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Abstract 

Voltage security assessment is becoming a more and more important issue due to the 

fact that electrical power systems are more prone to voltage instability under increased 

demand, and it can be time-consuming to determine the actual level of voltage security 

in large power systems. For this reason, this thesis presents a novel method for 

calculating the margin of voltage collapse that is based on the Continuation Power 

Flow (CPF) method. The method offers a flexible and reliable solution procedure 

without suffering from divergence problems even when near the bifurcation point. In 

addition, the new method accounts for reactive power limits. The algorithmic 

continuation steps are guided by the prediction of Q-limit breaking point. A Lagrange 

polynomial interpolation formula is used in this method in order to find the Q-limit 

breaking point indices that determine when the reactive power output of a generator 

has reached its limit. The algorithmic continuation steps will then be guided to the 

closest Q-limit breaking point, consequently reducing the number of continuation steps 

and saving computational time. The novel method is compared with alternative 

conventional and enhanced CPF methods. In order to improve CPF further, studies 

comparing the performance of using direct and iterative solvers in a power flow 

calculation have also been performed. I first attempt to employ the column 

approximate minimum degree (AMD) ordering scheme to reset the permutation of the 

coefficient matrix, which decreases the number of iterations required by iterative 

solvers. Finally, the novel method has been applied to a range of power system case 

studies including a 953 bus national grid transmission case study. The results are 

discussed in detail and compared against exiting CPF methods. 
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Chapter 1: Introduction 

This chapter introduces the technical background of my research work, the 

developmental history of continuation power flow and the achievements that numerous 

researchers have made to improve the performance so far. It is clearing emphasized 

that a more efficient voltage stability analysis method is required in order to meet the 

development of modem power systems. The contribution and structure of this thesis is 

also presented in this chapter. 



1.1 Introduction and Background 

As we know that the power systems are becoming more complex and more heavily 

loaded in recent years, the transmission networks are becoming larger and larger, 

which result in the power systems needing improved technologies and algorithm 

procedures to support their efficient operation. The degree of operational uncertainty 

has increased with the proliferation of more deregulated and competitive power 

systems. Such power systems are more prone to voltage instability under increased 

demand and it can be time-consuming to determine the actual level of voltage security 

in large power systems [1, 2, 3, 4, 5, 6]. Voltage security assessment is becoming a 

more and more important issue in electrical power systems [7, 8], it is often necessary 

for operators and planners to quickly analyze voltage stability margins for a vast 

number of network scenarios in order to effectively secure a power system against 

voltage collapse [9]. 

Continuation Power Flow (CPF) [10, 11] is an established method that analyses 

voltage stability by tracing the P-V curve using a predictor and corrector scheme [12, 

13], in this way the method remains well-conditioned at and around the bifurcation 

point. CPF methods are popular techniques used in the voltage stability analysis of 

power systems all over the world. Due to the rapid development of modem power 

system economics, it is necessary to improve or find a more efficient voltage analysis 

method to meet the requirements of present and future power system security. Against 

this background, I have investigated, developed and demonstrated a novel Q-limit 

guided continuation power flow (GCPF) method that is based on the standard CPF. 

The method has also been applied to realistic large-scale network problems. In 
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additional work, I explored the performance of using different linear solvers in a power 

flow computation. 

1.1.1 Significance of CPF Computation 

In recent years, modem economIC and environmental pressures have resulted in 

continuing interconnection of bulk power systems and the increasing utilization of 

existing facilities. This has led to increasingly more complex and larger power systems 

that are being pressed to operate at levels ever closer to the system limits. This 

operating condition has contributed to the growing importance of problems associated 

with voltage stability analysis of power systems. Power transmission capability has 

traditionally been limited by either rotor angle stability or by thermal loading 

capabilities. However, over the last two decades voltage stability has emerged as a 

major concern in both of the planning and operating of power systems [3, 8]. 

Voltage collapse is one of the problems caused by voltage instability. Generally two 

types of system disturbances would lead to voltage collapse: load variations and 

contingencies. Several recent power system blackouts were directly related to voltage 

collapse, which is characterized by a slow variation in the system operating point in 

such a way that voltage magnitudes at load buses gradually decrease until a sharp, 

accelerated change occurs. Voltage collapse has been especially experienced by 

heavily loaded power systems subject to an increase in load demands. There has been a 

wide consensus that as power system operates under increasingly stressed conditions, 

the ability to maintain voltage stability in order to avoid collapse becomes a serious 

concern [1]. 
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An increasing number of electric utilities are facing voltage stability-imposed limits~ 

voltage instability or collapse has resulted in several major system failures. Case in 

point are the occurrence in Sweden in 1982 caused by a contingency, the New York 

blackout in July 1977, power failures across France in December 1978, January 1987 

and similar experiences in other countries world wide [3]. 

On August 14, 2003, large portions of the Midwest and Northeast United States and 

Ontario, Canada, experienced an electric power blackout. The outage affected an area 

with an estimated 50 million people and 61,800 megawatts (MW) of electric load in 

the states of Ohio, Michigan, Pennsylvania, New York, Vermont, Massachusetts, 

Connecticut, New Jersey and the Canadian province of Ontario. The Blackout was 

caused by deficiencies in specific practices, equipment, and human decisions by 

various organizations that affected conditions and outcomes [94]. 

The power system failure occurred on 23 July 1987 in the service area of the Tokyo 

Electric Power Company. The unusually hot weather led to concentrated mass 

consumption of electric power, causing the blackout which affected 2.8 million 

customers in the area. There are three considerable causes of this failure [2] 

• 

• 

• 

the power demand level on that day was unusually high, 

the speed of the demand increase exceeded the level of previous experiences, 

Air conditioners which have the characteristics of voltage down causing current 

rise are in wide-spread use in Japan. 

The supply of electric power is becoming more and more scantily sometime. In order 

to have a reliable and economical electric power supply, the power system is prone to 



become larger. The distance of electrical power transmission is becoming longer. So 

the calculation of the margin of voltage collapse is very important for the power 

system security. 

There is a very strong economical motivation to improve the accuracy and the speed of 

voltage collapse point computation in competitive power systems today. Voltage 

collapse can occur in a power system following a progressive decline at the bifurcation 

point, usually due to load increasing. Lack of adequate reactive power resources in a 

power system has been recognized as a major contributing factor in a voltage collapse 

process. As we know, once a reactive power resource has reached its limit, it can no 

longer adjust the voltage. Consequently, large load increasing may result in promote 

voltage decline. Although there are some other factors that influence the voltage 

collapse process, we shall only focus on this major factor of reactive power resources 

reaching their Q-limit. 

In order to avoid voltage collapse, we have to control the voltage of power systems 

within the security margin. That means if we can calculate the maximal demand of the 

load that the power system can afford without encountering collapse, then we can 

operate the power system safely. Due to this purpose, some methods to calculate the 

voltage collapse point (fold point, saddle-nose point, bifurcation point and critical 

point) have been created. CPF is one of the most popular and reliable methods used 

around the world. 
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1.1.2 Voltage Collapse of Power System 

As power systems become more complex and more heavily loaded, voltage collapse 

becomes an increasingly serious problem. Voltage collapse has already occurred in 

realistic power systems. 

A power system is an electrical network containing components such as generators, 

transmission lines, loads, and voltage controllers. Practical networks are large, ranging 

from hundreds to thousands of buses and branches. Since the basic practical functions 

of a power system are the generation and distribution of electric power, generators are 

essential components. Under normal operating conditions, a generator is essentially a 

constant-voltage source. But in a transient condition, the excitation and rotor dynamics 

can produce undesirable oscillations of the system frequency and voltage magnitude. 

As for the components of the system, a transmission line can be modelled by a series 

RL branch with shunt capacitors. The control system is critical, and has benefited from 

recent technological advances. The turns-ratios of some transformers, for example, are 

automatically adjusted by onload tap-changers to maintain the voltage levels near the 

loads. Although control mechanisms have increased in number and sophistication, the 

networks themselves are very complex and can behave in ways that are difficult to 

predict. 

Load devices themselves vary greatly, from resistive lighting devices to dynamic 

components such as large induction motors. And power systems can be interconnected 

to allow exchange of electric power between different utility systems. A large, 

6 



nonlinear, interconnected power network can exhibit very complex dynamic 

phenomena when the system is disturbed from a steady-state operating condition. 

To complicate things even more, the power systems are becoming more heavily loaded 

as the demand for electric power rises, while economic and environmental concerns 

constrain the construction of new transmission and generation capacity. Under these 

stressful operating conditions, we are encountering a new instability problem called 

voltage collapse, which has led to blackouts in electric utilities around the world [3]. 

1.1.3 Voltage Stability Analysis Methods 

Voltage security assessment is becoming a more and more important issue in electric 

power systems [7, 8], it is often necessary for operators and planners to quickly 

analyze voltage stability margins for a large number of network scenarios in order to 

effectively secure a power system against voltage collapse [9]. For this reason, various 

methods have been developed for voltage stability analysis, such as the repetitive 

method, which repeatedly computes power flows with increasing power load demand 

in order to reach the critical point. However, the power flow solution is prone to 

divergence due to the Jacobian matrix becoming singular near the saddle-node 

bifurcation point [11]. Continuation Power Flow (CPF) [10, 11] is an established 

method that solves the problem by tracing the P-V curve using a predictor and 

corrector scheme [12, 13], in this way the method remains well-conditioned at and 

around the bifurcation point. 



In order to speed up the CPF computation, numerous researchers have investigated 

new voltage collapse index calculation methods [14-28] and how to improve the 

performance of conventional CPF [29, 30, 31, 32]. A considerable number have made 

use of a nonlinear predictor instead of a conventional linear tangent or secant predictor 

[29], the linear predictor employs a small step-size in the CPF computing process, but 

the nonlinear predictor is not restricted to a small step-size. In other words, the 

nonlinear predictor enables the CPF method to take a larger step-size than the linear 

case, which increases the computational speed of the CPF methods. Other researchers 

dynamically adapt the feasible step-size in order to speed up the CPF computation [30]. 

A large step-size is used in the 'flat' part of the solution curve and a small step-size is 

used in the part with a high degree of curvature. Most of the approaches mentioned 

above are reasonably efficient, but it is still necessary to improve the performance of 

CPF methods further in order to meet the requirements of present and future 

operational time-scales. 

1.1.4 Application of Linear Solvers in Power Flow Solution 

The power flow is usually solved by the Newton-Paphson solution method. The main 

step is the linearization of the nonlinear power flow equations and the subsequent 

solution of this linear system. All Newton-Raphson based power flow algorithms have 

in common that one large or two smaller sized linear system of equations must be 

solved during each Newton-Raphson iterative step. So, to find an appropriate linear 

solver for these linear equations becomes an interesting project, numerous researchers 

have investigated the performance of different linear solvers used in power load 

computation. 
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Besides the well known direct Gaussian elimination method, the application of 

iterative linear solvers in power flow computation has already appeared in recent years. 

For example, the first application of the Conjugate Gradients (CG) method [33] to the 

decouple power flow has been described in [34, 35]. For the fast decoupled power flow 

both papers state a significant performance improvement of CG based methods 

comparing to a direct solution. From all power flow approaches known only the 

decoupled power flow satisfies the CG conditions of positive definite and symmetric 

linear system matrices. The first application of non-stationary, iterative methods to the 

Newton-Raphson power flow approach has been described in [36]. The main 

distinction from the CG methods lies in the fact that the iterative solvers investigated 

in [36] is also applicable to asymmetric and indefinite linear system matrices. With the 

development of mathematical algorithms, there are many iterative linear solvers 

known today can solve asymmetric, indefinite and sparse linear system matrices. 

Practical usage of these iterative linear solvers is only reached when preconditioning is 

applied to the linear system of equations, good preconditioning will group the 

eigenvalues of the transformed linear system matrix together and will thus result in 

faster convergence [37, 38]. 

It is well known that the CPF is a continuous process of power flow solutions starting 

at a base load and leading to the steady state voltage stability (critical point) of the 

system, on the other hand, solving linear equations of the form Ax = b plays very 

important role and takes the most computational time in Newton-Raphson power flow 

methods [39], so an efficient linear solver is one of the factors in speeding up CPF 

com putati on. 
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At present, the direct method (Gaussian elimination) is used commonly in solving 

large sparse sets of linear equations [40-44] in Newton-Raphson solution methods, but 

the Gaussian elimination method is hard to be parallelized or factorized, which 

restricts the development and improvement of direct methods. The iterative methods 

for solving large sparse sets of linear equations can naturally profit from parallelization 

and factorization [39, 45, 46], and a good preconditioning will effect the eigenvalues 

of the transformed linear system matrix together and will thus result in faster 

convergence [37]. 

In Newton-Raphson power flow methods, the Jacobian coefficient matrix IS an 

unsymmetrical, possibly indefinite matrix [37, 47], according to this characteristics, 

there are a number of iterative methods can be employed. We may consider the 

generalized minimum residual method (GMRES) [48], bi-conjugate gradient method 

(BiCG) [49] and bi-conjugate gradient stabilized method (BiCGStab) [50]. 

Comparative studies between direct and iterative methods have been implemented and 

discussed in this thesis. 

1.2 Contribution of the thesis 

This thesis concentrates on the improvement of performance of voltage stability 

analysis methods. Firstly, we proposes a novel Q-limit guided continuation power flow 

(GCPF) method [51], the method accounts for reactive power limits. The GCPF 

method is developed in order to improve the performance of the standard CPF method 

in the aspects of robustness and computational efficiency. The GCPF method improves 

10 



the standard CPF, but is based on the standard CPF method, which offers a flexible and 

reliable solution procedure without suffering from divergence problems even near the 

bifurcation point. This part of work has been published in IEEE PES 2008 general 

meeting proceedings on July 2008 in USA. 

Traditionally, voltage stability limits were considered only in terms of the saddle node 

bifurcation point [11]. However, there exists another type of bifurcation point that 

causes instability [52], this type of instability may occur when a state variable reaches 

a limit [53]. In practice this is especially significant with regard to generator reactive 

power limits (Q-limits). In fact, in power flow based voltage stability assessment, the 

Q-limit instability frequently occurs at a point at which the reactive power output of 

voltage targeted generator reaches a Q-limit [12, 54]. 

I propose a more efficient method, which is referred to as a Q-limit GCPF [51] method. 

It employs an original step-size control rule that is fundamentally different from the 

conventional feasible step-size as controlled by the gradient of solution curve [30]. The 

step-size is controlled by calculating the distance of continuous Q-limit breaking 

points and we make use of a nonlinear Lagrange polynomial interpolation technique 

[55] in order to predict at which point the reactive power limit of a generator is reached. 

The closest Q-limit breaking point is then taken as the next continuation step. 

Therefore, the continuation steps are efficiently guided by the prediction of Q-limit 

points and hence the step size is controlled in a more adaptable manner than the 

conventional rule based method [30], the GCPF method significantly reduces the 

number of algorithmic continuation steps. A comparison of computing time between 
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GCPF, conventional CPF (CCPF) [9, 11] and Enhanced CPF (ECPF) [29] that using 

nonlinear predictor method has been performed. 

Secondly, we have investigated the application of different linear solvers in the 

Newton-Raphson power flow computation in terms of computational time and 

accuracy. It is well known that efficient solvers for linear equations on the form Ax = b 

are essential and most of the computation time is spent in solving the linear equations 

in the power flow calculation [39]. The iterative methods for solving large sparse sets 

of linear equations can naturally profit from parallelization and vectorization [39], and 

direct methods, such as Gaussian elimination, are difficult to parallelize or factorize. 

Comparison studies between direct and some iterative methods have been performed. 

This part of work has been submitted for review to lET Generation, Transmission & 

Distribution on May 2008. 

Solving a linear equation of the form Ax = b plays an important role in power flow 

calculation, and uses the most computational time in a power flow. CPF is a 

continuous process that computes many power flow solutions, so an efficient linear 

solver is necessary to speed up a CPF method. In this thesis, studies compare the 

performance of direct and iterative solvers. It is well established that iterative methods 

for solving large sparse sets of linear equations can naturally profit from parallelization 

and factorization. 

The direct method investigated in this research is the Gaussian Elimination method, 

which solves the linear equations in a finite number of steps and may require extensive 

computational storage and arithmetic processing. Gaussian Elimination method has 
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been improved over the years through the use of efficient ordering techniques and 

sparse programming. However, the computation time of a direct method can still be the 

limiting factor in cases involving very large systems of equations or numerous 

repetitive solutions [34]. However, the direct method is the most commonly used 

method in power systems analysis. 

In the Newton-Raphson power flow, the Jacobian coefficient matrix is an asymmetric, 

possibly indefinite matrix [47]. For asymmetric linear systems, there are a number of 

iterative methods that can be employed. We may consider the generalized minimum 

residual method (GMRES), bi-conjugate gradient method (BiCG) and bi-conjugate 

gradient stabilized method (BiCGStab). Comparative studies between direct and 

iterative solvers have been implemented and discussed in this thesis. 

It has been reported that the use of some iterative methods for power flow solutions 

decreases the computation time, relative to the LDU factorization based direct methods, 

for large power system problems [34, 35]. In these studies, the incomplete LU 

factorization (ILU) of the Jacobian matrix is used to accelerate the GMRES, BiCG and 

BiCGStab methods as the preconditioner, and we first attempt to employ the column 

approximate minimum degree (AMD) ordering scheme [56] to reset the permutation of 

the Jacobian coefficient matrix, which are quite effective in clustering the eigenvalues 

of the linear system [37, 47]. 

Finally, we create a package of m-files for solving CPF problems in Matpower [57], it 

is intended as a simulation tool for researchers and educators that are easy to use and 
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modify. The code is designed to give the best performance possible while keeping the 

code simple to understand and modify. 

1.3 Publications reSUlting from this thesis 

The following publications have been derived form this thesis. 

• Pengcheng Zhu, Gareth Taylor and Malcolm Irving, "A Novel Q-limit Guided 

Continuation Power Flow Method," IEEE PES General Meeting 08 

Proceeding, Pittsburgh USA, July 2008. (Published) 

• Pengcheng Zhu, Gareth Taylor and Malcolm Irving, "Performance Analysis of 

a Novel Q-limit Guided Continuation Power Flow Method", lET Generation, 

Transmission & Distribution, Submitted for review on May 2008. 

1.4 Structure of the thesis 

This thesis is organized as follows: 

Chapter 1 introduces the technical background of my research, the significance of 

voltage stability analysis methods and the achievements that numerous authors have 

made on the improvement of performance of CPF methods so far. The contribution of 

my research work is also presented in this chapter. 
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Chapter 2 provides a technical description of the conventional continuation power flow 

(CCPF), which is a classic voltage stability analysis tool and has been widely used all 

over the world. 

Chapter 3 introduces some variation work of standard CPF. One is the enhanced CPF 

(ECPF) method, which employs a nonlinear predictor to control the step size; the other 

one is my proposed GCPF method, details of GCPF algorithm procedures are 

described in this chapter. 

Chapter 4 introduces the developmental history of the project of applications of 

iterative solvers in power flow calculation, and also presents the summary of AMD 

ordering scheme, ILU factorization method and linear solver approaches, which have 

been investigated in my research work. 

Chapter 5 introduces details of modification and development of Matpower to simulate 

the experiments. This chapter includes the mathematical model of GCPF method. I 

also modify the code to implement N ewton-Raphson power flow using different 

iterative linear solvers. I create a tool package of m-files for solving CPF solutions 

based on Matpower. 

Chapter 6 is the full results of comparison between CCPF, ECPF and our proposed 

GCPF method. I have done the comparisons in multiple means, which include 

illustration figures, numerical results and discussions. A performance comparison is 

made between CCPF, ECPF and GCPF methods in terms of required continuation 

steps, computational time and accuracy. These CPF methods have been applied to a 
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large range of power system case studies including two National Grid (NG) 

transmission case studies. 

Chapter 7 is the results of comparison and analysis between direct and iterative linear 

solvers employed in a power flow calculation. The effect of AMD ordering scheme 

based ILU factorization preconditioning on eigenvalue distribution, convergence rate 

and computing time is illustrated and discussed in multiple means. The comparison 

work has been applied to a large range of case studies, such as Poland 2736 bus 

system. 

Chapter 8 summarizes the entire thesis conclusions, including two parts of conclusions. 

One part is from the comparison of performance between CCPF, ECPF and GCPF 

methods; another part is form the comparison of using different linear solvers in the 

power flow calculation. On the other hand, possible future works are suggested and 

discussed in this chapter. 
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Chapter 2: Conventional Continuation 

Power Flow Method 

This chapter presents a technical description of conventional continuation power flow 

(CCPF), which is a classic voltage stability analysis method and has been widely used 

all over the world. This method adapts predictor and corrector scheme to trace the P-V 

curve, in this way the method remains well-conditioned at and around the bifurcation 

point. 
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2.1 Introduction 

Continuation method [26, 58] is a mathematical method, which has been applied 

successfully to a variety of engineering problems including electric power systems [59, 

60]. CPF is a method based on the continuation method, which can trace the power 

flow solution curve with respect to the varying parameters [10, 11, 61-65]. The paper 

[10, 11] was the first published literatures to introduce the application of CPF method 

to power systems. The CPF can pass through the saddle-node bifurcation point without 

any numerical difficulty. CPF uses EPRIIPFLOW [66] as a platform. 

CPF becomes a comprehensive tool for tracing power system steady-state stationary 

behaviour due to parameter variations, sometimes called curve tracing or path 

following, are useful tools to generate solution curves for general nonlinear algebraic 

equations with a varying parameter. 

The main advantages of CPF over repetitive power flow calculations are: 

• It is more reliable than the repeated power flow approach in obtaining the 

solution curve; especially for ill-conditioned power flow equations. 

• It is faster than the repeated power flow approach via an effective 

predictor-corrector, adaptive step-size selection algorithm. 

The CPF method can be used in a variety of applications such as: to analyze voltage 

problems due to load and/or generation variations, to calculate maximum interchange 

capability of power between two areas and maximum transmission capability, to 

simulate power system static behaviour due to load and/or generation variations. 
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2.2 System Model 

Consider a comprehensive (static) power system model expressed in the following 

form [67, 68]: 

I(x,).,) = F(x) +).,b = 0 (2-1) 

where x E Rn is the state vector representing the bus voltage magnitudes and angles, 

)., E RI is a (controlling) parameter subject to variation and bERn represents the 

change in real and reactive power load demand and the change in real power 

generation [54, 69]. Using terminology from the field of nonlinear dynamical systems, 

system (2-1) is a one-parameter nonlinear system. In power system applications, a 

one-parameter dynamical system is a system together with one of the following 

conditions: 

1. The reactive (or real) power demand at one load bus varies: and the real 

power generations at some collection of generator buses vary, and their 

variations can be parameterized while the others remain fixed. 

2. Both the real and reactive power demand at a load bus vary: and the real 

power generation at some collection of generator buses vary, and their 

variations can be parameterized, again the others remain fixed. 

3. The real and/or reactive power demand at some collection or load buses varies; 

and the real power generations at some collection of generator buses vary, and 

their variations can be parameterized while the others are fixed. 
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Generally speaking, power systems are dynamical systems and are normally operated 

near a stable equilibrium point. As system loads and generations change slowly, the 

stable equilibrium point changes position but remains as a stable equilibrium point. 

