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Abstract—In this paper, we investigate the energy efficiency of
conventional collaborative compressive sensing (CCCS) scheme,
focusing on balancing the tradeoff between energy efficiency and
detection accuracy in cognitive radio environment. In particu-
lar, we derive the achievable throughput, energy consumption
and energy efficiency of the CCCS scheme, and formulate
an optimization problem to determine the optimal values of
parameters which maximize the energy efficiency of the CCCS
scheme. The maximization of energy efficiency is proposed as a
multi-variable, non-convex optimization problem, and we provide
approximations to reduce it to a convex optimization problem. We
highlight that errors due to these approximations are negligible.
Later, we analytically characterize the tradeoff between dimen-
sionality reduction and collaborative sensing performance of the
CCCS scheme – the implicit tradeoff between energy saving and
detection accuracy, and show that the loss due to compression can
be recovered through collaboration which improves the overall
energy efficiency.

Index Terms—Achievable throughput, collaborative compres-
sive sensing, energy consumption, energy efficiency, spectrum
sensing.

I. INTRODUCTION

With growing concern about environmental issues and

an emerging green communications paradigm ( [2], [3]) in

wireless communications, the design of cognitive radio (CR)

networks (CRNs) have to be considered from the energy

efficiency perspective ( [4], [5]). A fundamental feature of

a CR is spectrum sensing [6], which is typically carried out

by the CR users or secondary users (SU) to find the unused

licensed resources for implementing a CRN or a secondary

network.

It is well-understood that larger the bandwidth of the li-

censed or primary user (PU) spectrum, the SUs will have more

transmission opportunity for communication. Towards this
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end, wideband spectrum sensing (WSS) [7], [8] has attracted

considerable research attention, to design efficient algorithms

for detecting multiple bands simultaneously. Typically, the

duration of a spectrum sensing slot includes two phases,

namely, the sensing phase and the data transmission phase.

If the sensing phase is not optimally designed, the energy

consumption of SUs increases. Such a design problem is of

primary importance for WSS [9]. The energy consumption

for spectrum sensing, mainly caused by the analog-to-digital

converter (ADC), is proportional to the sensing time and the

sampling rate ( [10], [11]). However, it has been observed

that at a given time instant, only a small number of frequency

bins (channels) across the entire bandwidth are occupied

by PUs. In other words, the occupancy of the PU network

over a wideband is sparse in the frequency-domain. Such

inherent sparsity of the spectrum is taken as an advantage

in compressed sensing (CS)-based approaches, which was

originally envisioned to reduce the sampling rate below the

Nyquist rate [12]. Based on this key observation, the authors

in [13] present an extensive survey on compressive sensing

techniques and discuss about the classification of these tech-

niques, their potential applications and metrics to optimally

design and evaluate their performances in the context of CRNs.

To summarize, CS, when compared to the conventional WSS,

reduces the sampling rate to below Nyquist rate [14], which in

turn reduces the sensing time, favoring considerable saving in

energy consumption. For this reason, the CS-based spectrum

sensing methods have been proposed for improving the energy

efficiency [15] in CRNs.

Despite its attractiveness as an energy efficient sensing

technique, CS suffers from a few major drawbacks which limit

its applicability in practice. A CS based sensing scheme incurs

a considerable performance loss due to compression when

compared to the conventional sensing scheme, while detecting

non-sparse signals. This performance loss is characterized in

terms of the probabilities of false-alarm and signal detec-

tion. Recently, the authors in [16] proposed a collaborative

compressive detection framework, in which group of spatially

distributed nodes sense the presence of phenomenon indepen-

dently, and send a compressed summary of observations to

a fusion center (FC) where a global decision is made about

the presence or absence of the phenomenon. This technique

was designed to compensate for the performance loss due to

compression, and it was shown that the amount of loss can

http://arxiv.org/abs/1903.00945v1
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be improved and recovered through collaborative detection. In

particular, it was shown that as the the degree of compression

is decreased (keeping number of collaborating nodes fixed), or

as the number of collaborating nodes is increased (keeping the

degree of compression fixed), the overall probability of error

in detection can be made arbitrarily small. However, the study

in [16] never addressed energy efficiency and was restricted

to the detection performance of the collaborative compressive

detection scheme, in a non-CR context.

In this work, we have shown that a similar trend observed in

[16] can be seen in CRNs, with energy efficiency as a metric.

In particular, we derive the expressions for the average energy

consumption and the average achievable throughput of a con-

ventional collaborative compressive sensing (CCCS) scheme.

Next, we derive an expression for the energy efficiency of

CCCS, and formulate an optimization problem that maximizes

the energy efficiency, subjected to constraints on probability of

detection and probability of false-alarm. We provide some ap-

proximations to reduce the proposed non-convex optimization

problem to a convex optimization problem. Later, we establish

that these approximations are sufficiently accurate, and result

only in an insignificant performance loss. The motivation to

consider the proposed CCCS is threefold. First, it reduces

the sampling rate below the Nyquist rate, which results in a

shorter sensing duration and much lesser energy consumption.

