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Abstract

The focus of this thesis is on the employment of theoretical and practical quantile

methods in addressing prediction, risk measurement and inference problems. From

a prediction perspective, a problem of creating model-free prediction intervals for

a future unobserved value of a random variable drawn from a sample distribution

is considered. With the objective of reducing prediction coverage error, two

common distribution transformation methods based on the normal and exponential

distributions are presented and they are theoretically demonstrated to attain exact

and error-free prediction intervals respectively.

The second problem studied is that of estimation of expected shortfall via kernel

smoothing. The goal here is to introduce methods that will reduce the estimation bias

of expected shortfall. To this end, several one-step bias correction expected shortfall

estimators are presented and investigated via simulation studies and compared with

one-step estimators.

The third problem is that of constructing simultaneous confidence bands for

quantile regression functions when the predictor variables are constrained within a

region is considered. In this context, a method is introduced that makes use of the

asymmetric Laplace errors in conjunction with a simulation based algorithm to create

confidence bands for quantile and interquantile regression functions. Furthermore,

the simulation approach is extended to an ordinary least square framework to build

simultaneous bands for quantiles functions of the classical regression model when the

model errors are normally distributed and when this assumption is not fulfilled.

Finally, attention is directed towards the construction of prediction intervals

for realised volatility exploiting an alternative volatility estimator based on the

difference of two extreme quantiles. The proposed approach makes use of AR-GARCH

procedure in order to model time series of intraday quantiles and forecast intraday

returns predictive distribution. Moreover, two simple adaptations of an existing model

are also presented.
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Chapter 1

Introduction

In statistics, distribution functions play a fundamental role in characterising and

describing the attributes of population of interest and thus serve as an invaluable

tool towards decision making. Traditionally, the mean and standard deviation, the

respective measures of location and dispersion, have been extensively employed as

parameters that can depict the entire distribution. However, the information content

of the mean and standard deviation is limited and there is therefore a need to explore

other measures with more attractive properties that may provide profound insight

into a distribution. To address such deficiencies, quantiles which divides a distribution

into two parts, have recently received great interest as alternative robust statistical

methods that transcend beyond the mean framework to capture different features of

an entire distribution.

The usage of quantiles have a history stretching over a century when Galton

(1889) used a sample of almost a thousand subjects to calculate conditional quartiles

of height of sons given the height of their fathers. Realising the need to explore

different aspect of a distributional function Galton calls on statisticians not to restrict

their investigations to averages but should adjust to finding ‘more comprehensive

views’. Since then there has been a revolution towards a more holistic outlook

of representing and drawing inference from distribution functions, and due to the

1
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fact that quantiles are the components making up any distribution academia has

directed more effort towards identifying quantiles features that can assist in problem

solving. As a result, quantiles have received immense interest theoretically and found

numerous applications in different fields such as medicine, social science and finance.

Although the potential of quantiles in solving statistical problems through

modelling and inferencing has been identified in the fall of the nineteenth century, the

fruits of this promising new thinking did not materialise until mid to late twentieth

century through the work of Tukey (1965) and the publication of books on order

statistic by Sarhan and Greenberg (1962) and David (1970) which have a natural

implications on the calculation of quantiles. Similarly, since his groundbreaking

paper (Parzen (1979)) Parzen has played an instrumental role in the advancement of

quantile statistical thinking towards a unified approach that address both frequentist

and Bayesian perspectives as well as parametric and non-parametric approaches, see

Parzen (1993, 2004).

The introduction of quantile regression by Koenker and Bassett (1978) as an

alternative and more rewarding methodology of modelling the relationship between

response and predictor variables has proven to be one of the most successful

application of quantiles. The original idea has been extended to a non-parametric

setting through the work of Yu (1997) amongst others and has found application in

financial modelling as substitute to standard techniques, see for example Engle and

Manganelli (2004), Koenker and Zhao (1996), Xiao and Koenker (2009).