This situation may be modelled with the static model C2-1) by regarding ICx,;t) = 0 

as specifying the position of the stable equilibrium point, x as a function of;t. This 

model may also be called a parametric power flow model. 

For example, if the system represented is initially near a stable equilibrium point 

xsC;t) , then the dynamics will make the system state track xsC;t) as ;t slowly 

varIes. 

Exceptionally, variations in ;t will cause the stable equilibrium point to bifurcate. 

The stable equilibrium point may then disappear or become unstable depending on the 

way in which the parameter is varied and on the specific structure of the system. One 

typical way in which system C2-1) may lose stability is that the stable equilibrium 

points xsc;t) and an unstable equilibrium point Xl C;t) coalesce and disappear in a 

saddle-node bifurcation as parameter ;t varies. The nose point of PV and QV curve 

is an example of the saddle-node bifurcation commonly used in the power industry to 

analyse voltage stability and voltage collapse. 

We next discuss an indirect method to simulate the approximate behaviour of the 

power system C2-1) due to load and/or generation variation. Before reaching the 

critical point, the power system with a slowly varying parameter traces its operating 

point which is a solution of the equation C2-1) whose corresponding Jacobian has all 

eigenvalues with negative real parts. 
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The indirect method is to start from the operating point of the power system (Xo , AO ), 

and produce a series of solution points (Xi' Ai) in a prescribed direction, determined 

by participating load and generation variations, until the critical point is reached. 

It is known that the set of power flow equations (2-1) near the critical point IS 

ill-conditioned as Jacobian matrix becomes singular, making the Newton method 

diverge in the neighbourhood of the critical point. From a numerical analysis 

viewpoint, this is due to the fact, that at the critical point the two equilibrium points 

coalesce to form an equilibrium point x'. The Jacobian matrix evaluated at this 

point x * has one zero eigenvalue, causing the set of power flow equations to be 

ill-conditioned. 

There are several possible means to resolve the numerical difficulty from the 

ill-conditioning. One effective way is to introduce the arc-length s on the solution 

curve as a new parameter in continuation process. The step size along the arc-lengths 

has the following constraint: 

n L (Xi - Xi (S))2 + (A - A(S))2 = /).s2 (2-2) 
i=l 

Where s is the arc-length and /).s is the step size. 

At this stage we can introduce a geometrical representation of the arc length s as 

illustrated in figure 2-1. As step size tends to zero, the chord /).s tends to equal s, 

which allows us to then introduce the parameter /).s , that is the chord subtended by the 

arc-length s. 
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So, the simultaneous equations (2-1) and (2-2) is well conditioned, even at the critical 

point. This method solves the simultaneous equations to obtain the solution curve 

passing through the critical point without encountering the numerical difficulty of ill 

conditioning. 

x. 
1 

~x. 
1 

"""""""" (Xi (S),A(s) ) 

o 

Figure 2-1: Geometrical Representation of CPF Variables 

Continuation methods, sometimes called curve tracing or path following, are useful 

tools to generate solution curves for general nonlinear algebraic equations with a 

varying parameter. CPF uses continuation methods to trace power system steady state 

behaviour due to load and generation variation. Continuation method has four basic 

elements: 

• Parameterization 

• Predictor 

• Corrector 

• Step-size control 
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2.2.1 Parameterization 

Parameterization is a mathematical way of identifying each solution on the solution 

curve so that 'next' solution or 'previous' solution can be quantified. There are three 

different types of parameterisations: 

1. Physical parameterization using the controlling parameter A, in which case 

the step length is L1A. 

2. Local parameterization, which uses either the controlling parameter A or any 

component of the state vector X; namely Xk to parameterize the solution curve. 

The step length in the local parameterization is ~A or L1x k • 

3. Arclength parameterization employing the arclength along the solution curve 

to perform parameterisation, the step length in this case is tJ.s : 

!1s = t {(Xi - Xi (S))2 + (A - A(S))2 rs 
(2-3) 

i=l 

the arclength parameterization can use different weighting factors (instead of 

an equal weighting factor) in the above equation. 

While using the controlling parameter to parameterize the solution curve has physical 

significance, it encounters numerical difficulties in the vicinity of critical point. In 

order to resolve this problem and to design an effective predictor, CPF makes use of 

the arc-length parameterization. 
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2.2.2 Predictor 

The purpose of the predictor is to find an approximation point for the next solution. 

Suppose we are at the i - th step of the continuation process and the i - th solution 

(Xi, Ai) of (2-1) has been found. The predictor attempts to find an approximation point 

for the next solution (X
i
+

1 ,Ai
+

1
). The quality of the approximation point by a predictor 

significantly affects the number of iterations required by a corrector in order to obtain 

an actual solution. A better approximation point yields a fewer number of iterations 

needed by a corrector to reach the solution. Several different predictors have been 

introduced in the literature of numerical analysis. They can be divided into two classes: 

1. ODE based methods, which use the current solution and its derivatives to 

predict the next solution. The tangent method, a popular one as a predictor, is a 

first order ODE-based method; 

2. Polynomial extrapolation based methods, which use only current and previous 

solutions to find an approximated solution. The secant method, a popular 

polynomial-based predictor, uses the current solution and the previous one to 

predict the next one. 

2.2.2.1 Tangent Method 

The tangent method calls for the calculation of the derivatives of 

X X ... x X 1 with respect to the arclengths: 
I' 2' 'n' n+ 

dxn dxn+1 

, ds' ds 
(2-4) 

To find these derivatives, differentiate both sides of equation (2-1) with respect to s : 



(2-5) 

Equation (2-5) is an implicit system of n linear algebraic equations in n + 1 unknowns 

dxj • 1 - 1= ... n+l 
ds ' " (2-6) 

with the coefficients being the elements of the matrix: 

Bh Bh Bh Bh 
BXl BX2 BXk BXn+l 
BI2 

DI= axl 
(2-7) 

. . 
Bin Bin Bin Bin 
BXl BX2 BXk BXn+l 

the following equation is required to make sure that s is the arc-length on the curve. 

(2-8) 

note that equations (2-5) and (2-8) form a set of n + 1 equations in n + 1 variables. 

Also notice that (2-5) is a set of linear equations in its n + 1 unknowns and (2-8) is 

nonlinear. A special method to solve this n + 1 equations according to Kubicek [60] is 

as follows: 

Suppose 

(2-9) 

for some k, 1 ~ k ~ n + 1, and let Dlk be the matrix of DI with the k-th column 

taken out, and suppose Dlk is not singular, then equation (2-5) can be solved for the 

unknows 

dxl ••• dxk- 1 dxk+1 dxn+1 

ds ' ds' ds' ds 
(2-10) 

in the form of 
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i;t:.k,i=1,···,n+1 (2-11 ) 

the solution for the coefficients Pi can be obtained by applying Gaussian elimination 

to the matrix Dh. In fact, if one performs the Gaussian elimination with pivoting to 

the full set matrix Df, the column index k is also found. 

Substituting (2-11) to (2-8), one gets 

(2-12) 

Equations (2-11) and (2-12) constitute the explicit expression of the derivatives of the 

curve x(A) passing through the j-th continuation point (xi ,Ai) with respect to 

arc-length s. A predictor step can be accomplished by integrating one step further in 

the prescribed direction with the step size h: 

"i+l _ i+1 dxi ._ xi - xi + h - ,} - 1, ... , n + 1 
ds 

(2-13) 

In the context of computational efficiency, one has to keep in mind that the evaluation 

of the Pi'S involves solving a set of linear algebraic equations which could be 

time-consuming. Thus it is advantageous to use numerical procedures which require 

fewer such evaluations. This consideration prompts the use of the secant method as a 

predictor after the tangent method produces two approximate points. 

2.2.2.2 Secant Method 

The polynomial extrapolation methods are based on a polynomial of varying order that 

passes through the current solution and previous solution (x', A'), (X'-I, Ai-I). .. to 
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provide an approximation point for the next solution (X i+1 ,X+1). A trivial predictor is 

the zero-order polynomial which uses the current solution as an approximation point 

for the next solution. 

(2-14) 

A slightly modified predictor based on the zero-order polynomial is: 

(2-15) 

A predictor, known as the secant predictor, uses a first-order polynomial (a straight line) 

passing through the current and previous solutions to predict the next solution. 

(2-16) 

Where hi is an appropriate step-size, predictors based on higher-order polynomial 

can be similarly derived. It has been experienced that lower-order predictors are more 

effective in practice. 

In general, (x, X) is not a solution of I(x, A) = 0, rather it is an initial guess for the 

corrector iteration that will hopefully converge to a solution within the specified 

tolerance, the distance between (Xi, Ai) and (X i+1 ,Ai+l) is called the step length. On the 

other hand, the measure of distance between (Xi, Ai) and (X i+1 ,Ai+l) is given by the 

parameterization strategy, for example, arc-length. 

The tangent and secant predictor method is illustrated in figure 2-2. 
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.. :Converged Solution 
():Predicted Solution 

- - - - - - - :Tangent Predictor 
------------- : Sec ant Pr e di c tor 

Load Paramet er 

Figure 2-2: Tangent and Secant Methods 

2.2.3 Corrector 

After the predictor has produced an approximation (x J+i ,;l J+i) for the next solution 

( XJ+i , ;lJ+i), the error must be corrected before it accumulates. In principle, any 

effective numerical procedure for solving a set of nonlinear algebraic equations can be 

used for a corrector. Since a good predictor gives an approximation in a neighbourhood 

of the next solution (x J+
i

, ;lJ+I), a few iterations usually suffice for an appropriate 

corrector to achieve the needed accuracy. 

The predictor-corrector scheme plays very important role in CPF methods, which is a 

continuous process to find a solution path. As shown in figure 2-3. It starts from a 

known solution and employs one step predictor to estimate a subsequent solution 
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corresponding to the pre-set step size, this estimation is then corrected using the 

Newton method [70, 71]. CPF goes to the next continuation step until the critical point 

has been passed. 

o 

~ __ ~ Predictor 

~ Corrector 

" ....... 
Critical Point 

Load Parameter 

Figure 2-3: An illustration of the predictor-corrector scheme used in CPF 

2.2.4 Step Size Control 

One key element affecting the computational efficiency associated with a continuation 

method is the step-length control. It is safe to choose a constant, small step length in 

any continuation method. However this constant step length may often lead to 

inefficient computation, such as too many steps through the 'flat' part of the solution 

curve. Similarly, an inadequately large step length can cause the predicted point 

(produced by predictor) to lie far away from the (true) solution point, and as a result, 

the corrector needs much iteration to converge. In the extreme case, the corrector may 

diverge. Ideally, the step length should be adapted to the shape of the solution curve to 
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be traced: a large step length should be used in the 'flat' part of the solution curve and 

a smaller step-length in the 'curly' part (part with high degree of curvature) of the 

solution curve. Of course, the shape of the solution curve i is unknown beforehand , 

making the task of designing an effective step-length control difficult. Thus good step 

length controls are usually custom designed for specific applications. Despite this, 

some general considerations may be implemented in the continuation procedure in 

order to improve its performance. 

One strategy for step length control is to set up an upper limit h . for each variable max, I 

Xi. The actual step length h along the arclength s is the thus chosen such that: 

h dx i ~ hmax i , i = 1,. .. , n + 1 
ds ' 

(2-17) 

the motivation for such an implementation is that the curve x(Jl,) under consideration 

may be 'flat' with respect to some Xi' while turning sharply with respect to some other 

X • By assigning h . accordingly, that is, giving a larger hmax i to those variables along 
) max, I ' 

which the curve is 'flat' and smaller h ., otherwise we can make the continuation max, I 

process trace quickly through the 'flat' portion of the curve and yet keep small steps 

through the 'curly' portion. This in tum will yield a better approximation from the 

predictor, thus faster convergence for the corrector. The success of this step length 

control method depends greatly on the proper value of h max, i which requires prior 

knowledge of the problem under consideration. In the case of power system studies, 

experience provides good guidance. For example, the h max, I corresponding to a bus 

voltage would be given a small value since the whole range for the variable is about 
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(0-1.2), while the h max, i corresponding to the reactive parameter A should be assigned 

a larger value. 

Start 

RlUl power flow 
on base case 

Build up the 
variation pattern 

-', passed? 

" , 

Estimate the next 
solution by predictor 

Perform corrector to 
locate the predicted 

point to solution curve 

Stop 

Figure 2-4: Illustration of algorithm of predictor-corrector scheme of CPF 

Another simple method is to observe the number of iterations taken at each 

continuation step. By setting a desired target number of iterations, the method 

compares the actual number of iteration to the target. If the actual number is smaller, 

then the next step length can be a little larger than the previous one. On the flip side, if 

the actual number is greater, then the next step length should be a little smaller than the 

previous one. However this method fails to achieve the desired results if any control 
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device is forced out of its normal operating regIOn. For example, if an ULTC 

transformer model adjusts a tap setting to bring the controlled bus voltage within its 

specified tolerance, then it will take a few extra iterations for the Newton method to 

converge. These extra iterations would shorten the following predictor step, causing 

the predictor to take shorter steps, hence making it less efficient [10, 11]. 

The algorithm of conventional CPF is illustrated as flow chart in figure 2-4. The stop 

criterion of the flowchart as presented in figure 2-4 is a comparison of the current 

value of the load parameter A with the previous one. If the current A is bigger than the 

previous one, then the load parameter is still increasing and the computational steps 

need to continue. If the current A is smaller than the previous one, then the maximum 

load parameter has been exceeded and the algorithm is terminated. 

2.3 Summary 

The details of implementation regarding to the parameterization, predictor-corrector 

scheme and step size control have been described. CPF can solve the power flow near 

or at the critical point without numerical ill-conditioning. The CPF has been developed 

and improved for the requirement of modem electric power systems, and many 

researchers and authors made great efforts in this area. 
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Chapter 3: Variations of Continuation 

Power Flow 

This chapter introduces some variation work of the standard CPF. One is the enhanced 

CPF (ECPF) method, which employs a nonlinear predictor to control the step size; the 

other one is our proposed GCPF method, the details of GCPF algorithm procedures is 

described in this chapter. 
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3.1 Introduction 

CPF is a classic method to calculate and plot PV curves. CPF incorporates the 

nonlinear relationship between loads and voltage magnitudes. The predictor-corrector 

scheme plays an important role in CPF methods [9, 10, 11,29,30]. In order to improve 

CPF methods, several techniques have been developed for the predictor-corrector 

scheme. The Homotopy method [63] and Ajjarapu-Christy method [11, 31, 72] make 

use of the tangent vector to compute the predicted solution, but the tangent vector 

predictor does not employ a large step size and can be time-consuming. The CPF 

method developed by Chiang [10] makes use of a secant-based vector as the predictor 

[73, 74], which is faster in predicting the solution than the tangent vector method. 

3.2 Enhanced Continuation Power Flow 

Mori and Yamada developed a nonlinear predictor method [30], this method improved 

the performance of CPF method by employing a nonlinear predictor instead of the 

tangent or secant predictor. The nonlinear predictor allows the algorithm to take a 

larger step-size than the linear one, the method makes use of the Lagrange Polynomial 

Interpolation Formula [55] to predict the solution, so that the error between predicted 

and actual solution is reduced. The step-size can be increased to speed up the 

computational time. 

The nonlinear predictor is expected to give a predicted solution within a very close 

range of the actual solution, so that a larger step-size can be used. In this paper a rule 
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based step-size control algorithm has also been proposed, which takes different 

step-sizes in different parts of the PV curve. 

Start 
"----....,....---'" 

Run power flow on base case 

Predict a solution by 

tangent predictor 

Correct the solution 

by corrector 

No 
Third Step? 

..... ~ 
~ 

Obt ain Lagrange 

interpolation equations 

Predict a solution by 

nonlinear predictor 

Correct the solution 

by Corrector 

/~" 
No / Critical "'­

"-----< 
~paSSed? 

Yes. ~ 
~ 

"v" 

Figure 3-1: Flowchart of CPF with nonlinear predictor 
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3.2.1 Nonlinear Predictor 

A Lagrange polynomial interpolation formula [55] has been employed as the 

mathematical model for the nonlinear predictor. As we know, three known solutions 

can determine a quadratic equation [30]. Once the Lagrange Interpolation function is 

determined, we can predict the next solution from the fourth step. This algorithm is 

described by the flowchart in figure 3-1. 

The stop criterion of the flowchart as presented in figure 3-1 is a comparison of the 

current value of the load parameter A with the previous one. If the current A is bigger 

than the previous one, then the load parameter is still increasing and calculation steps 

need to continue. If the current A is smaller than the previous one, then the maximum 

load parameter has been exceeded and the algorithm is terminated. 

3.2.2 Rule based step-size control 

• • • 

Region 1 

Region 3 

o Lo ad Parameter 

Figure 3-2: Decomposition of PV curve for Step-size Control 
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Mori and Yamada developed a rule-based algorithm for controlling step-size to speed 

up CPF computational time. In this proposed method, the PV curve is decomposed into 

three regions as illustrated in figure 3-2. 

In region 1: 

This part of curve is quite flat, so a large step-size can be taken. According to the 

predictor error [30], the step-size can be adjusted. If the error of the predictor exceeds a 

critical value, the predictor is forced to take a smaller step-size than the previous one. 

In regions 2 and 3: 

The step-size is changed according to the gradient of the PV curve, which means that 

when the continuation step is closer to the bifurcation point, the gradient value of 

I~x/ ~A,I becomes larger, if I~x/ ~A,I exceeds a certain pre-set value, the step-size 

should be reduced to a smaller value than the previous one. On the other hand, when 

the continuation step passes through the bifurcation point and the step enters the region 

3, I~x/ ~A,I becomes smaller, then, the step-size would be enlarged to a value greater 

than the previous one. 

This proposed method combines a nonlinear predictor with rule based step-size control, 

which improves the CPF efficiency. The nonlinear predictor can provide a more 

accurate solution predicting technique and rule based step-size control algorithm can 

skip some unnecessary continuation steps to speed up the computational time. 
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3.3 Q-limit Guided CPF Method 

This paper proposes a novel Q-limit GCPF method [51] that accounts for reactive 

power limits and has been further developed in order to improve performance with 

regard to robustness and computational efficiency when compared with the CCPF 

method. The GCPF method is based on the standard CPF method, which offers a 

flexible and reliable solution procedure without suffering from divergence problems 

even when near the bifurcation point. 

From equation (2-1), the reactive power generation QG can be defined as follows: 
I 

n 

QG; = Vi LYij Vj sin(oi - OJ - aij) +QL; 
j=1 

(3-1) 

Where Y iJ and aiJ are admittance matrix elements in polar form, QL; denotes the 

reactive power demand at generator i and n is the total number of buses in the 

power system. 

F or a typical power system, the admittance matrix is known, so Y iJ and a ij are 

constants, and the voltage magnitude Vi of generator i is also a constant [67]. 

Assuming that a power system is operating under normal conditions, the phase angle 

differences 0 - 0 are usually small. Therefore, the sinusoidal function can be 
I ) 

approximated as a constant as follows: 

(3-2) 

It can then be assumed that the voltage magnitude Vj is the only variable and that it 

has a strong relationship with QG;. If we now consider the relationship of these two 
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quantities and combine the constants as described above, we can simplify equation 

(3-1) as follows: 

(3-3) 

Where K is a linear coefficient matrix for the voltage magnitudes at the load buses. As 

we know, the load parameter A has an almost quadratic relationship with voltage 

magnitude [10, 11, 51]. Consequently, the load parameter A will also have an 

approximate quadratic relationship with respect to reactive power output of the 

generators: 

A = A;V2 + Bv + C. = a·QG2 + b·QG + C 
I I I I I iii I (3-4) 

Lagrange interpolation is a good curve fitting technique that can be exploited to 

represent the quadratic relationship between A and Qa . Since quadratic behaviour can 
I 

be defined by three points in a plane, accepting the initial state point, we require 

another two solution points along the curve to construct the full interpolation function. 

If we have the data of three solution points equation (3-4) can then be defined. Then 

the extreme value of load parameter A can be calculated by setting dA/ dQG, to zero 

when 

(3-5-a) 

4a.c.-b 2 

A. = I I I 

I 4a
j 

(3-5-b) 

( A q.) is the extreme value point for the single QG - A curve at bus 1. 
I' I I 
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Figure 3-3: Extreme value points and Q-Limit Situations 

We illustrated three situations, where QG may locate in figure 3-3. As the value of 
I 

QGj should lie between the initial value and the extreme value ql. Situations 1 and 3 

illustrate that QG will break its upper or lower Q-Limit, respectively. It is important to 
I 

note that in situation 2, QG will not break its Q-limit. As we are only concerned with a 
I 

possible limit breaking, we are only concerned with the generators that are prone to 

break their Q-limits 

q .>Q. I - Imax (3-6-a) 

or q. < Q. -1- Imm (3-6-b) 

because the other cases are within the system Q-limits. 

Therefore, we can now substitute the Qrnin and Qrna-.; values of generators that are 

breaking Q-limits into the equation (3-4) as follows: 
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(3-7-a) 

Ai . = a Q2. + bQ 2 + c qmm I ImIn I ImIn i (3-7-b) 

Where Qimin and Qimax are the Q-limits of bus i. In case (3-6-a), we only consider 

upper limit and compute A~ max from (3-7-a), alternatively in case (3-6-b) we only 

computeA~rnin from (3-7-b). 

In each case, only the smallest value from equations (3-7-a) and (3-7-b) will be of 

interest. We can represent this as follows: 

(3-8) 

Subject to Aq > Ao' we take ~ = Aq - Ao as the new step-size to guide the CPF method 

from the current point (xo ,Au) to the new operating point (xq, Aq). We then change 

~ back to the initial value to carryon the CPF computation until the Q-limit 

breaking point is reached and then change the bus type from PV to PQ. We then set 

this Q-limit breaking point as the new starting point (xo' Au) and the whole process is 

repeated again until the bifurcation point is reached. 

It is important to note that it is possible for a Q-limit breaking point to be reached 

during the computation of the three consecutive solution points that are required for 

predicting Aq; if this occurs the whole process is restarted at the new Q-limit breaking 

point and another three solution points are computed for the prediction process. If there 

are no generator buses satisfying equations (3-6-a) and (3-6-b), then no buses are 

breaking their Q-limits. Therefore, we take the smallest value of equation (3-5-b) as 

A to guide the continuation steps until the bifurcation point is reached. 
q 

41 



Yes 

Start 

Check k(=l 

Yes 
Obtain one 

series solutions 
by CPF 

Check if 
Bifurcation point 
has been passed 

Compute the 
coefficients 

(a, b, c) 

Obtain the index 
value 2 

q 

No 

Figure 3-4: Flowchart of Novel Q-limit GCPF Algorithm 
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We can now represent the GCPF algorithm using the flow chart as presented in 

figure3-4. Where k and I are the index variables, such that k controls the data collection 

procedure across three consecutive solutions and I controls the number of continuation 

steps after the data collection procedure and up until the Q-limit breaking point is 

reached. Where a, band c are the coefficients of equation (3-4), (3-7-a) and (3-7-b). 

