ImpTriplet[11], GOG

[79], MTDnet [10], OneShot [4], SpindleNet [143], SSM [2], and JLML [55]. These

methods follow conventional single-dataset training and testing procedures. It is

not a fair comparison with MMFA-AAE method, which operates under the more

challenging cross-dataset generalisation setting. However, we use their results as

references to illustrate the generalisation capability of our MMFA-AAE model. Our

MMFA-AAE method shows competitive or even better results on all four benchmarks.

Overall, our proposed MMFA-AAE network demonstrates a state-of-the-art

Person Re-ID performance not only in the multi-dataset domain generalisation

experiments but also in the domain adaptation and supervise settings. It proves

that our proposed MMFA-AAE network can e↵ectively reduce the domain specific

features via using the adversarial training method and learn a more general feature

representation.

6.3.3 Ablation study

components Analysis

There are four important components in the MMFA-AAE framework: Instance

Normalisation, Triplet Loss, Adversarial Auto-Encoder(AAE), and Maximum Mean

Discrepancy (MMD). To evaluate the contribution of each component, we increment-

ally adding one component into our baseline method and compare the performance

in Table 6.5. The baseline we use in the experiment is based on a ResNet50 feature

extractor with batch normalisation after global average pooling. The baseline is
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trained with softmax identity loss only first. We then introduce the instance norm-

alisation in the lower convolutional layer the same as DualNorm. The triplet loss

will further enhance the performance by 1% to 2% on VIPeR, GRID and i-LIDS.

The domain-based adversarial auto-encoder give a large 3% to 8% boost for all the

datasets. The final MMD alignment helps the further boosts the overall performance

by 1% to 2%.

Method
VIPeR PRID GRID i-LIDS

R-1 R-1 R-1 R-1

Baseline (ResNet50) 42.9 38.9 29.7 69.2

Baseline + IN (DualNorm) 54.4 68.6 43.7 72.2

Baseline + IN + Triplet 55.9 61.6 43.0 74.8

Baseline + IN + Triplet + AAE 57 67.6 46.3 82.3

Baseline + IN + Triplet + AAE + MMD (MMFA-AAE) 58.4 65.7 47.4 84.8

Table 6.5: Ablation study on the impact of di↵erent components for MMFA-AAE
networks

t-SNE Visualisation

For completeness, we also visualise the 2D point cloud of the feature vectors extracted

from the DualNorm network and our MMFA-AAE method using t-SNE [27], as

shown in Figure 6.3. We used a random sample of 6000 images from all five training

datasets and perplexity of 5000 for this visualisation. As shown in Figure 6.3 (a),

the DualNorm network can merge 5 di↵erent datasets well with low domain gaps

between di↵erent datasets. However, the datasets are still clustered into several

groups based on the property of the extracted feature vectors. On the other hand,

our MMFA-AAE introduced the additional Adversarial-Auto-encoder(AAE) to mix

up the feature vector distribution of di↵erent domains and alleviated the domain

information for the Person Re-ID task. Figure 6.3 (b) depicts our feature-point

clouds extracted from the MMFA-AAE network. We can easily see that the overlap

between di↵erent feature domains is more prominent in the case of MMFA-AAE

network.
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(a) (a) DualNorm

(b) MMFA-AAE

Figure 6.3: The t-SNE visualisations of the feature vectors from the DualNorm
network and our MMFA-AAE network. Di↵erent colour points indicate the training
dataset domains.
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6.4 Conclusion

In this chapter, we propose a novel framework for multi-dataset feature generalisation

network MMFA-AAE. Our MMFA-AAE network was proposed to enable a Person

Re-ID model to be deployed out-of-the-box for any new camera network. The

main objective of our MMFA architecture is to learn a domain invariant feature

representation by jointly optimising an adversarial auto-encoder with an MMD

distance regularisation. The adversarial auto-encoder is designed to learn a latent

feature space among di↵erent Person Re-ID datasets by matching the distribution of

the hidden codes to an arbitrary prior distribution. The MMD-based regularisation

further enhances the domain invariant feature by aligning the distributions among

