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Andrew Harkins∗
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Abstract

This paper develops a framework for analyzing the effect of arbitrary changes
to network structure in linear-quadratic games on networks. Changes to net-
work structure which increase total activity and total utility are studied for
the case of strategic complements and strategic substitutes. Changes which are
welfare increasing are found to depend on a new measure of centrality which
counts the total length of walks from a node.

Two optimal network design problems are then considered. Total activity is
found to be a convex function of the edge weights of the network, which allows
for convex optimization techniques to be applied to minimize total activity as
in the traditional ‘key player’ problem. Welfare maximizing network structures
are also studied and previous results which associate optimal networks with
nested split graphs are generalized.

1 Introduction

Networks play an important role in our lives. We send information along communica-
tion networks, travel along transportation networks, purchase goods through supplier
networks, find jobs through our professional networks and influence friends through
our personal networks. These networks determine what we hear, who we can reach,
what we can do and ultimately how we act. Yet some positions in the network

∗Department of Economics, University of Warwick, Coventry CV4 7AL, United Kingdom.
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are more privileged than others. This idea, referred to as network centrality, has
long been studied by sociologists and has more recently come to the attention of
economists.

Economists have used the tools of game theory to develop new measures of network
centrality and provide theoretical foundations for existing measures. The seminal con-
tribution of Ballester et al. (2006) highlighted an equivalence between the equilibrium
actions of agents in their model and a particular centrality measure known as Katz-
Bonacich centrality. This connection between activity and Katz-Bonacich centrality
has proven to be insightful and far-reaching. Applications of this insight have been
made in settings such as production networks (Acemoglu et al., 2012), political lob-
bying (Battaglini and Patacchini, 2018), intra-firm communication (Calvó-Armengol
and de Martí, 2009), peer effects (Calvó-Armengol et al., 2009), monopoly pricing
(Candogan et al., 2012; Bloch and Quérou, 2013), information acquisition (Myatt
and Wallace, 2019) and interaction in cities (Helsley and Zenou, 2014).

Despite extensive and varied applications of the concept, comparatively little work
has been done to examine how arbitrary changes to network structure impact Katz-
Bonacich centrality. This paper addresses this gap by providing an analysis of how
changes to network structure affect individuals’ centralities in the network. All the
results presented will apply to games on networks with linear best replies where
agents’ actions are strategic complements. Several of the key results will also carry
over to the more complex case of strategic substitutes as studied in Bramoullé et al.
(2014).

The question of how to alter the network structure to achieve a particular policy
goal was partially addressed by Ballester et al. (2006) themselves in their analysis of
‘key players’ and later ‘key links’ (Ballester et al., 2010). The key player in a network
is the node who generates the largest reduction in effort following their removal from
the network. An overview of this literature is provided by Zenou (2016), including
some empirical applications. The question of how to optimally redesign the network
so as to lower aggregate effort (e.g. in a criminal network) was not addressed but will
be examined in this paper.

Efficient network design in games with strategic complementarity has been studied
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by Belhaj et al. (2016). They identify a particular network intervention which leads to
increases in welfare and use it to generate optimal network structures under a variety
of cost functions. Acemoglu et al. (2016) also compare the efficiency properties of
network structures in a similar framework, however they focus on the impact of shocks
to individual nodes and analyze the first and second order impact of those shocks for
different networks.

A related area of the literature which has received recent attention is the design
of targeted interventions in networks. A planner may wish to increase aggregate
activity or welfare by providing targeted subsidies or taxes. Both Demange (2017)
and Galeotti et al. (2020) examine optimal targeting problems where a planner is
able to allocate resources to individuals in order to achieve a desired outcome. Their
papers differ to this one as subsidies are targeted at nodes to alter their private
marginal payoff from action, rather than to alter their neighbors in the network.

The focus in Section 2 is on discrete changes to network structure where edges of
any weight can be added or removed from the network. Section 3 then presents some
results on continuous (infinitesimal) changes to network structure and outlines a con-
vex optimization approach to optimal network design. Section 4 examines a different
network design problem and generalizes some previous results on the optimality of
nested split graphs using techniques related to vector majorization.

2 Discrete Changes to Network Structure

A network g is a list of edges defined over a set of nodes (or vertices) which is
denoted by N = {1, . . . , n}. The network has an associated weighted adjacency
matrix G where gij > 0 indicates the existence of an edge from node i to node j. The
neighborhood of i is the set Ni = {j ∈ N : gij > 0}. Unless otherwise stated, G is
a possibly non-symmetric real matrix with off-diagonal entries gij ≥ 0 and diagonal
entries gii = 0.

The degree of a node is given by di =
∑n

j=1 gij and dmax denotes the maximum
weighted degree in the network, i.e. dmax ≡ maxi∈N di. A vector x is non-negative
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(written x ≥ 0) if xi ≥ 0 for all i and xi′ > 0 for some i′ and positive (written x > 0)
if xi > 0 for all i. A matrix A is similarly non-negative (written A ≥ 0) if aij ≥ 0

for all ij and ai′j′ > 0 for some i′j′.
For any matrix A let ai denote the ith row of A and let λi(A) denote the ith

eigenvalue of A. Whenever the eigenvalues of A are real they are indexed such that
λ1(A) ≥ λ2(A) ≥ · · · ≥ λn(A). We also let ρ(A) = maxi{|λi|} denote the spectral
radius of a matrix A.

Each node in the network represents an individual who is assumed to maximize
the utility function

ui(xi) = αixi + δ
∑
j∈N

gijxixj −
c

2
x2i . (1)

The variable xi ≥ 0 represents a privately costly activity such as the amount of effort
expended, investment made or information collected. The cost parameter c is by
convention normalized to c = 1. Each individual may differ in their marginal private
benefit from activity, this is denoted by αi. The parameter δ measures the impact
of the activity by i’s neighbors. By differentiating ui with respect to xi we see that
agent i’s action is a strategic complement for agent j′s action if δ > 0 and a strategic
substitute if δ < 0.1

A key concept in the analysis of games played on networks is Katz-Bonacich
centrality. This measure assigns a centrality score to each node based on their con-
nectedness in the network. The Katz-Bonacich centralities are given by the vector
b ≡ Mα where M = (I − δG)−1. If ρ(δG) < 1 then M can be expressed as
M =

∑∞
k=0(δG)k where Gk counts all walks of length k. This means that entry mij

of M measures the total weighted walks from i to j and bi =
∑

jmijαj measures the
total walks out of i weighted by the αj of the destination node j.

When G is not symmetric there is a distinction between the vector of ‘out-
centralities’ Mα and the vector of ‘in-centralities’ αTM. In order to avoid ambiguity
when the network is not symmetric we will present results for ‘out-centralities’ only.

1It is assumed throughout that all parameters and the network structure itself is known to the
players. A treatment of network games with incomplete information is given in (Galeotti et al.,
2010).
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Results for ‘in-centralities’ can then be easily obtained by replacing G with GT , M

with MT , and so on.

Case 1 - Strategic Complements (δ > 0)

The standard case to which all the following results will apply is where actions
are local strategic complements. In this case the weights gij ≥ 0 indicate the relative
impact of agent j′s action on i′s incentive to increase their action xi. Best responses
are linear and weakly increasing in the actions of other players. The system of best
responses can be written as x = α + δGx. As shown by Ballester et al. (2006), the
unique Nash equilibrium in the case where 0 < δ < 1/ρ(G) and α > 0 is when all
agents pick xi = bi.

Belhaj et al. (2014) show that Katz-Bonacich centralities do not always char-
acterize equilibrium actions when δ ≥ 1/ρ(G) and the action set is bounded from
above. We will therefore maintain the assumptions from Ballester et al. (2006) that
ρ(δG) < 1, xi ∈ [0,∞) and αi > 0 for all i ∈ N .

Examples of where this version of the model could be applied include peer ef-
fects (Calvó-Armengol et al., 2009), production networks (Acemoglu et al., 2012)
and monopoly pricing (Bloch and Quérou, 2013). The results presented will extend
to models which do not share the same payoff function as in (1) but still involve
Katz-Bonacich centrality (or some variant), for example the information acquisition
models of (Calvó-Armengol et al., 2015) and (Myatt and Wallace, 2019) and the lim-
iting case of the Banerjee et al. (2013) model of information diffusion.

Case 2 - Strategic Substitutes (δ < 0)

The second case to which several of the central results of this paper also apply is
where actions are local strategic substitutes. In this case δ < 0 and the weights gij ≥ 0

now indicate the relative impact of agent j′s action on i′s incentive to decrease xi.
The best responses again satisfy x = α+ δGx if individuals have the utility function
in (1).
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As discussed in Bramoullé et al. (2014), we may extend the analysis to games
which have different payoffs to (1) but are best response equivalent. For example, if
individuals have the utility function

ui(xi) = f(xi + δ
∑
j∈N

gijxj)− cxi, (2)

where f is a differentiable, concave and strictly increasing function and c > 0 is the
constant marginal cost of effort. If y is defined implicitly as f ′(y) = c, then best
responses satisfy

xi = y− | δ |
∑

j gijxj if | δ |
∑

j gijxj < y

xi = 0 if | δ |
∑

j gijxj ≥ y.