It is often of economic interest in areas such as finance, insurance seismic

analysis and hydrology to calculate extreme quantiles to quantify the effect of some

event or outcome under investigation. Hosking and Wallis (1987) introduced an

extreme value theory viewpoint in dealing with such problems through studying the

estimation of quantiles and parameters of generalised Pareto distribution (GPD).

In assessing the goodness-of-fit of some distribution on specific dataset or

in examining similarities between two distributions the work of Hazen (1914) on
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quantile-quantile (q − q) plots as well as that of Parzen (1979) on probability-

probability (p − p) plots have found numerous applications in visually detection

of parameters of interest such as skewness and heavy tails of one distribution in

comparison to another.

This conclude a brief historical analysis of some revolutionary and important

contributions in the literature that have enhanced the advancement of quantiles

methods. The areas of research presented are by no means exhaustive; for a general

history on statistics and modelling via quantile functions see Hald (1998) and Gilchrist

(2000) respectively.

The focal point of the thesis is on the theoretical and practical application of

quantile methods for prediction and risk analysis in the context of bias reduction in

estimating expected shortfall and confidence and prediction intervals for integrated

volatility. To this end, in the following discussion a formal introduction of quantiles

together with some common properties are given.

1.1 Quantiles and Their Properties

Let X = {X1, X2, . . . , Xn} denote independent and identically distributed random

variables from a distribution function F , then for p ∈ [0, 1] the inverse of cumulative

distribution function, F−1(p), is the quantile function and is defined as

F−1(p) = inf{x : F (x) ≥ p}. (1.1)

The 100p% quantile ξp is obtained as the unique solution to F−1(p) = ξp. In parallel

with the definition of equation (1.1) one can make use of order statistics to define

sample quantiles. This is achieved by introducing order statistics X̃1 < X̃2 < . . . , <

X̃n obtained from sorting the original sample in ascending order and defining the

100p% sample quantile as ξ̂p = X̃[p(n+1)], where [a] is the integer part of a.

From a different angle quantiles can be represented as solution of an optimisation
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problem as follows. Given a random variable X from a distribution function F with

a corresponding density f then the objective is to find a quantity ξp by minimising

the expected loss

Eρp(X − ξp) = (p− 1)

∫ ξp

−∞
(x− ξp)f(x)dx+ p

∫ ∞

ξp

(x− ξp)f(x)dx, (1.2)

where the loss function

ρp(γ) = pI(γ ≥ 0) + (1− p)I(γ < 0).

To obtain a minimum of equation (1.2) one differentiate with respect to ξp resulting

in

∂

∂ξp
Eρp(X − ξp) = (1− p)

∫ ξp

−∞
f(x)dx− p

∫ ∞

ξp

f(x)dx

and on equating to zero, one finds the solution as ξp = F−1(p). In the event that there

exist a number of solutions, in consistence with the definition of equation (1.1) the

convention is to choose the lowest value, Koenker (2005). In a more computational

friendly format the same problem can be presented as

min
ξp

1

n

(
p
∑
xi>ξp

|xi − ξp|+ (1− p)
∑
xi≤ξp

|xi − ξp|
)
.

When F is continuous with density function f the equivalent relations linking density,

distribution and quantile functions

f(x) =
d

dx
F (x); x = F−1(p).

Similarly, Tukey (1965) first noted that the relationship between distribution and

density functions can be extended to define a new analogous quantile density measure
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which he called the sparsity function

qp =
d(F−1(p))

dp
.

Parzen (1979) present an almost identical quantity which he termed density quantile

function defined as fp = f(F−1(p)). These quantities play an important role when

calculating confidence intervals for regression quantile coefficients as well as modelling

with quantile functions as illustrated by Koenker (2005) and Gilchrist (2000).

The advantage, attraction and practical usefulness of quantiles spring from

their properties. To this end, in what follows some common properties of quantiles

are briefly explained.

