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Abstract

Cortical thickness (CTh) reflects cortical properties such as dendritic complexity and

synaptic density, which are not only vulnerable to developmental disturbances cau-

sed by premature birth but also highly relevant for cognitive performance. We tested

the hypotheses whether CTh in young adults is altered after premature birth and

whether these aberrations are relevant for general cognitive abilities. We investi-

gated CTh based on brain structural magnetic resonance imaging and surface-based

morphometry in a large and prospectively collected cohort of 101 very premature-

born adults (<32 weeks of gestation and/or birth weight [BW] below 1,500 g) and

111 full-term controls at 26 years of age. Cognitive performance was assessed by

full-scale intelligence quotient (IQ) using the Wechsler Adult Intelligence Scale. CTh

was reduced in frontal, parietal, and temporal associative cortices predominantly in

the left hemisphere in premature-born adults compared to controls. We found a sig-

nificant positive association of CTh with both gestational age and BW, particularly in

the left hemisphere, and a significant negative association between CTh and intensity

of neonatal treatment within limited regions bilaterally. Full-scale IQ and CTh in the

left hemisphere were positively correlated. Furthermore, CTh in the left hemisphere

acted as a mediator on the association between premature birth and full-scale

IQ. Results provide evidence that premature born adults have widespread reduced
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CTh that is relevant for their general cognitive performance. Data suggest lasting

reductions in cortical microstructure subserving CTh after premature birth.
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1 | INTRODUCTION

Premature birth (<37 weeks of gestation) has a high and increasing

worldwide prevalence of almost 11% (Chawanpaiboon et al., 2019). Its

associations with increased mortality and neurological-psychiatric mor-

bidity as well as with reduced social outcomes and academic perfor-

mance make it a crucial global health issue (D'Onofrio et al., 2013).

Individuals born premature show alterations in brain development lead-

ing to macroscopic (Meng et al., 2016; Nosarti et al., 2002; Skranes

et al., 2007) and microscopic (Back et al., 2002; Salmaso, Jablonska,

Scafidi, Vaccarino, & Gallo, 2014; Volpe, 2009) structural brain aberra-

tions. These structural aberrations are not only related to prematurity

but also have functional implications up to adulthood, such as reduced

general cognitive performance (Hedderich et al., 2019; Nosarti

et al., 2008). It has repeatedly been reported and investigated in meta-

analyses that the intelligence quotient (IQ) is lower after premature

birth compared with controls (Twilhaar et al., 2018). These deficits per-

sist into adulthood (Breeman, Jaekel, Baumann, Bartmann, &

Wolke, 2015). Wolke, Johnson, and Mendonça (2019) reviewed cogni-

tive outcomes after very preterm (VP) birth and concluded that low IQ

is one of the major sequelae of VP birth.

Proposed pathomechanisms underpinning impaired brain devel-

opment include several processes. First, preoligodendrocyte

dysmaturation with activation of microglia and reactivity of astro-

cytes, second, axonal injury and third, neuronal injury to thalamic,

subplate as well as to late migrating GABAergic neurons (Volpe, 2009,

2019). The mature cerebral cortex is organized in six horizontal layers.

It consists of radial units in which progenitor cells of cortical

neurons—that originate from several clones in the ventricular zone

but share the same birthplace—settle after migrating along a common

pathway of radial glial fascicles (Rakic, 1988). Cortical thickness (CTh)

represents these radial columns of the cortex. It depends on the num-

ber of neuronal and glial cells, synaptic contacts, dendritic and axonal

processes, including bidirectional fibers between the cortex and other

cortical and subcortical structures, mainly the thalamus (Carlo &

Stevens, 2013; Huttenlocher & Dabholkar, 1997; Rakic, 1995; Sowell

et al., 2004). Cortical gray matter volume and CTh are age dependent.

They show large expansion starting from the second and third trimes-

ter and continuing on into the neonatal period, marking the beginning

of dendritic and axonal development as well as synaptogenesis, which

peaks during childhood (Mills et al., 2016; Shaw et al., 2008). Then

they decrease through the second decade due to various processes

including pruning and increased myelination (Mills et al., 2016;

Paus, 2005; Shaw et al., 2008; Sowell et al., 2004; Wilke, Krägeloh-

Mann, & Holland, 2007). Recently, it has been shown that high IQ

scores and high temporal CTh scores associate with larger, more com-

plex dendrites of human pyramidal neurons (Goriounova et al., 2018).

A positive relationship between general intelligence and CTh has been

found in healthy adults (Menary et al., 2013; Narr et al., 2007). Hence,

it seems that CTh represents cortical properties, which are not only

most vulnerable to developmental disturbances caused by premature

birth but also highly relevant for cognitive performance, and could

serve as a valid biomarker for this investigation.

Results on CTh after premature birth are heterogeneous and

decreases as well as increases have been reported (Lax et al., 2013;

Martinussen et al., 2005; Rimol et al., 2019). As outlined above, CTh is

age dependent, and the different developmental stages of the cortex

present during childhood and adolescence may lead to conflicting data

from these age groups. It has been suggested that CTh stabilizes in

adulthood (Mills et al., 2016; Shaw et al., 2008); however, there are

only very few studies investigating CTh in premature-born adults

(Pascoe, Melzer, Horwood, Woodward, & Darlow, 2019; Rimol

et al., 2019). These studies found reduced frontolateral, parietal and

temporal CTh bilaterally as well as increased CTh in in frontomedial

regions, occipital lobes and in small temporopolar clusters. While, to

our knowledge, there are no investigations of the relationship

between CTh and IQ in premature-born adults, some studies in

premature-born adolescents reported a positive relationship between

CTh and IQ (Bjuland, Løhaugen, Martinussen, & Skranes, 2013; Mar-

tinussen et al., 2005; Skranes et al., 2012).

In the current study, we tested three main hypotheses based on

brain MRI and surface-based morphometry in a large and prospec-

tively collected cohort of 101 VP and/or very low birth weight

(VLBW) adults and 111 matched full-term (FT) controls at 26 years of

age, respectively. (a) We hypothesized CTh to be altered after prema-

ture birth. We had no specific hypothesis regarding reductions or

increases in CTh, since both have been reported in previous studies.

(b) We hypothesized alterations in CTh to be specifically related to

premature birth. Therefore, we hypothesized that CTh correlates with

variables of premature birth. (c) Since premature birth has been asso-

ciated with lower IQ scores compared to FT controls and positive

associations between IQ scores and CTh have been reported in

healthy adults, we hypothesized that lower CTh in specific regions

after premature birth might be associated with lower IQ. To extend

previous findings, we correlated CTh aberrations with full-scale IQ as

a measure of general cognitive performance. Finally, we investigated
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whether aberrant CTh is a mediator of the effects of premature birth

on impaired cognitive performance of VP/VLBW individuals com-

pared to FT controls by means of mediation analyses.

2 | METHODS

2.1 | Participants

All subjects were part of the Bavarian Longitudinal Study (BLS), a geo-

graphically defined, whole-population sample of neonatal at-risk children

and healthy FT controls who were followed from birth, between January

1985 and March 1986, into adulthood (Riegel, Orth, Wolke, &

Österlund, 1995; Wolke & Meyer, 1999; Wolke, Ratschinski, Ohrt, &

Riegel, 1994). Then, 682 infants were born VP (<32 weeks of gestation)

and/or with VLBW (birth weight [BW] <1,500 g). From the initial 916 FT

born infants born at the same obstetric hospitals that were alive at

6 years, 350 were randomly selected as control subjects within the strat-

ification variables of sex and family socioeconomic status in order to be

comparable with the VP/VLBW sample. Of these, 411 VP/VLBW indi-

viduals and 308 controls were eligible for the 26-year follow-up assess-

ment. Also, 260 from the VP/VLBWgroup and 229 controls participated

in psychological assessments (Breeman et al., 2015). All of these subjects

were screened forMR-related exclusion criteria including (self-reported):

claustrophobia, inability to lie still for >30 min, unstable medical condi-

tions (e.g., severe asthma), epilepsy, tinnitus, pregnancy, nonremovable,

MRI-incompatible metal implants and a history of severe CNS trauma or

disease that would impair further analysis of the data. However, themost

frequent reason not to perform the MRI exam was a lack of motivation.

Finally, 101 VP/VLBW subjects and 111 FT controls underwent MRI at

26 years of age (see Figure S1). The MRI examinations took place at two

sites: The Department of Neuroradiology, Klinikum rechts der Isar, Tech-

nische UniversitätMünchen, (n = 145) and the Department of Radiology,

University Hospital of Bonn (n = 67). The study was carried out in accor-

dance with the Declaration of Helsinki and was approved by the local

institutional review boards. All study participants gave written informed

consent. They received travel expenses and a small payment for partici-

pation. The study sample has previously been described in more detail

(Bäuml et al., 2015; Grothe et al., 2017).