Normalizing the cost parameter c so that y = 1 we see that the efforts of each agent
at an interior equilibrium are given by x = 1−|δ|Gx and therefore x = (I− δG)−11,
where 1 is a vector (of appropriate length) with all entries equal to 1. It is then
possible to apply some results concerning changes in x to games which are best
response equivalent, although any conclusions about welfare would not necessarily
apply.

2.1 Comparative Statics

To introduce the notion of comparative statics between different networks, let G̃ ≡
G + P where P can be thought of as a perturbation to network structure or a policy
imposed by a planner. Here we assume that the policy matrix is taken from the
set of zero diagonal n × n matrices Pn×n. The main concern is then to analyze
the impact of P on the vector of actions as it changes from (I − δG)−1α = x to
(I − δG̃)−1α = x̃. One obvious impact to analyze would be the change in total
activity 1T (x̃ − x). Another candidate would be the change in total utility at the
Nash equilibrium, given by

∑
i (ui(x̃)− ui(x)) = 1

2
x̃T x̃− 1

2
xTx.

A source of concern following the change to network structure is that a new equi-
librium vector x̃ ≥ 0 may not exist. It may be that the iterative process of summing
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up walks via
∑∞

k=0(δG̃)k does not converge to a finite value, so even if M̃ ≡ (I−δG̃)−1

exists it may have negative entries. To ensures a new equilibrium x̃ ≥ 0 exists and is
unique we will make the following assumption:

Assumption 1: If δ > 0 then α > 0 and ρ(δG̃) < 1.

When δ < 0 it was shown by Bramoullé et al. (2014) that there may be multi-
ple equilibria, some of which contain at least one inactive agent with xi = 0. This
presents two issues, firstly, if there is a change to network structure which results in
multiple equlilibria how do we know one will be reached? Secondly, since we wish
to consider only interior solutions, we must rule out equilibria with inactive agents
whose actions are not described by the solution to x = (I− δG)−1α. To resolve both
of these issues, stronger assumptions are made when δ < 0:

Assumption 2: If δ < 0 then α = 1, | δdmax(G) |< 1 and | δdmax(G̃) |< 1.

The assumption that | δdmax(G̃) |< 1 is sufficient to guarantee that ρ(δG̃) < 1

and is actually necessary when all agents have equal degrees. The interpretation of
this assumption is that neighborhood activity is an imperfect substitute for individual
activity, since the marginal benefit of an increase in neighbors’ total effort is less than
the marginal benefit from an increase in individual effort.

These assumptions are stronger than those made for Proposition 2 of Bramoullé
et al. (2014) which only requires that |λmin(δG)| < 1, however this allows us to
extend their analysis to directed graphs and to obtain the stronger result that all
agents play a strictly positive effort in the unique equilibrium.2

The following lemma gives sufficient conditions for the existence of a new equilib-
rium vector x̃ > 0 after a given policy P:

Lemma 1. Suppose Assumptions 1 and 2 hold, then x > 0 and (I− δG̃)x̃ = α has
unique solution x̃ > 0.

2The assumption that α is a constant vector in the case of substitutes is also made in Bramoullé
et al. (2014)
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Proof. All proofs are contained in the appendix.

By making Assumptions 1 and 2 when the network is undirected, we can also guar-
antee convergence to this new equilibrium x̃ under the Nash tâtonnement dynamic
as it is globally asymptotically stable (Bramoullé et al., 2014).

The next lemma allows us to express the difference between x̃ and x in terms of
P and is used in many of the results which will follow:

Lemma 2. M̃−M = M̃δPM = MδPM̃.

Corollary 1. If δ > 0 then δPx ≥ 0 implies that x̃ ≥ x.

An immediate implication of post-multiplying M̃δPM by α is that δPx ≥ 0

guarantees that x̃ ≥ x whenever δ > 0 because M̃ is a non-negative matrix. If δ < 0

then M̃ may have negative entries and therefore a similar implication does not hold
for the case of substitutes.3

The intuition for this in the case of complements is straightforward, if we fix the
action profile at x and alter the network such that every agent experiences a net
increase in the total effort of their neighbors, then all agents will have the incentive
to increase their effort. The new equilibrium action profile in G̃ must weakly increase
for all i due to strategic complementarity in actions. We can extend this intuition
with the following result:

Proposition 1. Suppose δ > 0, then x̃ > x if and only if
∑`

k=0(δG̃)kδPx > 0 for
some ` ≥ 0.

One way to interpret Proposition 1 is to consider an iterative process of myopic
best responses after a change to network structure. Suppose each agent plays a
myopic best response at each time t ∈ N given by

x
(t)
i = αi +

∑
j∈N

δ (gij + pij)x
(t−1)
j . (3)

3Counter examples can easily be found even when n = 3.
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This process of best responses will always converge to a new equilibrium x̃ for
any initial condition x(0) ≥ 0 (Milgrom and Roberts, 1990). If each individual begins
this process at x(0)i = xi and updates according to (3) then

x(1) − x(0) = δ (G + P) x(0) − δGx(0) = δPx(0) (4)

is the change in actions after one period. For t ≥ 2 the per period change is

x(t) − x(t−1) = δG̃
(
x(t−1) − x(t−2)) . (5)

Using (4) and (5) we see that after an update in period 2 the total change in action
is (

x(2) − x(1)
)

+
(
x(1) − x(0)

)
= (I + δG̃)δPx.

The result states that if at some t the cumulative effect of this myopic best
response process (summarized by (

∑t
k=0(δG̃)k)Px) results in all agents playing a

strictly higher action than their original xi then they must continue to increase their
actions as x(t) converges toward x̃.

2.2 Undirected Networks

The benchmark case in models of games played on networks is the undirected graph
where agents interact symmetrically. In this subsection we will make the assumption
that gij = gji but maintain the previous assumption that edges can be weighted. For
the first result in this section we will also restrict attention to the case where α is
constant. In this simplified benchmark case we can establish the following result:

Theorem 1. Let g be undirected and α = 1. If xT δPx > 0 then
∑

i x̃i >
∑

i xi.

Any policy which satisfies xT δPx = δ
∑

ij pijxixj > 0 will exhibit a net increase in
the total activity, in the cases of both strategic complements and strategic substitutes.

This condition is sufficient to guarantee an increase in total activity but is not
necessary. An example of a change which does not satisfy δxTPx > 0 but leads to
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Figure 1: An Edge Switch

an increase in total activity levels is shown in Figure 1. For δ = 0.15 the activity
levels are xk = 2.51 and xj = 2.82 with the associated value of xTPx = −0.24, yet∑

i(x̃i − xi) = 0.10.
Figure 1 highlights a policy which is of particular interest. We will call such a

policy an edge switch by i from j to k, where an edge ij is removed and an edge ik
is added. In an unweighted network an edge switch means that

xT δPx = δ(2xixk − 2xixj) = δ2xi(xk − xj).

This policy would increase total activity whenever δ(xk − xj) > 0.

Corollary 2. An edge switch by i from j to k where δ(xk−xj) > 0 strictly increases
total activity.

If actions are strategic complements then we can increase total activity by switch-
ing edges to higher activity nodes. When applying this result to strategic substitutes
the intuition changes slightly. If xk < xj then the policy increases total activity if
we switch an edge between nodes i and j for an edge between nodes i and k. Like
the case of strategic complements, an edge switch which increases activity will typi-
cally see one prominent node gaining more edges. This is because nodes with lower
activity tend to have more links when efforts are substitutes.
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Application: Monopoly pricing with consumption externalities

One application of Theorem 1 is to the model of Bloch and Quérou (2013). In the main
version of their model a group of consumers are located on an undirected network and
decide whether to adopt a new technology provided by a monopolist seller. Consumers
have a private valuation θi which is drawn from a uniform distribution on [0, 1] but
they also derive utility from adoption by their neighbors. The utility from i adopting
is

ui = θi − pi + δ
∑
j

gij Pr[j adopts].

The authors examine optimal discriminatory prices when costs are given by ci(qi) =

cqi with qi = 1 if i adopts and qi = 0 if not. For linear costs, the monopo-
list charges a uniform price p = 1+c

2
which is independent of the location of the

consumer in the network. The vector of (expected) demands q(p) is shown to be
q(p) = 1−c

2
(I− δG)−11 = 1−c

2
x. Profits are therefore given by

π =
(1− c)2

4
1Tx,

which is an increasing function of the sum of Katz-Bonacich centrality scores.4 The-
orem 1 implies that if consumers in this market are encouraged to edge switch from
low xj consumers to higher xk consumers then profit for the monopolist will increase.