Robustness against outliers is a key inherent property of quantiles. This

attribute is of significant importance in many application and thus consequently

elevate the usage of quantiles and quantile-based techniques particularly in those

fields in which outliers pose the risk of distorting the final outcome of some analysis

of interest.

Another attractive property of quantile functions is their equivariance to

monotone transformation. This can be illustrated by considering a monotonic

function g that is used to create a transformed random variable Y = g(X). The

quantiles of the new random variable Y are obtained by transforming the quantile

function of X such that ξYp = g(F−1
X (p)) = g(ξXp ).

Furthermore, a well known usage of quantiles is in their ready interpretability

when calculating confidence and prediction intervals. In this respect, for a pre-

specified confidence level, quantiles naturally form the upper and lower bounds

enclosing some unknown parameter or future observation.
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1.2 Quantile-based Measures of Location, Scale,

Skewness and Kurtosis

A distribution function can be characterised by infinite number of quantiles spanning

its support. This view lends itself useful in re-defining moment-based estimators in

terms of quantiles.

The mean has long been employed as measure of location. However, there

are occasions when it is more informative to observe and analyse different parts of

a distribution and the flexibility of quantiles allows one do just that by shedding

light on and examining any location of interest. This idea form the building block

of quantile regression which unlike its ordinary least square counterpart, lies in its

ability to capture heterogeneity and characterising the entire conditional distribution

of the variable of interest given its covariates.

Quantiles, although implicitly, have always been used in estimating the the

second moment of a distribution. Specifically, the range which correspond to the

difference between the extreme quantiles

R = F−1(1)− F−1(0)

has for quite some time been used as a measure of variability, Tippett (1925). Other

well known quantile measures of scale are the interquartile range (IQR) and twice the

interquartile range (IQR2),

IQR = ξ0.75 − ξ0.25, IQR2 = 2(ξ0.75 − ξ0.25).

Using the difference of two extreme quantiles, Pearson and Tukey (1965) proposed

quantile-based measure of standard deviation defined as

σ̃ =
ξ1−p − ξp
C(p)

,
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where the order of quantile p are chosen to be 0.01, 0.025, and 0.05 with corresponding

correction constant C(p) as 4.65, 3.92 and 3.25 respectively. Moment-based measure

of skewness is the standard procedure used to quantify the asymmetry of distributions.

However, quantiles due to their robustness against outliers have the potential to

accurately and simply capture deviations from normality. One such measure is that

of Hinkley (1975)

QSK3 =
ξ1−p − ξp − 2ξ0.5

ξ1−p − ξp
0 < p < 0.5

which is a generalised version of coefficient of skewness presented earlier by Bowley

(1920). Similarly, Crow and Siddiqui (1967) uses extreme quantiles to define quantile-

based measure of kurtosis as

QKU =
ξ1−p + ξp
ξ1−η − ξη

where 0 < p, η < 1.

1.3 Moment and Quantile-based Risk Measures

The need to quantify and manage risk is of fundamental importance in finance. Great

effort has been invested in developing risk measurement techniques that can bridge

the gap between financial institutions, practitioners and regulators, with the goal of

obtaining accurate and easy to implement methodologies for measuring risk.

Financial markets have always been risky but over the last three to four decades

this phenomenon has become more apparent. One possible reason is an increase in

volatility across a spectrum of financial products such as equity returns, interest and

foreign exchange rates, see Dowd (2002). Similarly, another contributor to an upsurge

in volatility emanates from the expansion in the magnitude of derivative products

such as options whose returns are generally riskier than those of the underline stocks,

Ruppert (2006). For these reasons together with infamous cases that have led to the
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collapse of institutions such as that Baring Banks, Orange County and Enron greatly

accentuate the need for companies to not only understand their exposure to risk but

also monitor and understand the risks incurred by by individual employees as a result

of their dealings.

From a finance point of view risk is defined as being made up of uncertainty and

exposure components, see Holton (2004). The author agues that due to its multi-facet

it is very difficult to define perceived risk while it is possible to define components

of risk using risk metrics measures such as the standard deviations of returns of an

asset or maximum likely credit exposure.