2.2 | Birth variables

Gestational age (GA) was estimated from maternal reports on the first

day of the last menstrual period and serial ultrasounds during preg-

nancy. In cases in which the two measures differed by more than

2 weeks, clinical assessment at birth with the Dubowitz method was

applied (Dubowitz, Dubowitz, & Goldberg, 1970). BW and intensity of

neonatal treatment (INTI), quantifying duration and intensity of medi-

cal treatment after birth, were obtained from obstetric records

(Gutbrod, Wolke, Soehne, Ohrt, & Riegel, 2000; Riegel et al., 1995).

Daily assessments of care level, respiratory support, feeding depen-

dency and neurological status (mobility, muscle tone, and neurological

excitability) were performed. Each of the six variables was scored on a

4-point rating scale (0–3) by the method of Casaer and

Eggermont (1985) (see Table S2 for a description of the variables).

The INTI was computed as the mean score of daily ratings during the

first 10 days of life or until a stable clinical state was reached (total

daily scores <3 for 3 consecutive days), depending on which occurred

first, ranging from 0 (best state) to 18 (worst state).

2.3 | Cognitive performance in adulthood

To assess global cognitive performance at the age of 26, prior to and

independent of the MRI examination, study participants were asked to

complete a short version of the “Wechsler Intelligenztest für

Erwachsene,” the German adaptation of the Wechsler Adult Intelligence

Scale, Third edition (von Aster, Neubauer, & Horn, 2006). This test was

carried out by trained psychologists who were blinded to group member-

ship, and used to derive full-scale IQ estimates. This version included six

subtests (vocabulary, similarities, letter- number-sequence, block design,

matrix reasoning, and digit symbol coding) (Breeman et al., 2015; Eryigit

Madzwamuse, Baumann, Jaekel, Bartmann, &Wolke, 2015).

2.4 | MRI data acquisition

At both sites, Bonn and Munich, MRI data acquisition was performed

on Philips Achieva 3 T TX systems or Philips Ingenia 3 T system using

an 8-channel SENSE head coil. Subject distribution among scanners:

Bonn Achieva 3 T: 5 VP/VLBW, 12 FT, Bonn Ingenia 3 T:

33 VP/VLBW, 17 FT, Munich Achieva 3 T: 60 VP/VLBW, 65 FT,

Munich Ingenia 3 T: 3 VP/VLBW, 17 FT. To account for possible con-

founds by scanner differences, functional and structural data analyses

included scanner dummy-variables as covariates of no interest. Across

all scanners, sequence parameters were kept identical. Scanners were

checked regularly to provide optimal scanning conditions and MRI

physicists at the University Hospital Bonn and Klinikum rechts der Isar

regularly scanned imaging phantoms, to ensure within-scanner signal

stability over time. Signal-to-noise ratio was not significantly different

between scanners (one-way analysis of variance with factor “scanner-

ID” [Bonn 1, Bonn 2, Munich 1, Munich 2]; F(3,182) = 1.84, p = .11). A

high-resolution T1-weighted 3D-MPRAGE sequence (TI = 1,300 ms,

TR = 7.7 ms, TE = 3.9 ms, flip angle = 15�; 180 sagittal slices,

FOV = 256 × 256 × 180 mm, reconstruction matrix = 256 × 256;

reconstructed isotropic voxel size = 1 mm3) was acquired. All images

were visually inspected for artifacts and passed homogeneity control

implemented in the CAT12 toolbox (Gaser & Dahnke, 2016).

2.5 | MRI processing and surface-based
morphometry

Images saved as DICOMs were converted to Nifti-format using

dcm2nii (Li, Morgan, Ashburner, Smith, & Rorden, 2016). MRI data
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were processed using the CAT12 toolbox pipeline for surface-based

morphometry, which includes an algorithm for extracting CTh

(Dahnke, Yotter, & Gaser, 2013). Data were normalized, segmented,

and then smoothed using 15 mm kernels. The surface was then sub-

divided into 70 gyral-based regions of interest (ROIs), 35 per hemi-

sphere, using the Desikan–Killiany Atlas (Desikan et al., 2006). See

Table S3 for a list of the 70 ROIs. Note that the corpus callosum is an

ROI of the Desikan–Killiany Atlas, which restricts the boundaries of

other regions and which is not measured. Mean CTh within the

remaining 34 ROIs per hemisphere was extracted.

After analyzing in which ROIs CTh significantly differed in

VP/VLBW individuals compared to FT controls, a weighted mean of

CTh per hemisphere was calculated. The CAT 12 toolbox divides cor-

tical ROIs into triangles, which indicate the surface area of the given

ROI. To calculate CTh per hemisphere, the number of triangles in each

significant ROI was extracted. Using the number of triangles per sig-

nificant ROI, a weighted mean CTh per hemisphere was calculated for

each subject. We will refer to this weighted mean CTh per hemisphere

as global CTh.

2.6 | Statistical analysis

2.6.1 | Group comparison for CTh

General linear model (GLM) analysis was performed using the CAT12

toolbox of SPM12 to find ROIs in which CTh was significantly smaller

in VP/VLBW individuals compared to FT controls and ROIs in which

CTh was significantly greater in VP/VLBW individuals compared to FT

controls. Sex and scanner were entered as covariates. Analyses were

corrected for multiple comparisons to control the false discovery rate

(FDR) as all ROIs were entered into the analyses. Statistical signifi-

cance was defined as p <.05, FDR-corrected.

As different strategies of analysis can result in different outputs,

we wanted to validate our ROI-based results. Hence, the group differ-

ence was also tested using a vertex-wise GLM approach to identify

areas in which CTh was significantly smaller in VP/VLBW individuals

compared to FT controls and areas in which CTh was significantly

greater in VP/VLBW individuals compared to FT controls. This was

also done using the CAT12 toolbox of SPM12. Sex and scanner were

entered as covariates. Threshold-free cluster enhancement was con-

ducted using the TFCE toolbox of CAT12 (Smith & Nichols, 2009).

Statistical significance was defined as p < .05, family-wise error

(FWE)-corrected.

We did not use total intracranial volume (TIV) as a covariate in

our analyses. This is necessary when analyzing structures that scale

with head size, such as volume and surface area; however, CTh of a

given area does not correlate with TIV (Barnes et al., 2010;

Pakkenberg & Gundersen, 1997). Furthermore, head circumference

and growth, measures closely related to TIV, have been identified to

predict intelligence development and thus can be considered a marker

of general developmental impairment after premature birth (Jaekel,

Sorg, Baeuml, Bartmann, & Wolke, 2019). Since the purpose of our

study is to determine whether developmental impairment after pre-

mature birth leads to alterations in CTh, adding TIV would eliminate

important variance. Furthermore, age was not included as a covariate

in our analyses, as VP/VLBW subjects and FT controls had the same

age of 26 years.

2.6.2 | Linking CTh and variables

To investigate whether the group differences are specifically related

to premature birth, we wanted to correlate the mean CTh within the

ROIs identified with the GLM analysis with GA, BW, and INTI. How-

ever, since GA, BW, and INTI are highly correlated we performed a

factor analysis, more specifically principal axis factoring, using SPSS.

Bartlett's test of sphericity confirmed (p < .001) that the variables GA,

BW, and INTI are related. One factor was extracted and a new vari-

able was created for this factor using the regression method. We will

refer to this factor score variable as the prematurity score. Because we

found CTh to be reduced after premature birth in the group compari-

son, we expected CTh and the prematurity score to be positively cor-

related. One-tailed partial correlation analyses were conducted in the

VP/VLBW group entering mean CTh in the significant ROIs and the

prematurity score as variables of interest and sex and scanner as

covariates.

For further evaluation of the relationships between CTh and pre-

mature birth in the VP/VLBW group, we wanted to test these correla-

tions based on global CTh in the ROIs per hemisphere. One-tailed

partial correlation analyses between global CTh values and the prema-

turity score were performed with sex and scanner as covariates.

To explore functional relevance of aberrations in CTh in the

VP/VLBW group, cognitive performance, as measured by full-scale

IQ, and CTh within the significant ROIs were entered into partial cor-

relation analyses. Because we found CTh to be reduced after prema-

ture birth in the group comparison and because our VP/VLBW sample

had lower full-scale IQ scores compared with the FT group, we

expected CTh and full-scale IQ to be positively correlated. One-tailed

partial correlation analyses were conducted in the VP/VLBW group

entering mean CTh in the significant ROIs and full-scale IQ as vari-

ables of interest and sex and scanner as covariates.

In order to test for the functional relevance of global CTh aberra-

tions in the VP/VLBW group, one-tailed partial correlation analyses

were performed between the CTh values per hemisphere and full-

scale IQ, with sex and scanner as covariates.

All partial correlation analyses were conducted using IBM SPSS

Version 25 (IBM Corp., Armonk, NY) and FDR-corrected for multiple

comparisons using the Benjamini–Hochberg procedure (Benjamini &

Hochberg, 1995). Statistical significance was defined as p < .05.

2.6.3 | Mediation analysis

Finally, to test our hypothesis that CTh might mediate the effect of

very premature birth/VLBW on cognitive outcomes, a mediation
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analysis was carried out using the PROCESS toolbox (Version 3.4).