di↵erent domains. In this way, the learned feature embedding is supposed to be

universal to the seen training datasets and is expected to generalise well on the other

unseen datasets because of the introduction of the prior distribution. Extensive

experiments demonstrate that our proposed MMFA-AAE is able to learn domain-

invariant features, which lead to state-of-the-art performance on many Person Re-ID

dataset, which is never seen by the network. The experiments also showed that

domain generalisation in Person Re-ID is an extremely challenging problem. Many

existing domain generalisation and meta-learning methods failed to beat the strong

but naive domain aggregation baseline. In conclusion, our MMFA-AAE approach

addresses the scalability issue of many existing Person Re-ID methods by providing

the most practical multi-dataset feature generalisation strategy. Given our promising

result, our MMFA-AAE approach provides a good starting point for discussion and

further research.
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Chapter 7

Conclusion and Future Works

7.1 Conclusion

This thesis focuses on developing camera-invariant feature learning frameworks

for person re-identification (Person Re-ID). In Chapter 3 and 4, we proposed two

di↵erent Person Re-ID applications: online person matching and o✏ine person

retrieval. During the deployment of these applications, we have encountered the

scalability issue when integrating the existing single-dataset supervised methods into

a real-world surveillance system. The model trained on one dataset (one CCTV

system) usually su↵erers from considerable performance degradation when directly

used for a new ’unseen’ camera network. Therefore, we have proposed a cross-dataset

domain adaptation method (Chapter 5) and a multi-dataset domain generalisation

approach (Chapter 6) to strengthening the generalisation capability of the existing

feature extraction networks.

The first framework proposed in Chapter 3 is tailored for the online person

matching application. In our proposed method, we use the feature maps obtained

from the mid-layer of the CNN architecture as an alternative to the actual mid-level

semantic attributes. We developed a Siamese structure neural network which is

designed to learn the discriminative deep mid-level features of a person and construct

the correspondence features between an image pair in a data-driven manner. Unlike
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other Siamese structures, our proposed network performs the regional feature map

matching not only in a pairwise fashion between two images, but also considers many

di↵erent combinations of multiple feature maps. As an end-to-end network, the

model will directly output the similarity score for each image pairs. By integrating

the feature extraction and metric learning into one network, the processing time can

be reduced, making it suitable for our online person matching applications.

The second framework proposed in Chapter 4 is designed for o✏ine person

retrieval applications. In this work, we proposed a novel negative competing triplet

loss (NC-Triplet), which helps to discriminate the negative sample pairs further

and significantly boost the overall mAP score of many existing models. In addition,

we collected a new privacy-aware Person Re-ID dataset called: Re-ID-Outdoor. It

not only follows the recent implementation of General Data Protection Regulation

(GDPR) in Europe but also address the limitations of existing Person Re-ID datasets,

such as small camera number and unrealistic survillance environment. We conducted

extensive experiments to demonstrate the state-of-the-art performance of our model

in Market-1501, DukeMTMC-reID and the our Re-ID-Outdoor detest.

Although our Person Re-ID method can achieve impressive performance

in several benchmark datasets, the features extracted from our model show poor

performance on the new camera system. Due to the limited size of the training

dataset, the single-dataset supervised models usually over-fit to the specific camera

settings and show a strong dataset bias. Hence, these models will su↵er significant

performance degradation in a new camera system. To improve the existing Person

Re-ID model’s scalability to di↵erent camera networks, we proposed a cross-dataset

Person Re-ID model (MMFA). The MMFA network utilises the multi-supervision

(identity and attributes) classification to learn a discriminative feature for Person Re-

ID on the labelled source dataset. With a shared mid-level feature space assumption,

we proposed the mid-level feature alignment domain adaptation strategy to reduce

the MMD distance based on the source domains and the target domain’s mid-level

feature distributions. In contrast to most existing learn-then-adapt unsupervised
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cross-dataset approaches, our MMFA network is a one-step learn-and-adapt method,

which can simultaneously learn the feature representation and adapt to the target

domain in a single end-to-end training procedure.