2.3 Neighborhood Changes in Undirected Networks

The problem of characterizing the exact effects of changes to network structure on
the vector of efforts x in full generality is challenging. Complex interactions between
first order and higher order neighborhood changes are difficult to summarize in terms
of a single sufficient statistic that is computationally easier than simply inverting
(I− G̃) and calculating the new x̃ directly. A simplification which will make tackling
this problem more straightforward is to only consider changes to a single node’s

4Bloch and Quérou (2013) also provide a version of their model where the monopolist has convex
costs. The implications of Theorem 1 also apply to that case. Details are provided in Appendix B.
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neighborhood, rather than multiple simultaneous changes across the network.
The focus will now shift to the case where alterations are made to one individual’s

neighborhood while all other neighborhoods remain fixed. This restriction is realistic
in some contexts and will allow us to strengthen some of the earlier results. Changes
to network structure may occur over long periods of time and on a node-by-node
basis. Actions then have time to adjust to the new network structure before another
structural change takes place. Avoiding simultaneous changes to multiple neighbor-
hoods eliminates interactions between these changes and simplifies the analysis to a
significant degree.

Making a neighborhood change in an undirected network involves changing both
the out-neighborhood and in-neighborhood simultaneously. If we let p = g̃i − gi

denote the change to agent i’s out-neighborhood, then P is simply P = eip
T + peTi

where ei is a vector with ei = 1 and ej 6=i = 0. This leads to the following lemma:

Lemma 3. Assume g is undirected and we make a symmetric change to the neigh-
borhood of agent i. Then

M̃−M = δD−1
(
c1MPM + δc2mim

T
i + δmiiMppTM

)
, (6)

where c1 = 1− δpTmi > 0, c2 = pTMp > 0 and D = c21 − δ2c2mii > 0.

The main benefit of Equation (6) is in allowing for a deeper characterization of
welfare improving structural changes. To examine this further, a new measure of
network centrality is defined below.

Definition 1. The vector of walk length centralities is given by ξ ≡MTMα.

As suggested by the name, the measure ξi has an interpretation in terms of sum-
ming up walks in the network and weighting them by a measure of walk length. In
the original formulation of Katz-Bonacich centrality (Katz, 1953) the vector of cen-
tralities xKB counts the total number of walks which leave each agent, discounting
walks of length k by factor δk. This is given by

xKB = δGx =
(
δG + δ2G2 + δ3G3 + · · ·

)
1.
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If g is symmetric then

MTM = (I + δG + δ2G2 + · · · )2 =
∞∑
k=1

k(δG)k−1,

provided ρ(δG) < 1.5 This implies for α = 1 that

δGξ =
∞∑
k=1

k(δG)k1. (7)

For Katz-Bonacich centrality the ith entry of δGx gives a count of the total
number of walks leaving i, discounting walks of length k by δk. By comparison, for
walk length centrality the ith entry of δGξ gives the total length of all discounted
walks which leave i in terms of the number of edges traversed, where again walks of
length k are also discounted by δk. If we instead consider ξ =

∑∞
k=1 k(δG)k−11 we

see that it provides a measure of total walk length in terms of nodes visited.
When g is not symmetric we can also interpret the walk length centrality measure

as a Katz-Bonacich centrality measure in its own right. If we pre-multiply ξ by I−δGT

we get (I− δGT )ξ = x and therefore

ξ = x + δGTξ. (8)

Writing out this system of equations for each i we get ξi = xi + δ
∑n

j=1 gjiξj and we
can then interpret ξi as a Katz-Bonacich measure of centrality where αi = xi.6 This
newly defined measure is now applied in Proposition 2 below.

Proposition 2. Assume g is undirected. If we make a change to the neighborhood
of agent i then:

5Diagonalizing G gives G = QΛQT where Q is orthogonal with ith column equal to the ith
eigenvector of G and Λ is diagonal and contains the eigenvalues of G. Differentiating

∑∞
k=0 a

k =
(1 − a)−1 with respect to a gives

∑∞
k=1 ka

k−1 = (1 − a)−2 when |a| < 1. Hence if a = δλi then∑∞
k=1 k(δG)k−1 = Q(I− δΛ)−2QT = M2.
6Like Katz-Bonacich centrality, this measure can be negative when δ < 0. If δ > 0 then ξi > 0

for all i, as can be seen by iterating on equation (8).
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• pTx ≥ 0 and pTξ ≥ 0 implies that
∑

i ũi >
∑

i ui whenever δ > 0.

• pTx ≤ 0 and pTξ ≤ 0 implies that
∑

i ũi >
∑

i ui whenever δ < 0 and ξi > 0.

To guarantee an increase in utility we need to consider how neighborhood changes
interact with the two centrality measures x and ξ. If we fix a profile of actions and
change the neighborhood of i such that there is a net increase in the Katz-Bonacich
and walk length centralites of i’s neighbors then total utility will increase.

From Theorem 1 we know that deleting edge ij and adding edge ik would be
guaranteed to increase total activity if δ(xk − xj) ≥ 0. However, in Belhaj et al.
(2016) it was shown that δ(xk−xj) ≥ 0 is not sufficient to also guarantee an increase
total utility. Using Proposition 2 we can obtain a new sufficient condition for an edge
switch to increase total utility.

Corollary 3. If the assumptions of Proposition 2 hold then an edge switch by i from
j to k strictly increases total utility if δ(xk − xj) ≥ 0 and δ(ξk − ξj) ≥ 0.

2.4 Neighborhood Changes in Directed Networks

We will now focus on the case where an agent can only change their neighborhood
in one direction, altering either their out-neighbors or their in-neighbors. By doing
so we make the assumption that the network is directed but maintain the previous
assumption that edges are possibly weighted. As before, x is the out-centrality vector
which results from post-multiplying M by α and

←
x will be the in-centrality vector

which results from pre-multiplying M by α.

2.4.1 Changes to Out-Neighborhoods

Network changes which are restricted to only the out-neighborhood of a given node
are of particular interest and have a strikingly simple structure. If only the out-
neighborhood of agent i is changed then we can write P as simply P = eip

T . We can
then view M̃ = (I− δG− δP)−1 as a rank one update of M = (I− δG)−1 because
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the matrix P is rank one by construction. This allows us to apply the Sherman-
Morrison formula for a rank one update of the inverse of a matrix to obtain

M̃ = M + Mδ(eip
T )M

(
1

1− δpTMei

)
. (9)

We then have the following result:

Theorem 2. Assume g is directed and that δ > 0. If we alter the ith row of G from
gi to g̃i = gi + p then the following statements are equivalent:

(i) pTx ≥ 0.

(ii) x̃i ≥ xi.

(iii) ui(x̃) ≥ ui(x).

(iv) x̃j ≥ xj for all j 6= i.

(v) uj(x̃) ≥ uj(x) for all j 6= i.

(vi)
∑n

k=1 x̃k ≥
∑n

k=1 xk.

Fixing the action profile at x the condition that pTx ≥ 0 ensures that the total
out-centrality of the neighbors of i increases. If δ > 0 then it is intuitive that changes
of this kind should then weakly increase the total number of out-walks in g̃ since
only the out-neighborhood of i has changed. Any directed walks which do not pass
through i are unaffected, but walks which reach i at some point must increase in
weight since the total walks out of i have increased. The central insight of Theorem
2 is firstly that this condition is necessary for such increases and it is also equivalent
to a weak increase in the activity levels of all agents when δ > 0 .

It is also possible to state a similar result for strategic substitutes under the
assumption that the maximum in-degree, denoted by

←
dmax, is less than 1/ | δ |.

Theorem 3. Assume g is directed, δ < 0 and that
←
dmax < 1/ | δ |. If we alter the

ith row of G from gi to g̃i = gi + p then the following statements are equivalent:
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(i) pTx ≤ 0.

(ii) x̃i ≥ xi.

(iii) ui(x̃) ≥ ui(x).

(iv)
∑n

j=1 x̃j ≥
∑n

j=1 xj.

Theorems 2 and 3 therefore have an important implication. They tell us that any
decentralized process of network formation where agents act in sequence and have
the ability to optimally alter their out-neighbors will naturally lead to increases in
total activity. Each agent only needs to take account of the activity levels of their
potential neighbors when switching links.

Furthermore, if δ > 0 then any process where agents sequentially replace low
activity neighbors which high activity neighbors will result in an increase in total
utility. Consequently, a network is socially optimal in terms of maximizing aggregate
utility if and only if it is privately optimal for each individual.7

2.4.2 Changes to In-Neighborhoods

Now consider the case where an agent best-responds to out-neighbor’s actions but
only control their in-links. As we shall see, the above link between private and social
optimality under out-neighborhood changes no longer holds.

To remain consistent with the rest of the paper we will state results in this sub-
section in terms of how changes to in-neighborhoods affect out-centrality. However,
we may also interpret these results in a setting where agents select their out-neighbors
(who they follow) but pick actions based on the actions of their in-neighbors (who
follows them). An example which fits the first interpretation is the inter-sectoral
production model of Acemoglu et al. (2012) where firms/sectors pick inputs but they
(and the planner) are typically concerned with levels of output.