The simple mediation model includes a causal variable, X, an outcome

variable, Y, and an intervening variable, M. X is proposed to influence

Y through M. One can estimate a direct, an indirect, and a total effect

of X. The direct effect, c0 , describes the change in Y when X is altered

by one unit and M remains equal, that means independent of the

effect of M on Y. The indirect effect, ab, consists of two components,

the effect of X on M, described by a, and the effect of M on Y,

described by b. The indirect effect measures the change in Y as a

result of the effect of X on M, which then affects Y, when X is altered

by one unit. The total effect, c, measures the effect of X on Y. The

PROCESS toolbox uses ordinary least squares regression to estimate

each regression equation of the model separately with bootstrap con-

fidence intervals used for inference (Hayes, 2017).

Group membership was entered as the causal variable, X, full-

scale IQ as the outcome variable, Y, CTh in the left and right hemi-

spheres as mediators, M, and sex and scanner as covariate controls.

3 | RESULTS

3.1 | Sample characteristics

See Table 1 for group demographic and clinical background variables.

There was no significant difference between the VP/VLBW group and

FT group regarding sex (p = .765) and age at scanning (p = .182). By

design of the study, VP/VLBW subjects had significantly lower GA

(p < .001) and lower BW (p < .001). For more detailed information on

GA and BW in the VP/VLBW group, please see Table S4. For addi-

tional information on variables related to premature birth classifying

early health (ventilation, duration of hospitalization and intraventricu-

lar hemorrhage), please see the supplement (S5). Furthermore,

VP/VLBW subjects had significantly lower full-scale IQ scores

(p < .001). For more detailed information on VP/VLBW and FT sub-

jects, which had full-scale IQ scores below 80 or above 120, please

see Table S6.

3.2 | Reduced CTh in premature-born adults

To test the hypothesis that CTh is altered after premature birth, we

performed ROI-based GLM analysis. The group comparison of CTh in

VP/VLBW individuals and controls showed significantly (p < .05, FDR-

corrected) lower CTh in VP/VLBW subjects in frontolateral areas such

as middle and inferior frontal gyrus bilaterally, in left supramarginal

gyrus as well as in both temporal lobes. Differences were more pro-

nounced in the left hemisphere. The ROIs are listed in Table 2 and

visualized in the upper row of Figure 1a. There were no ROIs in which

CTh was significantly greater in VP/VLBW subjects compared to FT

controls.

In order to verify the results from the ROI-based analysis inde-

pendently from the statistical method used, we performed a vertex-

wise assessment of group differences. This analysis yielded significant

(p < .05, FWE-corrected) decreases of CTh in frontal, parietal and tem-

poral lobes with a predominance of the left hemisphere, supporting

our findings from the ROI-based approach. Significant differences in

CTh are visualized in the second row of Figure 1a. Again, the vertex-

wise GLM analysis did not show any areas in which CTh was signifi-

cantly greater in VP/VLBW subjects compared to FT controls.

Our findings support the hypothesis that CTh is altered in

VP/VLBW subjects compared to FT controls, and show certain

regions in the frontal, parietal and temporal lobes, predominantly in

the left hemisphere, in which CTh is reduced.

To further investigate differences in CTh between VP/VLBW indi-

viduals and FT controls on a global level per hemisphere, we calculated

weighted means of CTh. See the supplement (Table S7) for percentages

of each significant ROI with regard to the whole hemisphere.

To test whether the group differences described above are spe-

cifically related to premature birth, we correlated ROI-based CTh from

clusters showing group differences with perinatal variables defining

premature birth represented by the prematurity score. The prematu-

rity score was most highly and positively correlated with GA

(r = .743), less and negatively correlated with INTI (r = −.650) and least

and positively correlated with BW (r = .415).

TABLE 1 Demographical, clinical, and
cognitive data

VP/VLBW (n = 101) FT (n = 111)

Mean SD Range Mean SD Range p-Value

Sex (male/female) 58/43 66/45 .765

Age (years) 26.7 ±0.61 25.7–28.3 26.8 ±0.74 25.5–28.9 .182

GA (weeks) 30.5 ±2.1 25–36 39.7 ±1.1 37–42 <.001

BW (g) 1,325 ±313 630–2,070 3,398 ±444 2,120–4,670 <.001

INTI 11.6 ±3.8 3–18 n.a. n.a. n.a. n.a.

Full-scale IQa (a.u.) 94.1 ±12.7 64–131 102.5 ±11.9 77–130 <.001

Note: Statistical comparisons: sex with χ2 statistics; age, GA, BW, and FS-IQ with two-sample t tests. Bold

letters indicate statistical significance defined as p < .05.

Abbreviations: BW, birth weight; FT, full-term; GA, gestational age; INTI, intensity of neonatal treatment

index; IQ, intelligence quotient; SD, standard deviation; VP/VLBW, very preterm and/or very low birth

weight.
aData are based on 97 VP/VLBW and 108 FT-born individuals.
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All results of the partial correlation analyses are listed in the sup-

plement (Table S8); all significant results are listed in Table 3. The pre-

maturity score correlated positively with CTh in all ROIs of the left

hemispheres and in rostral middle frontal gyrus and pars triangularis

of the inferior frontal gyrus in the right hemisphere.

In concordance with the results above, the partial correlation ana-

lyses of global CTh with the prematurity score showed significant pos-

itive correlation with CTh in both hemispheres. The associations

between CTh in the left and right hemisphere and the prematurity

score are visualized as scatterplots in Figure 1b. As the r values

described above indicate, CTh is correlated positively with GA and

BW and negatively with INTI. GA contributed most to the relationship

between CTh and the prematurity score.

Our results suggest that the reduced CTh, found in certain

regions in VP/VLBW subjects compared to FT controls, is specifically

related to premature birth.

3.3 | Relationship between CTh and cognitive
performance

To test whether CTh aberrations are functionally relevant, we corre-

lated our findings with full-scale IQ as a measure of general cognitive

performance. All results are listed in the supplement (Table S9); all sig-

nificant results are listed in Table 4. The partial correlation analyses of

regional CTh with full-scale IQ showed significant positive correlation

in left pars orbitalis and pars triangularis of the inferior frontal gyrus

and left middle temporal gyrus.

In concordance with the ROI-based approach, the partial correla-

tion analyses of global CTh per hemisphere with full-scale IQ showed

significant positive correlation in the left hemisphere. CTh in the right

hemisphere did not show a significant correlation. The associations

between CTh in the left and right hemisphere and full-scale IQ are

visualized as scatterplots in Figure 2a.

Our findings indicate that CTh aberrations in the left hemisphere

in VP/VLBW subjects are functionally relevant and correlate with

impaired cognitive performance of VP/VLBW subjects compared to

FT controls.

3.4 | Effect of CTh on the relationship between
prematurity and cognitive performance

Finally, we tested whether aberrant CTh mediates the effects of pre-

mature birth on impaired cognitive performance of VP/VLBW sub-

jects compared to FT controls. We conducted a mediation analysis

entering premature birth as the causal variable, full-scale IQ as the

outcome variable and mean CTh per hemisphere as the mediator. The

mediation analysis showed a total effect of premature birth on full-

scale IQ of c = 8.288, SE = 1.692 with 95% CI = 4.953–11.624 and

p < .001, and a direct effect of c0 = 7.586, SE = 1.750 with 95%

CI = 4.136–11.036 and p < .001. The model showed a significant

mediation effect of mean CTh in the left hemisphere on the relation-

ship between premature birth and full-scale IQ, ab = 1.361, SE = 0.772,

95% CI = 0.098–3.086, p = .039, see Figure 2b. Weighted mean CTh

of the right hemisphere, as expected, did not show a significant medi-

ation effect (95% CI = −2.340 to 0.931). See the supplement (S10) for

additional information on the results of the mediation analysis.

These results suggest that reduced CTh in the left hemisphere

mediates the effects of premature birth on cognitive performance.

4 | DISCUSSION

Based on structural MRI and surface-based morphometry, we demon-

strated that CTh is decreased in VP/VLBW subjects compared to FT

controls at 26 years of age in frontal, parietal, and temporal associa-

tive cortices predominantly in the left hemisphere. As CTh in these

regions correlated positively with the prematurity score, these aberra-

tions seem to be specifically related to premature birth. Our results on

the one hand replicate very recent findings about altered CTh in

adulthood after premature birth; on the other hand, we extend them

by demonstrating the specific relevance of CTh reductions for lower

general cognitive abilities in associative cortices. This observation sug-

gests associative cortices CTh as a functionally relevant target for

monitoring and treating adverse effects of prematurity.

4.1 | Reduced CTh after premature birth

We found lower CTh in VP/VLBW subjects compared to FT controls

in frontolateral areas such as middle and inferior frontal gyrus bilater-

ally, in left supramarginal gyrus as well as in both temporal lobes. CTh

TABLE 2 Group difference in CTh

ROI p-Value

Left hemisphere

Inferior frontal gyrus, pars orbitalis .000

Middle temporal gyrus .016

Rostral middle frontal gyrus .028

Caudal middle frontal gyrus .040

Transverse temporal gyrus .040

Supramarginal gyrus .040

Inferior frontal gyrus, pars triangularis .040

Right hemisphere

Rostral middle frontal gyrus .007

Inferior frontal gyrus, pars orbitalis .028

Inferior frontal gyrus, pars triangularis .029

Transverse temporal gyrus .040

Note: ROIs in which the CTh of VP/VLBW individuals was significantly

lower than the CTh of FT individuals with the respective p-values, FDR-

corrected.