3.4 Summary 

ECPF method makes use of a nonlinear predictor instead of a conventional linear 

tangent or secant predictor, the linear predictor employs a small step size in the CPF 

computing process, but the nonlinear predictor is not restricted to a small step size. In 

other words, the nonlinear predictor enables the CPF method to take a large step size 

than the linear case, which increases the computational speed of the CPF method. The 

feasible step size control mechanism is also employed in order to speed up the CPF 

computation. A large step size is used in the flat part of the solution curve and a small 

step size is used in the part with a high degree of curvature. This ECPF approach does 

improve the standard CPF method efficiently. But it is still necessary to improve the 

performance of CPF methods further in order to meet the requirements of present and 

future time-scales. 

The proposed GCPF method is more efficient, which employs an original step size 

control rule that is fundamentally different from the conventional feasible step size as 

controlled by the gradient of the solution curve. The step size is controlled by 

calculating the distance of continuous Q-limit breaking points and we make use of a 

nonlinear Lagrange polynomial interpolation technique in order to predict at which 
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point the reactive power limit of a generator is reached. The closest Q-limit breaking 

point is then taken as the next continuation step. In this manner the continuation steps 

are efficiently guided by the prediction of Q-limit points and as a consequence of the 

more adaptable step size control than the conventional rule based method, the GCPF 

method significantly reduces the number of algorithmic continuation steps, which 

results in saving the computational time. 



Chapter 4: Applications of Linear Solvers in 

Power Flow 

This chapter introduces the developmental history of the project of applications of 

iterative solvers in power flow calculation, and also presents the summary of AMD 

ordering scheme, ILU factorization method and linear solver approaches those have been 

investigated in my research work. 
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4.1 Introduction and Background 

The power flow is a well known algorithmic problem which is usually solved by the 

Newton-Raphson method. The power flow function is a set of nonlinear equations, which 

could be solved by an appropriate linear solver after linearization. All the 

Newton-Raphson based power flow programmes have a common feature that one large or 

two small size linear equation systems have to be solved in each Newton-Raphson 

iterative step. We know that CPF is a process that computes many power flow solutions, 

which means the main work of CPF computation is solving linear equations continuously, 

which costs the most computational time, consequently, an efficient linear solver plays an 

important role in CPF calculation and it is another good way to speed up CPF method. 

It is well known that the Gaussian elimination method is a very popular direct method in 

solving linear equations used in engineering system including power system. With the 

development of mathematical algorithms, some researchers have applied non-stationary 

iterative methods in power system to solve the large set of linear equations [34, 36, 37, 39]. 

Such as literature [34] described the first application of the Conjugate Gradients (CG) 

method [33, 75] to the decoupled power flow. In literature [36], another application of CG 

methods to a static security power flow problem is described. For fast decoupled power 

flow, these papers present a significant performance improvement of CG based methods 

compared to the direct method. 
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Because the CG method only can deal with positive definite and symmetric linear system 

matrices, which only could be applied to the decoupled power flow method. Generally 

speaking, the application of CG method only works when preconditioning is applied to the 

linear system of equations. Good preconditioning will group the eigenvalues of the 

transformed linear system matrix and will result in faster convergence. Fortunately, there 

is a natural fit between the preconditioned CG method and the decoupled power flow 

method, because the decoupled power flow has constant linear system matrices. Thus, for 

every power flow calculation this preconditioning matrix must be computed only once and 

remains constant for all Newton-Raphson steps. Actually, only good pre-conditioners 

allow an efficient implementation of CG methods to linear equation systems of power 

flow. 

In literature [36], a derivation of the "Krylov subspace power flow methodology" applied 

to the power flow problem is given to introduce power system application developers to 

the mathematical problem. The main distinction to the CG methods is in the fact that the 

"Krylov subspace power flow methodology" is also applicable to asymmetric, indefinite 

linear system matrices. Krylov subspace power flow (KSPF) does not need any explicit 

computation of the Jacabian terms during the iterations and power flow steps, this method 

can be employed directly to solve the linear equations of the Newton-Raphson power flow 

method due to the characters of Jacobian matrix that is an asymmetric, possibly indefinite , 

matrix [47]. 
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Mathematicians have developed several methods to solve this type of linear system of 

equations, for example the generalized minimum residual method (GMRES), bi-conjugate 

gradient method (BiCG) and bi-conjugate gradient stabilized method (BiCGStab) are 

distinctly different methods for the solution of this class of problems. The full details of 

these methods have been described in the following sections. 

The GMRES method is the generalization of the CG algorithm for asymmetric and 

indefinite linear system matrices. These two methods have in common that the solution 

error decreases from one iteration to the next and the actual solution is obtained within a 

given maximum number of iterations. The other iterative methods use combinations of CG 

concepts and heuristics to obtain a solution for the linear system. As a consequence the 

residual of these methods is not guaranteed to decrease during the iterations. 

Solving a linear equation of the form Ax = b plays an important role in power flow 

calculation, and takes the most computational time in a power flow computation. It is well 

established that iterative methods for solving large sparse sets of linear equations can 

naturally profit from parallelization and factorization [39, 45, 46, 91]. So, I think that is a 

good project to explore an efficient linear solver to speed up CPF computation. In this 

thesis, I have made some meaningful comparisons between the performance of the direct 

and iterative methods. 

The direct method investigated in this research is the Gaussian Elimination method [76]. A 

direct method solves the linear equations in a finite number of steps and may require 
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extensive computational storage and arithmetic processmg. Direct methods have been 

improved over the years through the use of efficient ordering techniques and sparse 

programming [40-44]. Although, the computation time of a direct method can still be the 

limiting factor in cases involving large-scale equation systems or numerous repeated 

solutions [34] such as CPF computation. Whatever, the direct method is the most 

commonly used as the linear solver in power flow computation. 

It has been reported that the application of some iterative methods in power flow 

calculation decreases the computation time, compared with the LDU factorization based 

direct methods, for large power system problems [34, 35]. In this research, the incomplete 

LU factorization (lLU) technique is used as a pre-conditioner to accelerate the GMRES, 

BiCG and BiCGStab methods, which are quite effective in clustering the eigenvalues of 

the linear system [47]. 

4.2 Direct Method 

The direct method investigated in this research is the Gaussian Elimination method [76], 

which is a well know and common used algorithm for linear system of equations on the 

form of Ax = b. The process of Gaussian elimination has two parts. The first part (Forward 

Elimination) reduces a given system to either triangular or echelon form, or results in a 

degenerate equation with no solution, indicating the system has no solution. This is 

accomplished through the use of elementary row operations. The second part uses back 

substitution to find the solution of the system above. 
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Stated equivalently for matrices, the first part reduces a matrix to row echelon fonn using 

elementary row operations while the second reduces it to reduced row echelon fonn or , 

row canonical form. 

Another point of view, which turns out to be very useful to analyze the algorithm is that 

Gaussian elimination computes a matrix decomposition. The three elementary row 

operations used in the Gaussian elimination (multiplying rows, switching rows, and 

adding multiples of rows to other rows) amount to multiplying the original matrix with 

invertible matrices from the left. The first part of the algorithm computes an LU 

decomposition, while the second part writes the original matrix as the product of a 

uniquely determined invertible matrix and a uniquely detennined reduced row-echelon 

matrix. 

Because the widely application of this method, I didn't describe the details of the Gaussian 

Elimination method in this section. The detailed algorithm is presented in the literature 

[76]. 

4.3 Iterative Methods 

The term "iterative method" refers to a wide range of techniques that use successive 

approximations to obtain more accurate solutions to a linear system at each step. At 

present, there are two types of iterative methods. Stationary methods are older, simpler to 

understand and implement, but usually not as effective. Nonstationary methods are a 
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relatively recent development; their analysis is usually harder to understand, but they can 

be highly effective. 

The rate at which an iterative method converges depends greatly on the spectrum of the 

coefficient matrix. Hence, iterative methods usually involve a second matrix that 

transfonns the coefficient matrix into one with a more favorable spectrum. The 

transfonnation matrix is called a pre-conditioner. A good pre-conditioner improves the 

convergence of the iterative method [37, 49], sufficiently to overcome the extra cost of 

constructing and applying the pre-conditioner. Indeed, without a pre-conditioner the 

iterative method may even fail to converge. 

4.3.1 Generalized Minimum Residual Method (GMRES) 

The Generalized Minimal Residual method [48, 77] is an extension of MINRES (Minimal 

Residual method) [78] (which is only applicable to symmetric systems) to asymmetric 

systems. It generates a sequence of orthogonal vectors, but in the absence of symmetry 

this can no longer be done with short recurrences; instead, all previously computed vectors 

in the orthogonal sequence have to be retained. For this reason, "restarted" versions of the 

method are used. 

In the Conjugate Gradient method, the residuals fonn an orthogonal basis for the space 

span~(O) ,Ar(O) ,A2r(O) , ... } . In GMRES, this basis is formed explicitly: 

(()(i) = A v(i) 

for k = 1,"" i 
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OJ(i) = OJ(;) - (OJ(i) , V(k»)V(k) 

end 
V(i+l) = OJ(i} IIIOJ(i}II 

~r(O) is an initial guess 
'-

~ . - 1 ') lor J - ~ ....... . 
Solve r from ~\Ir = b - Ax(O) 

v(1) = r/llrl12 
s := Ilrlbel 
for i = 1. 2, ... , 17l 

Soht.: LV from .:.trw = AvU ) 

for k = 1, .... i 
hk,i = (l1'.v(k») 

l1' = 1.1' - h k .: v(J.) 

end 
h i + l.i = II tv 112 
V(i+l) = w/h:. ) L+1.~ 

apply 11 , .... J:- 1 on (h1.;' ... , h i +1.d 
construct 11.' acting on iLh and (i + 1) st compoll\:"'nl 
of h .. i , sllch lhat (i + l)SL component of Jih .. i is 0 
" '= r ~ i .. __ '1'. -: .••• 

if s(i + 1) is small enough th(~n (UPDATEcr ~ 1) and quit) 
end 
UPDATE(.r. m) 

end 

In this scheme UPDATE(x. i) 
replaces the following computations: 

Compute y as the solution of H y = S. in which 
lhl' upper i x i triangu]ar part of H has hi.) as 
its dements (in least squares Sl)I1Sl' if H is singular). 
s rL'presents the Hrsl i components of s 
:r = J'(O) + Yll,!}) + 112 1.'(2) + ... + Yll~(i) 
s(i+l) = lib - A:r1l2 
if X is an accuralL~ enough approximation then quil 

('0\ -
l) lsl' x· . = ~l' 

Figure 4-1: The Preconditioned GMRES(m) Method 
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The reader may recognize this as a modified Gram-Schmidt orthogonalization. Applied to 

the Krylov sequence {Ak r(O)} this orthogonalization is called the "Arnoldi method" [79]. 

The inner product coefficients (m(i) , V(k») and Ilm(i)11 are stored in an upper Hessenberg 

matrix. 

The GMRES iterates are constructed as 

where the coefficients Yk have been chosen to minimize the residual norm lib - Ax(i)II. 

The GMRES algorithm has the property that this residual norm can be computed without 

the iterate having been formed. Thus, the expensive action of forming the iterate can be 

postponed until the residual norm is deemed small enough. 

The technical description for the restarted GMRES( m) algorithm with pre-conditioner 

M is presented in figure 4-1. The full detail of GMRES hasn't been described in this 

section because it is a quite well known method. The detailed GMRES method has been 

presented in the literature [48]. 

4.3.2 Bi-conjugate Gradient Method (BiCG) 

The Conjugate Gradient method is not suitable for asymmetric systems because the 

residual vectors cannot be made orthogonal with short recurrences. The GMRES method 

retains orthogonality of the residuals by using long recurrences, at the cost of a larger 
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storage demand. The Bi-conjugate Gradient method [49] takes another approach, 

replacing the orthogonal sequence of residuals by two mutually orthogonal sequences, at 

the price of no longer providing a minimization. 

Compute 1'(0) = b - Ax(O) for some initial guess :r(O), 

Choose i'(O) (for example,i~(O) = r(O). 

for i = 1. 2, ... 
solve JJ::(i-l) = r i1- 1) 

solve l,rr i(i-l) = p(i-l) 

P
. _ ,- (i_1)T ,".(i-ll 
1-1 - '. ., 

if Pi-1 = O. lllethod fails 
if i = 1 

Iii) = ::;(i-l) 

1Y» = i(i-l) 

i' f 

!Ji-l = P:-l / Pi-2 

P(i) = .,(l-l) + '3. p(i-l) 
. -~ ! l-1t-' 

P7'(i) = :~(i-1) + .. , jJ-(i-l) 
~ ,-1.-1 

('ud if 
q(i) = Ap(i) 

(/1) = AT jj(i) 

Oi = Pi_l/tli )T q(i) 

:r.(i) = .:r(i-l) + n_i.lli-) 
r(~) = r(i-1) - oidi) 

, -, ,. 1) , ., 
r\\I-} = plJ- - o.Jl~) 

check convergence; continue if necessary 
l:nd 

Figure 4-2: The Preconditioned Bi-conjugate Gradient Method 

The update relations for residuals in the Conjugate Gradient method are augmented in the 

BiConjugate Gradient method by relations that are similar but based on AT instead of A. 

Thus we update two sequences of residuals 

(i) (1-\) a A (i) r = r - p 
I ' 

-(i) -(i-I) AT -(i) r = r -ai P 



and two sequences of search directions 

P (i) = r(i-I) + f3. p(H) p"-'(i) = r(i-I) + f3 "-'(H) 
(/-1)' (i-I)P 

The choices 

ensure the bi-orthogonality relations 

if i 7= j 

The algorithm description for the preconditioned BiCG method with pre-conditioner Mis 

presented in Figure 4-2. The full detail of BiCG hasn't been described in this section 

because it is a quite well known method. The detailed BiCG method has been presented in 

the literature [49]. 

4.3.3 Bi-Conjugate Gradient Stabilized Method (BiCGStab) 

The Bi-Conjugate Gradient Stabilized method (BiCGStab) [50] was developed to solve 

unsymmetric linear systems while avoiding the often irregular convergence patterns of the 

Conjugate Gradient Squared method [80]. Instead of computing the CGS 

sequence i ~ p/ (A)r(O) , Bi-CGSTAB computes i ~ Qi (A)~ (A)r(O) where Qi is an i th 

degree polynomial describing a steepest descent update. 

The algorithm description for the preconditioned BiCGStab method with 

pre-conditioner M is given in Figure 4-3. The full detail of BiCGStab method hasn't been 

described in this section because it is a quite well known method. The detailed BiCGStab 

method has been presented in the literature [50]. 
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Compute ,.(O) = b - A.t(O) for some initial guess :1"(0) 

Choose 7"; (for example. f = 1'(0) 

for i = 1,2.,., 

end 

Pt-1 = I,;T ,,(i-i) 

if Pi-l = 0 nleti10d fails 
if i = 1 

p(i) = r(i-l) 
else 

i1i -1 = (Pi-1/Pi-2)(Oi-1/0-'i-d 
p(i) = r(i-1) + .3i - 1 (p(i-1) - -.(.,'i-1 cO-1)) 

elldif 
solve JI ij = ]/ i) 

e(i) = Aft 
(}i = Pi_l/1-.T rei) 
.5 = r ( i -1) - Q rl Ji) 

check norm of 8: if small enough: set .l'(i) = :r(i-1) + oJ) and stop 
solve JJ.~ = .9 

t = A.s 
.. - = tT ,,/tTt -.(., I ,,:>, 

')' ( i ) = -1' ( i -1) + (.- .1-') + '.~. 
d, {I _ -.(., I .'i 

I' (i) = .., - i.l.'j t 
check convergence: continue if necessarv 

~ ~ 

for continuation it is necessary that uJi =1= 0 

Figure 4-3: The Preconditioned Bi-Conjugate Gradient Stabilized Method 

4.4 Pre-conditioner for Iterative Methods 

The convergence rate of iterative methods depends on spectral properties of the coefficient 

matrix, Hence one may attempt to transform the linear system into one that is equivalent 

in the sense that it has the same solution, but that has more favorable spectral properties, A 

pre-conditioner is a matrix that effects such a transformation [81, 82], 
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For instance, if a matrix M approximates the coefficient matrix A in some way, the 

transformed system 

M-IAx= M-Ib 

has the same solution as the original system Ax = b, but the spectral properties of its 

coefficient matrix M-1 A may be more favorable. 

Since using a pre-conditioner in an iterative method incurs some extra cost, both initially 

for the setup, and per iteration for applying it, there is a trade-off between the cost of 

constructing and applying the pre-conditioner, and the gain in convergence speed [83-86]. 

Certain pre-conditioners need little or no construction phase at all, but for others, such as 

incomplete factorizations, there can be substantial work involved. Although the work in 

scalar terms may be comparable to a single iteration, the construction of the 

pre-conditioner may not be vectorizable or parallelizable even if application of the 

pre-conditioner is. In that case, the initial cost has to be amortized over the iterations or 

over repeated use of the same pre-conditioner in multiple linear systems. 

Iterative method convergence rate is strongly dependent on the coefficient matrix. In fact, 

the matrix may have a very large range of eigenvalues, causing poor convergence 

behaviour or even leading to divergence. When using pre-conditioners, a new matrix 

system is produced with eigenvalues closer to unity. For example, if B = LU is the 

pre-conditioner matrix, then the L- I A U- I matrix is closer to the identity matrix than A. 
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Therefore, the equation system [L-I AU-I] * [Ux] = L-I b is expected to convergence faster. 

Usually, the matrix B is derived by using incomplete LU decomposition of A. 

4.4.1 Column Approximate Minimum Degree Ordering Scheme 

Sparsity preserving ordering scheme is a crucial part of pre-conditioner, ordering affects 

the eigenvalue spectrum efficiently, which in turn has an impact on convergence rates of 

the pre-conditioned iterative methods. The iteration number of iterative methods is almost 

directly related to the norm of the remainder matrix R (A = M + R ,where M is the 

pre-conditioner, A is the coefficient matrix and R is the remainder) [87]. 

In the direct method, the ordering scheme can minimize the storage and the number of 

floating-point operations. Although sparsity is preserved, ordering may affect the size of 

the norm of R. A good ordering scheme is aimed at making M- I A to be close to the 

identify matrix [87]: Ideally the spectrum of M- I A will have a single eigenvalue, in 

practice we content ourselves with a spectrum containing a small number of clusters of 

eigenvalues. 

Linear solver computes the factorization PAQ = LV of a sparse matrix A, where P and Q 

are permutation matrices, L is a lower triangular matrix, and V is an upper triangular 

matrix. The row ordering P is selected during factorization using standard partial pivoting 

with row interchanges. The goal is to select a column preordering, Q. based solely on the 

nonzero pattern of A, that limits the worst-case number of nonzeros in the factorization. 
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The fill-in also depends on P, but Q is selected to reduce an upper bound on the fill-in for 

any subsequent choice of P. The choice of Q can have a dramatic impact on the number of 

nonzeros in Land U. One scheme for determining a good column ordering for A is to 

compute a symmetric ordering that reduces fill-in in the Cholesky factorization of AT A. A 

conventional minimum degree ordering algorithm would require the sparsity structure of 

AT A to be computed, which can be expensive both in terms of space and time since AT A 

may be much denser than A. An alternative is to compute Q directly from the sparsity 

structure of A. The column approximate minimum degree (AMD) ordering scheme is 

based on the same strategy but uses a better ordering heuristic. AMD ordering scheme is 

faster and computes better orderings, with fewer nonzeros in the factors of the matrix. The 

full details of AMD ordering scheme algorithm is described in the literature [56]. 

4.4.2 Incomplete factorization 

The pre-conditioner applied in this research is based on incomplete factorizations of the 

coefficient matrix. We call a factorization incomplete if during the factorization process 

certain fill elements, nonzero elements in the factorization in positions where the original 

matrix had a zero, have been ignored. Such a pre-conditioner is then given in factored 

form M = LU with L being lower and U upper triangular. The efficacy of the 

pre-conditioner depends on how well M-I approximates A-I. 

An important consideration for incomplete factorization pre-conditioners is the cost of the 

factorization process. Even if the incomplete factorization exists, the number of operations 
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involved in creating it is at least as much as for solving a system with such a coefficient 

matrix, so the cost may equal that of one or more iterations of the iterative method. On 

parallel computers this problem is aggravated by the generally poor parallel efficiency of 

the factorization. 

Such factorization costs can be amortized if the iterative method takes many iterations, or 

if the same pre-conditioner will be used for several linear systems, for instance in 

successive time steps or Newton iterations. 

Incomplete factorizations can be gIven III vanous forms. If M = LU (with Land 

U nonsingular triangular matrices), solving a system Mx = y proceeds in the usual way 

below. 

Let AI = LU and ;Ij be given. 
for 'i = 1:2, ... 

Zi = r:/CYi - Lj<i fijZj) 
for i = n, n - 1, n - 2, ... 

-] 
Xi = 'U.ii(Zi - Lj>i 'Uij;r;j) 

but often incomplete factorization are given asM = (D+L)D-1(D+U)(withDdiagonal, 

and Land U now strictly triangular matrices, determined through the factorization 

process). In that case, one could use either of the following equivalent formulations for: 

(D+L)z=y, (I+D-1U)x=z or (I+LD-1)z=y, (D+U)x=z 

In either case, the diagonal elements are used twice (not three times as the formula 

for M would lead one to expect), and since only divisions with D are performed, 

storing D-1 explicitly is the practical thing to do. At the cost of some extra storage, one 
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could store LD-
1 or D-1 U , thereby saving some computation. Solving a system Mx = y 

with M = (D + L)D-1 (D + U) = (D + L)(1 + D-1U) using the first formulation is 

described below. 

4.5 Summary 

Let ItI = (D + L) (1 + D-l U) and y be given. 
for i = 1, 2~ ... 

for 
-'?'i = dj/ (lJi - Lj<i (ijZj) 

i = n, n - 1. n - 2, ... 
J'i = Zi - dijl Lj>i uij;Cj 

The use of good pre-conditioner can improve the convergence of the iterative method, 

although there is a cost for constructing and applying the pre-conditioner. Since applying a 

pre-conditioner has extra cost, there is a balance between the cost of constructing and 

applying the pre-conditioner and the profit in convergence speed or the value of turning a 

divergence system into a convergent one. 

How the AMD ordering scheme affects eigenvalue spectrum and convergence rate in 

dealing with the large sparse coefficient matrix has been discussed in the chapter seven. 

In order to make meaningful compansons between direct and iterative methods it is 

necessary to make sure we are having the same general testing conditions for all the 

methods. One critical issue is pre-conditioner, so we employed incomplete L U 

factorization with the AMD ordering scheme to all of the linear solvers including direct 

Gaussian Elimination method. The fully numerical comparison results and analysis have 

been presented in Chapter seven. 
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Chapter 5: Simulation Tool 

In this research work, the simulation tool is based on the code of Matpower that is created 

by Power Systems Engineering Research Centre (PSERC) at Cornell University. I have 

made plenty of work on the modification and development of the original code of 

Matpower to simulate many experiments in algorithmic comparison between CCPF, ECPF 

and GCPF. I have also modified the code of Matpower to implement Newton-Raphson 

power flow using different linear solvers. 
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5.1 Introduction of Matpower 

Matpower [57] is a package of m-files for solving power flow and optimal power flow 

problems. It is intended as a simulation tool for researchers and educators that are easy to 

use and modify. The code is designed to give the best performance possible while keeping 

the code simple to understand and modify. 