Proposition 3. Let g be directed and let
←
gi denote the ith row of GT . If we alter the

in-neighborhood of agent i from
←
gi to

;
gi =

←
gi + p then:

7This of course ignores the fact that actions will still be below socially optimal levels.
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• x̃i ≥ xi if and only if δpTmi ≥ 0.

•
∑n

j=1 x̃j ≥
∑n

j=1 xj if and only if δpTMT1 ≥ 0.

• x̃ ≥ x if and only if Mδp ≥ 0.

When making changes to the in-neighborhood of a node we lose the equivalence
between changes which increase the activity of agent i and changes which increase
total activity. It is no longer necessarily the case the linking to nodes with higher
activity levels will lead to higher total activity.

Moreover, Proposition 3 shows that individual nodes cannot simply link to agents
of higher activity to guarantee an increase in their utility. Increases in utility can
however be guaranteed if they link to nodes with higher walk length centrality.

Proposition 4. If we alter a single agent’s in-neighborhood then δpTξ ≥ 0 implies
that

∑n
j=1 uj(x̃j) ≥

∑n
j=1 uj(xj).

When considering how to make a change to the out-neighborhood of agent i to
increase total utility it was sufficient to use the vector of activities x. When making
changes to in-neighborhoods the vector of walk length centralities ξ should be used
to inform this decision.

3 Continuous Changes to Network Structure

Except for relatively simple cases it is not always possible to summarize the impact
of structural changes in terms of a single statistic or measure. The mathematical ex-
pressions for non-trivial changes to network structure are often unwieldy and require
a planner to counterbalance the direct impact of a policy on the local neighborhood
with its impact via higher order network effects.

The task of analyzing how arbitrary changes can impact activities can however
be drastically simplified when considering continuous, rather than discrete, changes
to network structure. In doing so we effectively take a linear approximation to the
change in x, which sidesteps the difficulties associated with summarizing the impact
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of higher order interactions. This simplification is appropriate in cases where the size
of the perturbation is small in magnitude or in the case where a network is evolving
continuously through time.

To modify the framework used so far, we assume that the strength of each edge
changes continuously with a parameter t (e.g. time). These changes are represented
by the matrix P̂ where for each entry p̂ij =

dgij
dt

. The change in activity xi with
respect to t can be stated as

dxi
dt

=
d
(
αi + δ

∑
j gijxj

)
dt

=
∑
j∈N

δ

(
dgij
dt

xj + gij
dxj
dt

)
. (10)

The relationship in equation (10) holds for each node i, so writing this system of
equations in matrix form we have dx

dt
= δP̂x + δGdx

dt
. We can then solve to get

dx

dt
= MδP̂x. (11)

A number of results can be immediately derived from equation (11). Consider
first the case of a directed graph where dgij

dt
= 1 for a given edge ij and dgk`

dt
= 0 for

all other edges, then using (11)

dx

dt
= δ


m1ixj

m2ixj
...

mnixj

 .

If instead we have an undirected graph then dgij
dt

= 1 implies that dgji
dt

= 1 and
therefore

dx

dt
= δ


m1ixj +m1jxi

m2ixj +m2jxi
...

mnixj +mnjxi

 .
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More complex changes to network structure can be easily constructed in this linear
fashion by including other non-zero terms in P̂.

We can see from (11) that d(1Tx)/dt is given by xT δP̂x in the undirected case
with constant α. It is also straightforward to calculate the rate of change for

∑
i ui =∑

i x
2
i /2 with respect to t. Differentiating for each i we get dui/dt = xi

dxi
dt

and
summing up we get d (

∑
i ui) /dt = xT dx

dt
= ξT δP̂x. Now walk length centrality

plays a crucial role in determining whether a continuous change to network structure
increases welfare.

3.1 Optimal Network Design

With explicit results for derivatives with respect to edge weight gij in hand, attention
naturally turns to the optimal choice of edge weight with respect to some differentiable
objective function. Using these results it is now possible to follow a general convex
optimization approach to key player and optimal network design problems. The
original ‘key player’ problem described in Ballester et al. (2006) involved a planner
who was able to remove a single node from the network to optimally lower aggregate
activity. It was shown in Ballester et al. (2006) that a planner would optimally target
the node with highest intercentrality measure, defined as ICMi = x2i /mii.

To extend and generalize the key player problem we will now consider an optimal
network design problem using convex optimization techniques. A planner wishes to
alter an undirected network g to minimize some undesirable activity which has local
strategic complementarity, such as crime. Assuming that δ > 0, all actions are weakly
increasing in gij and hence the planner would optimally choose to disconnect all nodes
in the network by reducing all gij to zero. However, the problem becomes non-trivial
if we suppose that the planner also has a budget B for edge changes which cannot
be exceeded.
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Stating the problem formally for δ > 0 the planner wishes to solve:

minimize
G̃∈Rn×n

∑
i xi

subject to g̃ij ≥ 0 (∀i, j 6= i)

g̃ii = 0∑
ij |pij| ≤ B

(12)

The first and second constraints ensure that the new matrix G̃ is non-negative and
has a zero diagonal. The third constraint will always bind provided that B ≤ 1TG1

because reducing some gij > 0 will always lower total activity.
A further implicit constraint is that ρ(δG̃) ≤ 1, however, this cannot bind at

any optimum. This is true because the optimal policy cannot have any pij > 0 as
reducing to pij = 0 will lower total activity and stay within the budget. Therefore
P ≤ 0 at the optimum and consequently ρ(δG̃) ≤ ρ(δG) < 1.8

In order to solve this activity minimization problem we now prove that total
activity, which is given by f(G) =

∑
i xi, is indeed a convex function. Let Γ be

the set of symmetric non-negative (n × n) matrices G̃ with zero diagonal such that
ρ(G̃) < 1.

Lemma 4. If α = c1 for scalar c > 0 and G is symmetric then f(G) =
∑

i xi is
strictly convex on Γ.

Lemma 4 holds in the case of either strategic complements or strategic substitutes
and now enables convex optimization techniques to be applied to this problem.9 It is

8This follows from the Courant-Fischer theorem which states that λ1(G̃) = max||v||=1
vT G̃v
vTv

which is attained at v = v1 where v1 is the principal eigenvector of G̃. Since λ1 and v1 can be chosen
to be nonnegative for a nonnegative matrix (Meyer, 2000) we see that vT

1 Gv1

vT
1 v1

= λ1(G̃)− vT
1 P∗v1

vT
1 v1

≥

λ1(G̃). Consequently, λ1(G) = max||v||=1
vTGv
vT
1 v1

≥ λ1(G̃) and ρ(δG̃) ≤ ρ(δG) < 1.
9Lemma 4 also provides some further intuition for Theorem 1. The first order Taylor ap-

proximation of a convex function is always a global under-estimator of that function. Therefore
f(δG̃) ≥ f(δG) + vec(δP)T (x⊗ x) where vec(δP) denotes the vectorization of δP = δG̃− δG and
x⊗ x denotes the Kronecker product of x with itself, which is the gradient vector of f . It can then
be verified that this is equivalent to f(G̃) ≥ f(G) + xT δPx and therefore f(δG̃)− f(δG) ≥ xT δPx
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Figure 2: The Optimal Policy when δ = 0.2 and B = 2

worth noting that convexity of
∑

i xi always holds when the network is undirected and
agents have identical types αi but may not hold otherwise. Numerical simulations
reveal that xi and

∑
i xi are not convex when agents can have heterogeneous types (i.e.

αi 6= αj). Moreover, xi,
∑

i xi and
∑

i ui are not convex if G can be non-symmetric.
The network in Figure 2 was used in Ballester et al. (2006) to illustrate the

difference between key players and agents with highest activity. When δ = 0.2 it
is the individual who acts as a bridge between the two cliques who has the highest
intercentrality measure, even though each of their 4 neighbors have the highest Katz-
Bonacich centralities in the network.

The policy which minimizes total activity when B = 2 is also shown in Figure
2. Interestingly, the optimal policy does not alter any edges connected to the key
player but instead lowers the weights on edges connecting the agents with highest
Katz-Bonacich centralities.10 When B is increased to 8 so that the removal of the
key player from the network is feasible, the optimal intervention involves lowering
the weight on all edges until the degree of each individual equals 48−B

|N | ≈ 3.63. The
optimal network for B = 8 is shown in Figure 3.

As can be seen in this second example, removing the ‘key player’ from the network
is not optimal when the planner has the option of varying all edge weights. In fact, it
can never be optimal for a planner to completely remove any player from the network
unless all players are being removed. Intuitively, this comes from the fact that

∑
i xi is

10Calculations given in this section were made using the semidefinite programming routines of
the MATLAB package cvx.
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Figure 3: The Optimal Network when δ = 0.2 and B = 8

convex in the entries of G but the ‘cost’ of lowering edge weight is constant, therefore
there are decreasing returns to lowering weight along any given edge.