Abbreviations: CTh, cortical thickness; FDR, false discovery rate; FT, full-

term; IQ, intelligence quotient; ROI, region of interest; VP/VLBW, very

preterm and/or very low birth weight.

6 SCHMITZ-KOEP ET AL.



in these regions correlated positively with the prematurity score,

suggesting that these aberrations are specifically related to premature

birth. We confirmed these group differences using both an ROI-based

and a vertex-wise approach to ensure that our results are indepen-

dent of analytic approach. Furthermore, we eliminated the effects of

confounding variables by controlling for sex and scanner.

Our finding is partly in line with very recent results found in a

sample of premature-born adults aged 27–29, in which bilaterally

reduced temporoparietal CTh was reported, and with results from

another sample with a mean age of 26 years, in which reduced

frontolateral, parietal, and temporal CTh was shown bilaterally

(Pascoe et al., 2019; Rimol et al., 2019). However, our findings also

differ from these reports: Increased CTh was reported in frontomedial

regions, occipital lobes and in small temporopolar clusters, whereas

our analyses did not yield any significant increases in CTh of

VP/VLBW individuals compared to FT controls (Pascoe et al., 2019;

Rimol et al., 2019).

Similar to our findings in premature-born adults, in adolescents

aged about 15–20 years CTh was reduced in temporal and parietal

lobes and also in frontolateral regions at the age of 20 years (Bjuland

et al., 2013; Martinussen et al., 2005; Nagy, Lagercrantz, &

Hutton, 2011; Nam et al., 2015). Furthermore, adolescents aged

about 15–20 years showed areas of increased CTh especially in front-

omedial regions but also in temporal and occipital lobes. Longitudinal

analyses showed that in both VP and FT individuals, CTh decreased

significantly from age 15 to 20 years; however, in VP adolescents, a

more pronounced decrease occurred in similar, but much more wide-

spread regions (Nam et al., 2015).

In concurrence with our findings in adults, prematurely born chil-

dren showed reduced CTh in temporoparietal regions and, albeit to a

lesser extent, in frontolateral regions, as compared with FT children

(Hasler, Brown, & Akshoomoff, 2019; Lax et al., 2013; Sølsnes

et al., 2015; Sripada et al., 2018; Zubiaurre-Elorza et al., 2012). Fur-

thermore, children also showed areas of increased CTh especially in

F IGURE 1 (a) Group difference in cortical thickness. The upper row shows all regions of interest (ROIs) in which cortical thickness (CTh) of
very preterm and/or very low birth weight (VP/VLBW) individuals was significantly lower than CTh of full-term (FT) individuals. Statistical
significance was defined as p < .05, FDR-corrected. The second row visualizes the vertex-wise approach and shows the areas in which CTh of
VP/VLBW individuals was significantly lower than CTh of FT individuals. Statistical significance was defined as p < .05, family-wise error (FWE)-
corrected. The p-values are color-coded—warmer colors indicate lower p-values. Both hemispheres are shown in medial and lateral views.
(b) Relationship between cortical thickness and the prematurity score. The associations between CTh in each hemisphere and the prematurity
score are shown as scatterplots. CTh in millimeters is plotted on the y-axes; the prematurity score is plotted on the x-axes. Linear regression lines
as well as correlation coefficients and p-values were added. Bold letters indicate statistical significance defined as p < .05. Regression line left
hemisphere: Y = 2.90 + 0.05 × X. Regression line right hemisphere: Y = 2.88 + 0.05 × X. CTh, cortical thickness; FT, full-term; ROI, region of
interest; VP/VLBW, very preterm and/or very low birth weight
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occipital and frontomedial regions (Hasler et al., 2019; Sølsnes

et al., 2015; Sripada et al., 2018; Vandewouw et al., 2019). Longitudi-

nal analyses in children aged 4–12 years showed significant wide-

spread decreases of CTh with age in occipital, frontal and temporal

lobes bilaterally in both VP and FT children. CTh within limited occipi-

tal regions decreased significantly more with age in VP compared to

FT children (Vandewouw et al., 2019).

In conclusion, CTh seems to be reduced in some areas in

premature-born adults compared to FT controls. Although cross-

sectional studies cannot answer questions regarding developmental

trajectories of CTh, in light of the existing data and of our current

findings, the following interpretation appears possible. In some

regions, such as temporoparietal associative cortices, the cortex does

not seem to reach maximum thickness compared to FT controls, as

these areas also show reduced CTh in younger premature-born chil-

dren (Hasler et al., 2019; Sølsnes et al., 2015) while CTh should still be

increasing (Shaw et al., 2008). However, other cortical areas, for

example, in the frontal and occipital lobes, seem to be thicker in youn-

ger ages after premature birth compared to FT controls (Hasler

et al., 2019; Sølsnes et al., 2015; Vandewouw et al., 2019) with a more

rapid decrease in CTh through adolescence as a possible result of del-

ayed developmental processes (Nam et al., 2015). Ultimately, more

longitudinal studies are necessary in order to shed more light on corti-

cal growth trajectories in premature-born individuals through life.

The question remains as to which cellular mechanisms underlie

and induce the reductions in CTh in premature-born adults could be

induced. CTh depends not only on the number of neuronal and glial

cells but also on dendritic and axonal processes as well as synaptic

density (Carlo & Stevens, 2013; Huttenlocher & Dabholkar, 1997;

Sowell et al., 2004). After premature birth, brain development is

thought to be impaired due to cellular processes described in the

introduction including neuronal and glial injury and dysmaturation of

axons (Volpe, 2009, 2019). Results of an experimental study using a

preterm large-animal model indicate cortical growth impairments to

be associated with diffuse disturbances in the dendritic arbor and syn-

apse formation of cortical neurons (Dean et al., 2013). Furthermore, in

VP infants with slower postnatal growth, a delay in microstructural

development of cortical gray matter without changes in white matter

has been described, suggesting delayed expansion of neuronal process

formations, synaptogenesis, and/or apoptosis in the cerebral cortices

as possible mechanisms (Vinall et al., 2013). In conclusion, CTh seems

to be reduced in some cortical regions in premature-born adults com-

pared to FT controls due to various mechanisms including

dysmaturation of axons and disturbances in dendritic branching and

synaptogenesis. These microscopic properties such as dendritic com-

plexity have been linked to intelligence (Goriounova et al., 2018)

suggesting that aberrations in CTh may affect cognitive performance.

4.2 | Reduced CTh mediates the effects of
premature birth on cognitive performance

Our results showed a positive correlation between CTh in the left

hemisphere and full-scale IQ in VP/VLBW individuals, indicating func-

tional relevance of altered CTh after premature birth. Furthermore,

we found a mediating effect of CTh in the left hemisphere on the rela-

tionship between premature birth and full-scale IQ. We eliminated the

effects of confounding variables by controlling for sex and scanner.

Cognitive performance is tightly linked to cortical development

and a particularly plastic cortex has been reported to be associated

with higher intelligence (Shaw et al., 2006). In healthy adults, a posi-

tive relationship between general intelligence and CTh has been

found (Menary et al., 2013; Narr et al., 2007). More specifically, corre-

lation of CTh with full-scale IQ showed predominance of the left

hemisphere (Choi et al., 2008). Lesion studies supported a lateraliza-

tion in favor of the left hemisphere (Barbey et al., 2012; Gläscher

et al., 2009; Gläscher et al., 2010). More recently, cortical thickening

TABLE 3 Relationship between CTh and the prematurity score

ROI

Correlation

coefficient p-Value

Left hemisphere 0.392 <.001

Inferior frontal gyrus, pars

orbitalis

0.272 .004

Middle temporal gyrus 0.313 .001

Rostral middle frontal gyrus 0.358 <.001

Caudal middle frontal gyrus 0.285 .002

Transverse temporal gyrus 0.281 .003

Supramarginal gyrus 0.295 .002

Inferior frontal gyrus, pars

triangularis

0.421 <.001

Right hemisphere 0.367 <.001

Rostral middle frontal gyrus 0.319 .001

Inferior frontal gyrus, pars

triangularis

0.450 <.001

Note: Significant results of partial correlation analyses between CTh and

the prematurity score after FDR correction using the Benjamini–Hochberg

procedure.

Abbreviations: CTh, cortical thickness; FDR, false discovery rate; ROI,

region of interest.

TABLE 4 Relationship between CTh and cognitive performance

ROI
Correlation
coefficient p-Value

Left hemisphere 0.233 .012

Inferior frontal gyrus, pars

orbitalis

0.283 .003

Middle temporal gyrus 0.282 .003

Inferior frontal gyrus, pars

triangularis

0.245 .009

Note: Significant results of partial correlation analyses between CTh and

cognitive performance after FDR correction using the Benjamini–
Hochberg procedure.