Matpower has three power flow solvers. The default power flow solver is based on a 

standard Newton-Raphson method [88] using a full Jacobian, updated at each iteration. 

This method is described in detail in many textbooks and is popular used all over the 

world. The other two power flow solvers are variations of the fast-decoupled method [89]. 

Matpower implements the XB and BX variations as described in [90]. 

In Matpower, if any generator reactive power limit is violated after the computation of 

power flow, the corresponding bus is converted to a PQ bus, with the reactive output set to 

the limit, and the power flow computation repeats. The voltage magnitude at the bus will 

deviate from the specified value in order to satisfy the reactive power limit. If the 

generator at the reference bus reaches a reactive power limit and the bus is converted to a 

PQ bus, the first remaining PV bus will be used as the slack bus for the next iteration. This 

may result in the real power output at this generator being slightly off from the specified 

values. 

Matpower uses an options vector to control the many options available, such as power 
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flow algorithm and power flow termination criterion. It is similar to the options vector 

produced by the Matlab's Optimization Toolbox. The primary difference is that 

modifications can be made by the option name. 

5.2 Modification and Development of Matpower 

The Matpower provides the best performance to solve the power flow problem using 

Newton's method. Matpower takes advantage of Matlab's built-in sparse matrix, by which 

the computation of power flow becomes faster and less iterations. Therefore, the 

Matpower is a really useful and important tool for the computation of power systems. 

What we are interested is to realize the continuation power flow based on the Matpower. 

Matpower's power flow solution just can calculate a single steady-state of a power system, 

but the continuation power flow is the process that needs to compute continuous solutions 

of power flow with the load demand and generation variations. So there are some 

modifications that need to be done according to the continuation power flow. 

Q-limit guided continuation power flow method has five basic elements: 

1. Parameterization 

2. Predictor 

3. Corrector 

4. Step-size choose 

5. Q-limit index 
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The procedure of modification and development of matpower follow the five basic 

elements. 

5.2.1 Parameterize the Power Flow Equations 

According to the CPF we described the details in Chapter two, there are three different 

types of parameterization: physical parameterization, local parameterisation and arc-length 

parameterization. In this research work we choose the third one, the arc-length 

parameterization to guide the modification of Matpower. 

In this case, the reformulated power flow equations are the combination of the step 

length ~ and the original power flow equations: 

l
!(X)-Ab = 0 

~ h -x; (s » 2 + (A - A( S» 2 } = /',s 2 
(5-1) 

this is the continuation power flow mathematical model. 

Lots of modification and creation in the part of Newton power flow function of Matpower 

needed with regard to the new CPF model. CPF brings one more unknown variable, the 

load parameter A, in power flow, which means that we have to solve the load parameter 

A at each solution. To realize this procedure we need to insert one column and one row 

elements into some matrix to enlarge the dimension, for example the Jacobian matrix if 

the dimension of Jacobian coefficient matrix is n x n, it will be changed to (n + 1) x (n + 1). 
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The detail about the modification of Matpower to solve the combination equations 5-1 is 

described in the corrector section. 

5.2.2 M -file of Predictor 

We develop a new function m file in Matpower to serve as the predictor. The tangent 

method is chosen in GCPF algorithm as a predictor, the set of predictor equations is: 

(5-2) 

this is a set of n+ 1 equations in n+ 1 variables, the load parameter A is the (n+ 1 yh variable, 

please note that the first equation is a set of linear equations in its n+ 1 unknowns and the 

second equation is nonlinear. 

A special method is presented below to solve this n+ 1 equation: 

Suppose 

let Dfk be the matrix of Df with the last column taken out, which is related with load 

parameter A . 

8J; 8fn 

8x} 8xn 
Dfk = · (5-3) · · 

8fn 8fn 

8x} 8xn 

suppose Dfk is not singular, so the unknowns below can be solved. 
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in another form of 

dx1 ... dxn 

ds' ds 

dx; _ f3 dA i = 1 ... n 
ds - ; ds ' " 

(5-4) 

(5-5) 

the solution for the coefficients f3; can be obtained by applying Gaussian elimination to the 

matrix Dfk' Once the f3; is calculated, substitute (5-5) into the second equation of (5-2), 

dA 
the- can be solved by: 

ds 

(5-6) 

the combination of (5-5) and (5-6) can solve all the tangent vector of continuation point 

(Xi ,Ai), a predictor step can be accomplished by integrating one step further in the 

prescribed direction with the step-size h: 

. 1 . 1 dx. 
"1+ _ Xl+ + h--J 
X. - . 

J J ds 

~i+l = A-i+l + h dA­
ds 

J. = 1 ... n , , 

The matlab programme code of predictor is given in Appendix B. 

5.5.3 M-file of Corrector 

(5-7) 

The corrector is the procedure that correct the errors between the predicted approximation 

(ii+1 ,Xi+l) and the next solution (X i +1
, A,i+1

). We choose the Newton-Raphson iterative 

method to compute the solution, this can be realized by modifying the matpower's 
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Newton solver to serve as a corrector. Most of work is the modification of the Jacobian 

matrix and the P&Q mismatch matrix in the Newton solver of Matpower. 

From the continuation power flow equations (5-1), we can see that there is one more 

unknown A than the conventional power flow equations, therefore, the Jacobian matrix 

should have one more dimension than the original matrix. We suppose the original 

Jacobian matrix is: 

J = [J(x)] 

and the Jacobian matrix of continuation power flow get one more row and one more 

column: 

[ 
J(x) b] 

J = 2x - 2x(s) 2A - 2A(S) 

where b is the changes in real and reactive power load demand and the changes in real 

power generation. 

Table 5-1 illustrates the changes we modify the Jacabian matrix to serve as the corrector, 

we can note that the modified J has one more dimension than original J. 
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temp = real(dSbus_dVa(:, [pv; pq]))'; 
j 11 = tempe:, [pv; pq])'; 
temp = real(dSbus_dVm(:, pq))'; 
j 12 = tempe:, [pv; pq])'; 
temp = imag(dSbus_dVa(:, [pv; pq]))'; 
j21 =temp(:,pq),; 
temp = imag(dSbus_dVm(:, pq))'; 
j22 = tempe:, pq)'; 

temp = real(dSbus_dVa(:, [pv; pq]))'; 
j 11 = tempe:, [pv; pq])'; 
temp = real(dSbus_dVm(:, pq))'; 
j 12 = tempe:, [pv; pq])'; 
j 13 = - real(b([pv; pq])); 
temp = imag(dSbus_dVa(:, [pv; pq]))'; 
j21 = tempe:, pq)'; 

J=[ jlljl2; 
j21 j22; 

temp = imag(dSbus_dVm(:, pq))'; 
j22 = tempe:, pq)'; 

c:=::> j23 = - imag(b(pq)); 
]; 

j31 = 2 * (Va([pv;pq]) - va([pv;pq]))'; 
j32 = 2 * (Vm(pq) - vm(pq))'; 
j33 = 2 * (A - a); 

J=[ jIlj12jI3; 
j21 j22 j23; 
j3I j32 j33; ]; 

Table 5-1: Modification of Jacabian matrix in Matpower 

mis = V . * conj(Ybus * V) - Sbus; 

F = [ real(mis([pv; pq])); 

imag(mis(pq)) ]; 

mis = V .* conj(Ybus * V) - A * b - Sbus; 

Mis = sum((Va([pv;pq]) - va([pv;pq])) /'2) 

+ sum((Vm(pq) - vm(pq)) /'2) + (A -

a )1\2 - dsl\2; 

F=[ real(mis([pv; pq])); 

imag(mis(pq)); 

Mis ]; 

Table 5-2: Modification of P&Q mismatch matrix in Matpower 
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A 

The P&Q mismatch matrix F is changed from F = [~- p] to F = ~= ~ 
Q-Q L1i 2 _As'2 

Where the P is the real power of all the PV and PQ buses, and Q is the reactive power of 

all PQ buses. 

Table 5-2 illustrates the changes we modify the original mismatch matrix, we can note that 

the modified mismatch matrix F has one more row element in the matrix. The matlab 

program code is presented in Appendix C. 

5.2.4 Choice of Step Size 

The step size is an important element that affects the computational accuracy. If we choose 

a small step size in CCPF computation, it is safe to pass the critical point without 

divergence, but this will take too many continuation steps in the flat part of P-V curve, and 

make the computation inefficient. 

The ECPF developed by Mori and Yamada proposes a new step size control rule, which 

improves the CCPF method efficiently. It takes large step size in the flat part ofP-V curve, 

and adjust the value of step size to smaller and smaller according to the gradient of P-V 

curve. 

The Q-limit guided CPF method can avoid the trouble of the selection of step size, 

because the step-size can be efficiently guided by the Q-limit breaking index. We just 
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choose a small step size to secure the accuracy requirement of computation, and then set 

the value of original step-size as a constant. During the computational process, the step 

size of some continuation step will be changed by 

where the hq is the step SIze, the Aq is the Q-limit index, the An is the value of the 

parameter A of current continuation step. Basically, the value of hq depends on where the 

reactive power of generation will reach its limit. After the Q-limit breaking point is passed, 

the step size hq will be change back to the initial value, and then go to the next process. 

The proposed GCPF uses Q-limit indices to change the step size, so, just pre-set the step 

size that fit the requirement of accuracy requirement. The step size would be guided 

feasible by the Q-limit breaking indices. 

5.2.5 Q-limit Index Predictor 

In order to realize this procedure in Matpower, a new function of m-files is needed. The 

algorithm of Q-limit index computation can be described by the six steps below: 

1). At first, Compute three solutions of conventional continuation power flow. 

2). Then, to compute the reactive power QG for every generator in every solution. 

3). For each generator j , construct a matrix 
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and construct a vector 

A -j -

Q~jO 
Q~jl 
Q~J2 

g . = [a . ,b . ,c . ]T 
J J J J 

1 

1 

1 

4). Solve Ajg j = A, we can get the coefficient a, b, c of generator j for the equation 

below: 

b. 
J 

5). Calculate the extreme values qGj = - 2a. and obtain a list of generator buses 
J 

that satisfy 

These buses in the list take violation to the reactive power resource, so I call this 

list violation list. 

6). To get the Q-limit index, we substitute the Qmin and Qrnax values for each 

generator bus j that is in the violation list into the interpolated polynomials 
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then we obtain a series of A~rnin and A~max' In each case, only the smallest value 

from them will be of interest. 

We can represent the procedure (6) as follows: 

A - . (Ai Ai ) 
q - mIn qrnin' qrnax 

Subject to Aq > Aa , we take ~ = Aq - Ao as the new step-size to guide the CPF method 

from the current point (xo , Ao ) to the new operating point (x q , Aq). We then change ~ 

back to the initial value to carryon the CPF computation until the Q-limit breaking point 

is reached and then change the bus type from PV to PQ. We then set this Q-limit breaking 

point as the new starting point (xo ,Ao ) and the whole process is repeated again until the 

bifurcation point is reached. 

The matlab programme code of Q-limit index predictor is given in Appendix D. 

5.3 Summary 

We create a package of m-files for solving CPF problems in Matpower, It is intended as a 

simulation tool for researchers and educators that is easy to use. The code is designed to 

give the best performance possible while keeping the code simple to understand and 

modify. Some of the program code are presented in appendices. 
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Chapter 6: Comparison and Analysis of CCPF, 

ECPF and GCPF 

Chapter 6 is the full results of comparisons between CCPF, ECPF and the proposed GCPF 

method. I have made the comparisons in multiple means, which includes illustration 

figures and numerical results tables. A performance comparison is made between CCPF, 

ECPF and GCPF methods in terms of required continuation steps, computational time and 

accuracy. 
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6.1 Introduction 

In this section, I have made plenty of experiments. I compared the proposed Q-limit 

guided continuation power flow (GCPF) method with the conventional continuation 

power flow method (CCPF) and the enhanced continuation power flow (ECPF) in 

required continuation steps, computation time and accuracy of maximum load parameter. 

We would know how GCPF method works and how efficient it is. 

In the experiments, we consider two kinds of load patterns: one is single load bus variation 

pattern, which means to pick up one single load bus from the power system to vary, for 

simplicity we choose the first PQ bus in each data set. Another is multiple load bus 

variation pattern, which means to pick up more than one load bus to vary, for simplicity 

we choose all the load buses of one area if the system network is divided into areas and 

has less than ten load buses, if not we choose the first ten load buses in each data set 

instead or the first twenty five load buses if the system is very large. 

In order to meet the requirement of computing accuracy, we set the basically initial step 

size to be 0.05 for the CCPF method and GCPF method except at some special GCPF 

steps when a valid Q-limit index is computed. The starting step size of ECPF method is 

0.15, and then reduced to 0.1 0, finally the step size 0.05 is employed that is to secure the 

same accuracy requirement with other methods. 
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6.2 Comparison and Analysis of CCPF, ECPF and GCPF 

These meaningful comparisons are conducted on the following 5 power system case 

studies: 

• IEEE 9: 3 generator buses and 3 load buses; 

• IEEE 30: 6 generator buses and 20 load buses; 

• IEEE 118: 54 generator buses and 99 load buses; 

• National Grid (NG) UK 61 bus system [92]; 

• National Grid (NG) UK 953 bus system. 

6.2.1 IEEE 9 Bus System Case 

Areal Area 2 -, 
--------~-------~-----------~ 

1 4 

5 
90MW 
30 MVR. +---_II-f 

85MW 

3 6 

:-----~-------------------------------------. 

• · · • • 
9 

, 
, , 
, 

I---_--I __ --~ 125 MW : 
SOMYR ; 

8 

7 

lOOMW 
J..:----I __ --7 35 MYR 

lG3MW 

• , , 
• · · 

, · , 

· · · • · · , , 
• · · 

Figure 6-1: Illustration of IEEE 9-bus system 
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IEEE 9 bus system is a quite simple power system, just has 3 generators and 3 loads. The 

system has been divided into two areas. The summary of the system is illustrated in Figure 

6-1 and Table 6-1. 

How many How much P(MW) Q(MVAR) 
Buses 9 Total Gen Capacity 820.0 -900.0 to +900.0 
Generators 3 On-line Capacity 820.0 -900.0 to +900.0 
Committed Gens 3 Generation (current) 320.0 34.9 
Loads 3 Load 315.0 115.0 
Branches 9 Losses (11\2 * Z) 4.95 51.31 
Transformers 0 Branch Charging - 131.4 
Areas 2 Shunt 0.0 0.0 
Inter-ties 0 Total Inter-tie Flow 0.0 0.0 

Table 6-1: The summary of IEEE 9 bus system 

The experiments are implemented in single load bus variation and multiple load buses 

variation respectively. 

Single Load Bus Variation Case 

There are 3 load buses totally in IEEE 9 bus system, load bus 5 in area one is chosen to 

vary for this case, both the real power and reactive power of bus 5 increase at equivalent 

rate. In order to compare easily, the P-V curve of load bus 5 is plotted using CCPF, ECPF 

and GCPF methods respectively, and the numerical results are also summarized in tables. 
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Figure 6-2-a: Varying single load bus of IEEE 9 bus system using CCPF 
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Figure 6-2-b: Varying single load bus of IEEE 9 bus system using ECPF 

Figure 6-2-a, 6-2-b and 6-2-c illustrate the curve of voltage magnitude of load bus 5 

versus load parameter A. Figure 6-2-a was obtained using CCPF method, Figure 6-2-b 

was obtained using ECPF method and Figure 6-2-c was obtained using the novel GCPF 

method. In Figures 6-2-a, 6-2-b and 6-2-c, we use dots to denote continuation steps and 

the symbol "o~~ is used to denote the steps where the Q-limit breaking point occurs. 
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Figure 6-2-c: Varying single load bus of IEEE 9 bus system using GCPF 

~ Bus Type Continuation Computation Load Parameter 
Changes Steps time(s) 

CCPF 1 67 0.5684 2.9909 
ECPF 1 39 0.3780 2.9909 
GCPF 1 24 0.2406 2.9890 

Table 6-2: Results summary of varying single load bus of IEEE 9 Bus System 

Discussion 

From Figure 6-2-a, the P-V curve of load bus 5 is plotted using CCPF method, which 

takes too many continuation steps to pass the bifurcation point due to the small step size 

chosen in the whole process. In this case, there is only one bus type changed nearby the 

bifurcation point, and this bus was the original slack bus, we define the PV bus next to the 

original slack bus in the data set to be the new slack bus in our algorithm after the slack 

generator bus is changed to PQ bus type. From the numerical result table 6-2, we observe 

that CCPF method is reliable and stable but not efficient; it takes 67 continuation steps and 

spends 0.5684 seconds to pass the bifurcation point. 
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From Figure 6-2-b, the P-V curve of load bus 5 is plotted using ECPF method, the rule 

based step size control mechanism does improve the CCPF method. From the P-V curve, 

it is clearing apparent that different step size is implemented between the continuation 

steps. The large step size is used in the flat part of the P-V curve, and the step size is 

reduced with the increasing of the curvature of the P-V curve. The step size would be 

reduced further with larger curvature of the curve, finally, changed back to the same step 

size used in CCPF method in order to secure the requirement of accuracy. ECPF works 

more efficient than CCPF, which can be found from the numerical results Table 6-2 ECPF , 

takes 39 continuation steps and spends 0.3780 seconds passing the critical point. 

From Figure 6-2-c, the P-V curve of load bus 5 is plotted using GCPF method, from the 

overview of the curve, the continuation steps are not continuously, there are three 

continuation steps at the beginning of the curve that is for the data collection of Q-limit 

index predictor. When the Q-limit index is computed, the step size will be enlarged, and 

then the current continuation step will be guided to the Q-limit breaking point in the fast 

way possible. It is easy to observe this procedure from the curve of Figure 6-2-c, there is a 

long gap on the curve, which is caused by the Q-limit index predictor. After the 

continuation step is guided by the enlarged step size, the step size will be changed back to 

the initial value to carry on the CPF computation until the Q-limit breaking point is passed, 

and then repeat the procedure of Q-limit predictor to compute another three solutions for 

the next computation of Q-limit index prediction. In this case, GCPF just performs once 

Q-limit index predictor, because the bifurcation point is passed nearby the Q-limit 
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breaking point. From Table 6-2, the proposed GCPF method works more efficient than 

CCPF and GCPF, which takes 24 continuation steps and spends 0.2406 seconds passing 

the critical point. 

In this single load bus variation experiment on IEEE 9 bus system, the data condition is 

not very good to implement GCPF method, because GCPF is seriously depend on the 

distribution of Q-limit breaking points. In this experiment, there is only one generation 

bus reaches its Q-limit and it is quite far from the base solution, which causes the 

Lagrange polynomial interpolation method is not able to predict the Q-limit index 

accurately, that's why GCPF takes many continuation steps before the Q-limit breaking 

point in Figure 6-2-c. In this case, we expected less than 10 continuation steps including 

the first three data collection solutions. In general, GCPF is a quite efficient method to 

compute bifurcation point, which takes 43 and 15 continuation steps less than CCPF and 

ECPF respectively, and saves 0.3278 and 0.1374 seconds comparing to the CCPF and 

ECPF respectively. 

Multiple Load Buses Variation Case 

There are 3 load buses totally in IEEE 9 bus system, load buses 7 and 9 in area two are 

chosen to vary for this multiple case, and both the real power and reactive power of load 

bus 7 and 9 increases in equivalently rate. In order to compare easily, the P-V curve of 

load bus 5 is plotted using the CCPF, ECPF and GCPF methods respectively, and the 

numerical results are also summarized in tables. 
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Figure 6-3-a: Varying multiple load buses of IEEE 9 bus system using CCPF 
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Figure 6-3-b: Varying multiple load buses of IEEE 9 bus system using ECPF 

Figures 6-3-a, 6-3-b and 6-3-c illustrate the curve of voltage magnitude of load bus 5 

versus load parameter A. Figure 6-3-a was obtained using CCPF method, Figure 6-3-b 

was obtained using ECPF method and Figure 6-3-c was obtained using the novel GCPF 
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method. In Figures 6-3-a, 6-3-b and 6-3-c, we use dots to denote continuation steps and 

the symbol "0" is used to denote the step where the Q-limit breaking point occurs. 

0.98 F---.:::-=-_= __ ------r------~=r=============:l 
Continuation Step 

0.96 

~ 0.94 f-
"0 
::J ..... 
. §' 0.92 -
ctI 

:2: 
Q) 0.9-
Cl 
ctI ..... 
~ 0.88 f-

0.86 

o Q-Limit Breaking Point 

-

-

-

. -

0.84 ~-------~-----------L _______ ---1 
o 0.5 1 1.5 

Load Parameter 

Figure 6-3-c: Varying multiple load buses of IEEE 9 bus system using GCPF 

~ Bus Type Continuation Computation Load Parameter 
Changes Steps time(s) 

CCPF 1 48 0.2420 1.5034 
ECPF 1 29 0.1720 1.5034 
GCPF 1 20 0.1325 1.4928 

Table 6-3: Results summary of varying multiple load buses of IEEE 9 Bus System 

Discussion 

From Figure 6-3-a, the P-V curve of load bus 5 is plotted using CCPF method, the 

continuation steps distribute serried on the P-V curve that means CCPF still takes a large 

number of continuation steps for the computation of bifurcation point. There is one 

Q-limit breaking point occurs during the whole computational steps, which was the initial 

slack bus, the next PV bus is changed to be the new slack bus. CCPF method is a reliable 
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and stable but not efficient compared with ECPF and GCPF methods. CCPF takes 48 

continuation steps and spends 0.2420 seconds passing the bifurcation point from Table 

6-3. 

From Figure 6-3-b, the P-V curve of load bus 5 is plotted using ECPF method. ECPF uses 

large step size at the start of the computation, and reduces the step size with the gradient 

of curve increasing that is illustrated in the Figure 6-3-b clearly. The continuation steps 

locate sparsely in the "flat" part of the curve, then the location of steps are becoming more 

and more dense closing to the critical point at end of the curve, which is affected by the 

rule based step size control mechanism applied in ECPF. From the numerical results table, 

ECPF method takes 29 continuation steps and spends 0.1720 seconds passing the critical 

point, which proves that ECPF is more efficient method than CCPF, and did improve the 

CCPF. 

From the Figure 6-3-c, the P-V curve of load bus 5 is plotted using the novel GCPF 

method. The data set of IEEE 9 bus system did not provide good condition to implement 

GCPF, the reason has been discussed in the single load bus variation case, because the 

efficiency of GCPF strongly depends on the distribution of Q-limit breaking point. In this 

multiple load bus variation case, there is only one reactive power output of generator that 

has reached its limit, so the step size is efficiently adjusted only once during the whole 

computation process, the Lagrange polynomial interpolation can not predict very 

accurately under this condition. From Table 6-3, we see GCPF takes 20 continuation steps 
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and spends 0.1325 seconds completing the computation. GCPF is still faster than CCPF 

and ECPF, but not as we expected less than 10 steps. 

In this multiple load bus variation case, we get the similar results with the single load bus 

variation case. From the numerical result in Table 6-3, we see that GCPF takes 28 and 9 

continuation steps less than CCPF and ECPF methods respectively, and saves 0.1095 and 

0.0395 seconds respectively. The proposed GCPF is quite efficient than CCPF, but is 

comparable to the ECPF. 