To show this formally we can examine the Kuhn-Tucker conditions which are both
necessary and sufficient when the objective function and constraints are convex and
differentiable. Although the constraint in (12) is non-differentiable, we can rewrite
the constraint as

∑
ij gij − g̃ij ≤ B and then add a constraint for pij ≤ 0, since we

know that pij ≤ 0 at any optimum. Now writing the Lagragian we have

L =
∑
i∈N

x̃i −
∑
i<j

λij g̃ij +
∑
i<j

µij(g̃ij − gij) + ν
∑
i<j

(2(gij − g̃ij)−B),

which leads to the following necessary and sufficient conditions for each edge ij with
i < j :

δx̃ix̃j = ν if 0< g̃ij < gij

δx̃ix̃j = ν + λij if 0= g̃ij < gij

δx̃ix̃j = ν − µij if 0< g̃ij = gij

If it was optimal to remove individual i, then for every agent j that had been
connected to i it must hold that δx̃ix̃j = ν + λij ≥ ν. Now x̃i = 1 yet for any
k ∈ N with g̃jk > 0 it holds that xk > 1 and consequently δx̃jx̃k > δx̃ix̃j ≥ ν, which
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contradicts optimality. This argument shows that if it is ever optimal to remove i it
must be optimal to remove any j also previously linked to i, and so on throughout
the network.11

To conclude this section a brief comment on the case of strategic substitutes is
necessary. Although convexity of the objective function also applies when δ < 0,
the activity minimization problem requires further constraints. Because activity is a
local public good when δ < 0, the optimal policy always involves adding weight to
G, which in turn leads to an increase in ρ(δG). With no restriction on row sums it
may be possible at the optimum that I − δG̃ is no longer positive definite or even
invertible. However, restricting the budget B so that row sums of δG̃ are always less
than 1 will ensure that x̃i > 0 for each i and that I− δG̃ is positive definite. Convex
optimization techniques can then be applied.

4 Dominance and Nested Split Graphs

This section provides another application of the results from Section 2 to an optimal
network design problem. We will now develop a framework for generating welfare
improvements whilst holding the number of edges or total edge weight fixed. Past
work has identified optimal structures for undirected networks in the unweighted case
(Belhaj et al., 2016). Optimal weighted networks have been examined by Olaizola
and Valenciano (2019) in the context of connections models such as Bala and Goyal
(2000) and Bloch and Dutta (2009), however their framework does not apply to
the linear-quadratic model we study here. Recent work by Li (2020) examines the
optimal design of directed networks but does so assuming differentiability of the
objective function. Results in this section will provide a more general framework
which includes these previous results as special cases. Throughout this section it is
assumed that δ > 0.12

11This argument also applies if the network is not connected. If we delete one component we must
also delete the other as δx̃ix̃j = δ = ν for the deleted component but δx̃i′ x̃j′ > δ for i′ and j′ in the
other component.

12The case of strategic substitutes is more complex. Welfare maximizing networks were studied in
a similar context by Bramoullé and Kranton (2007). They show that optimal networks can contain
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Research on the interaction between network formation and games on networks
has frequently highlighted the special role of nested split graphs. Although several
equivalent definitions of nested split graphs have been given, we will use the definition
which is most common in the economics literature:

Definition 2. An undirected and unweighted network g is a nested split graph if
di ≥ dj =⇒ Ni ∪ {i} ⊇ Nj.

If gij = 1 in a nested split graph then gik = 1 for any agent k such that dk ≥ dj.
The efficiency properties of nested split graphs (NSGs) were demonstrated by Belhaj
et al. (2016) for the case of undirected and unweighted networks, where it is shown
that NSGs maximize total utility under linear linking costs.

When agents simultaneously make linking decisions and take complementary ac-
tions it has been shown by Hiller (2017) that NSGs are the only pairwise stable
network structures. NSGs have also been shown by König et al. (2014) to arise as
the stochastically stable outcome of a preferential attachment process of network
formation with strategic complementary in actions.

The results of Section 2 and the framework developed below will now be used to
add to these earlier results on NSGs. Throughout this section we will index the nodes
according to their activity levels, i.e. x1 ≥ x2 ≥ · · · ≥ xn. A vector x ∈ Rn dominates
a vector y ∈ Rn (written x < y) if

∑k
i=1 xi ≥

∑k
i=1 yi for all k ∈ {1, . . . , n}. When

x and y are probability vectors this is equivalent to familiar notion of stochastic
dominance. If x↓ denotes the vector x which has been rearranged in decreasing order
(i.e. x1 ≥ x2 ≥ ... ≥ xn), then x weakly submajorizes y (written x �w y) if x↓ < y↓.13

It is well-known that if x �w y then f(x) ≥ f(y) for any increasing Schur-convex
function f (Marshall et al., 2011). Several examples of Schur-convex functions are
discussed in Marshall et al. (2011) but for our purposes it is important to note that
f(x) is Schur-convex if f(x) =

∑
i φ(xi) where φ is an increasing and convex function.

inactive agents who contribute no effort, a scenario not covered by the framework in this paper.
13If x↓ < y↓ and

∑n
i=1 xi =

∑n
i=1 yi then x majorizes y. If in addition

∑k
i=1 x

↓
i ≥

∑k
i=1 y

↓
i holds

strictly for at least one k ∈ {1, . . . , n− 1} then x strictly majorizes y.
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L L−1

Figure 4: L and L−1

Therefore, both f(x) =
∑n

i=1 xi and f(x) =
∑n

i=1
1
2
x2i are Schur-convex functions.14

Let L denote the lower triangular matrix with Lij = 1 for i ≥ j and Lij = 0 for
i < j (see Figure 4). Pre-multiplying any vector x by L returns a running sum of
that vector and hence Lx ≥ Ly ⇐⇒ x < y.15 Pre-multiplying any matrix A by L

returns a matrix with columns equal to a running sum of the columns of A. If we let
U ≡ LT then post-multiplying any matrix A by U returns a matrix with rows equal
to a running sum of the rows of A.

The inverses of L and U also have useful properties. Consider first L−1 which is
also shown in Figure 4. Pre-multiplying L−1 by any vector x gives xTL−1 ≥ 0 if x

is decreasing and non-negative. Equivalently for U−1 = (L−1)T , U−1x ≥ 0 if x is
decreasing and non-negative.16

Using these matrices allows us to easily prove a number of facts relating dominance
to increases in equilibrium actions or welfare, for example the following proposition:

Proposition 5. Assume δ > 0. If each row of G̃ dominates the corresponding row
of G then x̃i ≥ xi for all i ∈ N .

The focus in the remainder of this section will be on policies which are rewirings
of the network, that is, policies which hold the total number of edges or edge weight
fixed. These policies are natural in some contexts, for example when in-degree or out-

14Other examples of Schur-convex functions include the variance of x and the Gini coefficent of x.
A function is Schur-concave if −f is Schur-convex, examples include the entropy of x and Πn

i=1xi.
15Note that Lx = Ly ⇐⇒ x = y because L is invertible.
16These matrices were originally used in the context of ‘monotone’ Markov chains, see Keilson

and Kester (1977). Applications to economics were later made by Conlisk (1985).
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
Figure 5: A positive rewiring in a symmetric network for n = 4

degree is fixed for each agent (e.g. if each agent has a fixed amount of time to spend
with others). This also applies when a planner is asked to construct a network from
scratch with a given budget B of edges or edge weight. Alternatively, the planner
may face a cost function which is increasing in the total edge weight used.

Within this class of network rewirings, a particular subset of policies called positive
rewirings will be of interest.

Definition 3. A rewiring P is a positive rewiring if LPU ≥ 0.

The main intuition behind positive rewirings is that they are a net redistribution
of edge weight upwards and/or leftwards in the adjacency matrix. This is seen by
noting that each entry ij of the matrix LPU is given by LPUij =

∑
i′≤i,j′≤j pi′j′ .

For any positive rewiring we see that the degree distribution of g̃ dominates g, at
least weakly, since

L(G + P)1 ≥ LG1 ⇐⇒ LP1 ≥ 0,

which holds due to the fact that LPU ≥ 0 and U−11 ≥ 0.
Two examples of positive rewirings are worth highlighting. The first is the edge

switch from j to k in the case where xk > xj which, as was seen in Section 2, is
guaranteed to increase total activity when g is symmetric. The second example is
the neighborhood switch defined by Belhaj et al. (2016), where for two nodes j and k
with xk > xj the planner takes all edges where gij = 1 but gik = 0 for a given i ∈ N
and simultaneously switches them so that gij = 0 and gik = 1.
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When the network is undirected and edges are unweighted there is a close rela-
tionship between positive rewirings and NSGs. We will now show that g is a nested
split graph if and only if g admits no positive rewiring. In the process we will also
show that this is equivalent to G being a ‘stepwise’ matrix. Following König et al.
(2014), the definition of a stepwise matrix is given below:

Definition 4. A stepwise matrix A is a symmetric, binary (n × n) matrix with
elements aij satisfying the following condition: if i < j and aij = 1, then ak` = 1

whenever k < ` ≤ j and k ≤ i.