Secondly, by exploiting the collaboration between the sensors,

the achievable detection performance can be maintained to

a target limit. Finally, since it promotes energy saving and

ensures a desirable detection performance, the energy effi-

ciency is guaranteed. In the process of determining optimal

system parameters such as the degree of compression (or

the compression ratio) and number of collaborative nodes,

we seek the answer to the following question: For a given

compression ratio, what would be the minimum number of

collaborative nodes required to maximize the energy efficiency

of the CRN?1

On a related note, the energy efficiency using compressed

sensing in wideband CRNs was studied in [17], where the

authors show that by optimizing the sampling rate, energy

efficiency of the network can be maximized. It was also shown

that as the sparsity of the wideband spectrum increases (that

is, as the associated vector becomes more and more sparse),

the energy consumption decreases, and the energy efficiency

increases. But the analysis in [17] was restricted to strictly

sparse signals. However, in this work, we have considered the

utility of both compressed sensing and collaborative sensing to

guarantee dimensionality reduction and detection performance,

respectively, that yields improvement in energy efficiency to

a greater extent. Moreover, our approach is also applicable

to non-sparse signals. To the best of our knowledge, such an

analysis on energy efficiency for the CCCS scheme has not

been considered earlier in the literature.

The main contributions of this paper are as follows.

• Energy efficiency of the CCCS scheme for CRNs is

1A related question would be that given a number of collaborative nodes N ,
what is the maximum allowable degree of compression, such that the energy
efficiency of the network is maximized?

studied, in terms of the average achievable throughput

and the average energy consumption in the network.

• Maximization of the energy efficiency is posed as a

non-convex optimization problem, to find the number of

sensors required for collaboration (or the degree of com-

pression), that satisfies a given constraints on probability

of false-alarm and probability of detection.

• A study on the effect of reducing the number of samples

due to CS, and its impact on the energy efficiency is

carried out, considering the random and deterministic PU

signal models. In both cases, we show that the energy ef-

ficiency is improved by either decreasing the compression

ratio, or by increasing the number of collaborative nodes.

• Through numerical results, we compare the performances

of the conventional collaborative sensing (CCS) and

CCCS schemes in terms of the energy efficiency, and

highlight the regimes where CCCS outperforms the CCS

scheme. Such an improvement in energy efficiency of the

CCCS scheme is shown to be due to a significant amount

of saving in the energy consumption, with a relatively

insignificant performance loss due to detection accuracy,

in comparison to the CCS scheme.

The remainder of this paper is organized as follows. We

propose the system model for CCCS scheme and review

the CCCS and CCS schemes for random PU signal case in

Sec. II. The optimization problem to maximize the energy

efficiency of the CCCS scheme is proposed in Sec. III, and

associated approximations, reformulation and detailed anal-

ysis are provided in Sec. III-A. A similar energy efficiency

formulation, approximations, and analysis for a deterministic

PU signal is presented in Secs. IV. Numerical results and

discussion on performance comparison are presented in Sec. V

and concluding remarks are provided in Sec. VI.

II. SYSTEM MODEL

We first describe the conventional cooperative sensing

(CCS) framework. Consider a CRN – as depicted in Fig. 1(a)

– with N CR nodes denoted by C1, . . . , CN that record P

observations each from a licensed band owned by a primary

user (PU). These nodes forward their observation vectors

over a lossless link to a fusion center (FC), where they are

fused to make an overall decision on the availability of the

primary spectrum. The hypothesis testing problem governing

this scenario can be written as

H0 : y(n) = w(n)

H1 : y(n) = x(n) +w(n), n = 1, . . . , N, (1)

where w(n) represents the P×1 noise vector, and x(n) repre-

sents a P×1 primary signal vector, whose entries are assumed

to be i.i.d. Gaussian random variables with zero mean and

variance σ2
w and σ2

x, respectively. That is, if N (µ,Σ) denotes

a Gaussian random vector with mean vector µ and covariance

matrix Σ, then w(n) ∼ N (0, σ2
wIP ), and x(n) ∼ N (0, σ2

xIP ),
where IP is a P × P identity matrix.

Next, we focus on the conventional collaborative compres-

sive sensing (CCCS) framework. Here, instead of P × 1
vector y(n), each node sends an M × 1 compressed vector
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Figure 1: (a) System model for collaborative conventional compressive sensing (CCCS) scheme (b) Time slot structure for

CCCS scheme.

z(n) to the FC, with M < P . The collection of these M -

length universally sampled observations is given by {z(n) =
φy(n), n = 1, . . . , N}, where φ is an M×P fat compression

matrix, which is assumed to be the same across all nodes. With

this setup, the problem in (1) reduces to

H0 : z(n) = φw(n)

H1 : z(n) = φ(x(n) +w(n)), n = 1, . . . , N, (2)

The FC receives the observation matrix Z = [z(1) · · · z(N)],
and makes a decision on the availability of the primary

spectrum, by employing the likelihood ratio test (LRT), which

is Neyman-Pearson optimal. The LRT at the FC, with a

detection threshold λL, is given as

N∏

n=1

f(z(n);H1)

f(z(n);H0)

H1

≷
H0

λL, (3)

where f(z(n);H0) and f(z(n);H1) represent the PDF of z(n)
under H0 and H1, and are respectively given by

f(z(n);H0) =
exp

(
− z

T (n)(σ2
wφφT )−1

z(n)
2

)

(2π)M/2|σ2
wφφ

T |1/2
(4)

f(z(n);H1) =
exp

(
− z

T (n)((σ2
x+σ2

w)φφT )−1
z(n)

2

)

(2π)M/2|(σ2
x + σ2

w)φφ
T |1/2

. (5)

Substituting in (3) and simplifying, yields

[
|σ2

wφφ
T |1/2

|(σ2
x + σ2

w)φφ
T |1/2

]N
exp

[
−

N∑

n=1

(
zT (n)(φφT )−1z(n)

2(σ2
x + σ2

w)

−zT (n)(φφT )−1z(n)

2σ2
w

)]
H1

≷
H0

λL. (6)

Recalling that z(n) = φy(n), it is easy to see that the above

test reduces to the form

T (Y) ,
N∑

n=1

yT (n)φT (φφT )−1φy(n)
H1

≷
H0

λ, (7)

where λ , log

{[
|σ2

x+σ2
w|

|σ2
w|

]N/2

λL

}{
2σ2

w(σ2
w+σ2

x)
σ2
x

}
is the

detection threshold, which is chosen based on the Neyman-

Pearson criterion. To simplify performance characterization

of the above test in (7), we assume that the linear mapping

φ satisfies the ǫ-embedding property, as considered in [16].