In the proceeding subsection brief overviews of popular risk measures are given

with the aim of creating a link between these measures with quantiles.

1.3.1 Standard Deviation

In finance, standard deviation (also known as volatility) as popularised by the modern

portfolio theory of Markowitz (1952, 1959) has become one of the most widely used

risk measure. The set up of the modern portfolio theory hinged on the assumption of

the normality of asset returns and from this Markowitz (1952, 1959) concluded that a

natural risk measure is the standard deviation. In this respect, the problem of efficient

portfolio selection can be viewed as that of maximising expected returns coupled with

the condition of minimising risk (standard deviation), which for a random variable R

representing financial asset returns the quantity is defined as

σ =
√
E(R− E(R))2.

It is by now well documented that the distribution of financial are not normally

distributed, see for instance Jondeau et al. (2006). When the distribution under

investigation is Gaussian standard deviation can be employed as a measure of

dispersion, however, when such an assumption is violated the second moment may

give a distorted picture of dispersion, see Poon and Granger (2003). To circumvent
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this drawback other measures such as interquartile range and mean absolute return

have been proposed.

Over the last two decades, the availability of high frequency data has resulted

in the adaptation of the model free continuous measure of variance. The new popular

estimator of true unobserved volatility is known as realised variance, see McAleer and

Medeiros (2008) for a review. Realised variance obtained as the summation of squared

high frequency returns over a given day and thus serve as a model free estimator of

the true unobserved variance called integrated variance.

From a risk management perspective the employment of quantiles have been

instrumental in the introduction of the so called quantile-based risk measures. Two

such measures that have been extensively used by regulators as well as financial

institutions are value at risk (VaR) and expected shortfall (ES).

1.3.2 Value at Risk

In the early 90’s a new risk measuring technique known as value at risk has

since revolutionised the risk management world has emerged from the RiskMetrics

methodology developed by JP Morgan. Value at risk of a portfolio is defined as an

upper bound such that for a specified time horizon and confidence level 100(1− p)%

the market value of the portfolio will depreciate beyond the bound with probability

p ∈ (0, 1). In most industry application the value of p is chosen to be either 1% or 5%,

which can be interpreted to indicate the the risk-averseness of the decision-maker.

For a given a vector {rt}Tt=1 denoting the evolution of returns of a portfolio over

time, the calculation of VaR can be considered as that of forecasting the conditional

quantiles of the distribution of portfolio returns. Mathematically, the next period

VaR calculated at time t− 1 can be expressed as

Pr(rt ≤ ξp|Ft−1) = p
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such that

V aRt(p) = −ξp,

where Ft−1 denotes the information set available up until time t− 1.

A major breakthrough in the acceptance of VaR by regulators followed as

result of the Basle Committee on Banking Supervision (BCBS) requesting banks to

use their internal models, subject to calibration, to estimate probable losses and set

aside capital to cover for market risk based on the outcome of their estimations.

Furthermore, the recognition and acceptance of VaR as a risk measure amongst

financial institutions is due to its ability to summarise the market risk of a portfolio

to just a single monetary value together with the ease with which this information

can be communicated to the concerned parties.

1.3.3 Expected Shortfall

Despite it popularity and wide acceptance by regulators and financial institutions,

VaR as a risk measure has received a number of criticisms. The major of these

criticisms center on the inability of VaR to satisfy all the conditions of a coherent

risk measure as proposed by Artzner et al. (1999). Specifically, for the four properties

defining a coherent risk measure; monotonicity, homogeneity, translational invariance

and subadditivity VaR satisfy the first three and falls short of the sub-additive

property. Another criticism of VaR come forth from the fact that this risk measure

sets an upper bound on the maximum loss, and thus its inability to account for losses

beyond the confidence level and may therefore underestimate the true risk associated

with a portfolio. To this end, Artzner et al. (1999) introduced expected shortfall (ES)

as an alternative coherent risk measure directly related to VaR.