Abbreviations: CTh, cortical thickness; FDR, false discovery rate; ROI,

region of interest; FS IQ, full-scale intelligence quotient.
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in the left hemisphere has been associated with higher IQ in adult-

hood (Schnack et al., 2015). These findings in FT adults without a his-

tory of brain development impairment are in line with our results in

VP/VLBW adults with impaired brain development. Furthermore, our

results are consistent with the parieto-frontal integration theory of

intelligence, which associates frontal and parietal brain structures with

intelligence (Jung & Haier, 2007). In premature-born adolescents,

some studies described a positive relationship between CTh and IQ,

which is in line with our findings in adults (Bjuland et al., 2013;

Martinussen et al., 2005; Skranes et al., 2012). On a cellular level,

intelligence is linked with neuronal complexity as high IQ scores and

large temporal CTh are associated with larger, more complex

dendrites of human pyramidal neurons (Goriounova et al., 2018).

In conclusion, premature birth seems to lead to disturbed cortical

development with reduced CTh in adulthood contributing to impaired

cognitive performance of VP/VLBW subjects compared to FT con-

trols. However, there are numerous other structural neural correlates

of intelligence, such as total and regional brain volumes, surface area,

and gyrification, which leads to difficulties in terms of drawing conclu-

sions from one of them alone (Luders, Narr, Thompson, & Toga, 2009;

Tottenham, 2020). Hence, our findings will only represent a small part

of the relationship between neuroanatomical measures and cognitive

performance.

4.3 | Strengths and limitations

Some limitations of the present study must be highlighted. The cur-

rent sample is biased to VP/VLBW adults with less severe neonatal

complications, less functional impairments, and higher IQ (see

Table S11). Individuals with more birth complications and/or severe

lasting impairments in the initial Bavarian Longitudinal Study sample

were more likely to be excluded in initial screening for MRI due to

exclusion criteria for MRI (e.g., infantile cerebral palsy). Thus, differ-

ences in CTh between VP/VLBW and term control adults reported

here are conservative estimates of true differences. However, in

terms of GA, BW and INTI, our final sample was still representative of

the full cohort as these values were not significantly different in

VP/VLBW subjects with MRI data compared to subjects without MRI

data (see Table S11).

Generally, studies linking certain aspects of brain structure with

cognitive functioning are always compromised by focusing on special

features and by potential nonlinear trends between brain structure

and cognitive functioning. Moreover, there are other individual, social,

and environmental factors that influence the association between

brain structural features and cognitive performance such as age, years

of education, or socioeconomic status. However, strength of our

study is that a relevant impact of patient age on CTh at the time of

F IGURE 2 (a) Relationship
between CTh and cognitive
performance. The associations
between CTh in the left and right
hemisphere and full-scale IQ are
shown as scatterplots. Full-scale IQ is
plotted on the y-axis and CTh in
millimeters is plotted on the x-axis.
Linear regression lines as well as

correlation coefficients and p-values
were added. Bold letters indicate
statistical significance defined as
p <.05. Regression line left
hemisphere: Y = 14.49 + 28.72 × X.
Regression line right hemisphere:
Y = 39.39 + 20.35*X. (b) Effect of
CTh on the relationship between
prematurity and cognitive
performance. The mediation analysis
showed a significant total effect of
premature birth on full-scale IQ, c.
When adjusting for CTh in the left
hemisphere there was a significant
direct effect, c0 of prematurity on full-
scale IQ. Finally, CTh in the left
hemisphere significantly mediates the
relationship between premature birth
and cognitive performance, ab. CTh,
cortical thickness; IQ, intelligence
quotient
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the MRI scan is excluded as VP/VLBW subjects and FT controls had

the same age of 26 years.

Interpretations of cortical dysmaturation and cognitive develop-

ment are limited as this study is cross-sectional and only represents a

single time-point. Longitudinal studies are needed to better address

these questions.

Finally, the current sample has the strength of large size

(101 VP/VLBW and 111 FT adults), enhancing the generalizability of

our findings. This is supported by narrow 95% confidence intervals of

CTh in the significant ROIs and in both hemispheres (see Table S12).

5 | CONCLUSIONS

Our results indicate that premature birth reduces CTh in associative

cortices predominantly in the left hemisphere in adulthood. The find-

ings suggest that reduced CTh after premature birth contributes to

impaired general cognitive functioning compared to FT controls, as

CTh mediates the relationship between premature birth and cognitive

performance. Hence, CTh in associative cortices may provide a func-

tionally relevant target for monitoring and treating adverse effects of

prematurity.

ACKNOWLEDGMENTS

The authors thank all current and former members of the Bavarian Lon-

gitudinal Study Group who contributed to general study organization,

recruitment, data collection and management as well as subsequent

analyses, including (in alphabetical order): Barbara Busch, Stephan

Czeschka, Claudia Grünzinger, Christian Koch, Diana Kurze, Sonja Perk,

Andrea Schreier, Antje Strasser, Julia Trummer, and Eva van Rossum.

The authors are grateful to the staff of the Department of Neuroradiol-

ogy in Munich and the Department of Radiology in Bonn for their help

in data collection. Most importantly, the authors thank all our study

participants and their families for their efforts to take part in this study.

This work was supported by the Deutsche Forschungsgemeinschaft

(SO 1336/1-1 to C. S.), German Federal Ministry of Education and Sci-

ence (BMBF 01ER0801 to P. B. and D. W., BMBF 01ER0803 to C. S.)

and the Kommission für Klinische Forschung, Technische Universität

München (KKF 8765162 to C. S. and KKF8700000474 to D. M. H.).

DATA AVAILABILITY STATEMENT

Patient data used in this study are not publicly available but stored by

the principal investigators of the Bavarian Longitudinal Study.

ORCID

Benita Schmitz-Koep https://orcid.org/0000-0002-8874-5749

Aurore Menegaux https://orcid.org/0000-0003-3965-0396

Marcel Daamen https://orcid.org/0000-0002-3017-3901

Dennis M. Hedderich https://orcid.org/0000-0001-8994-5593

REFERENCES

Back, S. A., Han, B. H., Luo, N. L., Chricton, C. A., Xanthoudakis, S., Tam, J.,

… Holtzman, D. M. (2002). Selective vulnerability of late

oligodendrocyte progenitors to hypoxia-ischemia. The Journal of Neu-

roscience: The Official Journal of the Society for Neuroscience, 22(2),

455–463. https://doi.org/10.1523/JNEUROSCI.22-02-00455.2002

Barbey, A. K., Colom, R., Solomon, J., Krueger, F., Forbes, C., & Grafman, J.

(2012). An integrative architecture for general intelligence and execu-

tive function revealed by lesion mapping. Brain: A Journal of Neurology,

135(Pt 4), 1154–1164. https://doi.org/10.1093/brain/aws021

Barnes, J., Ridgway, G. R., Bartlett, J., Henley, S. M. D., Lehmann, M.,

Hobbs, N., … Fox, N. C. (2010). Head size, age and gender adjustment

in MRI studies: A necessary nuisance? NeuroImage, 53(4), 1244–1255.
https://doi.org/10.1016/j.neuroimage.2010.06.025

Bäuml, J. G., Daamen, M., Meng, C., Neitzel, J., Scheef, L., Jaekel, J., …
Sorg, C. (2015). Correspondence between aberrant intrinsic network

connectivity and gray-matter volume in the ventral brain of preterm

born adults. Cerebral Cortex, 25(11), 4135–4145. https://doi.org/10.
1093/cercor/bhu133

Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate:

A practical and powerful approach to multiple testing. Journal of the

Royal Statistical Society. Series B (Methodological), 57(1), 289–300
Retrieved from https://www.jstor.org/stable/2346101

Bjuland, K. J., Løhaugen, G. C. C., Martinussen, M., & Skranes, J. (2013).

Cortical thickness and cognition in very-low-birth-weight late teen-

agers. Early Human Development, 89(6), 371–380. https://doi.org/10.
1016/j.earlhumdev.2012.12.003

Breeman, L. D., Jaekel, J., Baumann, N., Bartmann, P., & Wolke, D. (2015).

Preterm cognitive function into adulthood. Pediatrics, 136(3),

415–423. https://doi.org/10.1542/peds.2015-0608
Carlo, C. N., & Stevens, C. F. (2013). Structural uniformity of neocortex,

revisited. Proceedings of the National Academy of Sciences of the United

States of America, 110(4), 1488–1493. https://doi.org/10.1073/pnas.
1221398110

Casaer, P., & Eggermont, E. (1985). Neonatal clinical neurological assess-

ment. In S. Harel & N. Nicholas (Eds.), The at-risk infant: Psycho/-

socio/medical aspects (pp. 197–220). Baltimore, MD: Brookes.