However, designing such a φ that satisfies the ǫ-embedding

property is beyond the scope of the current study.

Let γ , σ2
x

σ2
w

denote the average received SNR at a CR

node, and P̂ , φT (φφT )−1φ the projection matrix on the row

space of φ. Following the central limit theorem for large values

of the product NM , it can be shown that the test statistic under

both H0 and H1 is distributed as

T (Y)

σ2
k

NM→∞∼
{

N (NM, 2NM), under H0

N (NM, 2NM), under H1
(8)

where k = 0, 1, that is, σ2
0 = σ2

w, and σ2
1 = σ2

x + σ2
w. Let

c , M
P ∈ (0, 1) denote the compression ratio. Based on (8),

the probability of false-alarm at the FC is given by

PCCCS

f , P (T (Y) > λ|H0) = Q

(
λ

Pσ2
w
− cN

√
2cNP

)
. (9)

Similarly, the probability of detection at the FC is given by

PCCCS

d =P (T (Y) > λ|H1) =Q

(
λ

P (σ2
x+σ2

w) − cN
√
2cNP

)
. (10)

Note that the expressions for PCCCS

f and PCCCS

d depend on

the value of c, which dictates the loss in the detection accuracy

due to the compressed measurements {z(n), n = 1, . . . , N}.

The time slot structure indicating the sensing, reporting and

total duration for the CCCS scheme is as shown in Fig. 1(b).

Since the detection accuracy is also a function of N , it can be

improved by increasing N . In other words, the loss in detection

accuracy due to compression can be recovered by increasing

the number of collaborative nodes, N . This observation is

shown in Fig. 2, where the variation of PCCCS

d across γ is

plotted, with PCCCS

f = 0.1, for different values of c and

N . The case of c = 1 corresponds to Nyquist sampling,

i.e., the CCS approach. As c decreases, PCCCS

d decreases,
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Figure 2: Variation of probability of detection, PCCCS

d , for

different values of average SNR, γ. Probability of false-alarm,

PCCCS

f = 0.1. Note that as c decreases, PCCCS

d decreases.

However, PCCCS

d can be increased to a desired level by

increasing N .

which can be increased to a desired level by increasing N .

Interestingly, as N increases, even though the probability of

detection – and consequently, the achievable throughput of the

secondary network – increases, the total energy consumption

in the secondary network also increases, thereby decreasing

the energy efficiency. Towards this end, it is of paramount

importance to optimally determine system parameters c and N

in order to maximize the energy efficiency. In other words, we

seek to answer the following question. Given a CR network

with N nodes, how small can the compression ratio c be,

such that the energy efficiency is maximized? To answer this

question – which is the main contribution of this paper, we

next derive expressions for the average achievable throughput,

average energy consumption and energy efficiency of the CR

network, and formulate an optimization problem to maximize

the energy efficiency.

III. ENERGY EFFICIENCY AND PROBLEM FORMULATION

In this section, our aim is to find the optimal value of the

compression ratio c, for a given N , such that the energy effi-

ciency is maximized. To this end, we first derive expressions

for the average achievable throughput and the average energy

consumption, and then derive the energy efficiency of the

network. For the underlying CCCS, the average achievable

throughput and the average energy consumption depend on

the communication link between the PU node and the sensing

nodes, and can be calculated based on the following scenarios,

where π0 and π1 denote the prior probability that the channel

is vacant and occupied, respectively.

In a CR network with CCCS, the average achievable

throughput and the average energy consumption depend on

the communication link between the PU node and the sensing

nodes, which can be calculated based on four scenarios

denoted by S1-S4, detailed below.

S1. The first scenario corresponds to the case when the PU

is present, and the FC correctly declares its presence,

which occurs with probability π1P
CCCS

d . Hence, the CR

network throughput achieved is zero.

S2. The second scenario covers the case when PU is absent

but incorrectly declared as present by the FC, which

occurs with probability π0P
CCCS

f . Since the CR net-

work misses a transmission opportunity in this case,

the achievable throughput in this case is calculated as

−φC(TTotal − cTs), where Ts = (τs + Nτr), C is the

capacity of the secondary link, and φ ∈ (0, 1) is a

suitably chosen penalty factor. For simplicity, φ can be

considered to be zero.

S3. In the third scenario, FC makes an incorrect decision

that the PU is absent, when it is actually present, which

occurs with probability π1(1−PCCCS

d ). In this case, the

CR network transmits and causes interference to the PU.

Even with the interference to the PU, the CR communi-

cation achieves a partial throughput of κcC(TTotal−cTs)
units, for some κc ∈ [0, 1). Additionally, we assume that

the CR nodes are located far from the PU network, such

that the interference term due to PU is negligible.

S4. The last scenario corresponds to the case when the PU

is absent and the FC makes a correct decision, which

occurs with probability π0(1 − PCCCS

f ). In this case,

the achievable throughput is maximum, and is given by

C(TTotal − cTs) units.

The achievable throughput, along with the energy consumed

in each of the above scenarios are listed in Tab. I, on the top of

the next page, where Ps and Pt denote the power required for

each SU node for sensing and data transmission, respectively.