Expected shortfall is defined as the expected loss of a portfolio provided the
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bound set by VaR is violated. In mathematical terms, this can be expressed as

ESt(p) = −E(rt|rt−1 ≤ ξp).

1.4 Thesis Outline

The outline of the thesis is as follows. Chapter 2 addresses the problem of

constructing prediction intervals for future values of a random variable drawn from

a sample distribution. Two simple methods based on the Gaussian and exponential

distributions transformation are proposed with the focus on improving the coverage

accuracy of prediction intervals. The Gaussian distribution method is constructed

using the well known Box-Cox transformation and is theoretically shown to produce

exact prediction intervals. The exponential distribution method is demonstrated to

attain error free prediction intervals and is shown to have a natural extension from

a parametric to a nonparametric setting. Furthermore, the practical accuracy of the

two proposed methods are studied through simulation experiments. The application

of the proposed methods encompasses a wide range of problems ranging from the well

known usage of creating prediction intervals for regression models to quality control

and manufacturing, where, for instance, one is interested in creating intervals for

future defective products. The types of data employed by the proposed methods are

independent and identically distributed (iid).

The focus of Chapter 3 is on a number of kernel quantile based estimators

including jacknife based bias-correction estimators which have theoretically been

proven to reduce bias. Bias-reduction is particularly effective in reducing the tail

estimation bias as well as the consequential bias that arises in kernel smoothing

and finite sampling fitting, and thus serves as a natural approach to the estimation

of extreme quantiles of assets prices distribution. These estimators are studied

numerically through simulation and real data example to assess their competitiveness

in estimating expected shortfall. Although, by construction, the proposed methods
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are aimed to be used in conjunction with (iid) data. Through filtering, as

demonstrated at the end of Chapter 3, the application of these estimators can be

readily extended beyond (iid) and thus account for heteroscedasticity observed within

real financial data.

Chapter 4 address the problem of constructing simultaneous confidence bands

for quantile regression functions when the covariates are constrained within a region.

Through exploiting the relationship between the asymmetric Laplace distribution and

quantile regression a simulation-based method employing the active set algorithm of

(Liu et al., 2004, 2005) is presented. It is also shown that the simulation based

algorithm can be readily employed to create confidence bands for the difference of

two regression functions. Furthermore, attention is also focused on the construction

of confidence bands for quantile functions of classical ordinary least square regression

when the model errors are both normally distributed and when they are not. Through

a different outlook of the problem it is demonstrated that the problem can be solved

by alternative optimisation techniques, namely simulated annealing/acceptance

threshold and in some special cases, depending on the regression model, as one

dimension constrained optimisation. The practicality of the methods are examine

through empirical studies using the coverage probabilities as a distinguishing criterion.

From a data and application point of view, the methods presented in this chapter

can be employed in numerous fields, such as medicine, economics and social science,

where the aim is to model the relationship between a dependent variable and a set

of covariates for different quantiles, and to attach a measure of uncertainty on the

true quantile regression function. Crucially, the difference between pointwise and

simultaneous bands considered in this chapter is that, for the latter the bands are

constructed, given the covariates, simultaneously on the whole range or a subset

of the regression function. For application, consider a situation where for a given

regression model one has a number of possible candidates for a particular quantile,

then simultaneous bands can be used to distinguish between the possible candidates

based on the coverage.
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In Chapter 5 we take a practical approach to creating prediction intervals

for RV. In particular we exploit the quantile-based estimator of volatility originally

proposed by Pearson and Tukey (1965) to create prediction intervals for realised

volatility. Using the presentation of the difference of two extreme quantiles we

establish a link with realised volatility calculated using intraday returns. An AR-

GARCH model is employed to model intraday time series of quantiles in order to

forecast next period density of intraday returns and from which prediction intervals

are calculated using the distribution of the difference of two quantiles. Furthermore,

we present a bootstrap approach of this idea as well as introduce two adaptations

of the Heterogeneous AutoRegressive (HAR) model of Corsi (2009) with a view to

predict end points of a prediction interval for realised volatility. Thereafter, we apply

the proposed methods to two equities and assess their coverage accuracy. This chapter

calls on high frequency financial data, that is data in which the price of an asset is

recorded in equally spaced time periods over the course of a trading day.