The IEEE 9 bus system provides a special condition that is only one Q-limit breaking 

point occurs closing to the bifurcation point and the Q-limit breaking point is quite far 

from the base case solution. So the Q-limit index predictor procedure did not predict very 

accurately, which causes GCPF method takes many continuation steps before Q-limit 

breaking point in the Figures 6-2-c and 6-3-c. So, it comes to a conclusion that 

implementation of GCPF is relying on the location and quantity of Q-limit breaking point 

and the novel GCPF is much more efficient than the conventional CPF method. 
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6.2.2 IEEE 30 Bus System Case 
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Figure 6-4: Illustration of IEEE 30 Bus System 

How many How much P(MW) Q(MVAR) 
Buses 30 Total Gen Capacity 335.0 -95.0 to +405.9 
Generators 6 On-line Capacity 335.0 -95.0 to +405.9 
Committed Gens 6 Generation (current) 191.6 100.4 
Loads 20 Load 189.2 107.2 
Branches 41 Losses (l"'2 * Z) 2.44 8.99 
Transformers 0 Branch Charging - 15.6 
Areas 3 Shunt 0.0 0.2 
Inter-ties 7 Total Inter-tie Flow 66.4 54.2 

Table 6-4: The summary of IEEE 30 bus system 

IEEE 30 bus system is a well tested case, has 6 generators, 20 load buses and 41 branches. 

The network of IEEE 30 has been divided into three areas as illustrated in Figure 6-4 [93]. 
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Single Load Bus Variation Case 

We choose the load bus 21 in area three to vary for this case, both the real power and 

reactive power of bus 21 increase at equivalent rate. In order to compare easily, the P-V 

curve of load bus 3 is plotted using CCPF, ECPF and GCPF methods respectively, and the 

numerical results are summarized in tables. 
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Figure 6-5-a: Varying single load bus of IEEE 30 bus system using CCPF 

Figure 6-5-a, 6-5-b and 6-5-c illustrate the curve of voltage magnitude of load bus 3 

versus load parameter A . Figure 6-5-a was obtained using the CCPF method, Figure 6-5-b 

was obtained using ECPF method and Figure 6-5-c was obtained using the novel GCPF 

method. In Figures 6-5-a, 6-5-b and 6-5-c, we use dots to denote continuation steps and 

the symbol "0" is used to denote the step where the Q-limit breaking point occurs. 
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Figure 6-5-b: Varying single load bus of IEEE 30 bus system using ECPF 
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Figure 6-5-c: Varying single load bus of IEEE 30 bus system using GCPF 

~ Bus Type Continuation Computation Load 
Changes Steps time(s) Parameter 

CCPF 5 166 0.8280 7.7584 
ECPF 5 97 0.5470 7.7584 
GCPF 5 35 0.4060 7.7579 

Table 6-5: Results summary of varying single load bus of IEEE 30 Bus System 
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Discussion 

From Figure 6-5-a, the P-V curve of load bus 3 is plotted using CCPF method. From the 

viewing of the P-V curve, CCPF takes too many continuation steps to pass the bifurcation 

point; from the numerical results Table 6-5, the CCPF method takes 166 continuation 

steps totally and spends 0.8280 seconds finishing the critical point calculation. There are 

five Q-limit breaking points during the whole computing process, and these five points 

distribute equably on the P-V curve, which looks like a good condition to implement the 

proposed GCPF method. 

From Figure 6-5-b, the P-V curve of load bus 3 is plotted using ECPF method. From the 

view of the curve, it is quite clear how the rule based step size control mechanism works. 

At the start of the curve, the distance between the continuation steps is large, the distance 

becomes smaller in the middle of the curve, and the distribution of the continuation steps 

become very dense in the rest of the curve due to the step size being changed back to the 

initial value. From the numerical results Table 6-5, ECPF takes 97 continuation steps, and 

spends 0.5470 seconds reaching the critical point. These results prove that ECPF is an 

efficient method, and improved the CCPF distinctly. 

From Figure 6-5-c, the P-V curve of load bus 3 is plotted using our proposed GCPF 

method. These results are what the GCPF method expected to obtain, GCPF method 

reduces the number of continuation steps required significantly, therefore, the GCPF 

method saves substantial computation time. From the numerical results in Table 6-5, it is 

clear to see that the proposed GCPF method requires much less continuation steps. In this 
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case GCPF takes 35 continuation steps, spends 0.4060 seconds finishing the computation. 

The maximal load parameter calculated by the GCPF method has the same accuracy with 

that calculated using CCPF and ECPF. From Figure 6-5-c, we can observe how the GCPF 

method works, the curve shows us there are five symbols "0", which indicates that five 

generator buses reached their Q-limit and that all the bus type of these buses have been 

changed from PV to PQ. If we analyze this curve in detail, it can be seen that initially we 

compute three solutions by CPF to collecting the data for predicting Q-limit index, then 

the index changes the step size. The new step size guides the current solution directly to 

the next continuation step with enlarged step size that is very close to the Q-limit breaking 

point. After this solution, we change the step size back to the initial value and carryon the 

CPF procedure until the Q-limit breaking point is reached or the bifurcation point passed, 

if the former occurs then the bus type of the Q-limit breaking generator would be changed 

to PQ type. The process is repeated for the computation of the next three continuation 

steps to collect the data for the next Q-limit breaking index predictions. When there is no 

more violation of the Q-limits breaking in the final part of the curve, the final index value 

is not the predicted Q-limit breaking index, but the extreme value instead. 

In this single load bus variation case, our GCPF works very well. The IEEE 30 bus system 

data provides a good condition to implement the GCPF method. There are five Q-limit 

breaking points occur during the whole process, and locate along the P-V curve equably. 

In this case, the Lagrange polynomial interpolation predicts the Q-limit indices quite 

accurately. GCPF just takes a few continuation steps before each Q-limit breaking point, 

which save a large number of computational steps. In this single load bus variation case, 
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GCPF method presents an excellent performance, the computation speed is much more 

faster than CCPF and ECPF, GCPF takes 131 and 62 steps less than CCPF and ECPF 

respectively, and saves 0.4220 and 0.1410 seconds comparing to CCPF and ECPF 

respectively. 

Multiple Load Bus Variation Case 

The IEEE 30 bus system has been divided into three areas as illustrated in Figure 6-4 [93]. 

In this multiple load bus variation case, we choose the variation load buses by area, there 

are seven load buses in area 3, they are buses 10, 21, 24, 25, 26, 29 and 30, at which both 

P and Q are varied at equivalent rate. In order to compare easily, the P-V curve of load bus 

3 is plotted using CCPF, ECPF and GCPF methods respectively, and the numerical results 

are summarized in tables. 
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Figure 6-6-a: Varying multiple load buses of IEEE 30 bus system using CCPF 
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Figure 6-6-b: Varying multiple load buses of IEEE 30 bus system using ECPF 

I 

----
0.99 

0.98 - ---------
;. 0.97 
Il) 
"0 
~ 0.96 
c 
Cl 

~ 0.95 
Il) 

~ 0.94 ..... 
o 
> 0.93 

r-

r-

r-

0.92 

0.91 o 0.5 

I T I . 
0 

~ ..... ------------.. 
~ 

-'~-~ 
~ .. ., .. 

I 

1 1.5 2 
Load Parameter 

Continuation Step 
Q-Limit Breaking Point 

-

-

'e • -.. .. 
"-

~ 
" " -

\ .. 
\ -, 

I \ 
2.5 3 3.5 

Figure 6-6-c: Varying multiple load buses of IEEE 30 bus system using GCPF 

Figure 6-6-a, 6-6-b and 6-6-c illustrate the curve of voltage magnitude of load bus 3 

versus load parameter A . Figure 6-6-a was obtained using the CCPF method, Figure 6-6-b 

was obtained using ECPF method and Figure 6-6-c was obtained using the novel GCPF 
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method. In Figures 6-6-a, 6-6-b and 6-6-c, we use dots to denote continuation steps and 

the symbol "0" is used to denote the step where the Q-limit breaking point occurs. 

~ Bus Type Continuation Computation Load 
Changes Steps time(s) Parameter 

CCPF 4 78 0.6720 3.0166 
ECPF 4 47 0.4840 3.0165 
GCPF 4 35 0.3750 3.0149 

Table 6-6: Results summary of varying multiple load buses of IEEE 30 Bus System 

Discussion 

From Figures 6-6-a, 6-6-b and 6-6-c, the CCPF and ECPF methods take a large number of 

continuation steps to reach the bifurcation point, but the GCPF method reduces the 

number of steps required significantly. Therefore, the novel GCPF method saves 

substantial computational time. In this case the GCPF method gives another optimal 

results and performance, and it is quite clear how GCPF works from the curve of Figure 

6-6-c. 

From Figure 6-6-c, the P-V curve illustrates the optimal algorithm procedure, and presents 

optimal results. From the view of the curve, the first three continuation solutions are the 

procedure of data collection of Q-limit index prediction. When the Q-limit index is 

available, the continuation step skips to the next step with the enlarged step size that is 

changed by the Q-limit index; this process ignores a large number of unnecessary 

continuation steps. The Q-limit index prediction procedure would repeat after the 

predicted Q-limit breaking point reached or bifurcation point passed. In this multiple load 
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bus variation case, we'd like to emphasize that the last Q-limit index is not the prediction 

of Q-limit breaking point, but the extreme value of quadratic P-Q curve predicted by 

Lagrange polynomial interpolation formula, which could be observed at the end of the 

P-V curve of Figure 6-6-c, there is no more Q-limit breaking point occurring in the last 

series of continuation solutions until the bifurcation point is passed. 

In this multiple load bus variation case, we could draw the similar conclusions to the 

single load bus case. Our proposed GCPF is an excellent method, which takes 43 and 12 

steps less than CCPF and ECPF respectively, and saves 0.1880 and 0.1090 seconds in the 

computation time respectively. The data set of IEEE 30 bus system provides a very good 

condition to implement GCPF. 

6.2.3 IEEE 118 Bus System Case 

The IEEE 118 bus system is a complicated system, which has 54 generation buses and 99 

load buses. The difference from the above two cases is that this case has 9 transformers 

and the buses didn't be divided into areas, all the buses are in one area in the data set. So, 

the variation load buses may not be chosen by area in this case, we choose the first ten 

load buses to be the multiple variation load bus from the base data set. 

Single Load Bus Variation Case 

IEEE 118 bus system hasn't been divided into areas, so we pick up the first load bus as the 

variation bus; the first PQ bus is bus 3 in the IEEE 118 data set, the both P and Q at bus 3 

to be varied at equivalent rate. In order to compare easily, the P-V curve of load bus 3 is 
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plotted by using CCPF, ECPF and GCPF methods respectively, and the numerical results 

are summarized in tables. 
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Figure 6-7-a: Varying single load bus of IEEE 118 bus system using CCPF 
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Figure 6-7-b: Varying single load bus of IEEE 118 bus system using ECPF 
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Figure 6-7 -c: Varying single load bus of IEEE 118 bus system using GCPF 
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Figure 6-7-a, 6-7-b and 6-7-c illustrate the curve of voltage magnitude of load bus 38 

versus load parameter A. Figure 6-7-a was obtained using the CCPF method, Figure 6-7-b 

was obtained using ECPF method and Figure 6-7-c was obtained using the novel GCPF 

method. In Figures 6-7-a, 6-7-b and 6-7-c, we use dots to denote continuation steps and 

the symbol "0" is used to denote the step where the Q-limit breaking point occurs. 

~ Bus Type Continuation Computation Load Parameter 
Changes Steps time(s) 

CCPF 17 243 3.2184 10.9720 
ECPF 17 141 2.2575 10.9725 
GCPF 17 71 1.5620 10.9620 

Table 6-7: Results summary of varying single load bus of IEEE 118 Bus System 
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Discussion 

From the overview of Figures 6-7-a, 6-7-b and 6-7-c, we could draw the similar 

conclusions to the case of IEEE 30 bus system. The proposed GCPF method is always 

faster than other methods, GCPF takes 172 and 70 continuation steps less than CCPF and 

ECPF respectively, and saves 1.6564 and 0.6955 seconds respectively. In this case, there 

are 17 generator buses that reach their Q-limit, there should be 17 Q-limit breaking points 

on the P-V curve, but there are 12 Q-limit breaking points on the curve actually, which is 

because some generator buses break their Q-limit in a same continuation step during the 

computation process. We can also note that at the start of the P-V curve of Figure 6-7 -c, 

there is a Q-limit breaking point that occurs in the procedure of data collection of Q-limit 

index prediction, in this case, we have to compute another three solutions to predict 

Q-limit index after passing the Q-limit breaking point. This situation also happened in the 

rest of computation process, we can see that there is another Q-limit breaking point that 

occurs in the procedure of data collection in the fourth departed series of continuation 

steps on the curve, so we restart to compute another three continuation steps in our GCPF 

algorithm. 

Multiple Load Buses Variation Case 

In this case, we choose the variation load buses by the sequence of PQ bus in the IEEE 

118 system data set due to the fact that the system hasn't been divided into areas, the first 

ten PQ buses are picked up to vary, they are bus 2, 3, 5, 7, 9, 11, 13, 14, 16 and 17, at 

which both P and Q are varied at equivalently rate. In order to compare easily, the P-V 
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curve of load bus 38 is plotted by using CCPF, ECPF and GCPF methods respectively, and 

the numerical results are summarized in tables. 
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Figure 6-8-a: Varying multiple load buses of IEEE 118 bus system using CCPF 
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Figure 6-8-b: Varying multiple load buses of IEEE 118 bus system using ECPF 
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Figure 6-8-c: Varying multiple load buses of IEEE 118 bus system using GCPF 

Figure 6-8-a, 6-8-b and 6-8-c illustrate the curve of voltage magnitude of load bus 38 

versus load parameter A. Figure 6-8-a was obtained using CCPF method, Figure 6-8-b 

was obtained using ECPF method and Figure 6-8-c was obtained using the novel GCPF 

method. In Figures 6-8-a, 6-8-b and 6-8-c, we use dots to denote continuation steps and 

the symbol "0" is used to denote the step where the Q-limit breaking point occurs. 

~ Bus Type Continuation Computation Load 
Changes Steps time(s) Parameter 

CCPF 20 206 2.8280 2.7684 
ECPF 20 132 2.2196 2.7684 
GCPF 20 92 1.6720 2.7669 

Table 6-8: Results summary of varying multiple load buses of IEEE 118 Bus System 

Discussion 

From the viewing of Figure 6-8-a, 6-8-b and 6-8-c, the ECPF and GCPF methods both 

reduce the required continuation steps, and improve the CCPF method efficiently. From 
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the numerical results in Table 6-8, the proposed GCPF method takes 114 and 40 steps less 

than CCPF and ECPF method respectively, saves 1.1560 and 0.5476 seconds in 

computation time respectively, which is the optimal results we expected to obtain. The 

data of IEEE 118 bus system provides a good condition to implement the novel GCPF 

method. In this multiple load buses variation case, we draw the similar conclusions to the 

single load bus variation case, but there are more Q-limit breaking points that occur in the 

data collection procedure of Q-limit breaking index prediction. There are 20 generators 

that reach their Q-limit, but the figures only illustrate 15 Q-limit breaking points on the 

curve, because some Q-limit breaking points occurred in the same continuation steps. 

The IEEE 118 bus system case experiment further proves the performance of our proposed 

GCPF method that is much better than CCPF, and is more efficient than ECPF. All of 

these methods compute the bifurcation point with the same requirement of accuracy. 

6.2.4 NG 61 Bus System Case 

The data was supplied to us by the National Grid Company (NGC), which owns and 

operates the high voltage electricity transmission system in England and Wales. This NG 

61 power system network is on the South West Peninsula, it is one of the parts of the NGC 

system most prone to voltage collapse. The network is shown in Appendix A. It comprises 

the 400KV system extending from Dungeness in Kent, and Melksham in Wiltshire, to 

Indian Queens in Cornwall. 
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Either of two contingencies shown in Appendix A would cause a large change in the 

general topology of the network, and leave the Cornwall load electrically more remote 

from sources of generation. The "South of Hinkley" double circuit outage (SOH) would 

leave Fawley the remaining major source, supplying load through the south coast 400KV 

double circuit route. Alternatively, the "East of Mannington" double circuit outage (EOM) 

would leave the load supplied from Hinkley Point. Exeter is a critical bussing point for 

reactive power support to the Cornwall network. 

Indian Queens, being the most remote point in the network is most prone to voltage 

collapse under either of the two contingencies. The feasibility margin in this case is 

assessed with a load increase at all 132KV bus bars, while generation is increased at the 

fossil fuelled stations of Fawley and Didcot, and at the slack 400KV bus bar at Dungeness 

representing infeed at this point [92]. 

Single Load Bus Variation Case 

This is a realistic power system. We take the PQ bus 4 in the data set ofNG 61 bus system 

to vary, and the both P and Q at bus 4 is varied at equivalently rate. In order to compare 

easily, the P-V curve of load bus 4 is plotted using CCPF, ECPF and GCPF methods 

respectively, and the numerical results is also summarized in tables. 
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Figure 6-9-a: Varying single load bus of NGC 61 bus system using CCPF 
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Figure 6-9-b: Varying single load bus of NGC 61 bus system using ECPF 

Figure 6-9-a, 6-9-b and 6-9-c illustrate the P-V curve of voltage magnitude of load bus 4 

versus load parameter A . Figure 6-9-a was obtained using the CCPF method, Figure 6-9-b 

was obtained using ECPF method and Figure 6-9-c was obtained using the novel GCPF 
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method. In Figures 6-9-a, 6-9-b and 6-9-c, we use dots to denote continuation steps and 

the symbol "0" is used to denote the step where the Q-limit breaking point occurs. 
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Figure 6-9-c: Varying single load bus of NGC 61 bus system using GCPF 

~ Bus Type Continuation Computation Load 
Changes Steps time(s) Parameter 

CCPF 8 48 0.5960 1.6952 
ECPF 8 25 0.3750 1.6948 
GCPF 8 21 0.3520 1.6960 

Table 6-9: Results summary of varying single load bus ofNGC 61 Bus System 

Discussion 

This NG 61 bus system is a realistic power system. From the overview of figures and table, 

we observe that the novel GCPF works much better than CCPF, and is comparable faster 

than ECPF. From the numerical results in Table 6-9, GCPF method saves 27 and 4 

continuation steps comparing to CCPF and ECPF respectively, and reduces 0.6640 and 
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0.0230 seconds respectively. The NG 61 bus system does not provide the optimal 

condition to implement GCPF, because the distance between the third and fourth Q-limit 

breaking point is so long, in other word, the distribution of Q-limit breaking point is not 

equable, which result in the Lagrange polynomial interpolation formula is not able to 

predict the Q-limit breaking index accurately. That's why GCPF takes many continuation 

steps before the fourth Q-limit breaking point. 

The P-V curve of Figures 6-9-a and 6-9-c illustrate that there are 5 Q-limit breaking points 

on the curve, but there are 4 Q-limit breaking points on Figure 6-9-b, the reason is that the 

ECPF method takes large step size at the beginning of computation, if any two Q-limit 

breaking points are too close, ECPF changed their bus type from PV to PQ in the same 

continuation step. The CCPF and GCPF adapt small step size during the whole CPF 

computation process, so they can secure the calculation accuracy in every single step. The 

ECPF method can only secure the required calculation accuracy in steps near the 

bifurcation point. So the GCPF is not only faster, also can keep the same accuracy at every 

computational step. 

Multiple Load Bus Variation Case 

In this realistic NG 61 bus system, I pick up the first ten load buses in the data set of NG 

61 bus system to vary. They are buses 2 to 11, at which both P and Q is varied at 

equivalently rate. In order to compare easily, the P-V curve of load bus 4 is plotted using 

CCPF, ECPF and GCPF methods respectively, and the numerical results are summarized 

in tables. 
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Figure 6-10-a: Varying multiple load buses ofNGC 61 bus system using CCPF 
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Figure 6-10-b: Varying multiple load buses ofNGC 61 bus system using ECPF 

Figures 6-10-a, 6-10-b and 6-10-c illustrate the P-V curve of voltage magnitude of load 

bus 4 versus load parameter A. Figure 6-10-a was obtained using the CCPF method, 

Figure 6-1 O-b was obtained using ECPF method and Figure 6-1 O-c was obtained using the 

novel GCPF method. In Figures 6-10-a, 6-10-b and 6-10-c, we use dots to denote 
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continuation steps and the symbol "0" IS us d t d t th h e 0 eno e e step were the Q-limit 

breaking point occurs. 
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Figure 6-10-c: Varying multiple load buses ofNGC 61 bus system using GCPF 

~ Bus Type Continuation Computation Load 
Changes Steps time(s) Parameter 

CCPF 13 31 0.5278 0.6008 
ECPF 13 27 0.4530 0.6004 
GCPF 13 23 0.4434 0.6013 

Table 6-10: Results summary of varying mUltiple load buses ofNG 61 Bus System 

Discussion 

From Figure 6-10-a and table 6-10, we see that CCPF method takes 31 continuation steps 

to reach the bifurcation point, but there are 8 Q-limit breaking points that occur in the 

whole process, which causes the ratio of Q-limit breaking point to total continuation step 

is too high, this is another poor condition to implement GCPF method, because GCPF 
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method is not able to pass over any Q-limit breaking point, which makes GCPF be 

constrained to reduce the number of required steps but this will not affect the ECPF 

method. So, under this condition the proposed GCPF just presents a general performance, 

which saves 8 and 4 continuation steps and 0.0844 and 0.0096 seconds comparing to 

CCPF and ECPF respectively. 

We could draw another conclusion that the high ratio of Q-limit breaking point to total 

continuation steps is not a good condition to implement the proposed GCPF method. In 

this case, we just get comparable results between CCPF, ECPF and GCPF methods. 

6.3 Investigation and Analysis ofNG 953 Bus System 

This NG 953 bus system is another realistic power system in my research work, which has 

96 generators and 397 load buses. The system network has been divided into 5 areas. 

There are some issues when we test this large realistic system, as a result of the practical 

characteristics, it is a quite large and complicated power system. Due to the large number 

of buses in the system, we only consider the multiple load bus variation patterns in this 

section and we analyse every individual area using CCPF, ECPF and GCPF methods 

respectively. 

Because this practical case has large number of buses and we do not know what 

mechanism used to number all the buses from the original data. So we couldn't pick up the 

load buses by regions or location of buses due to the invisible network. For simplicity we 
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choose the varying load buses by the number of PQ bus in the data set of each area, the 

first 25 PQ buses are chosen to increase as the multiple load bus variation pattern. In 

future work, I will draw out a visible network diagram for NG 953 system, and implement 

the multiple patterns by regions to analyse the network characteristics further. 