Considering all the above cases, the average throughput of the

CCCS scheme is given by

RCCCS(λ, c, N)=π0(1− PCCCS

f )(TTotal − cTs)C
+ κcC(TTotal − cTs)π1(1− PCCCS

d )

− φC(TTotal − cTs)π0P
CCCS

f . (11)

Similarly, the average energy consumption of the CCCS

scheme, as illustrated in Tab. I, can be written as

ECCCS(λ, c, N)=(NPscτs +NPscτr)

+ Pt(TTotal − cTs)
(
1− π1P

CCCS

d − π0P
CCCS

f

)
. (12)

Based on above, the energy efficiency, measured in (bits/Hz/J),

of the underlying CR network is given by

EECCCS(λ, c, N) ,
RCCCS(λ, c, N)

ECCCS(λ, c, N)
. (13)

Recall that our goal here is to design λ and c, for a

given N , such that the energy efficiency EECCCS(λ, c, N) is

maximized, subject to constraints on the sensing errors. The

optimization problems can be divided into two sub-categories,

namely, optimizing N for a given c, and optimizing c for a

given N . For a given c, the governing optimization problem

is:

OP(N)
CCCS

: max
N

EECCCS(c, N)

s.t. PCCCS

f ≤ P f ,

PCCCS

d ≥ P d, (14)
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Table I: Achievable throughput and energy consumption by the CR network employing CCCS, for scenarios S1-S4.

Scenario Probability Energy Consumed (J) Achievable Throughput
(bits/Hz)

S1 π1 PCCCS
d

NPscτs+NPtcτr 0

S2 π0 PCCCS
f

NPscτs+NPtcτr −φC(TTotal − cTs)

S3 π1 (1 − PCCCS
d

) NPscτs+NPtcτr + Pt(TTotal − cTs) κcC(TTotal − cTs)

S4 π0 (1 − PCCCS
f

) NPscτs+NPtcτr + Pt(TTotal − cTs) C(TTotal − cTs)

and for a given N , the governing optimization problem is given

as

OP(c)
CCCS

: max
c

EECCCS(c, N)

s.t. PCCCS

f ≤ P f ,

PCCCS

d ≥ P d. (15)

In the subsequent analysis, we assume that 0 ≤ P f < P d ≤ 1.

This is followed from the IEEE 802.22 standard [18] require-

ments, where the lower bound on the probability of signal

detection and upper bound on the probability of false-alarm

are 0.9 and 0.1, respectively.

The problems given in (14) and (15) are hard to solve,

because the expression for EECCCS(c, N) calculated from

(13) is lengthy. For the ease of analysis, we approximate

the cost function in the above problems, and mention the

conditions under which the problem can be reduced to a

convex optimization problem. Later, in Sec. V, we demonstrate

that the corresponding error due to these approximations is

negligible.

A. Approximation, Reformulation and Analysis

In this section, we first provide an approximation of

EECCCS and reformulate the optimization problems (14) and

(15). On a general note, the apriori probability of channel

availability should be large enough to maintain the detection

accuracy. That is, we assume that π0(1 − PCCCS

f ) > π1(1 −
PCCCS

d ), which is justified in a typical CR scenario [19],

[20]. Following this, the average throughput in (11) can be

approximated by the above inequalities and setting κc = 0 as

R̃cccs(λ, c, N) ≈ π0C(TTotal − cTs)
(
1− (1 + φ)PCCCS

f

)
. (16)

Similarly ECCCS(λ, c, N) can be approximated as

Ẽcccs(λ, c, N)≈(NPscτs +NPscτr)

+ Pt(TTotal − cTs)π0(1− PCCCS

f ). (17)

Consequently, EECCCS(λ, c, N) can be approximated as

ẼEcccs(λ, c, N) =
R̃cccs(λ, c, N)

Ẽcccs(λ, c, N)
, (18)

and the optimization problems OP(N)
CCCS

and OP(c)
CCCS

can be

respectively reformulated as

OP1
(N)
CCCS : max

λ,N
ẼEcccs(λ, c, N) = R̃cccs(λ,c,N)

Ẽcccs(λ,c,N)

s.t. PCCCS

f ≤ P f ,

PCCCS

d ≥ P d, (19)

and

OP1
(c)
CCCS : max

λ,c
ẼEcccs(λ, c, N) = R̃cccs(λ,c,N)

Ẽcccs(λ,c,N)

s.t. PCCCS

f ≤ P f ,

PCCCS

d ≥ P d. (20)

Later, in Sec. V, we show that the errors due to these

approximations are negligible.

Note that PCCCS

d and PCCCS

f are dependent on c and

N , only through their product cN . The following theorem

provides the solution to the optimal threshold, λ∗, for the

optimization problems in (19) and (20).

Theorem 1. The optimal threshold λ∗ for the optimization

problem OP1
(c)
CCCS satisfies the constraint PCCCS

d ≥ P d with

equality, and is given by

λ∗ = σ2
w(1 + γ)

{√
2cNPQ−1(P d) + cNP

}
. (21)

Proof. See Appendix VII-A.

As a consequence of the above theorem, we now show that

the other constraint in (20), namely PCCCS

f ≤ P f , reduces to

an upper bound on the product cN . By substituting λ = λ∗

in the constraint PCCCS

f ≤ P f , we get

P f ≥ Q




σ2
w(1+γ){√2cNPQ−1(Pd)+cNP}

σ2
w

− cNP
√
2cNP


 . (22)

Rearranging the above equation, this condition reduces to

cN ≤ 2

γ2P

{
Q−1(P f )− (1 + γ)Q−1(P d)

}2
. (23)
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Now, the optimization problem OP1
(c)
CCCS given in (20) can

be reformulated as

OP2
(c)
CCCS : max

c

ẼEcccs(λ
∗, c, N)

s.t. c ≤ cmax ,
2
{
Q−1(P f )− (1 + γ)Q−1(P d)

}2

γ2NP
. (24)

In the next theorem, we consider (24) in particular, and show

that the corresponding objective function is monotonically

increasing (and concave) for c ∈ (0, cmax), for a given N .