Finally, Chapter 6 summarises the main results of the research as well as

proposing recommendations for possible future research directions.

Each chapter is written to be read independently with self contained notations

and definitions, and where reference is made to another chapter the connection is

clearly explained.



Chapter 2

Improving the Accuracy of

Prediction Intervals

In this chapter the problem of constructing prediction intervals for future values

of a random variable drawn from a sample distribution is considered. Two simple

calibration methods based on distribution transformation are proposed and are shown

both theoretically and via simulation study to improve the coverage accuracy of the

prediction intervals.

2.1 Introduction

Prediction is one of the fundamental problems tackled by statistics. Consequently,

there exist numerous statistical techniques such as time series and regression models

designed to address different aspects of forecasting.

Traditionally, forecasters have relied on point forecasts as a helpful tool in

decision making. While the production of a point forecast serves as an important

function, this approach overlooks a vital aspect of dealing with uncertainty associated

with such prediction. In failing to consider the likely range of outcomes, the decision

maker foregoes key information which can assist in reaching more instructive and

14
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economical conclusions.

Two related concepts that are widely used to account for point prediction

uncertainties are prediction intervals and density forecasts, as lucidly discussed by

Chatfield (1993) and Tay et al. (2000) respectively. Density forecasts of a random

variable involve the estimation of the entire distribution function depicting the

spectrum of possible future values of the random valuable under study.

Prediction intervals, also known as interval forecasts is a notion that is of a

middle path between the two extremes of a point and a density forecast and can

be viewed as a special case of the latter. Prediction intervals of a random variable

are constructed by estimating upper and lower bound quantiles such that for a pre-

specified probability the future values of random variable drawn independently from

the original sample will be captured within the interval. The idea of prediction

intervals is closely related to that of confidence intervals; the latter attach probability

statements regarding the likely values of a fixed but unobservable population

parameter whereas the former provide bounds on future observations. A summary of

applications of prediction intervals including a predictive application of the Bayesian

approach are given by Geisser (1993), Lawless and Fredette (2005), Hamada et al.

(2004) and the references therein, and for a review of time series prediction intervals

see Chatfield (2001).

The problem can be formally posited as follows: Let X = {X1, ..., Xn}

denote a random sample of size n from a distribution with distribution function

F . Furthermore, for p ∈ (0, 1) let ξp = F−1(p) denote a distribution’s 100p% quantile

assumed to be uniquely defined. Additionally, let ξ̂p be the sample estimator of ξp,

and suppose that X denotes a random variable independent of the original sample but

drawn from the same population as that of X. By defining two end point statistics,

ξ̂Xp/2 and ξ̂X1−p/2, obtained from the original sample X, then 100(1 − p)% symmetric

prediction interval for X can be written as

Pr[ξ̂Xp/2 < X < ξ̂X1−p/2] = 1− p, (2.1)
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where the quantity 1 − p is known as the nominal level. Analogously, a level p one

sided prediction interval for X can be defined as Pr[X < ξ̂Xp ] = p.

The objective is to investigate if there exist a sample estimator ξ̂p of the

distribution 100p% quantile, ξp, such that equations

Pr[X < ξ̂p] = p (2.2)

or

EF {Pr[X < ξ̂p]} = p (2.3)

are satisfied.

Equation (2.2) defines an exact prediction interval for X while equation (2.3)

which is equivalent to E{F (ξ̂p)} = p defines a prediction interval for X with zero

coverage error.