Multiple Load Bus Variation Case in Area One 

Area one has 11 generators, 1 slack bus and 93 PQ buses, the first 25 PQ buses are chosen 

to vary, they are bus number 1 to 23, 28 and 29, at which both P and Q are varied at 

equivalently rate. In order to compare easily, the P-V curve of load bus 13 is plotted using 

CCPF, ECPF and GCPF methods respectively, and the numerical results are summarized 

in tables. 
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Figure 6-11-a: Varying multiple load buses in area one ofNG 953 using CCPF 

Figures 6-1 I-a, 6-II-b and 6-II-c illustrate the curve of voltage magnitude of load bus 13 

versus load parameter A. Figure 6-11-a was obtained using the CCPF method, Figure 
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6-11-b was obtained using ECPF method and Figure 6-11-c was obtained using the novel 

GCPF method. In Figures 6-11-a, 6-11-b and 6-11-c, we use dots to denote continuation 

steps and the symbol "0" is used to denote the step where the Q-limit breaking point 

occurs. 
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Figure 6-11-c: Varying multiple load buses in area one ofNG 953 using GCPF 

109 



~ Bus Type Continuation Computation Load 
Changes Steps time (s) Parameter 

CCPF 1 159 23.1954 0.7901 
ECPF 1 79 15.0064 0.7901 
GCPF 1 66 10.5502 0.7906 

Table 6-11: Results summary of varying multiple load buses in area one of NG953 

Discussion 

In this case, there is an only one generator break its Q-limit, which is not a good condition 

to implement the novel GCPF method actually. From Figure 6-11-c, we can observe 

GCPF takes too many steps to reach the only Q-limit breaking point, which means the 

Lagrange polynomial interpolation technique does not predict the Q-limit breaking index 

accurately, but this approach still guides the continuation steps to the Q-limit breaking 

point as fast as it can and saves large number of steps required. This generator of Q-limit 

breaking was the slack bus, after changing it to PQ bus type, the next PV bus in the data 

set that will be the new slack bus in GCPF algorithm. 

Under this condition, our GCPF method saves 93 and 13 computational steps, 12,6452 and 

4.4562 seconds in computational time comparing to CCPF and ECPF respectively. 

Multiple Load Bus Variation Case in Area Two 

Area two has 10 PV buses and 156 PQ buses, the first 25 PQ buses are selected to vary, 

they are buses 107 to 112 and 114 to 132, at which both P and Q are varied at equivalently 

rate. The P-V curve of bus 111 is first plotted using CCPF method. 
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Figure 6-12: Failure in varying multiple load buses in area two ofNG953 

When we implement the CCPF method in area two, the solution procedure suddenly 

breaks down. Figure 6-12 illustrates the P-V curve in this situation that the computation 

process suddenly tenninated at the last step. 

Voltage collapse can occur in a power system following a progressive decline at the 

bifurcation point, usually due to load increasing. A lack of adequate reactive power 

compensation in a power system has been recognized as a major contributing factor in a 

voltage collapse process. As we know, once a reactive power compensator has reached its 

limit, it can no longer adjust the voltage. Consequently, large increases in load may result 

in sudden voltage collapse. Although there are some other factors that influence the 

voltage collapse process, in this paper we have focussed on reactive power compensators 

reaching their Q-limit. 

111 



Therefore, in this research work we adopted a strategy that removes largest load bus first, 

then the second largest load bus, and so on in this manner until the algorithm is able to 

determine a definite saddle-node bifurcation point. We have reported the results of this 

strategy in table 6-2. 

Varying bus list Generators steps 
Load 

time (s) 
parameter 

107to112,114 to132 1,18,81,86,15 183 0.5173 16.1720 
Remove bus 109 1,18,86,81 178 0.7738 15.3910 
109,118 1,18,86,81 177 0.8994 15.4530 
109,118,116 1,86,81,18 177 1.0706 15.5630 
109,118,116,120 1,18,86,81 170 1.2082 15.1720 
109,118,116,120,123 1,18,81,86 179 1.4751 15.7500 
109,118,116,120,123 

1,18,81,86 188 1.8201 16.5000 
122 
109,118,116,120,123 

1,81,86 
122,128 

189 2.2112 16.5470 

109,118,116,120,123 1,81,86 
122,128,130 

178 2.5543 15.7190 

109,118,116,120,123 18,86,1,15 
122,128,130,124,125 

148 3.2779 14.2340 

Table 6-12: Results of removal strategy for area two ofNG 953 

The top row entry in the "Varying Bus List" column specifies the node numbers of load 

buses that are varied. The second row entry to the bottom specifies the node numbers of 

buses removed from the list. The bus numbers are given in the sequence that they are 

removed. The column "Generators" refers to the number of generators that break their 

Q-limit, where the numbers are given in the Q-limit breaking sequence. 

From the results in Table 6-12, the bus 109 has the largest load demand that is 467.50 MW 

(active power) and 39.00 Mvar (reactive power), the bus 118 is the second largest load bus 
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that is 130.20 MW (P) and 42.30 (Q), and so on there are 10 buses has been removed form 

the Bus Varying List in order finally. The other 15 buses left in varying list to keep 

increasing in order to determine a definite saddle-node bifurcation point. 

In this investigation, I observe that these large load buses are very sensitive to the system 

stability and result in sudden voltage collapse. We define the buses causing sudden voltage 

collapse as "weakness bus", if the buses locate in an individual regain, this regain will be 

defined as "weakness area". Since now, we are able to implement the comparison work 

between CCPF, ECPF and GCPF methods for the area two ofNG 953 case. 

Multiple Load Buses Variation Case in Area Two 

In order to compare easily, the P-V curve of load bus III is plotted using CCPF, ECPF 

and GCPF methods respectively, and the numerical results is also summarized in tables. 
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Figure 6-13-a: Varying multiple load buses in area two of NG 953 using CCPF 
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Figure 6-13-b: Varying multiple load buses in area two of NG 953 using ECPF 
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Figure 6-13-c: Varying multiple load buses in area two of NG 953 using GCPF 

Figure 6-13-a, 6-13-b and 6-13-c illustrate the curve of voltage magnitude of load bus III 

versus load parameter A. Figure 6-13-a, 6-13-b and 6-13-c were obtained using CCPF. 

ECPF and the novel GCPF method respectively. In figures, we use dots to denote 
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continuation steps and the symbol "0" is used to denote the step where the Q-limit 

breaking point occurs. 

~ Bus Type Continuation Computation Load 
Changes Steps time(s) Parameter 

CCPF 4 155 22.7126 3.4215 
ECPF 4 83 17.4090 3.4215 
GCPF 4 48 9.7904 3.4274 

Table 6-13: Results summary of varying multiple load buses in area two of NG953 

Discussion 

From Figures 6-13-a, 6-13-b and 6-13-c, we observe that the Q-limit breaking points are 

centralized in the end region of the curve. GCPF method takes many computational steps 

to reach the first Q-limit breaking point, which may caused by the poor prediction of 

Q-limit breaking index. From the numerical results in Table 6-13, the proposed GCPF 

works more efficient than others, GCPF takes 107 and 35 computational steps less than 

CCPF and ECPF respectively, and saves 12.9222 and 7.6186 seconds in computational 

time respectively. The results indicate the novel GCPF does improve the CPF method, and 

is faster than the improved ECPF method. 

Multiple Load Buses Variation Case in Area Three 

Area three has 47 PV buses and 311 PQ buses, I choose the first 25 buses to vary, and the 

bus numbers are 263 to 287, at which both P and Q are varied. In order to compare easily, 

the p_ V curve of load bus 264 is plotted using CCPF, ECPF and GCPF methods 

respectively, and the numerical results is also summarized in tables. 
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Figure 6-14-a: Varying multiple load buses in area three ofNG 953 using CCPF 
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Figure 6-14-b: Varying multiple load buses in area three ofNG 953 using ECPF 

Figure 6-14-a, 6-14-b and 6-14-c illustrate the curve of voltage magnitude of load bus 264 

versus load parameter A. Figure 6-14-a, 6-14-b and 6-14-c were obtained using CCPE 

ECPF and the novel GCPF method respectively. In figures, we use dots to denote 

116 



continuation steps and the symbol "0" IS d t d use 0 enote the step where the Q-limit 

breaking point occurs. 
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Figure 6-14-c: Varying multiple load buses in area three ofNG 953 using GCPF 

~ Bus Type Continuation Computation Load 
Changes Steps time(s) Parameter 

CCPF 8 438 57.1436 3.8184 
ECPF 8 214 29.2752 3.8184 
GCPF 8 128 18.8066 3.8124 

Table 6-14: Results summary of varying multiple load buses in area three ofNG953 

Discussion 

From Figure 6-14-c, the P-V curve was obtained by applying the GCPF method to area 

three of NG 953 bus system. It is obvious from the figure that the curve can be divided 

into several sections this is because the continuation steps have been effectively guided by 
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the predicted Q-limit breaking indices, in this way the GCPF method IS able to 

significantly reduce large number of computational steps required. 

From the numerical results in Table 6-14, this case provides a very good condition to 

implement the GCPF method, the Q-limit breaking points locate on the curve evenly, and 

the Q-limit breaking indices guide the continuation steps efficiently to reach the breaking 

point in a fast way. The result of this case is also the optimal result we expected. From the 

numerical results in Table 6-14, we can find that the novel GCPF method takes 310 and 86 

computational steps less than the CCPF and ECPF methods respectively, and saves 

38.3370 and 10.4686 seconds in computational time comparing with the CCPF and ECPF 

methods respectively. 

Multiple Load Buses Variation Case in Area Four 
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Figure 6-15: Failure in varying multiple load buses in area four of NG953 
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Area four has 21 PV buses and 273 PQ buses totally. The first 25 PQ buses are selected to 

vary, they are buses 621 to 635, 643 to 646 and 648 to 653, at which both P and Q are 

varied. The P-V curve of bus 650 is plotted using CCPF method. 

When we implement the CCPF method in area four of NG 953, the computation has the 

similar situation to that happened in area two that is the solution procedure suddenly 

breaks down. Figure 6-15 illustrates the P-V curve in this case. 

A Lack of adequate reactive power resources in a power system has also been recognized 

as a major contributing factor causing system sudden voltage collapse in this case. The 

large load increasing resulted in this situation. With regard to this issue, the removal 

strategy has also been applied in order to determine a definite saddle-node bifurcation 

point in this case. The largest load bus has been removed first, and then removed the 

second largest load bus, and so on in this manner until a reliable bifurcation point passed. 

The results of this removal strategy are presented in Table 6-15. 

Load 
time (s) Varying bus list Generators steps 

parameter 
621 t0635,643t0646, 

1,86,81,2 258 1.7276 22.5160 648 to 653 
Remove bus 627 1,81,2,86 293 2.8113 25.5930 
627,648 1,2,81,86 333 4.3811 29.0310 
627,648,629 1,2,81,86 320 5.3433 28.1526 
627,648,629,628 1,81 260 5.7363 23.3440 

Table 6-15: Results of removal strategy for area four ofNG 953 
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The top row entry in the "Varying Bus List" column of Table 6-15 specifies the node 

numbers of load buses that are varied. The following rows entry specify the node numbers 

of buses removed from the list. The bus numbers are given in the sequence that they are 

removed. The column "Generators" refers to the number of generators that break their 

Q-limit, where the numbers are given in the Q-limit breaking sequence. 

From the results in Table 6-15, the four largest buses have been removed form the list in 

order totally. The largest load bus 627 is removed first, at which the active power is 

188.60 MW and the reactive power is 104.60 Mvar, and so on until the varying bus list 

retains the other 21 buses to increase in order to determine the saddle-node bifurcation 

point. We can obtain a reliable voltage collapse index after taking out four largest load 

buses from the varying list. Figure 6-16-a illustrates the P-V curve obtained from the last 

successful attempt to determine the saddle-node bifurcation point. These four large load 

buses are quite sensitive to the voltage stability ofNG 953 bus power system. 

We can now implement the companson work between the CCPF, ECPF and GCPF 

methods for the case of area four. In order to compare easily, the P-V curve of load bus 

650 is plotted using CCPF, ECPF and GCPF methods respectively, and the numerical 

results are summarized in tables. 
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Figure 6-16-a: Varying multiple load buses in area four ofNG 953 using CCPF 
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Figure 6-16-b: Varying multiple load buses in area four ofNG 953 using ECPF 

Figure 6-16-a, 6-16-b and 6-16-c illustrate the curve of voltage magnitude of load bus 650 

versus load parameter A. Figure 6-16-a, 6-16-b and 6-16-c were obtained using CCPE 

ECPF and the novel GCPF method respectively. In figures, we use dots to denote 

continuation steps and the symbol "0" is used to denote the step where the Q-limit 

breaking point occurs. 
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Figure 6-16-c: Varying mUltiple load buses in area four ofNG 953 using GCPF 

~ Bus Type Continuation Computation Load 
Changes Steps time(s) Parameter 

CCPF 2 260 24.5408 5.7363 
ECPF 2 105 15.3406 5.7365 
GCPF 2 81 9.1096 5.7337 

Table 6-16: Results summary of varying multiple load buses in area four ofNG953 

Discussion 

This case has a similar situation to area two, we adopt removal strategy to take some 

weakness buses out of the varying bus list, and then the computation is able to pass 

through the definite saddle-node bifurcation point. There are two generators that break 

their Q-limit, the distribution of these two Q-limit breaking points is good to implement 

novel GCPF method, but it still takes many steps to reach the first Q-limit breaking point. 

From the numerical results in table 6-16, it is easy to see that GCPF is much faster than 
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another two methods, the GCPF takes 179 and 24 continuation steps less than the CCPF 

and ECPF respectively and saves 15.4312 and 6.2310 seconds in computational time 

compared with the CCPF and ECPF respectively. 

Multiple Load Buses Variation Case in Area Five 

Area five has 6 PV buses and 33 PQ buses, and is the smallest individual area compared 

with the other areas. But the load demand and generation is relative larger, which means 

that the power transfer in this area is heavy and centralized. So, area five is more sensitive 

to the system voltage stability with the load varying, and is easier to cause voltage 

collapse of system. As a result, buses 919, 920, 927 to 929, 936, 939, 942, 943, 946 to 948, 

950 and 951 of which the active power demand is not bigger than 50 MW are selected to 

vary as the multiple load buses variation pattern specially. The total active power and 

reactive power of these buses is 234.1 MW and 68 Mvar. 
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Figure 6-17-a: Varying multiple load buses in area five of NG 953 using CCPF 
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Figure 6-17-c: Varying multiple load buses in area five ofNG 953 using GCPF 

In order to compare easily, the P-V curve of load bus 928 is plotted using CCPE ECPF 

and GCPF methods respectively, and the numerical results are summarized in Table 6-17. 

Figures 6-17-a, 6-17-b and 6-17-c illustrate the curve of voltage magnitude of load bus 

928 versus load parameter A . Figure 6-17 -a, 6-17 -b and 6-17 -c were obtained using CCPF, 
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ECPF and the novel GCPF method respectively. In figures, we use dots to denote 

continuation steps and the symbol "0" is used to denote the step where the Q-limit 

breaking point occurs. 

~ Bus Type Continuation Computation Load 
Changes Steps time(s) Parameter 

CCPF 27 589 53.2780 2.9979 
ECPF 27 229 24.5526 2.9973 
GCPF 27 216 20.8594 2.9965 

Table 6-17: Results summary of varying multiple load buses in area five ofNG953 

Discussion 

In this case, there are many generators that reached their Q-limits, which indicates area 

five is heavy loaded and quite sensitive to the whole network. This situation is quit similar 

to the NG 61 bus system, where too many Q-limit breaking points during computation are 

not a good condition to implement our GCPF method, which will reduce the efficiency of 

GCPF. From Figure 6-17-c, Lagrange polynomial Q-limit predictor did guide the 

continuation steps to every Q-limit breaking point one by one efficiently. However, as our 

GCPF algorithm is based on Q-limit prediction, it is not able to pass over any Q-limit 

breaking points, and 3 computational steps must be computed for data collection of each 

Q-limit index, which are limiting factors on the efficiency of GCPF method. From the 

numerical results in Table 6-17, the GCPF method indicates the comparable performance 

to the improved ECPF method. We just obtained a little profit compared with the ECPF 

method. However, the novel GCPF is much more efficient than the CCPF method, and 

saves large number of steps and computing time required. 
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From the numerical analysis, the novel GCPF takes 373 continuation steps and 32.4186 

seconds computing time less than CCPF method, and it takes 13 steps and 3.6932 seconds 

less compared with the improved ECPF method. 

6.4 Summary 

Test Systems 
Bus Type Continuation Steps Computational Time (s) Speed Up (%) 

Changes CCPF ECPF GCPF CCPF ECPF GCPF CCPF ECPF 

IEEE9(S) 1 67 39 24 0.5684 0.3780 0.2406 58 36 

IEEE9(M) 1 48 29 20 0.2420 0.1720 0.1325 45 23 

IEEE30(S) 5 166 97 35 0.8280 0.5470 0.4060 51 26 

IEEE30(M) 4 78 47 35 0.6720 0.4840 0.3750 44 23 

IEEEI18(S) 17 243 141 71 3.2184 2.2575 1.5620 51 31 

IEEEI18(M) 20 206 132 92 2.8280 2.2196 1.6720 41 25 

NG61(S) 8 48 25 21 0.5960 0.3750 0.3520 41 6 

NG61(M) 13 31 27 23 0.5278 0.4530 0.4434 16 2 

NG953(MOl) 1 159 79 66 23.1954 15.0064 10.5502 55 30 

NG953(M02) 4 155 83 48 22.7126 17.4090 9.7904 57 44 

NG953(M03) 8 438 214 128 57.1436 29.2752 18.8066 67 36 

NG953(M04) 2 260 105 81 24.5408 15.3406 9.1096 63 41 

NG953(M05) 27 589 229 216 53.2780 24.5526 20.8594 61 15 

Table 6-18: Result comparison of the CCPF, ECPF with GCPF in all cases 

In Table 6-18, the "M" or "S" that follows the case name denotes the load pattern as 

follows: multiple load bus case and single load bus case respectively, the number 

following "M~' in the NG953 case denotes the number of the area. "bus type changes" 

refers to how many generator buses reached their Q-limit and have been changed from PY 
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bus type to PQ bus type and the "Speed Up" refers to the percentage speed up of the 

computation time of the GCPF method compared against the CCPF and ECPF methods. 

Having illustrated how the novel GCPF method works for each case, we have now 

demonstrated the effectiveness of the new algorithm. We summarize a comparison of 

results for all test cases in Table 6-18. It is relatively simple to compare and analyze the 

number of continuation steps and computational times as presented in Table 6-18. In all 

but one case, the GCPF shows the best performance and is much faster than CCPF or 

ECPF. However, in the NGC 61 (M) test system GCPF is comparable with ECPF method. 

This may be attributed to the large number of Q-limit breaking points that occur in 

different steps during the continuation procedure, but it is still faster than the CCPF. 

From Table 6-18, we observe that 

1. The proposed GCPF is generally computationally faster than the standard CPF and 

ECPF; 

2. All the methods can compute the bifurcation point for each case under the required 

accuracy; 

3. Q-limit breaking before the bifurcation point is quite common among the cases we 

tested; 

4. The performance of GCPF is depending on the quantity and distribution of Q-limit 

breaking points. 

5. CCPF is a reliable and stable method to compute the critical point. 
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Chapter 7: Comparison and Analysis of 

Linear Solvers in Power Flow 

In this section, I have made plenty of experiments to compare the performance between 

direct method and iterative methods. In order to obtain meaningful comparisons, it is 

necessary to ensure the same general testing conditions for all of the methods. The column 

approximate minimum degree (AMD) algorithm is used in incomplete LU (ILU) matrix 

factorization pre-conditioner for the direct and iterative methods. The AMD ordering 

scheme benefits the iterative methods as well as the direct method. The ILU factorization 

method used in iterative methods as a pre-conditioner reduces the number of iterations and 

speeds up the convergence procedures. 
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7.1 Introduction and Motivation 

The power flow is a very well known algorithmic problem which is usually solved by the 

Newton-Raphson solution method. The linearization of the nonlinear power flow 

equations produces a linear system to be solved by an appropriate linear solver. All the 

power flow algorithms based upon the Newton-Raphson method have in common that one 

large or two smaller sizes linear systems of equations must be solved during each 

Newton-Raphson iterative step. The characteristics of these linear systems of equations 

are sparse, asymmetric and indefinite, due to these characteristics some mathematicians 

have derived several methods to solve this type of linear system of equations, and in our 

research work we may consider the generalized minimum residual method (GMRES), 

bi-conjugate gradient method (BiCG) and bi-conjugate gradient stabilized method 

(BiCGStab). Practical usage of these iterative methods is only reached when 

preconditioning is applied to the linear system of equations. Good preconditioning will 

group the eigenvalues of the transformed linear system matrix together and will thus result 

in faster convergence, which is fully discussed in this chapter. 

Solving a linear equation on the form Ax = b plays an important role in power flow 

calculation, and uses the most computational time in a power flow. CPF is a process that 

computes many power flow solutions, so an efficient linear solver is necessary to speed up 

a CPF method. In this section, studies compare the performance of direct and iterative 

solvers. It is well established that iterative methods for solving large sparse sets of linear 

equations can naturally profit from parallelization and factorization. 
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These meaningful comparisons are conducted on the following network cases: IEEE 30, 

IEEE 118, IEEE 300, Poland (POL) 2736, National Grid (NG) 61 and NG 953 bus 

systems. 

7.2 Column Approximate Minimum Degree (AMD) Ordering 

Scheme 

AMD ordering scheme can preserve the sparsity of the matrix, which affect the eigenvalue 

spectrum effectively and reduce the convergence rate of the iterative methods. Although 

sparsity is preserved, ordering may affect the size of the norm of R (A = M + R ,where 

M is the pre-conditioner, A is the coefficient matrix and R is the remainder), the number 

of iterations in iterative method is almost related to the norm of the remainder R. In direct 

method, AMD ordering scheme can minimize the storage and the number of floating-point 

operations. 

7.2.1 Effect of AMD Ordering on Structure of Matrix 

I have made some investigation on how the AMD ordering scheme deals with the large 

sparse coefficient matrix. We take the NG 953 bus system case as the sample. 

In the figure, the dot denotes the location of nonzero elements in the Jacobian matrix, and 

the equation on the bottom of the figures refers to the amount of nonzero elements. 
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Figures 7 -l-a and 7 -l-b illustrate the effect of the AMD ordering scheme on the structure 

of the Jacobian matrix. We observe that the number of nonzero elements is equal in both 

of the matrices from the figures 7 -l-a and 7 -l-b, which means the AMD ordering scheme 

is able to preserve the sparsity of the Jacobian matrix, the AMD just relocates the nonzero 

elements in the matrix. Figures 7-2-a and 7-2-b were obtained by applying ILU 

factorization to the unordered Jacobian matrix and the AMD reordered Jacobian matrix 

respectively, which illustrates the effect on the structure of preconditioned Jacobian 

matrix. 

The AMD ordering scheme makes the nonzero elements of preconditioned Jacobian 

matrix higher density and closer locating to the main diagonal in Figure 7-2-b. 

7.2.2 Effect of AMD Ordering on Eigenvalue of Matrix 

In this section, we tested how the AMD ordering scheme affected the eigenvalue spectrum, 

which in tum has an impact on convergence rates. We take IEEE 118 bus system case as a 

sample to illustrate the impact. 
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The dots in the figures refer to the location of eigenvalues of the Jacobian matrix. Figures 

7-3-a and 7-3-b illustrate the distribution of eigenvalues. From a comparison of both 

figures, it is obvious that the AMD reordered the Jacobian matrix produces clustering and 

clumping of the eigenvalues, and the effect can be observed by comparing the maximal 

eigenvalues of the unordered and reordered matrix. In other words, the AMD ordering 

scheme can change the distribution of eigenvalues of the Jacobian matrix, and group the 

eigenvalues together. 