Although, our MMFA framework improves the scalability of the Person Re-ID

models in real-world deployment. However, it needs a vast number of unlabelled

images obtained from the new system. It also requires some additional adaptive

training to create a bespoke model for the new system. In Chapter 6, we aim

to develop a robust feature learner that needs to be trained only once and can be

deployed out-of-the-box for any new camera network without further data collection or

adaptive training. With this motivation, we proposed a domain generalisation model

(MMFA-AAE) that can leverage the labelled images from multiple datasets to learn

a universal representation of people’s appearances. Our MMFA-AAE architecture

learns a domain invariant feature representation by jointly optimising an adversarial

auto-encoder with the MMD distance regularisation. The adversarial auto-encoder

is designed to learn a latent feature space among di↵erent Person Re-ID datasets by

matching the distribution of the hidden codes to an arbitrary prior distribution. The

MMD-based regularisation further enhances the domain invariant features by aligning

the distributions among di↵erent domains. Extensive experiments demonstrate that

our proposed MMFA-AAE is able to learn domain-invariant features, which lead to

state-of-the-art performance on many Person Re-ID datasets.

7.2 Future Work

7.2.1 Rose-Identification-Corridor Dataset

Due to recent privacy and data protection movement over the world, many Person

Re-ID datasets have been removed from the internet. There is a huge demand for

the new privacy-aware Person Re-ID datasets for Person Re-ID research. After the

completion of the outdoor Person Re-ID dataset collection, we are currently working

on collecting another Person Re-ID dataset Rose-IDentification-Corridor Dataset
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(Re-ID-Corridor) for the indoor environment. There are not many Person Re-ID

datasets for the indoor scene. By using 150 indoor surveillance cameras mounted

along the corridors in the School of Electrical and Electronic Engineering (EEE)

Buildings of Nanyang Technological University (NTU), we hope to contribute a new

large-scale dataset specialised for the indoor environment. The camera locations of

one floor in the EEE building is shown as Figure 7.1.

Figure 7.1: One floor of EEE builds with the locations of all surveillance cameras

Unlike the Re-ID-Outdoor date, the indoor cameras used for the new Re-ID-

Corridor have higher resolution (1080p). The positions of the cameras on the corridor

are much closer the pedestrians. Hence, images captured in the new dataset have

better image quality and contain more visual information compared to the outdoor

dataset. The comparison between the quality of the images in Re-ID-Outdoor and

Re-ID-Corridor is illustrated in Figure 7.2. The higher resolution and better image

quality could extend our dataset to other application such as face recognition and

gait recognition.

7.2.2 Camera-level Model Boosting

Our future works are not only just collecting the new dataset, but also focusing on

improving our existing models and developing new evaluation protocol. Real-world
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Figure 7.2: Sample images from the Re-ID-Outdoor dataset and the new Re-ID-
Corridor dataset

video surveillance systems usually consist of hundreds of cameras. Each camera can

be considered as an independent module for detecting and extracting the pedestrian

images. A competent Person Re-ID system should have good and consistent person

re-identification performance across all cameras. Due to the small camera network

size of the existing datasets, the conventional evaluation protocol only analyses the

overall CMC and mAP metrics of the entire Person Re-ID system. For a massive

camera network, it is insu�cient to provide a complete picture of system performance

without analysing the individual performance of every camera. Some cameras of a

surveillance system need to be installed in poor lighting areas or have very di↵erent

colour profiles with most other cameras. Hence, when we use images from these

cameras for person re-identification or perform the people search on these cameras,

the retrieval success rate would be much lower than the overall system scores. Hence,

in our future work, we would like to propose two additional camera-based evaluation

protocols: Camera-Query Evaluation and Camera-Gallery Evaluation. Camera-

Query Evaluation uses the images obtained from one specific camera as the query

images and tests the Person Re-ID performance on other cameras. Camera-Gallery

Evaluation uses images from other cameras to search the person from the image

gallery obtained from the specified cameras. These two evaluation protocols will give

us a fine-grained performance analysis to the camera level and help us pinpoint the

bottleneck of the Person Re-ID system. In order to boost up the model performance
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on those challenging cameras in the system, we would like to extend our domain

adaptation and domain generalisation methods from the system level to the camera

level.
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