Therefore, the optimal c∗ which maximizes ẼEcccs(λ
∗, c, N)

for a given N is given as c
∗ = cmax.

Theorem 2. For a given N , the objective function in the

optimization problem OP2
(c)
CCCS is monotonically increasing

in c ∈ (0, cmax). Therefore, c∗ = cmax.

Proof. See Appendix VII-B.

A similar argument can be made for the problem in (19),

using the following theorem.

Theorem 3. For a given c, the objective function in the

optimization problem OP2
(N)
CCCS is monotonically increasing

in N ∈ (0, Nmax). Therefore, N∗ = Nmax.

Proof. The proof is in similar lines to that of Theorem 2, and

is omitted for brevity.

To find the optimal operating point – either (N∗, c), or

(N, c∗) – that maximizes the energy efficiency based on the

above analytic development, we propose the following simple

search algorithm. Summarized as Algorithm 1, this technique

can be used to solve either of the optimization problems

OP2
(c)
CCCS or OP2

(N)
CCCS. This completes our analysis on

finding the optimal c∗ for a given N , or to find the optimal

N∗ for a given c, such that the energy efficiency of the

CRN is maximized. In the next section, we consider a similar

performance analysis of the CRN with a deterministic PU

signal.

IV. PERFORMANCE WITH DETERMINISTIC PU SIGNAL

In this section, we consider the EE performance of the CR

network for the case when PU signal is deterministic. Although

unrealistic in practice, performance study of a CRN with a

deterministic PU signal has been studied earlier in the context

of capacity analysis [21], spectrum sensing [22], etc., which

serves as an upper bound on the performance of a system

employed in practice. In the case of a deterministic PU signal,

asymptotic distribution of the test statistic at the FC under

either hypotheses can be written as [16]

T (X) ,∼
{

N (0, σ2
wN‖P̂x‖22), under H0

N (N‖P̂x‖22, σ2
wN‖P̂x‖22) under H1

, (25)

where ‖P̂x‖22 , xTφT (φφT )−1φx. From (25), the probabil-

ities of false-alarm and signal detection at the FC following

the CCCS scheme with deterministic PU signal are given by

PCCCS,det

f = P (T (X) > λ|H0)

= Q


 λ−Ncγσ2

w√
σ2
wN‖P̂x‖22)


 (26)

PCCCS,det

d = P (T (X) > λ|H1)

= Q


 λ−Ncγσ2

w√
σ2
wN‖P̂x‖22)


 (27)

As discussed in the random signal case, using the concept of ǫ-

stable embedding, for larger value of NM the approximation

‖P̂x‖22 ≈ M
P ‖x‖22 = c‖x‖22 [16]. Therefore,

PCCCS,det

f =Q

(
λ

σ2
w

√
Ncγ

)
, (28)

PCCCS,det

d =Q

(
λ−Ncγσ2

w

σ2
w

√
Ncγ

)
. (29)

It is easy to show that the detection threshold λ =
N
2 x

TφT (φφT )−1φx = N
2 ‖P̂x‖22 = N

2 cγσ
2
n. Therefore, the

final expressions for PCCCS,det

f and PCCCS,det

d are given by

PCCCS,det

f = Q

(√
cNγ

2

)
, (30)

PCCCS,det

d = Q

(
−
√
cNγ

2

)
(31)

Note that the expressions for average achievable throughput,

average energy consumption and the energy efficiency ex-

pressions across all four scenarios S1 − S4 for the deter-

ministic case remains similar to the random case, except that

PCCCS

f and PCCCS

d are replaced by PCCCS,det

f and PCCCS,det

d ,

respectively. The approximations discussed in the previous

case also hold for the deterministic case. For a given c, the

corresponding optimization problem for the deterministic case

can be written as

OP1
(N)
CCCS,det : max

N
ẼEcccs,det(c, N) =

R̃cccs,det(c,N)

Ẽcccs,det(c,N)

s.t. PCCCS,det

f ≤ Pf ,

PCCCS,det

d ≥ Pd, (32)

and the optimization problem for given N is given by

OP1
(c)
CCCS,det : max

c

ẼEcccs,det(c, N) =
R̃cccs,det(c,N)

Ẽcccs,det(c,N)

s.t. PCCCS,det

f ≤ Pf ,

PCCCS,det

d ≥ Pd, (33)

for some 0 < PCCCS,det

f < PCCCS,det

d < 1. We later show that

the errors due to these approximations are negligible. Again,

note that both PCCCS,det

f and PCCCS,det

d depend on c and N

through the product cN .
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Algorithm 1 Algorithm for optimizing N and c

1: Set Ps, Pt, TTotal, τs, τs, N, i0, π0, π1, Pf , Pd

2: When PCCCS

f ≤ P f , Calculate cN using (9)

3: When PCCCS

d ≥ P d, Calculate cN using (10)

4: procedure (To find optimal c)

5: Fix N ∈ (1, Nmax)

6: Compute c =
2{Q−1(P f )−(1+γ)Q−1(P d)}2

γ2NP
(for random signal)

7: Compute c =
{Q−1(P f )−Q−1(P d)}2

γN
(for deterministic signal)

8: Compute ẼEcccs(c, N) using (18) with N and c

9: Compute max(ẼEcccs(c, N)) and respective c
∗

10: return c
∗

11: end procedure

12: procedure (To find optimal N )