As a result, the convergence rate of iterative methods with the pre-conditioner using the 

AMD reordered ILU factorization will be reduced comparing with that without the AMD 

reordered. 



7.2.3 Effect of AMD Ordering on Computing Time 

Test GMRES BiCG BiCGStab 
System unordered reordered unordered reordered unordered reordered 
IEEE 30 0.0383 0.0137 0.0287 0.0178 0.0267 0.0167 
IEEE118 0.0780 0.0297 0.0778 0.0296 0.0661 0.0266 
IEEE300 0.8119 0.0984 0.3735 0.0987 0.7364 0.0823 
POL2736 14.5408 0.7710 16.7340 0.7845 14.8688 0.6594 
NG61 0.0424 0.0280 0.0455 0.0272 0.0416 0.0252 
NG953 1.9310 0.2747 2.2233 0.2827 1.9157 0.2371 

Table 7-1: Computing time comparison between unordered and reordered 
pre-conditioner used in iterative solvers 

Time recorded is in second. The "unordered" and "reordered" refer to the time of the 

iterative methods that using unordered ILU factorization pre-conditioner and using the 

AMD reordered ILU factorization pre-conditioner respectively. 

In this section, I compared the computational time of power flow computation for each 

test case. From the results Table 7-1, it is clearing apparent that the iterative methods using 

the AMD reordered pre-conditioner are always faster than those without using that. The 

large bus system cases obtain more benefits from the AMD ordering scheme than small 

systems, especially in the Poland 2736 test case. 

7.3 Comparison and Analysis of Linear Solvers 

The direct method investigated in this research is the Gaussian Elimination method. A 

direct method solves the linear equations in a finite number of steps and may require 

extensive computational storage and arithmetic processing. Direct methods have been 

improved over the years through the use of efficient ordering techniques and sparse 



programming. However, the computation time of a direct method can still be the limiting 

factor in cases involving very large systems of equations or numerous repeated solutions. 

In the Newton-Raphson power flow, the Jacobian matrix is an asymmetric, possibly 

indefinite matrix. For asymmetric linear systems, there are a number of iterative methods 

that can be employed, the GMRES, BiCG and BiCGStab methods is of interest in this 

research work. 

In this section, I compared the direct method with iterative methods in computational time 

and accuracy. 

Test Max P&Q Mismatch ( Ie-II) 
System Direct GMRES BiCG BiCGStab 
IEEE30 95.70 95.70 95.70 95.70 
IEEE 11 8 0.15188 0.15060 0.15083 0.15188 

IEEE300 0.13754 0.13846 0.13723 0.13781 

POL2736 2.0522 2.8411 3.7811 2.0561 

NG61 30.158 30.157 30.161 30.159 

NG953 0.18758 0.18723 0.20464 0.19369 

Table 7-2: Comparison of direct method with different iterative methods in accuracy 

In Table 7-2, "Max P&Q Mismatch" refers to the maximum value of the active and 

reactive power mismatches. All the results obtained under the same accuracy requirement. 
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Test Computational Time (s) Difference (%) 
system Direct GMRES BiCG BiCGStab GMRES BiCG BiCGStab 

IEEE30 0.0156 0.0173 0.0178 0.0167 9.82 12.36 6.59 
IEEEl18 0.0257 0.0297 0.0296 0.0266 13.47 13.18 3.38 
IEEE300 0.0795 0.0984 0.0987 0.0823 19.21 19.45 3.40 
POL2736 0.6077 0.7710 0.7845 0.6594 21.18 22.54 7.84 

NG61 0.0231 0.0280 0.0272 0.0252 17.50 15.07 8.33 
NG953 0.2175 0.2747 0.2827 0.2371 20.82 23.06 8.27 

Table 7-3: Comparison of direct method with different iterative methods in 
computational time 

In Table 7-3, "Difference" refers to the percentage slow down of the computation time of 

the iterative methods compared to the direct method. 

In order to obtain meaningful comparisons between direct and iterative methods, it is 

necessary to ensure the same general testing conditions for all of the methods. The AMD 

ordering scheme and ILU matrix factorization algorithms were used as pre-conditioner in 

the direct and iterative methods. From the results we observe that the iterative methods are 

comparable in computational time with the direct method when solving large sparse, 

asymmetrical, indefinite matrices to the same level of accuracy. The AMD ordering 

scheme benefits the iterative methods as well as the direct method. Iterative methods using 

the AMD reordered ILU factorization matrix as a pre-conditioner effectively reduce the 

number of iterations and speed up the convergence procedure. 

It is well known that the parallelization and factorization are easily applicable to iterative 

methods when solving large systems of linear equations, but direct methods are known to 

136 



be hard to parallelize and factorize. So it may be possible that the iterative methods still 

have more potential to speed up computation than direct methods. 

7.4 Summary 

The AMD ordering scheme for ILU factorization algorithm is a very good pre-conditioner 

for implementation of iterative linear solvers, which clusters and clumps the eigenvalue, 

reduces the convergence rate, and saves computing time efficiently. The effort of new 

pre-conditioner makes iterative methods comparable to the conventional direct method in 

computational time even for the small bus systems. 

The AMD reordered ILU pre-conditioner secures all the iterative methods convergence 

successfully, and provides a feasible environment to implement iterative methods. 
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Chapter 8: Conclusions and Future Work 

This chapter summarizes the conclusions of the whole thesis, and presents the conclusions 

from the comparisons between CCPF, ECPF and GCPF, and the comparisons between 

direct method and iterative linear solvers used in power flow computation. All of the 

comparing experiments are implemented under the same condition for each case. We also 

suggest some further work for my project in the future. 
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8.1 Conclusions 

In this thesis, I have made plenty of experiments to test the proposed GCPF method. I also 

compare the results of GCPF with CCPF and ECPF methods in the numbers of 

continuation steps and computing time. In order to illustrate the efficiency of GCPF, the 

experiments are conducted on different size network cases: IEEE 9, IEEE 30, IEEE 118, 

National Grid (NG) UK 61 and 953 bus systems. 

It is well known that solving large sparse linear equations plays important role in 

Newton-Raphson power flow computation, so the different linear solvers have also been 

investigated in this thesis, the linear solvers include direct method and iterative methods. 

The direct method is the Gaussian Elimination method, the iterative methods are GMRES, 

BiCG and BiCGStab methods. The iterative methods for solving large sparse sets of linear 

equations can naturally profit from parallelization and factorization. I also investigate the 

effect of a good pre-conditioner on convergence rate and computing time of iterative 

solvers. In this part of research work, I choose some large power systems to implement the 

experiments, which are IEEE 300, Poland 2736 and NG 953 bus systems. 

8.1.1 Novel Q-limit Guided Continuation Power Flow 

This thesis presents a new algorithm for computing the voltage collapse point, which is 

the Novel Q-limit Guided Continuation Power Flow method. The GCPF method is based 

on the standard CPF method, and combines Q-limit breaking indices prediction and 
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saddle-node bifurcation point prediction together. The predicted Q-limit index parameters 

are used to guide the continuation step to a Q-limit breaking point in the fastest way 

possible. From our experiments, it is obvious that GCPF method works well. It has been 

found to be much faster than the CCPF and ECPF methods for the IEEE 9, 30, 118, NG 61 

and NG 953 bus system case studies when determining a reliable voltage collapse index in 

terms of maximal load margin. The GCPF method gives the best performance in cases that 

do not have too many generators reaching their reactive power limits in separate 

continuation steps. 

In order to make a meaningful comparisons between CCPF, ECPF and GCPF, we not only 

test simple case like IEEE 9 bus system, but also the large case like IEEE 118 bus system, 

a realistic power system NG 61 and NG 953 bus system are also tested. Different case 

studies have their own structures and feathers, which effect the implementation of GCPF 

method effectively. The conclusions are properly different in terms of different size of case 

studies, which have been described in detail for each case. 

IEEE 9 Bus System Case 

During the computation for saddle-node bifurcation point, there is only one Q-Iimit 

breaking point that occurred, which is very close to the bifurcation point. In this case, the 

IEEE 9 bus system does not provide a good condition to implement the proposed GCPF 

method, because the Q-limit breaking point is quite far from the initial solution and the 

Lagrange polynomial interpolation formula is hard to predict the location of Q-limit index 

accurately, this would result in GCPF taking many unnecessary continuation steps to reach 
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the Q-limit breaking point. However, the GCPF presents much better performance than 

CCPF and ECPF in terms of computational steps required and computing time, but it is 

not the optimal results we expected. 

IEEE 30 and 118 Bus System Cases 

In these two case studies, the data set of IEEE 30 and 118 bus systems provide a very 

good condition to implement the proposed GCPF method. The results obtained are what 

we expected, the continuation steps have been efficiently guided by the Q-limit indices. 

Therefore, GCPF method reduces the number of steps required significantly and saves 

substantial computing time. With comparing with CCPF and ECPF methods, GCPF shows 

the best performance in the number of required computational steps and computational 

time within the same accuracy requirement when determining a reliable voltage collapse 

index in terms of maximum load margin. 

From the results of IEEE 30 and 118 bus systems, the conclusions can be obtained are that 

the performance of GCPF method strongly depends on the distribution of Q-limit breaking 

points. GCPF will present the optimal results when Q-limit breaking points locate on the 

p_ V curve sparsly and evenly, this situation can generate the serial valid Q-limit indices to 

continuously guide the current step to reach the Q-limit breaking point or the critical point 

in a fast way possible. 

NG 61 and NG 953 Bus System Cases 

These two bus systems are realistic power systems, they are very complicated systems. In 
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these case studies, GCPF is still faster than CCPF and ECPF when detennining the 

maximum load margin, but GCPF did not present the optimal results in some cases. In 

multiple load bus variation case ofNG 61 and area 5 ofNG 953, GCPF still works much 

more efficient than CCPF, but is comparable to the ECPF method, the reason is that there 

are too many Q-limit breaking points occurred during the computation process. Under this 

condition the Q-limit breaking points are too many and too close to each other, it is hard 

for GCPF to reduce the number of computational steps, because the data collection of 

Q-limit predictor requires at least three solutions for each procedure in the GCPF 

algorithm. So, the valid Q-limit index is not able to save continuation steps effectively. In 

single load bus variation case of NG 61, we observe another advantage of GCPF 

comparing with ECPF, which is that GCPF is able to secure the accuracy requirement for 

every single calculation of Q-limit breaking point during the whole computation process. 

From the analysis on results of NG 61 and NG 953 bus systems, another conclusion can 

be obtained is that the high ratio of Q-limit breaking point to total number of continuation 

steps is not a good condition to implement the proposed GCPF method, in other words, 

GCPF method can not present the best perfonnance in cases, which has too many 

generators reaching their reactive power limit in separate continuation steps. In any case, 

GCPF does speed up the conventional CPF method. 

Summary 

The proposed GCPF method works very well, and did improve the standard CPF method. 

I summarize the feathers of the novel GCPF algorithm in details by advantages and 
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disadvantages. 

Advantages: 

• 

• 

• 

• 

The proposed GCPF is generally computationally faster than the standard CPF and 

ECPF methods; 

GCPF method can compute the voltage collapse index for each case under the 

required accuracy quickly; 

GCPF method can secure the accuracy requirement of every Q-limit breaking point 

computation in the whole computation process; 

GCPF takes account of reactive power output of generators when determining the 

maximum load margin. 

Disadvantages: 

• The performance of the GCPF method is affected by the condition of system data 

set; 

• The performance of the GCPF method strongly depends on the number and 

distribution of Q-limit breaking points. 

8.1.2 Preconditioned Iterative Linear Solvers 

In order to obtain meaningful comparisons between direct and iterative methods, it is 

necessary to ensure the same general testing conditions for all of the methods. The column 

approximate minimum degree (AMD) algorithm and incomplete LU (ILU) matrix 

factorization are used in the direct and iterative methods. From the results I observe that 

the iterative linear solvers are comparable in computational time to the direct method 
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when solving large sparse, asymmetrical, indefinite matrices to the same level of accuracy 

and even for small networks such as IEEE 30 and NG 61 bus systems. The AMD ordering 

scheme benefits the iterative methods as well as the direct method. Iterative methods using 

the AMD reordered ILU factorization as pre-conditioners reduce the number of iterations 

and speed up the convergence rate. 

It is well known that the parallelization and factorization are easily applicable to iterative 

methods when solving large systems of linear equations, but direct methods are known to 

be hard to parallelize and factorize. So it may be possible that the iterative methods still 

have more potential to speed up computation than direct methods, which remains to be 

explored in the future. 

How does the AMD ordering scheme impact on structure of Jacobian matrix, eigenvalue 

spectrum, convergence rate and computing time are fully discussed as well, we 

summarizes the conclusions: 

• The AMD ordering scheme make the element location higher density closer to the 

• 

• 

• 

main diagonal of the matrix; 

The AMD ordering scheme produces both clustering and clumping the eigenvalue 

spectrum; 

The AMD ordering scheme reduce the number of iterations and convergence rate 

of preconditioned iterative methods; 

The application of AMD ordering scheme for pre-conditioners based on ILU 

factorization can speed up the computation of iterative linear solvers effectively. 
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This thesis presents the results obtained from the comparative studies, which designed to 

evaluate the performances of direct method against iterative solvers when solving linear 

equations in Newton-Raphson power flow calculations. The general conclusion is that 

direct methods are still faster, though iterative methods are easier to implement. Also 

iterative methods have more potential to speed up because iterative methods would benefit 

more from parallelization and factorization than direct method. 

The AMD ordering scheme for pre-conditioners based on ILU factorization is a key factor 

to secure successful convergence for all iterative methods. AMD ordering scheme is able 

to accelerate and lead all iterative solvers to successful convergence, which is applied to a 

wide range of networks such as Poland 2736 buses. 

The BiCGStab with AMD ordered ILU pre-conditioner set presents the best performance 

comparing with other iterative methods from the numerical results. The average 

percentage slower down than direct method in computational time is just 6.30%, in other 

words, this set of algorithm is strong comparable to the direct solution method. 

The GMRES with AMD ordered ILU pre-conditioner set algorithm shows good 

robustness, however, it is slower than BiCGStab. The BiCG with AMD ordered ILU 

pre-conditioner set algorithm shows smooth convergence properties even for large bus 

systems. Although being the slowest one, this method is still very appealing. 
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The AMD ordered ILU factorization pre-conditioner shows almost perfect parallelism, and 

can be applied easily in all iterative methods. A parallel implementation will reduce the 

total computation time significantly. 

8.2 Future work 

The step size in CCPF and GCPF algorithms is selected as fixed but optimized to ensure 

that both of the methods have minimal continuation steps for the requirement of accuracy. 

The same step size is used in the continuation steps of GCPF method except the Q-limit 

index guiding steps, which is not optimized. It is possible to use a variable step size 

strategy to improve GCPF method further but this remains to be explored. 

The proposed GCPF algorithm can be further optimized in implementation or by using 

other related index predicting methods instead of Lagrange polynomial interpolation 

technique. 

In further research, I will investigate whether we can combine the GCPF with nonlinear 

predictor instead of tangent vector or rule based step size control together. In addition, I 

will try to improve the prediction accuracy of Q-limit breaking points further. 

In linear solvers, we will investigate the parallelization and factorization of iterative 

methods, matrix ordering schemes and the application of pre-conditioners to speed up 

iterative linear solvers in power flow calculations. From the comparison and analysis, it 
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can be foreseen that the use of more sophisticated pre-conditioners, a deeper 

understanding of the characteristics of these methods applied to the power flow and the 

use of the parallel CPU environments will further improve performance and robustness. 

In addition the benefits of the faster GCPF algorithm will be further investigated when 

determine the margins to voltage collapse for large numbers of network contingencies. 

OLTCs (on load tap changers) are voltage devices, which need to be investigated with the 

proposed GCPF. 
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Appendix A 

Illustration of NG 61 Bus System 
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Appendix B 

Matlab Programme Code of Predictor 

function [YO, AO] = predictor(Ybus, Sbus, V, A, n, h, ref, pv, pq) 

j = sqrt(-l); 

Va = angle(V); 

Vm = abs(V); 

h=h· , 

b = zeros(size(Sbus)); 

ben) = Sbus(n); 

B = [ real(b([pv; pq])); 

imag(b(pq)) ] ; 

npv = length(pv); 

npq = length(pq); 

j 1 = 1; j2 = npv; 

j3 = j2 + 1; j4 = j2 + npq; 

j5 = j4 + 1; j6 = j4 + npq; 

[dSbus_dVm, dSbus_dVa] = dSbus_dV(Ybus, V); 

temp = real(dSbus_dVa(:, [pv; pq]))'; 

j 11 = temp(:, [pv; pq])'; 

temp = real(dSbus_dVm(:, pq))'; 

j12 = tempe:, [pv; pq])'; 

temp = imag(dSbus_dVa(:, [pv; pq]))'; 

j21 = tempe:, pq)'; 
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temp = imag(dSbus_dVm(:, pq))'; 

j22 = tempe:, pq)'; 

J=[ jllj12; 

j21 j22; ]; 

ds = (J \ B); 

da = sqrt((1 + sum(ds .* ds)Y'(-l)); 

ds = da * ds· , 

Va(pv) = Va(pv) + h * dsG 1 :j2); 

Va(pq) = Va(pq) + h * dsG3:j4); 

Vm(pq) = Vm(pq) + h * dsG5:j6); 

vo = Vm.* expG * Va); 

AO =A+h * da; 

return; 

Appendix C 

Matlab Programme Code of Corrector 

function [V, A, converged, i] = corrector(Ybus, Sbus, VO, V, AO, A, n, h, ref, pv, pq, 

mpopt) 

%% default arguments 

ifnargin < 7 

mpopt = mpoption; 
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end 

%% options 

tol = mpopt(2); 

max it = mpopt(3); 

verbose = mpopt(31); 

%% initialize 

j = sqrt(-l); 

converged = 0; 

i = o· , 
v=V· , 

V=VO· , 

a=A· , 

A=AO· , 

Va = angle(V); 

Vm = abs(V); 

va = angle(v); 

vm = abs(v); 

%%ds = sqrt(sum((Va([pv;pq]) - va([pv;pq])) :"'2) + sum((Vm(pq) - vm(pq)) ./\2) + (A 

- a)/\2); 

ds = h; 

%% set up indexing for updating V 

npv = length(pv); 

npq = length(pq); 

j 1 = 1; 

j3=j2+1; 

j5 = j4 + 1; 

j7 = j6 + 1; 

j2 = npv; 

j4 = j2 + npq; 

j6 = j4 + npq; 

%% j 1 :j2 - VangIe of pv buses 

%% j3 :j4 - VangIe of pq buses 

0/0% j 5:j 6 - V mag of pq buses 
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%% evaluate F(xO) 

b = zeros(size(Sbus)); 

ben) = Sbus(n); 

mis = V .* conj(Ybus * V) - A * b - Sbus; 

Mis = sum((Va([pv;pq]) - va([pv;pq])) /'2) + sum((Vm(pq) - vm(pq)) .1\2) + (A - a)"'2 _ 

F = [ real(mis([pv; pq])); 

image mis(pq)); 

Mis ]; 

%% check tolerance 

normF = norm(F, inf); 

if verbose> 1 

fprintf('\n it max P & Q mismatch (p.u.)'); 

fprintf('\n---- ---------------------------'); 

fprintf('\n%3d %10.3e', i, normF); 

end 

if normF < tol 

end 

converged = 1; 

if verbose> 1 

fprintf('\nConverged!\n'); 

end 

%% do Newton iterations 

while (~converged & i < max_it) 

0/00/0 update iteration counter 

i=i+l; 



%0/0 evaluate Jacobian 

[dSbus_dVm, dSbus_dVa] = dSbus_dV(Ybus, V); 

temp = real(dSbus_dVa(:, [pv; pq]))'; 

j 11 = tempe:, [pv; pq])'; 

temp = real(dSbus_dVm(:, pq))'; 

j 12 = tempe:, [pv; pq])'; 

j13 = - real(b([pv; pq])); 

temp = imag(dSbus_dVa(:, [pv; pq]))'; 

j21 = tempe:, pq)'; 

temp = imag(dSbus_dVm(:, pq))'; 

j22 = tempe:, pq)'; 

j23 = - imag(b(pq)); 

j31 = 2 * (Va([pv;pq]) - va([pv;pq]))'; 

j32 = 2 * (Vm(pq) - vm(pq))'; 

j33 = 2 * (A - a); 

J = [ j11 j12j13; 

j21j22j23; 

j31 j32 j33; ]; 

%0/0 compute update step 

dx = -(1 \ F); 

%% update voltage 

Va(pv) = Va(pv) + dxG 1 :j2); 

Va(pq) = Va(pq) + dxG3:j4); 

Vm(pq) = Vm(pq) + dxGS:j6); 
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A=A+dxG7); 

V = Vm.* expG * Va); 

%% evalute F(x) 

mis = V . * conj(Ybus * V) - A * b - Sbus; 

Mis = sum((Va([pv;pq]) - va([pv;pq])) ,"'2) + sum((Vm(pq) - vm(pq)) /'2) + (A­

a)/\2 - ds/\2; 

F = [ real(mis(pv)); 

real(mis(pq)); 

image mis(pq) ); 

Mis ]; 

%% check for convergence 

normF = norm(F, inf); 

if verbose> 1 

fprintf('\n%3d 

end 

ifnormF < tol 

converged = 1; 

if verbose 

%10.3e', i, normF); 

%fprintf('\nNewton"s method power flow converged in %d iterations.\n', i); 

end 

end 

end 

if verbose 

if ~converged 

fprintf('\nNewton"s method power did not converge in %d iterations.\n', i): 

end 
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end 

return; 

Appendix D 

Matlab Programme Code of Q-limit Predictor 

function [AO] = Alimpredictor(Qg, AI, Qlim) 

AO = []; 

BO = []; 

for i = 1 : length(Qg(:, 1)) 

kll = Qg(i, :) ." 2; 

k12 = Qg(i, :); 

k13 = ones(1, 3); 

J = [kl1 I, kI2', k13 ']; 

abc = J \ AI'; 

a = abc(1); 

b = abc(2); 

c = abc(3); 

Q = - b / (2 * a); 

Qmax = Qlim(i, 1); 

Qmin = Qlim(i, 2); 

ifQ >= Qmax 

AO(i) = a * Qmax " 2 + b * Qmax + c; 
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elseif Q <= Qmin 

AO(i) = a * Qmin 1\ 2 + b * Qmin + c; 

else 

BO(i) = (4 * a * c - b * b) / (4 * a); 

end 

end 

na = find(AO(:) ~= 0); 

nb = find(BO(:) ~= 0); 

if ~isempty(AO(na)) 

AO = min(AO(na)); 

else 

AO = min(BO(nb )); 

end 

156 



References 

[1] H.-D. Chiang, Rene J.-J, "Toward a Practical Perfonnance Index for Predicting 

Voltage Collapse in Electric Power System." IEEE Trans. Power Syst., vol. 10, 

no. 2, pp. 584-592, May 1995. 

[2] A. Kurita and T. Sakurai, "The power system failure on July 23, 1987 in 

Tokyo," IEEE Proceedings o/the 27th Conference on Decision and Control, 

Austin, TX, pp. 2093-2097, Dec 1988. 