Proposition 6. Assume that δ > 0. If g is symmetric and unweighted then the
following statements are equivalent:

(i) g is a nested split graph.

(ii) G is a stepwise matrix.

(iii) g admits no positive rewiring.

NSGs have stepwise adjacency matrices (König et al., 2014) and hence by con-
tinually moving edges upwards and leftwards in the adjacency matrix we can reach
a nested split graph.

To now state the final result of this section, let g∗(E) be a network which max-
imizes Φ(x) where Φ is a Schur-convex function of x and E is a fixed total number
of edges or edge weight. To ensure a well-defined maximum exists the following as-
sumption is made:

Assumption 3: If g is unweighted then 1
n−1 > δ > 0 and if g is weighted then

1
E
> δ > 0 .

This assumption guarantees that any permutation of edges or edge weight will always
converge to a finite x̃.

Theorem 4. Assume α is constant and that Assumption 3 holds. Then the optimal
g∗(E) admits no positive rewiring.
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Belhaj et al. (2016) show that any network which is not an NSG admits a welfare
improving neighborhood switch. The result above extends this intuition to a larger
class of networks (including directed networks) and any welfare function which is
Schur-convex. The reader will notice that all of the results in this section are based
on techniques related to vector majorization and do not rely on differentiability of
the welfare function Φ.

For undirected but weighted networks there is a unique network which admits
no positive rewiring, that is where g12 = g21 = E/2 and gij = 0 for all other ij
pairs. For networks which are both directed and weighted there is a potential infinity
of networks which admit no positive rewiring. However, it can be shown that the
network which maximizes utility when edges are weighted and directed is exactly the
same as in the undirected case (i.e. g12 = g21 = E/2).17

Putting these results in the context of the literature it is clear that nested split
graphs (and their generalization via the concept of positive rewirings) occupy a special
status as both efficient and stable networks.

5 Conclusion

This paper has made two main contributions to the literature. The first is to develop a
general framework for analyzing how changes to network structure affect equilibrium
activity and welfare in the linear-quadratic setting. This complements recent work by
Galeotti et al. (2020) on node level targeting by examining how changes to network
structure impact welfare in games on networks. Neighborhood changes in directed
networks prove to be the most tractable to analyze and an equivalence between
policies which are privately and socially beneficial is highlighted.

The second contribution has been to develop and extend approaches to optimal
network design problems. Convex optimization techniques can be applied to show
how a planner with a fixed budget would optimally adjust edge weights to minimize

17Writing xi = 1 + δgij(1 + δgjixi) and solving for xi =
1+δgij

1−δ2gijgji it is then straightforward to
show that g∗ij = g∗ji = E/2 under the constraint gji = E − gij .
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total activity, generalizing previous work on ‘key player’ policies. A new technique
based on vector majorization can be used when the planner must reallocate edges
in the network to maximize total activity or welfare. These results extend those of
Belhaj et al. (2016) to a larger class of networks.

Further extensions and applications of the convex optimization approach outlined
in Section 3 are possible. It would be of interest to extend this to the more general
network models introduced in Acemoglu et al. (2016), which include non-linear ag-
gregation functions. It may also be of interest to study policies which minimize the
variance of activity in settings where coordination is important, for example a sup-
ply chain network or a communication network. Initial simulations for this objective
function are suggestive of convexity in undirected networks but whether this actually
holds is an open question.

Appendix A - Proofs

Proof of Lemma 1. For the case of complements see Ballester et al. (2006). For
substitutes we will first show that if a Nash equilibrium x exists then xi ∈ (0, 1) for
each i ∈ N . Taking the utility function in 2 and normalizing c so that f ′(1) = c, the
best responses satisfy

xi = 1− | δ |
∑

j gijxj if | δ |
∑

j gijxj < 1

xi = 0 if | δ |
∑

j gijxj ≥ 1.

Since | δdmax(G) |< 1 we infer that xi ≤ 1. This implies that δ
∑

j gijxj ≤
δ
∑

j gij < 1 therefore that xi ∈ (0, 1) and hence if a Nash equilibrium exists it is
interior.

The interior Nash equilibrium is unique if and only if there is a unique solution
to the system x = 1 + δGx, which occurs if and only if I − δG is invertible. By
Gerschgorin’s circle theorem, if λi is the ith eigenvalue of δG it holds that |λi| ≤|
δdmax(G) |< 1 for all i. The spectral norm therefore satisfies ρ(δG) < 1 which is
well-known to imply that limk→∞(δG)k = 0 and that (I− δG)−1 exists and is equal
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to
∑∞

k=0(δG)k , see for example Meyer (2000).

Proof of Lemma 2. M̃ satisfies M̃(I−δG−δP) = I, or equivalently M̃(I−δG) =

I + M̃δP. Post-multiplying by M and rearranging gives M̃ − M = M̃δPM =

MδPM̃ where the final equality follows from (I − δG − δP)M̃ = I by an identical
argument.

Proof of Proposition 1. To show sufficiency begin by recursively substituting in
to the right-hand side of x̃−x = δG̃ (x̃− x) + δPx a total of ` times. This results in

x̃− x =
(
δG̃
)`+1

(x̃− x) +

(∑̀
k=0

(δG̃)k

)
δPx. (13)

Solving equation (13) for x̃− x yields

x̃− x =
(
I− (δG̃)`+1

)−1(∑̀
k=0

(δG̃)k

)
δPx

where invertibility of I−(δG̃)`+1 follows from the fact that ρ((δG̃)`+1) = (ρ(δG̃))`+1 <

1 and therefore I−(δG̃)`+1 is a non-singular M-matrix (Berman and Plemmons, 1994).
Non-singular M-matrices have non-negative inverses and hence (I−(δG̃)`+1)−1 ≥ 0

for any ` ≥ 0. Therefore, if (
∑`

k=0(δG̃)k)δPx > 0 for some ` then x̃ − x > 0, since∑∞
k=0(δG̃)(`+1)k′ has a positive diagonal and non-negative entries elsewhere.
To show necessity, rewrite (13) as

(
I−

(
δG̃
)`+1

)
(x̃− x) =

(∑̀
k=0

(δG̃)k

)
δPx.

Since ρ(δG̃) < 1 this implies that lim`→∞(δG̃)`+1 (x̃− x) = 0. Therefore if x̃−x > 0

then there exists an ` sufficiently high such that x̃ − x > (δG̃)`+1 (x̃− x), proving
that

(∑`
k=0(δG̃)k

)
δPx > 0 for some ` ≥ 0.

Proof of Theorem 1. From Lemma 2 we have x̃ − x = M̃δPx = MδPx̃ and
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therefore 1T (x̃− x) = xTPx̃. If Px = 0 then 1T (x̃− x) = 0 so assume instead that
Px 6= 0.

Under the assumption that δλ1(G) < 1, the symmetric matrix I − δG has all
positive eigenvalues. Similarly δλ1(G̃) < 1 implies that M̃ is also positive definite and
thus MδPM̃δPM = MδP(M̃ −M) is positive semi-definite. Hence 1TMδP(M̃ −
M)1 ≥ 0 and we obtain xT δPx̃ ≥ xT δPx. This shows that xTPx > 0 implies
1T (x̃− x) > 0 for δ > 0 and xTPx < 0 implies 1T (x̃− x) < 0 for δ < 0 .

Proof of Lemma 3. This lemma is an application of the Woodbury formula for a
rank 2 update of an inverse (see Horn and Johnson (2013) pg.19). Let V = (ei,p)

be an n × 2 matrix with columns ei and p and let WT =

(
pT

eTi

)
which is a

corresponding 2× n matrix. Notice that VWT = eip
T + peTi = P.

The Woodbury formula then states that

M̃ =
(
I− δG− δVWT

)−1
= M + δMV

(
I− δWTMV

)−1
WTM

To invert I− δWTMV we write it as

I− δWTMV =

(
1− δpTMei −δpTMp

−δeTi Mei 1− δeTi Mp

)
.

Let D := det
(
I− δWTMV

)
, inverting then gives:

(
I− δWTMV

)−1
= D−1

(
1− δeTi Mp δpTMp

δeTi Mei 1− δpTMei

)

Because pTMei = eTi Mp we now have

(
I− δWTMV

)−1
= D−1

(
(1− δpTMei)I +

0 δpTMp

δeTi Mei 0

)
,

31



and so M̃−M =

δD−1
[
(1− δpTMei)MδPM +

(
δeTMe

)
MppTM +

(
δpTi Mpi

)
Meie

T
i M

]
.

The terms pTMp and eTi Mei are positive because M is positive definite. It
remains to prove that 1− δpTMei > 0 and D > 0. Note that

I− δG− δVWT = [I− δG]
[
I−MδVWT

]
,

and therefore

det
(
I− δG− δVWT

)
= det (I− δG) det

(
I−MδVWT

)
.