13: Fix c ∈ (0, 1)

14: Compute N =
2{Q−1(P f )−(1+γ)Q−1(P d)}2

γ2
cP

(for random signal)

15: Compute N =
{Q−1(P f )−Q−1(P d)}2

γc
(for deterministic signal)

16: Compute ẼEcccs(c, N) using (18) with N and c

17: Compute max(ẼEcccs(c, N)) and respective N∗

18: return N∗

19: end procedure

20: Return max(EECCCS) and the corresponding N∗, c∗,

Theorem 4. The optimal threshold λ∗ for the optimization

problems OP1
(N)
CCCS,det and OP1

(c)
CCCS,det satisfies the con-

straint PCCCS

d ≥ P d with equality, and is given by

λ∗ = σ2
w

√
Ncγ

{
Q−1(P d) +

√
Ncγ

}
. (34)

Proof. See Appendix VII-C.

Similar to the case of random PU signal, following the

above theorem, we now show that the other constraint in (32)

and (33), namely PCCCS

f ≤ P f , reduces to an upper bound

on the product cN . By substituting λ = λ∗ in the constraint

PCCCS

f ≤ P f , we get

P f ≥ Q

(√
cNγσ2

w(Q
−1(P d) +

√
Ncγ)

σ2
w

√
cNγ

)
(35)

Rearranging the above equation, this condition reduces to

cN ≤ 1

γ

{
Q−1(P f )−Q−1(P d)

}2
. (36)

Now, the optimization problems OP1
(N)
CCCS,det and

OP1
(c)
CCCS,det given in (32) and (33) can be respectively

reformulated as

OP2
(N)
CCCS,det : max

N
ẼEcccs(λ

∗, c, N)

s.t. N ≤ Nmax ,

{
Q−1(P f )−Q−1(P d)

}2

γc
, (37)

and

OP2
(c)
CCCS,det : max

c

ẼEcccs(λ
∗, c, N)

s.t. c ≤ cmax ,

{
Q−1(P f )−Q−1(P d)

}2

γN
, (38)

In the next theorem, we consider the problem (38) in

particular, and show that the corresponding objective function

is monotonically increasing (and concave) for c ∈ (0, cmax),
for a given N .

Theorem 5. For a given N , the objective function in the op-

timization problem OP1
(c)
CCCS,det is monotonically increasing

in c ∈ (0, cmax), and hence c
∗ = cmax.

Proof. See Appendix VII-D.

A similar argument can be made for the problem in (37).

Theorem 6. For a given c, the objective function in the op-

timization problem OP1
(N)
CCCS,det is monotonically increasing

in N ∈ (0, Nmax), and hence N∗ = Nmax.

Proof. The proof is in similar lines to that of Theorem 2, and

is omitted for brevity.

V. NUMERICAL RESULTS AND DISCUSSION

In this section, we study the performance of the CCCS

technique in comparison with the CCS technique, in terms of

energy efficiency and validate our analysis, through numerical

techniques. The parameter values are fixed as follows. The

target probability of detection, P d, and false-alarm probability,

P f , are fixed to be 0.9 and 0.1, respectively. The prior

probabilities π0 and π1 are set to be 0.5 each. The total

frame duration is assumed to be TTotal = 200 ms [23].

The sampling frequency at the local SUs is assumed to be

fs = 1 MHz, and the sensing power Ps = 0.1 W. The

length of the uncompressed received signal vector, P = 100.

The sensing time, τs, and reporting time, τr, for the CCCS

scheme are set to 30 ms and 100 µs, respectively. The

achievable rate of secondary transmission is chosen to be

C = log2(1 + SNRs) = 6.6582 bits/sec/Hz, where the SNR

at the secondary receiver is assumed to be SNRs = 20 dB.

The transmission power of individual sensors, Pt, is assumed

to be 3 W. Also, we set the partial throughput factor, κc, and

the penalty factor, φ, to be 0.5 each.

Figure 3 shows the variation of energy efficiencies for

the random and deterministic signal cases, as a function of

parameters c and N . Observe that the energy efficiency is

concave in both c and N . Furthermore, it can be seen that as N

increases, c decreases, which indicates a better compression.

Also, the maximum energy efficiency can be improved with

N .

Figures 4a and 4b show the variation of the optimal com-

pression ratio c
∗ for the CCCS scheme, as a function of N

for different values of SNR γ. First, note that the optimal

values of c are nearly equal for the actual and approximate

energy efficiency values, thereby establishing our earlier claim

on the tightness of our approximations involved in evaluation

of energy efficiency. The decrease in c
∗ with an increase in N
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Figure 3: Energy efficiency as a function of number of sensors N and compression ratio c for (a) deterministic signal case,

SNR = −3 dB (b) random signal case SNR = −9 dB.
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Figure 4: Variation of the optimal compression ratio (c∗) with number of sensors N for (a) deterministic signal case (b) random

signal case.

is intuitive, since the loss due to compression is recovered in

CCCS by increasing N , which results in a better throughput,

and consequently, a better energy efficiency. Similarly, in

Fig. 5a and 5b, we consider the variation of optimal N

for different values of c, which yields similar trends and

observations.