[3] Y. Mansour, "Voltage Stability of Power Systems: Concepts, Analytical Tools 

and Industry Experience," IEEE Power Systems Engineering Committee, 1991. 

[4] I. Dobson, H. Glavitsch, C.-C. Liu, Y. Tamura and K. Vu, "Voltage Collapse in 

Power Systems" IEEE, pp. 40-45, May 1992. 

[5] N. Flatab0, R. Ognedal and T. Carlsen, "Voltage stability condition in a power 

transmission system calculated by sensitivity methods", IEEE Trans. Power 

Systems, Vol. 5, No.4, p.1286-1293, Nov. 1990. 

[6] J.Q. Zhao, H.D. Chiang and H. Li, "Enhanced look-ahead load margm 

estimation for voltage security assessment", Electrical Power and Energy 

Systems, Vol.26, pp. 431-438, 2004. 

[7] I. Dobson, S. Greene, R. Rajaraman, C. L. DeMarco, F. L. Alvarado, M. Glavic. 

J.F. Zhang, R. Zimmerman, "Electric Power Transfer Capability: Concepts, 

Applications, Sensitivity and Uncertainty," PSERC Publication 01-34 

November 2001. 

157 



[8] G. A. Taylor, S. Phichaisawat, M.R. Irving and Y.-H. Song, "Voltage Security 

and Reactive Power Management," IMA Journal of Management Mathematics. 

Vol. 15, Pgs. 369-386,2004. 

[9] H.-D. Chiang, H. Li, "CPFLOW for Power Tracer and Voltage Monitoring, 

Voltage Collapse Margin Monitor Final Report," PSERC Publication 01-02, 

May 2002. 

[10] H.-D. Chiang, A. J. Flueck, K. S. Shah, N. Balu, "CPFLOW: A Practical Tool 

for Tracing Power System Steady-State Stationary Behaviour Due to Load and 

Generation Variations," IEEE Transactions on Power Systems, Vol. 1 0, No.2. 

pp. 623-630, May 1995. 

[11] V. Ajjarapu, C. Christy, "The Continuation Power Flow: A Tool For Steady 

State Voltage Stability Analysis," Transactions on Power Systems, Vol. 7, No.1, 

pp. 416-423, February 1992. 

[12] N. Yorino, H.-Q Li, and H. Sasaki, "A Predictor/Corrector Scheme for 

Obtaining Q-Limit Points for Power Flow Studies," IEEE Transactions on 

Power Systems, VOL. 20, NO.1, pp. 130-137, Feb 2005. 

[13] F. W. Mohn and A. C. Zambroni de Souza, "Tracing PV and QV Curves With 

the Help of a CRIC Continuation Method," IEEE Transactions on Power 

Systems, Vol. 21 , No.3, pp. 1115-1122, August 2006. 

[14] C. A. Canizares, A. Z. de Souza, and V. H. Quintana, "Comparison of 

performance indices for detection of proximity to voltage collapse," IEEE 

Trans. Power Syst., vol. II,pp. 1441-1450, Aug. 1996. 

158 



[15] H. D. Chiang and R. Jean-Jumeau, "A more efficient formulation for 

computation of the maximum loading points in electrical power systems," 

IEEE Trans. Power Syst., vol. 10, pp. 635-646, May 1995. 

[16] G. C. Ejebe, G. D. Irisarri, S. Mokhtari, O. Obadina, P. Ristanovic, and J. Tong, 

"Methods for contingency screening and ranking for voltage stability analysis 

of power systems," IEEE Trans. Power Syst., vol. 11, pp. 350-356, Feb. 1996. 

[17] A. O. Ekwue, H. B. Wan, D. T. Y. Cheng, and Y. H. Song, "voltage stability 

analysis on the NGC systems," Elec. Power Syst. Res., vol.47, pp. 173-180, 

1998. 

[18] S. Greene and I. Dobson, "Voltage Collapse Margin Sensitivity Methods 

Applied to the Power System of Southwest England," NGC, 1998. 

[19] S. Greene, I. Dobson, and F. L. Alvarado, "Sensitivity of the loading margin to 

voltage collapse with respect to arbitrary parameters," IEEE Trans. Power Syst., 

vol. 12, pp. 262-272, Feb. 1997. 

[20] S. Greene, I. Dobson, and F. L. Alvarado, "Contingency ranking for voltage 

collapse via sensitivities from a single nose curve," IEEE Trans. Power Syst., 

vol. 14, pp. 232-240, Feb. 1999. 

[21] S. Greene, I. Dobson, and F. L. Alvarado, "Sensitivity of transfer capability 

margins with a fast formula," IEEE Trans. Power Syst., vol. 17, pp. 34-40, Feb. 

2002. 

[22] R. Jean-Jumeau, H.-D Chiang, and R. T. Thomas, "Efficient computational 

methods for a practical performance index and the exact voltage collapse point 

159 



in electrical power system," in proc.3Ft Con! Decision Contr., Tucson, AZ, 

USA, 1992. 

[23] P. A. Lof, T. Smed, G. Anderson, and D. J. Hill, "Fast calculation of a voltage 

stability index," IEEE Trans. Power Syst., vol. 7, pp. 54-64, Feb 1992. 

[24] R. Seydel, "Numerical computation of branch points in nonlinear equations," 

Numer. Math., vol. 33, pp. 339-352, 1979. 

[25] R. Seydel, "On detecting stationary bifurcations," Int. J Bifurcations and 

Chaos, vol. 1, no. 2, pp. 335-337, 1991. 

[26] R. Seydel, "Practical Bifurcation and Stability Analysis," Equilibrium to Chaos. 

New York: Springer-Verlag, 1994. 

[27] R. Seydel, "On a class of bifurcation test functions," Chaos, Solitons and 

Fractals, vol. 8, no. 6, pp. 851-855, 1997. 

[28] R. Seydel, "Assessing voltage collapse," Proc. Risk Analysis: Opening the 

Process Con/., Paris, France, Oct. 11-14, 1998. 

[29] H. Mori, Member IEEE, and T. Kojima, "Hybrid Continuation Power Flow 

with Linear-Nonlinear Predictor," International Conference On Power System 

Technology - POWERCON 2004 Singapore, pp. 969-974, 21-26 Nov 2004. 

[30] H. Mori and S. Yamada, "Continuation Power Flow with the Nonlinear 

Predictor of Lagrange's Interpolation Fonnula," Proc. Of IEEE PES 

Transmission and Distribution Conference and Exhibition 2002. Asia Pacific. 

Vol. 2, pp. 1133-1138, Oct 2002. 

160 



[31] V. Ajjarapu, N. Jain, Z. Yu, and S. Barttula, "Recent developments to the 

continuation power flow," inproc. North Amer. Power symp., Washington D.C .. 

Oct. 1993, pp. 205-412. 

[32] A, J. Flueck and J. R. Dondeli, "A new continuation power flow tool for 

investigating the nonlinear effects of transmission branch parameter 

variations," IEEE Trans. On Power Systems, vol. 15, no. 1, pp. 223-227, Feb 

2000. 

[33] M. R. Hestenes, E. Stiefel, "Methods of conjugate gradients for solving linear 

systems," J Res. National bureau of standards, vol. 49, pp. 409-436, 1952. 

[34] F. D. Galiana, H. Javidi, S. McFee, "On The Application of A Pre-conditioned 

Conjugate Gradient Algorithm to Power Network Analysis", IEEE 

Transactions on Power Systems, Vol. 9, No.2, pp. 629-635, May 1994. 

[35] H. Mori, H. Tanaka, and J. Kanno, "A Pre-conditioned Fast Decoupled Power 

Low Method For Contingency Screening", IEEE Transactions on Power 

Systems, Vol. 11, pp. 357-363, Feb 1996. 

[36] A. Semlyen, "Fundamental concepts of a Krylov subspace power flow 

methodology," IEEE PES Summer Meeting, July 23-27,1995. 

[37] R. Bacher and E. Bullinger, "Application of Non-stationary Iterative Methods 

to an Exact Newton-Raphson Solution Process for Power Flow Equations," 1 t h 

Power Systems Computation Conference, pp. 453-459, Aug 1996. 

161 



[38] Y. Chen and C. Shen, "A Jacobian-Free Newton-GMRES(m) Method with 

Adaptive Preconditioner and Its Application for Power Flow Calculations ., , 

IEEE Trans. On Power Systems, vol. 21, no. 3, Aug 2006. 

[39] A.B. Alves, E.N. Asada and A. Monticelli, "Critical Evaluation of Direct and 

Iterative Methods for Solving Ax = b Systems in Power Flow Calculations and 

Contingency Analysis", IEEE Transactions on Power Systems, Vol.l4, No.2, 

pp.702-708, May 1999. 

[40] B. Stott, O. Alsac and A. Monticelli, "Security Analysis and Optimization," 

Invited Paper. Proc. a/the IEEE, vol. 75, no. 12, pp. 1623-1644, Dec 1987. 

[41] M. K. Enns, J. 1. Quada and B. Sacckett, "Fast Linear Contingency Analysis," 

IEEE Trans. On PAS, vol. 101, no. 4, pp. 783-791, Apr 1982. 

[42] O. Alsac, B. Stott and W. F. Tinney, "Sparsisty-Oriented Compensation 

Methods for Modified Network Solutions," IEEE Trans. On PAS, vol. 1 02, pp. 

1050-1060, May 1983. 

[43] W. F. Tinney, V. Brandwajn and S. M. Chan, "Sparse Vector Methods," IEEE 

Trans. On PAS, vol. 104, no. 2, pp. 295-301, Feb 1983. 

[44] S. M. Chan and V. Brandwajn, " Partial Matrix Refactorization," IEEE Trans. 

On Power Systems, vol. PWRS-l, no. 1, pp. 193-200, Feb 1986. 

[45] 1. C. Decker, D. M. Falcao and E. Kaszkurewicz, "Conjugate Gradient Methods 

for Power System Dynamic Simulation on Parallel Computers," IEEE PES 

Summer Meeting, July 1995. 

162 



[46] A. Gupta, V. Kumar and A. Sameh, "Performance and Scalability of 

Preconditioned Conjugate Gradient Methods on Parallel Computers,~~ IEEE 

Trans. On Parallel and Distributed Systems, vol. 6, no. 5, May 1995. 

[47] H. Dag, Member, IEEE, A. Semlyen, "A New Preconditioned Conjugate 

Gradient Power Flow" IEEE Transactions on Power Systems, Vol. 18, No.4, 

pp. 1248-1255, Nov 2003. 

[48] Y. Saad and M. H. Schultz, "GMRES: A generalized minimal residual 

algorithm for solving nonsymmetric linear systems," SIAM J Sci. Statist. 

Comput, Vol. 7, No.3, July 1986, pp. 856-869. 

[49] R. Barrett, M. Berry, T. F. Chan, J. Demmel and J. Donato, "Templates for the 

solution of linear systems: Building Blocks for Iterative Methods," 2nd Edition, 

SLAM, Philadelphia, PA, 1994. 

[50] H. Su, Yi. Zhang, Yu. Zhang and J. Man, "A Compressed BiCGStab Algorithm 

for Power and Ground Network Analysis," IEEE, pp. 1233-1236,2007. 

[51] P. C. Zhu, G. Taylor and M. Irving, "A Novel Q-limit Guided Continuation 

Power Flow Method," IEEE PES General Meeting Proceeding, Pittsburgh 

USA, July 2008. 

[52] C. A. Canizares, "Voltage stability indices," in Voltage Stability Assessment. 

Procedures and Guides: IEEEIPower Eng. Soc. PSS Subcommittee Special 

Publication, 2002, ch. 4. 

[53] K. Chen, A. Hussein, M. E. Bradley, and H.-B Wan, .- A Performance-Index 

Guided Continuation Method for Fast Computation of Saddle-Node Bifurcation 

163 



in Power System," IEEE Transactions on Power Systems, Vol. 18, No.2, pp. 

753-760, May 2003. 

[54] 1. A. Hiskens and B. B. Chakrabati, "Direct calculation of reactive power limit 

points," Int. J Elect. Power and Energy Syst, Vol. 18, No 2, PP. 121-129, 1996. 

[55] N. Kockler, "Numerical Methods and Scientific Computing," Oxford 

University Press Inc., New York, USA, 1994. 

[56] Timothy A. Davis, John R. Gilbert, Stefan 1. Larimore, Esmond G. Ng, "A 

column approximate minimum degree ordering algorithm," ACM Transactions 

on Mathematical Software (TOMS), v.30 n.3, p.353-376, September 2004. 

[57] R. D. Zimmerman, D.-Q (David) Gan, "MATPOWER a MATLABTM Power 

System Simulation Package," Version 3.2, Sep 21,2007. 

[58] R. Seydel, From Equilibrium to Chaos: Practical Bifurcation and Stability 

Analysis, New York: Elsevier, 1988. 

[59] M. Huneault, A. Fahmideh-Vojdani, M. Juman, R. Calderon, and F.G. Galiana, 

"The Continuation Method in Power System Optimization: Applications to 

Economy Security Functions," IEEE Trans. On PAS, vol. 104, no. 1, 1985, pp. 

114-124. 

[60] M. Huneault and F.G. Galiana, "An Investigation of the Solution to the Optimal 

Power Flow Problem Incorporating Continuation Methods," IEEE Trans. On 

Power System, vol. 5, No.1, pp. 103-110, pp. 416-423, Feb 1990. 

164 



[61] K. Iba, H. Suzuki, M. Egawa, T. Watanabe, "Calculation of the Critical 

Loading Condition with Nose Curse Using Homotopy Continuation Method," 

IEEE Transactions on Power Systems, Vol. 6, No.2, pp. 584-593, May 1991. 

[62] H. D. Chiang, W. Ma, R. J Thomas, and 1. S. Thorp, "A Tool for Analyzing 

Voltage Collapse in Electric Power Systems," Proceedings of the 10lh Power 

Systems Computation Conference, Graz, Austria, August, 1990. 

[63] K. Iba, H. Suzuki, M. Egawa, T. Watanabe, "Calculation of the Critical 

Loading Condition with Nose Curve Using Homotopy Continuation Method," 

IEEE Trans. On Power Systems, Vol. 6, No.2, May 1991, pp. 584-593. 

[64] C. A. Canizares and F. L. Alvarado, "Point of Collapse and Continuation 

Methods for Large AC/DC Systems," IEEE Trans. On Power Systems, Vol. 8, 

No.1, Feb 1993, pp. 1-8. 

[65] H. D. Chiang, W. Ma, R. 1. Thomas, and J. S. Thorp, "A Tool for Analyzing 

Voltage Collapse in Electric Power Systems," Proceedings of the 10th Power 

Systems Computation Conference, Graz, Austria, August, 1990. 

[66] EPR! Final Report of Interactive Power Flow (lPFLOW), April 1992. 

[67] 1. J. Grainger and W. D. Stevenson, "Power System Analysis," New York: 

McGraw-Hill, 1994. 

[68] 1. D. Glover and M. Sanna, "Power System Analysis and Design,~' Boston, 

1994. 

165 



[69] K. Chen, A. Hussein, and H. B. Wan, "An analysis of Seydel's test fuction 

methods for nonlinear power flow equations," Int. J Comput. Math., vol. 78, 

no. 112, pp. 451-470, 2001. 

[70] C. T. Kelly, "Iterative Methods for linear and Nonlinear Equations," USA: 

SIAM publications, 1995. 

[71] W. F. Tinney and C. E. Hart, "Power flow solution by Newton's method," IEEE 

Trans. Power Apparat. Syst., vol 86, no 11, Nov. 1967. 

[72] V. Ajjarapu and N. Jain, "Optimal continuation power flow," Electric Power 

System Research35, pp. 17-24, March 1995. 

[73] A. J. Flueck, H. D. Chiang and K. S. Shah, "Investigating the installed real 

power transfer capability of a large scale power system under a proposed 

multiarea interchange schedule using CPFLOW," IEEE Trans. On Power 

Systems, vol. 11, no. 2, pp. 883-889, May 1996. 

[74] H. Li, H. D. Chiang, H. Yoshida, Y. Fukuyama and Y. Nakanishi, "The 

generation of ZIP-V curves for tracing power system steady state stationary 

behaviour due to load and generation variations," IEEE Proc. Of PES Summer 

Meeting, vol. 2, pp. 647-651, Jul 1999. 

[75] J. R. Shewchuk, "An introduction to the conjugate gradient method without the 

agonizing pain," School of Computer Science, Carnegie Mellon University, 

Pittsburgh, Aug 1994. 

166 



[76] W. F. Tinney and J. W. Walker, "Direct solutions of sparse network equations 

by optimally ordered triangular factorization," Proceedings of the IEEE, vol. 55, 

Nov 1967, pp. 1801-1809. 

[77] M. A. Pai, "A new preconditioning technique for the GMRES algorithm in 

power flow and P-V curve calculations," Int. J. Elect. Power Energy Syst., vol. 

25,pp.239-245,2003. 

[78] C. PAIGE AND M. SAUNDERS, "Solution of sparse indefinite systems of 

linear equations," SIAM J. Numer. Anal., Dec 1975, pp. 617-629. 

[79] W. ARNOLDI, "The principle of minimized iterations in the solution of the 

matrix eigenvalue problem," Quart. Appl. Math., Sep 1951, pp. 17-29. 

[80] height 2pt depth -1.6pt width 23pt, "Bi-CGSTAB: A fast and smoothly 

converging variant of Bi-CG for the solution of nonsymmetric linear systems," 

SIAM J. Sci. Statist. Comput, 13 (1992), pp. 631-644. 

[81] F. Alvarado, D. Hasan, S. Harmohan, "Application of conjugate gradient 

method to power system least squares problems," SIAM conference on Linear 

Algebra, Snowbird, Colorado, Jun 1994. 

[82] F. Alvarado, H. Dag and M. ten Bruggencate, "Block-Bordered Diagonalization 

and Parallel Iterative Solvers," Colorado Conference on Iterative Methods, 

Breckenridge, Colorado, April 5-9, 1994. 

[83] G. H. Golub and C. F. Van Loan, "Matrix Computations," The Johns Hopkins 

University Press, USA, 1983. 

167 



[84] H. Dag and F. Alvarado, "The effect of ordering on the reconditioned conjugate 

gradient method for power systems applications,~' Proc. Of the North American 

Power Symposium, Manhattan, Kansas, pp. 202-209, Sep 1994. 

[85] A. Jennings, "Influence of the Eigenvalue Spectrum on the Convergence Rate 

of the Conjugate Gradient Method," J of the Institute of Mathematics and 

Applications, 20: 61-72, 1977. 

[86] H. Javidi, S. McFee and F. D. Galiana, "Investigation of Eigenvalue Clustering 

by Modified Incomplete Cholesky Decomposition in Power Network 

Matrices," Proc. of the Power System Computation Conference, Aug. 1993. 

[87] 1. S. Duff and G. A. Meurant, "The Effect of Ordering on Preconditioned 

Conjugate Gradients," BIT, Vol. 29, 1989, pp. 635-657. 

[88] W. F. Tinney and C. E. Hart, "Power Flow Solution by Newton's Method", 

IEEE Transactions on Power Apparatus and Systems, Vol. PAS-86, No. 11, 

Nov. 1967, pp. 1449-1460. 

[89] B. Stott and O. Alsac, "Fast decoupled load flow", IEEE Transactions on 

Power Apparatus and Systems, Vol. PAS-93, June 1974, pp. 859-869 

[90] R. van Amerongen, "A General-Purpose Version of the Fast Decoupled Load 

flow", IEEE Transactions on Power Systems, Vol. 4, No.2, May 1989, pp. 

760-770. 

[91] H. Mori, H. Tanaka, "A preconditioned fast decoupled power flow method for 

contingency screening," IEEE Power Industry Computer Applications 

Conference, Salt Lake City, May 7-12,1995, pp. 262-270 

168 



[92] Nigel Trevor Hawkins, " On-Line Reactive Power Management in Electric 

Power Systems," 1996. 

[93] H. Z. Liu, Y. Li and X. Chen, "Calculation of Transmission Capability Using 

Continuation Power Flow", Journal of Electric Power Automation Equipment, 

(In Chinese) Vol. 23, No. 12, pp. 5-8, Dec. 2003. 

[94] U.S.-Canada Power System Outage Task Force, "Causes and 

Recommendations", Final Report on the August 14. 2003 Blackout in the 

United States and Canada. Apr 2004. 

169 


	488722_0001
	488722_0002
	488722_0003
	488722_0004
	488722_0005
	488722_0006
	488722_0007
	488722_0008
	488722_0009
	488722_0010
	488722_0011
	488722_0012
	488722_0013
	488722_0014
	488722_0015
	488722_0016
	488722_0017
	488722_0018
	488722_0019
	488722_0020
	488722_0021
	488722_0022
	488722_0023
	488722_0024
	488722_0025
	488722_0026
	488722_0027
	488722_0028
	488722_0029
	488722_0030
	488722_0031
	488722_0032
	488722_0033
	488722_0034
	488722_0035
	488722_0036
	488722_0037
	488722_0038
	488722_0039
	488722_0040
	488722_0041
	488722_0042
	488722_0043
	488722_0044
	488722_0045
	488722_0046
	488722_0047
	488722_0048
	488722_0049
	488722_0050
	488722_0051
	488722_0052
	488722_0053
	488722_0054
	488722_0055
	488722_0056
	488722_0057
	488722_0058
	488722_0059
	488722_0060
	488722_0061
	488722_0062
	488722_0063
	488722_0064
	488722_0065
	488722_0066
	488722_0067
	488722_0068
	488722_0069
	488722_0070
	488722_0071
	488722_0072
	488722_0073
	488722_0074
	488722_0075
	488722_0076
	488722_0077
	488722_0078
	488722_0079
	488722_0080
	488722_0081
	488722_0082
	488722_0083
	488722_0084
	488722_0085
	488722_0086
	488722_0087
	488722_0088
	488722_0089
	488722_0090
	488722_0091
	488722_0092
	488722_0093
	488722_0094
	488722_0095
	488722_0096
	488722_0097
	488722_0098
	488722_0099
	488722_0100
	488722_0101
	488722_0102
	488722_0103
	488722_0104
	488722_0105
	488722_0106
	488722_0107
	488722_0108
	488722_0109
	488722_0110
	488722_0111
	488722_0112
	488722_0113
	488722_0114
	488722_0115
	488722_0116
	488722_0117
	488722_0118
	488722_0119
	488722_0120
	488722_0121
	488722_0122
	488722_0123
	488722_0124
	488722_0125
	488722_0126
	488722_0127
	488722_0128
	488722_0129
	488722_0130
	488722_0131
	488722_0132
	488722_0133
	488722_0134
	488722_0135
	488722_0136
	488722_0137
	488722_0138
	488722_0139
	488722_0140
	488722_0141
	488722_0142
	488722_0143
	488722_0144
	488722_0145
	488722_0146
	488722_0147
	488722_0148
	488722_0149
	488722_0150
	488722_0151
	488722_0152
	488722_0153
	488722_0154
	488722_0155
	488722_0156
	488722_0157
	488722_0158
	488722_0159
	488722_0160
	488722_0161
	488722_0162
	488722_0163
	488722_0164
	488722_0165
	488722_0166
	488722_0167
	488722_0168
	488722_0169
	488722_0170
	488722_0171
	488722_0172
	488722_0173
	488722_0174
	488722_0175
	488722_0176
	488722_0177