Chawanpaiboon, S., Vogel, J. P., Moller, A.-B., Lumbiganon, P., Petzold, M.,

Hogan, D., … Gülmezoglu, A. M. (2019). Global, regional, and national

estimates of levels of preterm birth in 2014: A systematic review and

modelling analysis. The Lancet Global Health, 7(1), e37–e46. https://
doi.org/10.1016/S2214-109X(18)30451-0

Choi, Y. Y., Shamosh, N. A., Cho, S. H., DeYoung, C. G., Lee, M. J., Lee, J.-M.,

… Lee, K. H. (2008). Multiple bases of human intelligence revealed by

cortical thickness and neural activation. The Journal of Neuroscience: The

Official Journal of the Society for Neuroscience, 28(41), 10323–10329.
https://doi.org/10.1523/JNEUROSCI.3259-08.2008

Dahnke, R., Yotter, R. A., & Gaser, C. (2013). Cortical thickness and central

surface estimation. NeuroImage, 65(C), 336–348. https://doi.org/10.
1016/j.neuroimage.2012.09.050

Dean, J. M., McClendon, E., Hansen, K., Azimi-Zonooz, A., Chen, K.,

Riddle, A., … Back, S. A. (2013). Prenatal cerebral ischemia disrupts

MRI-defined cortical microstructure through disturbances in neuronal

arborization. Science Translational Medicine, 5(168), 168ra7–168ra7.
https://doi.org/10.1126/scitranslmed.3004669

Desikan, R. S., Ségonne, F., Fischl, B., Quinn, B. T., Dickerson, B. C.,

Blacker, D., … Killiany, R. J. (2006). An automated labeling system for

subdividing the human cerebral cortex on MRI scans into gyral based

regions of interest. NeuroImage, 31(3), 968–980. https://doi.org/10.
1016/j.neuroimage.2006.01.021

D'Onofrio, B. M., Class, Q. A., Rickert, M. E., Larsson, H.,

Långström, N., & Lichtenstein, P. (2013). Preterm birth and mortality

and morbidity: A population-based quasi-experimental study. JAMA

Psychiatry, 70(11), 1231–1240. https://doi.org/10.1001/

jamapsychiatry.2013.2107

Dubowitz, L. M., Dubowitz, V., & Goldberg, C. (1970). Clinical assessment

of gestational age in the newborn infant. The Journal of Pediatrics, 77

(1), 1–10. https://doi.org/10.1016/s0022-3476(70)80038-5

10 SCHMITZ-KOEP ET AL.

https://orcid.org/0000-0002-8874-5749
https://orcid.org/0000-0002-8874-5749
https://orcid.org/0000-0003-3965-0396
https://orcid.org/0000-0003-3965-0396
https://orcid.org/0000-0002-3017-3901
https://orcid.org/0000-0002-3017-3901
https://orcid.org/0000-0001-8994-5593
https://orcid.org/0000-0001-8994-5593
https://doi.org/10.1523/JNEUROSCI.22-02-00455.2002
https://doi.org/10.1093/brain/aws021
https://doi.org/10.1016/j.neuroimage.2010.06.025
https://doi.org/10.1093/cercor/bhu133
https://doi.org/10.1093/cercor/bhu133
https://www.jstor.org/stable/2346101
https://doi.org/10.1016/j.earlhumdev.2012.12.003
https://doi.org/10.1016/j.earlhumdev.2012.12.003
https://doi.org/10.1542/peds.2015-0608
https://doi.org/10.1073/pnas.1221398110
https://doi.org/10.1073/pnas.1221398110
https://doi.org/10.1016/S2214-109X(18)30451-0
https://doi.org/10.1016/S2214-109X(18)30451-0
https://doi.org/10.1523/JNEUROSCI.3259-08.2008
https://doi.org/10.1016/j.neuroimage.2012.09.050
https://doi.org/10.1016/j.neuroimage.2012.09.050
https://doi.org/10.1126/scitranslmed.3004669
https://doi.org/10.1016/j.neuroimage.2006.01.021
https://doi.org/10.1016/j.neuroimage.2006.01.021
https://doi.org/10.1001/jamapsychiatry.2013.2107
https://doi.org/10.1001/jamapsychiatry.2013.2107
https://doi.org/10.1016/s0022-3476(70)80038-5


Eryigit Madzwamuse, S., Baumann, N., Jaekel, J., Bartmann, P., &

Wolke, D. (2015). Neuro-cognitive performance of very preterm or

very low birth weight adults at 26 years. Journal of Child Psychology

and Psychiatry, and Allied Disciplines, 56(8), 857–864. https://doi.org/
10.1111/jcpp.12358

Gaser, C., & Dahnke, R. (2016). CAT—A computational anatomy toolbox

for the analysis of structural MRI data. Retrieved from http://www.

neuro.uni-jena.de/hbm2016/GaserHBM2016.pdf

Gläscher, J., Rudrauf, D., Colom, R., Paul, L. K., Tranel, D., Damasio, H., &

Adolphs, R. (2010). Distributed neural system for general intelligence

revealed by lesion mapping. Proceedings of the National Academy of Sci-

ences of the United States of America, 107(10), 4705–4709. https://doi.
org/10.1073/pnas.0910397107

Gläscher, J., Tranel, D., Paul, L. K., Rudrauf, D., Rorden, C., Hornaday, A., …
Adolphs, R. (2009). Lesion mapping of cognitive abilities linked to intel-

ligence. Neuron, 61(5), 681–691. https://doi.org/10.1016/j.neuron.

2009.01.026

Goriounova, N. A., Heyer, D. B., Wilbers, R., Verhoog, M. B., Giugliano, M.,

Verbist, C., … Mansvelder, H. D. (2018). Large and fast human pyrami-

dal neurons associate with intelligence. eLife, 7, 1–21. https://doi.org/
10.7554/eLife.41714

Grothe, M. J., Scheef, L., Bäuml, J., Meng, C., Daamen, M., Baumann, N., …
Sorg, C. (2017). Reduced cholinergic basal forebrain integrity links neo-

natal complications and adult cognitive deficits after premature birth.

Biological Psychiatry, 82(2), 119–126. https://doi.org/10.1016/j.

biopsych.2016.12.008

Gutbrod, T., Wolke, D., Soehne, B., Ohrt, B., & Riegel, K. (2000). Effects of

gestation and birth weight on the growth and development of very

low birthweight small for gestational age infants: A matched group

comparison. Archives of Disease in Childhood. Fetal and Neonatal Edi-

tion, 82(3), F208–F214. https://doi.org/10.1136/fn.82.3.f208
Hasler, H. M., Brown, T. T., & Akshoomoff, N. (2019). Variations in brain

morphometry among healthy preschoolers born preterm. Early Human

Development, 140, 104929. https://doi.org/10.1016/j.earlhumdev.

2019.104929

Hayes, A. F. (2017). Introduction to mediation, moderation, and conditional

process analysis: A regression-based approach (2nd ed.). New York, NY:

Guilford Publications.

Hedderich, D. M., Bäuml, J. G., Berndt, M. T., Menegaux, A., Scheef, L.,

Daamen, M., … Sorg, C. (2019). Aberrant gyrification contributes to

the link between gestational age and adult IQ after premature birth.

Brain: A Journal of Neurology, 142(5), 1255–1269. https://doi.org/10.
1093/brain/awz071

Huttenlocher, P. R., & Dabholkar, A. S. (1997). Regional differences in syn-

aptogenesis in human cerebral cortex. The Journal of Comparative Neu-

rology, 387(2), 167–178. https://doi.org/10.1002/(sici)1096-9861

(19971020)387:2<167::aid-cne1>3.0.co;2-z

Jaekel, J., Sorg, C., Baeuml, J., Bartmann, P., & Wolke, D. (2019). Head

growth and intelligence from birth to adulthood in very preterm

and term born individuals. Journal of the International Neuropsycho-

logical Society, 25(1), 48–56. https://doi.org/10.1017/S1355617

71800084X

Jung, R. E., & Haier, R. J. (2007). The parieto-frontal integration theory

(P-FIT) of intelligence: Converging neuroimaging evidence. Behavioral

and Brain Sciences, 30(2), 135–187. https://doi.org/10.1017/

S0140525X07001185

Lax, I. D., Duerden, E. G., Lin, S. Y., Mallar Chakravarty, M., Donner, E. J.,

Lerch, J. P., & Taylor, M. J. (2013). Neuroanatomical consequences of

very preterm birth in middle childhood. Brain Structure and Function,

218(2), 575–585. https://doi.org/10.1007/s00429-012-0417-2
Li, X., Morgan, P. S., Ashburner, J., Smith, J., & Rorden, C. (2016). The first

step for neuroimaging data analysis: DICOM to NIfTI conversion. Jour-

nal of Neuroscience Methods, 264, 47–56. https://doi.org/10.1016/j.
jneumeth.2016.03.001

Luders, E., Narr, K. L., Thompson, P. M., & Toga, A. W. (2009). Neuroana-

tomical correlates of intelligence. Intelligence, 37(2), 156–163. https://
doi.org/10.1016/j.intell.2008.07.002