Figures 6a and 6b show the variation of optimal energy

efficiency values with the actual and approximate expressions,

for different values of N . Note that for low values of N ,

performances of both CCS and CCCS schemes are similar, due

to the fact that c∗ = 1 for sufficiently low N . As N increases,

the system achieves a better compression, and therefore, the

performance of CCCS scheme becomes better than that of the

CCS scheme. Also, the energy efficiency for both CCS and

CCCS schemes increase with an increase in SNR. Moreover,

the loss due to the energy efficiency approximation is negli-

gible. Therefore, in our subsequent results, we consider only

the approximated energy efficiency values. The reason for a

better energy efficiency of the CCCS scheme in comparison

to the CCS scheme can possibly be either because CCCS

achieves a better throughput, or it achieves a lower energy

consumption. Between these two cases, since the detection

performance of the CCS scheme is better than that of CCCS

scheme for a given N (or c), the achievable throughput of

the CCS scheme will always be higher as compared to that

of the CCCS scheme. Therefore, the improvement in the
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Figure 5: Variation of the optimal number of sensors (N∗) with compression ratio c
∗ for (a) deterministic signal case (b)

random signal case.

20 40 60 80 100 120 140 160 180 200
Number of sensors N

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

O
pt

im
al

 e
ne

rg
y 

ef
fi

ci
en

cy
 (

E
E

) 
(b

its
/s

/H
z/

J)

CCS scheme
CCCS scheme

(a) Deterministic PU signal.

10 20 30 40 50 60 70 80 90 100
Number of sensors N

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

O
pt

im
al

 e
ne

rg
y 

ef
fi

ci
en

cy
 (

bi
ts

/s
/H

z/
J)

CCCS scheme
CCS scheme

(b) Random PU signal.

Figure 6: Variation of optimal energy efficiency with number of sensors N for (a) deterministic signal case (b) random signal

case.

energy efficiency of the CCCS scheme must be due to a

significant reduction in energy consumption in comparison to

the CCS scheme. Figures 7 and 8 corroborate this argument. In

Fig. 7, the achievable throughput of CCS and CCCS schemes

are compared, where the former is naturally found to be

better. For larger values of N , the detection probability and

hence the throughput of the CCS scheme improves faster.

However, as shown in Fig. 8, the energy consumption of

the CCS scheme also increases rapidly with N , as opposed

to the CCCS scheme, where the increase is much slower

since c
∗ decreases with N . This is true for both random

signal and deterministic signal cases. Hence, in scenarios

where the energy consumption has a larger priority in a signal

detection scenario CCCS scheme could be preferred. However,

in the scenario where the sensing accuracy is a main concern,

CCS scheme yields a better performance, in terms of energy

efficiency.

VI. CONCLUSION

We consider the energy efficiency of compressed con-

ventional collaborative sensing (CCCS) scheme focusing on

balancing the tradeoff between energy efficiency and de-

tection accuracy in cognitive radio environment. We first

consider the existing CCCS scheme in the literature, and

derive the achievable throughput, energy consumption and

energy efficiency. The energy efficiency maximization for

the CCCS scheme is posed as a non-convex, optimization

problem. We approximated the optimization problem to reduce

it to a convex optimization problem, and showed that this

approximation holds with sufficient accuracy in the regime

of interest. We analytically characterize the tradeoff between

dimensionality reduction and collaborative sensing of CCCS
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Figure 7: Variation of optimal achievable throughput with number of sensors N for (a) deterministic signal case (b) random

signal case.

0 50 100 150 200
Number of sensors N

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

O
pt

im
al

 e
ne

rg
y 

co
ns

um
ed

 (
J)

(a) Deterministic PU signal.

0 20 40 60 80 100
Number of sensors N

0.05

0.1

0.15

0.2

0.25

0.3

0.35
O

pt
im

al
 e

ne
rg

y 
co

m
su

m
ed

 (
J)

(b) Random PU signal.

Figure 8: Variation of optimal energy consumption with number of sensors N for (a) deterministic signal case (b) random

signal case.

scheme – the implicit tradeoff between energy saving and

detection accuracy, and show that by combining compression

and collaboration the loss due to one can be compensated by

the other which improves the overall energy efficiency of the

cognitive radio network.

VII. APPENDIX

A. Proof of Theorem 1

To establish that PCCCS

d ≥ P d is satisfied with equality, we

show that
∂ẼEcccs(λ,c,N)

∂λ ≥ 0, for all λ. Observe that

∂ẼEcccs(λ, c, N)

∂λ
=

∂R̃cccs(λ)
∂λ Ẽcccs(λ)− R̃cccs(λ)

∂Ẽcccs(λ)
∂λ

Ẽ2
cccs

(λ)
,

(39)

where

∂R̃cccs(λ, c, N)

∂λ
= −∂Pf

∂λ
(1 + φ)π0C(TTotal − cTs), (40)

and

∂Ẽcccs(λ, c, N)

∂λ
= −∂Pf

∂λ
π0Pt(TTotal − cTs). (41)

Upon further simplification, we get

∂Ẽcccs(λ, c, N)

∂λ
= −∂Pf

∂λ
V1(λ, c, N), (42)
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where

V1(λ, c, N) =

[
(1 + φ)π0C(TTotal − cTs)Ẽcccs(λ, c, N)

Ẽ2
cccs

(λ, c, N)

−π0Pt(TTotal − cTs) ∗ R̃cccs(λ, c,N)

Ẽ2
cccs

(λ, c, N)

]

(43)

Now, to show that
∂EECCCS(λ,c,N)

∂λ ≥ 0, it is enough to show

that V1(λ, c, N) ≥ 0, since

∂Pf

∂λ
= − 1

2σ2
w

√
cNPπ

exp


−

(
λ
σ2
w
− cNP

)2

(4cNP )


 ≤ 0.

In general, it is hard to analytically show that V1(λ, c, N) ≥ 0.