By Theorem 1.3.22 of Horn and Johnson (2013) the non-zero eigenvalues of
(MV) WT are equal to the non-zero eigenvalues of WT (MV), and so

Πn
i=1

(
1− δλi

(
MVWT

))
= Π2

i=1

(
1− δλi

(
WTMV

))
.

Thus using the relationship between determinants and eigenvalues we have that

det
(
In − δMVWT

)
= det

(
I2 − δWTMV

)
.

Therefore det
(
I2 − δWTMV

)
> 0 if det(I − δG̃) > 0 and det(I − δG) > 0, which

holds whenever λ1(G̃) and λ1(G) are less than 1/δ.
Finally, to show 1 − δpTMei > 0 assume δpTMei > 0. Starting with D =

1−2δpTMei+δ
2
(
pTMei

)2−δ2pTMpeTi Mei > 0 and applying the Cauchy-Schwartz
inequality to pTM1/2M1/2ei we see that 1 − 2δpTMei > 0 because

(
pTMei

)2 ≤
pTMpeTi Mei. Therefore 1− δpTMei > 0 as required.

Proof of Proposition 2. The change in utility is (1/2)x̃T x̃−(1/2)xTx = (1/2)(x̃−
x)T (x̃− x) + xT (x̃− x). Using Lemma 3 and the definition of P as P = eip

T + peTi

32



we get

xT (x̃− x) = δD−1
(
c1xiξ

Tp + c1ξip
Tx + δc2ξixi + δc3ξ

TppTx
)
.

Lemma 3 established that c1 > 0,c2 > 0 and D > 0, so therefore ξTp > 0 and
pTx > 0 guarantee that utility increases for δ > 0. For the δ < 0 case the extra
assumption that ξi > 0 guarantees that the term inside the parentheses is negative
whenever ξTp < 0 and pTx < 0.

Proof of Theorem 2. It can be seen from equation (9) that

x̃i − xi =
miiδp

Tx

1− δpTMei
.

As mii > 0, statements (i) and (ii) are equivalent provided δpTMei < 1 holds for any
choice of p such that ρ(G̃) < 1. The formula for a rank one update of a determinant
is stated below without proof (see Meyer (2000) Section 6.2):

Lemma 5 (Rank one update of a determinant). If A is non-singular and c

and d are column vectors of appropriate length then det(A + cdT ) = det(A) det(1 +

dTA−1c).

Letting A = I− δG, c = ei and d = −δp, this implies that det(I− δG− δeip) =

det(I − δG)(1 − δpTMei). If δpTMei ≥ 1 then det(I − δG̃) ≤ 0 and therefore
det(M̃) ≤ 0, which is a contradiction. When δ > 0, M̃ has a positive determinant
due to being an inverse of an M-matrix (Berman and Plemmons, 1994). Hence if
det(M̃) > 0 then δpTMei < 1 and (i) ⇐⇒ (ii). To prove the other claims:

(ii)⇐⇒ (iii): At equilibrium ui = (1/2)x2i , which is strictly increasing in xi.

(i) ⇐⇒ (iv): x̃ − x = Meiδp
Tx(1 − δpTMei)

−1 where Mei is the ith column of
M. Since M is a non-negative matrix x̃− x ≥ 0 ⇐⇒ δpTx ≥ 0.

(iv)⇐⇒ (v): Identical to (ii)⇐⇒ (iii).
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(i) ⇐⇒ (vi): Since 1TMei > 0 always holds, then 1T (x̃ − x) = 1TMeiδp
Tx(1 −

δpTMei)
−1 ≥ 0 holds if and only if δpTx ≥ 0.

Proof of Theorem 3. The proof is similar to Theorem 2 but first we need to es-
tablish two basic facts about M when δ < 0.

Lemma 6. If δ < 0 then mii > 0.

Proof. Letting Assumption 2 hold and applying the Gershgorin Circle Theorem we
have that | 1 − µi(I − δG) |≤

∑
j 6=i | δgij |< 1 where µi is the ith eigenvalue of

I − δG. This implies that every real eigenvalue of I − δG is positive since it lies in
the interval (0, 2). Any complex eigenvalues come in conjugate pairs and therefore
if µi = a + bi is an eigenvalue then µj = a − bi is also an eigenvalue. Therefore
det(I − δG) =

∏n
i=1 µi > 0 due to the positivity of all real eigenvalues and the

positivity of the product of any conjugate pairs of complex eigenvalues.
Note that the above argument also holds for any principal submatrix of I − δG.

Now let (I− δG)−i denote the principal submatrix of I− δG where the ith row and
column have been removed. Apply the co-factor formula for an inverse of matrix to
obtain

mii = det((I− δG)−i)/ det(I− δG) > 0.

Lemma 7. If δ < 0 and
←
dmax < 1 then 1TMei > 0.

Proof. M = (I + δG + (δG)2 · · · ) which can be written as M = (I + δG)(I +

(δG)2 + (δG)4 + · · · ) = (I + δG)(I − (δG)2)−1. Observe that (δG)2 ≥ 0 and that
ρ((δG)2) = ρ(δG)2 < 1 and consequently that (I−(δG)2)−1 ≥ 0 since it is the inverse
of an M-matrix. 1T (I + δG) > 0 is guaranteed by the assumption on in-degree and
the result then follows.

Given Lemmas 6 and 7 the proof follows nearly identical steps to Theorem 2. The
only modification when δ < 0 is to show that det(M̃) > 0 and therefore δpTMei < 1,
which is now done by applying the argument used in proving Lemma 6.
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Proof of Proposition 3. Applying the Sherman-Morrison formula,

x̃− x = Mδp
xi

1− δeTi Mp
. (14)

Since 1
2
x̃T x̃− 1

2
xTx = 1

2
(x̃− x)T (x̃− x) + xT (x̃− x) it suffices to show that xT (x̃−

x) ≥ 0. Again using equation (14) we can pre-multiply by xT to get xT (x̃ − x) =

δξTp xi
1−δeTi Mp

.and the result follows provided that 1− δeTi Mp > 0.

By using an identical argument to the proof of Theorem 2, det(I− δG̃) = det(I−
δG)(1− δeTi Mp). By applying the argument used in the proof of Lemma 6 we know
that both det(I− δG) > 0 and det(I− δG̃) > 0, and hence that 1− δeTi Mp > 0.

Proof of Lemma 4. Let c = 1 without loss of generality. The function f(G) =∑
i xi = 1T (I− δG)−11 is strictly convex if for any G ∈ Γ and G̃ ∈ Γ where G̃ 6= G

we have that λf(G) + (1− λ)f(G̃) > f(λG + (1− λ)G̃) for λ ∈ (0, 1). We will show
that the following inequality holds

λ1TM1 + (1− λ) 1TM̃1 > 1T (I− δλG− δ(1− λ)G̃)−11.

To do so we employ the following well known result about Schur complements
(see e.g. Horn and Johnson (2013)). If a symmetric matrix X is partitioned as

X =

(
A BT

B C

)
,

then X is positive semidefinite if and only if C is positive definite and its Schur
complement A − BTC−1B is positive semidefinite. Now let A = λvTMv, B = v,
C = λ(I− δG) for v ∈ Rn where v 6= 0. Observe that X is positive semidefinite.

Let a matrix X′ be partitioned similarly, with A′ = (1 − λ)vTM̃v, B′ = v,
C′ = (1 − λ)(I − δG̃) and again observe that X′ is positive semidefinite. Therefore
Y = X + X′ must be positive semidefinite, from which we conclude that

wT (A + A′ − 4BT (C + C′)−1B)w ≥ 0
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for any w ∈ Rn where w 6= 0. Since A + A′ and 4BT (C + C′)−1B are scalars

λvTMv + (1− λ) vTM̃v ≥ 4[vT (λ(I− δG) + (1− λ)(I− δG̃))−1v].

The right hand side of this inequality is positive as C + C′ is the convex combination
of two positive definite matrices. Now setting v = 1 we can conclude that λ1TM1 +

(1− λ) 1TM̃1 > 1T (I− δλG− δ(1− λ)G̃)−11 for λ ∈ (0, 1).

Proof of Proposition 5. If G̃ row dominates G then G̃U ≥ GU. We then see
that PU ≥ 0 and therefore δPx = δPUU−1x ≥ 0. The result follows because
x̃− x = M̃δPx where M̃ ≥ 0.

Proof of Proposition 6. The proof proceeds by showing that (i) =⇒ (iii) =⇒
(ii) =⇒ (i).

(i) =⇒ (iii): We will prove that the existence of a positive rewiring implies that g is
not a nested split graph. To do so we use two results stated in Mahadev and Peled
(1995) where they refer to nested split graphs as threshold graphs.

The degree sequence of a graph is the vector d = (d1, . . . , dn). Every graph with
a degree sequence equal to d is called a realization of d. A degree sequence d is
unigraphic if all of its realizations are isomorphic.