Martinussen, M., Fischl, B., Larsson, H. B., Skranes, J., Kulseng, S.,

Vangberg, T. R., … Dale, A. M. (2005). Cerebral cortex thickness in

15-year-old adolescents with low birth weight measured by an auto-

mated MRI-based method. Brain: A Journal of Neurology, 128(Pt 11),

2588–2596. https://doi.org/10.1093/brain/awh610

Menary, K., Collins, P. F., Porter, J. N., Muetzel, R., Olson, E. A., Kumar, V.,

… Luciana, M. (2013). Associations between cortical thickness and

general intelligence in children, adolescents and young adults. Intelli-

gence, 41(5), 597–606. https://doi.org/10.1016/j.intell.2013.07.010
Meng, C., Bäuml, J. G., Daamen, M., Jaekel, J., Neitzel, J., Scheef, L., …

Sorg, C. (2016). Extensive and interrelated subcortical white and gray

matter alterations in preterm-born adults. Brain Structure and Function,

221(4), 2109–2121. https://doi.org/10.1007/s00429-015-1032-9
Mills, K. L., Goddings, A.-L., Herting, M. M., Meuwese, R., Blakemore, S.-J.,

Crone, E. A., … Tamnes, C. K. (2016). Structural brain development

between childhood and adulthood: Convergence across four longitudi-

nal samples. NeuroImage, 141(C), 273–281. https://doi.org/10.1016/j.
neuroimage.2016.07.044

Nagy, Z., Lagercrantz, H., & Hutton, C. (2011). Effects of preterm birth on

cortical thickness measured in adolescence. Cerebral Cortex, 21(2),

300–306. https://doi.org/10.1093/cercor/bhq095
Nam, K.-W., Castellanos, N., Simmons, A., Froudist Walsh, S., Allin, M. P.,

Walshe, M., … Nosarti, C. (2015). Alterations in cortical thickness

development in preterm-born individuals: Implications for high-order

cognitive functions. NeuroImage, 115(C), 64–75. https://doi.org/10.

1016/j.neuroimage.2015.04.015

Narr, K. L., Woods, R. P., Thompson, P. M., Szeszko, P., Robinson, D.,

Dimtcheva, T., … Bilder, R. M. (2007). Relationships between IQ and

regional cortical gray matter thickness in healthy adults. Cerebral Cor-

tex, 17(9), 2163–2171. https://doi.org/10.1093/cercor/bhl125
Nosarti, C., Al-Asady, M. H. S., Frangou, S., Stewart, A. L., Rifkin, L., &

Murray, R. M. (2002). Adolescents who were born very preterm have

decreased brain volumes. Brain: A Journal of Neurology, 125(Pt 7),

1616–1623. https://doi.org/10.1093/brain/awf157

Nosarti, C., Giouroukou, E., Healy, E., Rifkin, L., Walshe, M.,

Reichenberg, A., … Murray, R. M. (2008). Grey and white matter distri-

bution in very preterm adolescents mediates neurodevelopmental out-

come. Brain: A Journal of Neurology, 131(Pt 1), 205–217. https://doi.
org/10.1093/brain/awm282

Pakkenberg, B., & Gundersen, H. J. (1997). Neocortical neuron number in

humans: Effect of sex and age. The Journal of Comparative Neurology,

384(2), 312–320 Retrieved from https://www.readcube.com/

Pascoe, M. J., Melzer, T. R., Horwood, L. J., Woodward, L. J., &

Darlow, B. A. (2019). Altered grey matter volume, perfusion and white

matter integrity in very low birthweight adults. NeuroImage: Clinical,

22, 101780. https://doi.org/10.1016/j.nicl.2019.101780

Paus, T. (2005). Mapping brain maturation and cognitive development dur-

ing adolescence. Trends in Cognitive Sciences, 9(2), 60–68. https://doi.
org/10.1016/j.tics.2004.12.008

Rakic, P. (1988). Specification of cerebral cortical areas. Science, 241

(4862), 170–176. https://doi.org/10.1126/science.3291116
Rakic, P. (1995). A small step for the cell, a giant leap for mankind: A

hypothesis of neocortical expansion during evolution. Trends in Neuro-

sciences, 18(9), 383–388. https://doi.org/10.1016/0166-2236(95)

93934-p

Riegel, K., Orth, B., Wolke, D., & Österlund, K. (1995). Die Entwicklung

gefährdet geborener Kinder bis zum fünften Lebensjahr. Stuttgart, Ger-

many: Thieme.

Rimol, L. M., Botellero, V. L., Bjuland, K. J., Løhaugen, G. C. C., Lydersen, S.,

Evensen, K. A. I., … Skranes, J. (2019). Reduced white matter fractional

anisotropy mediates cortical thickening in adults born preterm with

SCHMITZ-KOEP ET AL. 11

https://doi.org/10.1111/jcpp.12358
https://doi.org/10.1111/jcpp.12358
http://www.neuro.uni-jena.de/hbm2016/GaserHBM2016.pdf
http://www.neuro.uni-jena.de/hbm2016/GaserHBM2016.pdf
https://doi.org/10.1073/pnas.0910397107
https://doi.org/10.1073/pnas.0910397107
https://doi.org/10.1016/j.neuron.2009.01.026
https://doi.org/10.1016/j.neuron.2009.01.026
https://doi.org/10.7554/eLife.41714
https://doi.org/10.7554/eLife.41714
https://doi.org/10.1016/j.biopsych.2016.12.008
https://doi.org/10.1016/j.biopsych.2016.12.008
https://doi.org/10.1136/fn.82.3.f208
https://doi.org/10.1016/j.earlhumdev.2019.104929
https://doi.org/10.1016/j.earlhumdev.2019.104929
https://doi.org/10.1093/brain/awz071
https://doi.org/10.1093/brain/awz071
https://doi.org/10.1002/(sici)1096-9861(19971020)387:2%3C167::aid-cne1%3E3.0.co;2-z
https://doi.org/10.1002/(sici)1096-9861(19971020)387:2%3C167::aid-cne1%3E3.0.co;2-z
https://doi.org/10.1017/S135561771800084X
https://doi.org/10.1017/S135561771800084X
https://doi.org/10.1017/S0140525X07001185
https://doi.org/10.1017/S0140525X07001185
https://doi.org/10.1007/s00429-012-0417-2
https://doi.org/10.1016/j.jneumeth.2016.03.001
https://doi.org/10.1016/j.jneumeth.2016.03.001
https://doi.org/10.1016/j.intell.2008.07.002
https://doi.org/10.1016/j.intell.2008.07.002
https://doi.org/10.1093/brain/awh610
https://doi.org/10.1016/j.intell.2013.07.010
https://doi.org/10.1007/s00429-015-1032-9
https://doi.org/10.1016/j.neuroimage.2016.07.044
https://doi.org/10.1016/j.neuroimage.2016.07.044
https://doi.org/10.1093/cercor/bhq095
https://doi.org/10.1016/j.neuroimage.2015.04.015
https://doi.org/10.1016/j.neuroimage.2015.04.015
https://doi.org/10.1093/cercor/bhl125
https://doi.org/10.1093/brain/awf157
https://doi.org/10.1093/brain/awm282
https://doi.org/10.1093/brain/awm282
https://www.readcube.com/
https://doi.org/10.1016/j.nicl.2019.101780
https://doi.org/10.1016/j.tics.2004.12.008
https://doi.org/10.1016/j.tics.2004.12.008
https://doi.org/10.1126/science.3291116
https://doi.org/10.1016/0166-2236(95)93934-p
https://doi.org/10.1016/0166-2236(95)93934-p


very low birthweight. NeuroImage, 188, 217–227. https://doi.org/10.
1016/j.neuroimage.2018.11.050

Salmaso, N., Jablonska, B., Scafidi, J., Vaccarino, F. M., & Gallo, V. (2014).

Neurobiology of premature brain injury. Nature Neuroscience, 17(3),

341–346. https://doi.org/10.1038/nn.3604
Schnack, H. G., van Haren, N. E. M., Brouwer, R. M., Evans, A., Durston, S.,

Boomsma, D. I., … Hulshoff Pol, H. E. (2015). Changes in thickness and

surface area of the human cortex and their relationship with intelli-

gence. Cerebral Cortex, 25(6), 1608–1617. https://doi.org/10.1093/

cercor/bht357

Shaw, P., Greenstein, D., Lerch, J., Clasen, L., Lenroot, R., Gogtay, N., …
Giedd, J. (2006). Intellectual ability and cortical development in chil-

dren and adolescents. Nature, 440(7084), 676–679. https://doi.org/
10.1038/nature04513

Shaw, P., Kabani, N. J., Lerch, J. P., Eckstrand, K., Lenroot, R., Gogtay, N., …
Wise, S. P. (2008). Neurodevelopmental trajectories of the human

cerebral cortex. The Journal of Neuroscience: The Official Journal of the

Society for Neuroscience, 28(14), 3586–3594. https://doi.org/10.1523/
JNEUROSCI.5309-07.2008

Skranes, J., Løhaugen, G. C. C., Evensen, K. A. I., Indredavik, M. S.,

Haraldseth, O., Dale, A. M., … Martinussen, M. (2012). Entorhinal corti-

cal thinning affects perceptual and cognitive functions in adolescents

born preterm with very low birth weight (VLBW). Early Human Devel-

opment, 88(2), 103–109. https://doi.org/10.1016/j.earlhumdev.2011.