However, since R̃cccs(λ, c, N) ≥ 0 and Ẽcccs(λ, c, N) ≥ 0,

the parameters φ, C, TTotal and Ts can be chosen such that

(1 + φ)π0C(TTotal − cTs)Ẽcccs(λ, c, N) ≥ π0Pt(TTotal −
cTs)R̃cccs(λ, c, N). Later, in Sec. V, it can be seen that the

above condition is satisfied for those parameter values which

are of practical interest. Therefore,

P d = Q

(
λ∗

σ2
x+σ2

w
− cNP

√
2cNP

)

= Q




λ∗

σ2
w

(
1

1+γ

)
− cNP

√
2cNP


 . (44)

Rearranging the equation gives the expression for λ∗.

B. Proof of Theorem 2

Note that

∂ẼEcccs(λ, c, N)

∂c
=

∂R̃cccs(c)
∂c Ẽcccs(c)− R̃cccs(c)

∂Ẽcccs(c)
∂c

Ẽ2
cccs

(c)
.

(45)

As c → 0, it can be shown that

lim
c→0

∂ẼEcccs(λ, c, N)

∂c
≥ lim

c→0

{
−∂Pf

∂c

( C
Pt

)
+ V2(c, N)

}
,

(46)

where

V2(c, N) =
[NPsτs +NPtτr]π0C

P 2
t

≥ 0 (47)

Also, note that

∂Pf

∂c
= − 1√

π
exp

(
( λ∗

σ2
w
− cNP )2

4cNP

)

[
− NP

2
√
cNP

−
NP (( λ∗

σ2
w
− cNP ))

4(cNP 3/2)

]
(48)

Therefore, Pf is a monotonically decreasing function of c.

When c → 0, it can be shown that
∂Pf (λ,c,N)

∂c → −∞. Since

V2(c, N) is a positive constant, lim
c→0

∂ẼEcccs(λ,c,N)
∂c = +∞.

Furthermore, using a well-known bound on the Q function,

we get the following lower bound Pf as

Pf ≥
[
1− 2cNP

( λ
σ2
w
− cNP )2

]
exp−

[
( λ
σ2
w
− cNP )2

4cNP

]
, (49)

which can be used to get a lower bound on the first derivative

of ẼEcccs(λ, c, N) as

∂ẼEcccs(λ, c, N)

∂c
≥ (BA−BD −BC −AE)︸ ︷︷ ︸

,X1

+ (BC +AE − 2BA+ 2BD)

[
1− 2cNP

( λ
σ2
w
− cNP )2

]
e

−





( λ

σ2
w

−cNP)2

4cNP





︸ ︷︷ ︸
,X2

+ (BA−BD)

[
1− 2cNP

( λ
σ2
w
− cNP )2

]2
e

−





( λ

σ2
w

−cNP)2

4cNP





︸ ︷︷ ︸
,X3

− (AC)
∂Pf (λ, c, N)

∂c︸ ︷︷ ︸
,X4

, (50)

where A = π0C [TTotal − cTs] ≥ 0, B = π0PtTs ≥ 0, C =
NPscτs +NPtcτr ≥ 0, and D = Pt [TTotal − cTs]π0 ≥ 0.

As seen earlier,
∂Pf

∂c is negative, and it is easy to show

that BC + AE − 2BA + 2BD > 0, BA − BD > 0, and

consequently, X2 ≥ 0, X3 ≥ 0 and X4 ≥ 0. Now,

∂ẼEcccs(λ, c, N)

∂c
≥ X1 +X2 +X3 +X4

≥ X1

= BA− BD −BC −AE

= (π2
0PtTs)π0C(TTotal − cTs)− (π2

0P
2
t Ts)(TTotal − cTs)

− (π0PtTs)(NPscτs +NPtcτr)

−π0C(TTotal − cTs)(NPsτs +NPtτr))

= π0

{
PtTsC − P 2

t Ts − C(NPsτs +NPtτr)
}

︸ ︷︷ ︸
,W

(TTotal−cTs)

− c π0PtTs(NPsτs +NPtτr)︸ ︷︷ ︸
,Y

(51)

To ensure that
∂ẼEcccs(λ,c,N)

∂c ≥ 0, we need that the right

hand side of (51) to be ≥ 0. Rearranging (51), observe that

this is true when c ≤ cUB , TTotalW
TsW+Y . In other words, we

have shown that
∂ẼEcccs(λ,c,N)

∂c ≥ 0 whenever c ∈ (0, cUB).
Finally, to establish that c

∗ = cmax, we need to show that

cmax ≤ cUB. Although hard to show analytically, it is verified

to be indeed true numerically, for moderate values of N and

for low SNR, which is of practical relevance.
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C. Proof of Theorem 4

Note that the first derivative of Pf is negative as given

below.

∂Pf

∂λ
= − 1

σ2
w

√
2πcNγ

exp

[ −λ2

(2cNγσ4
w)

]
≤ 0 (52)

As mentioned earlier, since the expressions for average achiev-

able throughput, average energy consumption and the energy

efficiency expressions across all four scenarios S1 − S4 for

the deterministic case remains similar to the previous case,

and similar set of arguments hold true for the deterministic

case too. These can be used to prove that the first derivative

of ẼEcccs is greater than or equal to 0. Therefore,

P d = Q

(
λ∗ − cNσ2

w

σ2
w

√
cNγ

)
. (53)

Rearranging the above equation gives the expression for λ∗.

D. Proof of Theorem 5

Note that the first derivative of PCCCS,det

f with respect to c

from (30) is given by,

∂Pf (λ,N, c)

∂c
= −

exp(−( λ2

2Nγσ4
w
)Nγλ

2
√
2π(cNγ)3/2σ2

w

≤ 0. (54)

Therefore, lim
c→0

∂Pf (λ,c,N)
∂c → −∞. Similar arguments given in

Sec. VII-B can be used to show that c∗ = cmax, even in this

case.
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