Theorem 5. Let d = (d1, . . . , dn) be the degree sequence of graph g. Then g is a
threshold graph if and only if d is unigraphic.

Proof. See Theorem 3.2.1 in Mahadev and Peled (1995).

Theorem 5 states that a degree sequence represents a unique graph (up to a
relabeling of nodes) if and only if g is a nested split graph.

Theorem 6. Let d = (d1, . . . , dn) be the degree sequence of graph g. Then g is a
threshold graph if and only if there does not exist a graph g′ with a degree sequence
d′ which strictly majorizes d.

Proof. See Theorem 3.2.2 in Mahadev and Peled (1995).
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To prove that existence of a positive rewiring implies that g is not a nested split
graph, assume to the contrary that g is. As shown in the text, a positive rewiring
guarantees that the degree sequence of g̃ weakly dominates the degree sequence of
g. By Theorem 5, g̃ cannot have the same degree sequence as g so it must strictly
dominate it, i.e.

∑k
i=1 di(g̃) ≥

∑k
i=1 di(g) holds strictly for some k ∈ {1, . . . , n}.

Hence the existence of a positive rewiring implies that g is not a nested split graph
since its degree sequence is strictly dominated (and therefore strictly majorized) by
the degree sequence of another graph, contradicting Theorem 6.

(iii) =⇒ (ii): No possible positive rewiring implies that if i < j then gij = 1 =⇒
gk` = 1 for k < ` ≤ j and k ≤ i, otherwise we could switch the entries gij and gk` to
generate a positive rewiring. This is precisely the definition of a stepwise matrix.

(ii) =⇒ (i): If G is stepwise when x1 ≥ · · · ≥ xn then also d1 ≥ · · · ≥ dn because
all edges have been shifted leftwards in the adjacency matrix. For all entries strictly
above the main diagonal, gij = 1 =⇒ gk` = 1 if dk ≥ di and d` ≥ dj, possibly
after some permutation of nodes with identical neighborhoods. By setting ` = j then
dk ≥ di =⇒ Nk ∪ {k} ⊇ Ni which is the nested neighborhood condition of an
NSG.

Proof of Theorem 4. The bounds on δ guarantee via Gershgorin’s theorem that
any configuration of edge weight in G will give a convergent

∑∞
k=0(δG)k. We will

show that for any network g which admits a positive rewiring there exists a network
g̃ which does not admit a positive rewiring and where x̃ �w x holds strictly, implying
a strict welfare improvement.

If g is undirected and unweighted then the result follows from Theorem 1 of Bel-
haj et al. (2016) via the equivalence demonstrated in Proposition 6. Consider two
remaining cases:

Case 1 (undirected networks)
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Assume that g is an undirected but weighted network. This case requires the
following definition and lemma:

Definition 5. Let ḡi ≡ (g1i, . . . , g(i−1)i, g(i+1)i, . . . , gni)
T denote the vector of in-links

for a given node i . A graph g is in-dominant if ḡi < ḡi+1 for i ≤ n− 1 and ḡn < 0.

Lemma 8. Assume that δ > 0. If P is a positive rewiring of g and g̃ is in-dominant
then x̃ �w x.

Proof. To proceed we first show that LM̃L−1 ≥ 0. If we post-multiply δG̃ by L−1

we get

δG̃L−1 = δ


g̃11 g̃12 · · · g̃1n

g̃21 g̃22 · · · g̃2n
...

... . . . ...
g̃n1 g̃n2 · · · g̃nn




1 0 · · · 0

−1 1 · · · 0
...

... . . . ...
0 0 −1 1



= δ


g̃11 − g̃12 g̃12 − g̃13 · · · g̃1n

g̃21 − g̃22 g̃22 − g̃23 · · · g̃2n
...

... . . . ...
g̃n1 − g̃n2 g̃n2 − g̃n3 · · · g̃nn


Pre-multiplying by L we then get

δLG̃L−1 = δ


1 0 · · · 0

1 1 · · · 0
...

... . . . ...
1 1 1 1




g̃11 − g̃12 g̃12 − g̃13 · · · g̃1n

g̃21 − g̃22 g̃22 − g̃23 · · · g̃2n
...

... . . . ...
g̃n1 − g̃n2 g̃n2 − g̃n3 · · · g̃nn



= δ


g̃11 − g̃12 g̃12 − g̃13 · · · g̃1n

g̃11 + g̃21 − g̃12 − g̃22 g̃12 + g̃22 − g̃13 − g̃23 · · · g̃1n + g̃2n
...

... . . . ...
;

d1 −
;

d2
;

d2 −
;

d3 · · ·
;

dn

 .
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If g̃ is in-dominant then each off-diagonal element of δ(LG̃L−1)ij = δ(
∑i

k=1 g̃kj −∑i
k=1 g̃k(j+1)) is non-negative by construction.
Let Zn×n = {A ∈ Rn×n : aij ≤ 0, i 6= j} and notice that (I − LδG̃L−1) ∈ Zn×n.

We now make use of a well-known result in linear algebra due to Fiedler and Pták
(1962) which states (Theorem 4.3) that a matrix A ∈ Zn×n is inverse-positive (i.e.
A−1 ≥ 0) if and only if every real eigenvalue of A is positive.

Therefore, since every real eigenvalue of I − δG̃ is positive by assumption and
because I−LδG̃L−1 = L(I−δG̃)L−1 is a similarity transformation of I−δG̃ then by
using the fact that similarity transformations preserve eigenvalues (Horn and Johnson
(2013), p.58) we can establish that every real eigenvalue of L(I− δG̃)L−1 is positive.
Thus (

I− LδG̃L−1
)−1

=
(
L
(
I− δG̃

)
L−1

)−1
= LM̃L−1 ≥ 0.

Establishing LM̃L−1 ≥ 0 implies LM̃δPx ≥ 0 when P is a positive rewiring.
From M̃δPx = x̃− x↓ we see that Lx̃ ≥ Lx↓ and hence x̃ < x↓ =⇒ x̃↓ < x↓ ⇐⇒
x̃ �w x.

Proof of Case 1. Shifting all edge weight upwards (and leftwards) so that
g̃12 = g̃21 > 0 and g̃ij = 0 otherwise. Now g̃ is in-dominant and since this policy is a
positive rewiring x̃ �w x due to 8. To prove this holds strictly (i.e.

∑k
i=1 x̃

↓
i ≥

∑k
i=1 x

↓
i

holds strictly for some k ∈ {1, . . . , n}) it suffices to show that either x̃1 > x1 or
x̃1 + x̃2 > x1 + x2. This is true because x̃k = 0 < xk for at least one k ∈ {3, . . . , n} if
g 6= g̃. Therefore either x̃1 > x1 or x̃1 + x̃2 > x1 + x2 otherwise

∑k
i=1 x̃

↓
i ≥

∑k
i=1 x

↓
i

for at least one k ∈ {3, . . . , n}, which contradicts x̃ �w x.

Case 2 (directed networks)
Assume that g is a directed and possibly weighted network. Shifting edge weight

leftwards in the adjacency matrix guarantees that PU ≥ 0 and x̃ ≥ x. Let P′ denote
the policy which shifts edge weight as far left as possible and note that P′U ≥ P′′U

for any P′′ which also shifts edge weight leftwards and consequently x′ ≥ x′′. If the
graph is directed and unweighted then it has improved on g and does not admit a
positive rewiring because no edge weight can be shifted upwards (or leftwards).
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If the graph is directed and weighted then

G′ =



0 g′12 0 0 · · · 0

g′21 0 0 0 · · · 0

g′31 0 0 0 · · · 0
...

...
...

... . . . ...
g′n1 0 0 0 · · · 0


.

Now shift all edge weight in the first column upwards to g′21 and we see that x̃−x′ =

M̃δPx′ is given by

m̃11 m̃12 0 0 · · · 0

m̃21 m̃22 0 0 · · · 0

0 0 1 0 · · · 0
...

...
...

... . . . ...
0 0 0 0 · · · 1





0∑n
k=3 g

′
k1

−g′31
...
−g′n1


δx′1.

By noting that m̃12 + m̃22 > 1 we see that L(x̃− x′) ≥ 0 and we can directly verify
that x̃ �w x holds strictly due to this final step.

Appendix B - Additional Details

When costs of production are convex, optimal prices depend on the Katz-Bonacich
centrality of agents in the network.

p = 1− 1

2
(I− δG) ((1 + c)I− δG)−1 1

q =
1

2
((1 + c)I− δG)−1 1

It is also possible to show that the monopolist’s profits are given by

π = 1Tq− qT ((1 + c)I− δG) q =
1

2
1Tq
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π =
1

4
1T [(1 + c)I− δG]−1 1 =

1

4(1 + c)
1Tx(1+c)δ,

where x(1+c)δ indicates the Katz-Bonacich centrality vector for decay factor of value
δ′ = (1 + c)δ. This is again an increasing function of the sum of Katz-Bonacich
centrality scores, this time with a modified decay factor δ′.
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