07.017

Skranes, J., Vangberg, T. R., Kulseng, S., Indredavik, M. S., Evensen, K. A. I.,

Martinussen, M., … Brubakk, A. M. (2007). Clinical findings and white

matter abnormalities seen on diffusion tensor imaging in adolescents

with very low birth weight. Brain: A Journal of Neurology, 130(Pt 3),

654–666. https://doi.org/10.1093/brain/awm001

Smith, S. M., & Nichols, T. E. (2009). Threshold-free cluster enhancement:

Addressing problems of smoothing, threshold dependence and

localisation in cluster inference. NeuroImage, 44(1), 83–98. https://doi.
org/10.1016/j.neuroimage.2008.03.061

Sølsnes, A. E., Grunewaldt, K. H., Bjuland, K. J., Stavnes, E. M.,

Bastholm, I. A., Aanes, S., … Rimol, L. M. (2015). Cortical morphometry

and IQ in VLBW children without cerebral palsy born in 2003-2007.

NeuroImage: Clinical, 8(C), 193–201. https://doi.org/10.1016/j.nicl.

2015.04.004

Sowell, E. R., Thompson, P. M., Leonard, C. M., Welcome, S. E., Kan, E., &

Toga, A. W. (2004). Longitudinal mapping of cortical thickness and

brain growth in normal children. The Journal of Neuroscience: The Offi-

cial Journal of the Society for Neuroscience, 24(38), 8223–8231. https://
doi.org/10.1523/JNEUROSCI.1798-04.2004

Sripada, K., Bjuland, K. J., Sølsnes, A. E., Håberg, A. K., Grunewaldt, K. H.,

Løhaugen, G. C., … Skranes, J. (2018). Trajectories of brain develop-

ment in school-age children born preterm with very low birth weight.

Scientific Reports, 8(1), 15514–15553. https://doi.org/10.1038/

s41598-018-33530-8

Tottenham, N. (2020). Early adversity and the neotenous human brain. Bio-

logical Psychiatry, 87(4), 350–358. https://doi.org/10.1016/j.biopsych.
2019.06.018

Twilhaar, E. S., Wade, R. M., de Kieviet, J. F., van Goudoever, J. B., van

Elburg, R. M., & Oosterlaan, J. (2018). Cognitive outcomes of chil-

dren born extremely or very preterm since the 1990s and associ-

ated risk factors: A meta-analysis and meta-regression. JAMA

Pediatrics, 172(4), 361–367. https://doi.org/10.1001/

jamapediatrics.2017.5323

Vandewouw, M. M., Young, J. M., Mossad, S. I., Sato, J., Whyte, H. A. E.,

Shroff, M. M., & Taylor, M. J. (2019). Mapping the neuroanatomical

impact of very preterm birth across childhood. Human Brain Mapping,

105(1), 14–76. https://doi.org/10.1002/hbm.24847

Vinall, J., Grunau, R. E., Brant, R., Chau, V., Poskitt, K. J., Synnes, A. R., &

Miller, S. P. (2013). Slower postnatal growth is associated with delayed

cerebral cortical maturation in preterm newborns. Science Translational

Medicine, 5(168), 168ra8–168ra11. https://doi.org/10.1126/

scitranslmed.3004666

Volpe, J. J. (2009). Brain injury in premature infants: A complex amalgam

of destructive and developmental disturbances. The Lancet Neurology,

8(1), 110–124. https://doi.org/10.1016/S1474-4422(08)70294-1
Volpe, J. J. (2019). Dysmaturation of premature brain: Importance, cellular

mechanisms, and potential interventions. Pediatric Neurology, 95,

42–66. https://doi.org/10.1016/j.pediatrneurol.2019.02.016
von Aster, M., Neubauer, A., & Horn, R. (2006). Wechsler Intelligenztest für

Erwachsene—Deutschsprachige Bearbeitung und Adaptation des WAIS-III

von David Wechsler (3rd ed.). Frankfurt, Germany: Pearson.

Wilke, M., Krägeloh-Mann, I., & Holland, S. K. (2007). Global and local

development of gray and white matter volume in normal children and

adolescents. Experimental Brain Research, 178(3), 296–307. https://
doi.org/10.1007/s00221-006-0732-z

Wolke, D., Johnson, S., & Mendonça, M. (2019). The life course conse-

quences of very preterm birth. Annual Review of Developmental Psy-

chology, 1(1), 69–92. https://doi.org/10.1146/annurev-devpsych-

121318-084804

Wolke, D., & Meyer, R. (1999). Cognitive status, language attainment, and

prereading skills of 6-year-old very preterm children and their peers:

The Bavarian longitudinal study. Developmental Medicine and Child Neu-

rology, 41(2), 94–109. https://doi.org/10.1017/s0012162299000201
Wolke, D., Ratschinski, G., Ohrt, B., & Riegel, K. (1994). The cognitive out-

come of very preterm infants may be poorer than often reported: An

empirical investigation of how methodological issues make a big differ-

ence. European Journal of Pediatrics, 153(12), 906–915. https://doi.
org/10.1007/bf01954744

Zubiaurre-Elorza, L., Soria-Pastor, S., Junque, C., Sala-Llonch, R.,

Segarra, D., Bargalló, N., & Macaya, A. (2012). Cortical thickness and

behavior abnormalities in children born preterm. PLoS One, 7(7),

e42148–e42110. https://doi.org/10.1371/journal.pone.0042148

SUPPORTING INFORMATION

Additional supporting information may be found online in the

Supporting Information section at the end of this article.

How to cite this article: Schmitz-Koep B, Bäuml JG,

Menegaux A, et al. Decreased cortical thickness mediates the

relationship between premature birth and cognitive

performance in adulthood. Hum Brain Mapp. 2020;1–12.

https://doi.org/10.1002/hbm.25172

12 SCHMITZ-KOEP ET AL.

https://doi.org/10.1016/j.neuroimage.2018.11.050
https://doi.org/10.1016/j.neuroimage.2018.11.050
https://doi.org/10.1038/nn.3604
https://doi.org/10.1093/cercor/bht357
https://doi.org/10.1093/cercor/bht357
https://doi.org/10.1038/nature04513
https://doi.org/10.1038/nature04513
https://doi.org/10.1523/JNEUROSCI.5309-07.2008
https://doi.org/10.1523/JNEUROSCI.5309-07.2008
https://doi.org/10.1016/j.earlhumdev.2011.07.017
https://doi.org/10.1016/j.earlhumdev.2011.07.017
https://doi.org/10.1093/brain/awm001
https://doi.org/10.1016/j.neuroimage.2008.03.061
https://doi.org/10.1016/j.neuroimage.2008.03.061
https://doi.org/10.1016/j.nicl.2015.04.004
https://doi.org/10.1016/j.nicl.2015.04.004
https://doi.org/10.1523/JNEUROSCI.1798-04.2004
https://doi.org/10.1523/JNEUROSCI.1798-04.2004
https://doi.org/10.1038/s41598-018-33530-8
https://doi.org/10.1038/s41598-018-33530-8
https://doi.org/10.1016/j.biopsych.2019.06.018
https://doi.org/10.1016/j.biopsych.2019.06.018
https://doi.org/10.1001/jamapediatrics.2017.5323
https://doi.org/10.1001/jamapediatrics.2017.5323
https://doi.org/10.1002/hbm.24847
https://doi.org/10.1126/scitranslmed.3004666
https://doi.org/10.1126/scitranslmed.3004666
https://doi.org/10.1016/S1474-4422(08)70294-1
https://doi.org/10.1016/j.pediatrneurol.2019.02.016
https://doi.org/10.1007/s00221-006-0732-z
https://doi.org/10.1007/s00221-006-0732-z
https://doi.org/10.1146/annurev-devpsych-121318-084804
https://doi.org/10.1146/annurev-devpsych-121318-084804
https://doi.org/10.1017/s0012162299000201
https://doi.org/10.1007/bf01954744
https://doi.org/10.1007/bf01954744
https://doi.org/10.1371/journal.pone.0042148
https://doi.org/10.1002/hbm.25172

	Decreased cortical thickness mediates the relationship between premature birth and cognitive performance in adulthood
	1  INTRODUCTION
	2  METHODS
	2.1  Participants
	2.2  Birth variables
	2.3  Cognitive performance in adulthood
	2.4  MRI data acquisition
	2.5  MRI processing and surface-based morphometry
	2.6  Statistical analysis
	2.6.1  Group comparison for CTh
	2.6.2  Linking CTh and variables
	2.6.3  Mediation analysis


	3  RESULTS
	3.1  Sample characteristics
	3.2  Reduced CTh in premature-born adults
	3.3  Relationship between CTh and cognitive performance
	3.4  Effect of CTh on the relationship between prematurity and cognitive performance

	4  DISCUSSION
	4.1  Reduced CTh after premature birth
	4.2  Reduced CTh mediates the effects of premature birth on cognitive performance
	4.3  Strengths and limitations

	5  CONCLUSIONS
	ACKNOWLEDGMENTS
	  DATA AVAILABILITY STATEMENT

	REFERENCES