The main ingredient in achieving the objective rests on the estimation of the

quantile. In this respect, it follows from the edgeworth expansion of the distributions

of order statistics (see, Reiss (1989) for example) that by substituting the 100p%

sample quantile in place of ξ̂p the relation given by equation (2.3) is the most accurate

attainable. That is, by defining the corresponding order statistics of the original

sample as Y1 < Y2 < . . . , Yn and taking the estimator of 100p% quantile ξp as ξ̃p =

Y[(n+1)p], where [a] is the integer part of a, then coverage probability of the interval

(−∞, ξ̃p) has a coverage error of order n−1 as a prediction interval for future data

values:

P [X ≤ ξ̃p] = p+O(n−1), (2.4)

in the sense of E{F (ξ̃p)} − p = O(n−1).

It can be deduced that the accuracy of equation (2.4) depend crucially on

the estimation of the quantile ξp. To this end, a number of nonparametric methods

have been proposed to improve the coverage accuracy. For instance, Hall and Rieck

(2001) have put forward a calibration method that is based on the extrapolation of
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adjacent order statistics. Specifically, the authors show that if ξ̃p is an appropriate

interpolation among three and five order statistics it follows that the coverage error

can be reduced from O(n−1) to orders O(n−3) and O(n−4) respectively. Furthermore,

Hall et al. (1999) and Hall and Rieck (2001) respectively demonstrate the validity of

the bootstrap and smoothed bootstrap techniques in reducing the coverage error of

prediction intervals. The smoothed bootstrap is shown, under specific conditions on

the choice of the smoothing parameter, to reduce the coverage error from the inverse

of sample size to O(n−2) and O(n−3). From a Bayesian school of thought, Sweeting

(1999) among others, presents an approach of obtaining approximate zero coverage

probability bias associated with equation (2.4).

The focus of the chapter is on the traditional frequentist stance with the

motivation centering on proposing methods that can go beyond reducing the order

of the coverage error to those with exact or zero coverage error. The following

subsection presents exact prediction interval based on the Box-Cox transformation

and in section 2.3 a zero coverage error exponential distribution based prediction

interval is proposed.

2.2 Normal Distribution-based Method

Let X = {X1, ..., Xn} denote a random sample from the normal population

N(µ, σ2), with parameters µ and σ2 unknown, then the 100p% quantile of the

normal distribution is given by ξp = µ + σΦ−1(p), where Φ(.) is the standard

normal cumulative distribution. Instead of the popular order statistic based pth

sample quantile estimate, ξ̃p, an alternative estimate for ξp built from the estimated

parameters is given by

ξ̂p = X + cSn,

where X = 1
n

n∑
i=1

Xi is the sample mean, S2
n = 1

n−1

n∑
i=1

(Xi−X)2 is the sample variance

and c is a known quantity which depends only on the sample size n and centile p.
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When c is chosen as

c = Φ−1(p)

√
n− 1

2

Γ((n− 1)/2)

Γ(n/2)
,

where Γ(α) =
∫∞
0 uα−1 exp(−u)du denotes the gamma function, then it can be shown

that (see, Rao (1973)) ξ̃p gives an unbiased and even minimum variance estimate of

ξp. However, similar to the 100p% sample quantile estimator, this estimate has a

predictive accuracy up to order n−1. That is, for a random variable X independent

of sample X, P [X < ξ̂p] = p+O(n−1).

It can be noted that the parameter set (X,S2
n) is the minimum sufficient

statistic for the normal distribution, and thus should provide the same information

as any interpolation of order statistic for improving coverage accuracy of prediction

interval.

By selecting the constant c as

c =

√
n+ 1

n
tpn−1, (2.5)

where tpn−1 denotes the 100p% quantile from a student-t distribution with (n − 1)

degree of freedom, then one can construct exact prediction intervals as stated by the

following theorem.

Theorem 1: If X is a random variable independent of a normally distributed

random sample X, estimate ξp by

ξ̂p = X + cSn,

with constant c given by (2.5), then Pr[X < ξ̂p] = p.

The derivation of the exact prediction interval, Pr[X < ξ̂p] = p, directly follows

from the fact that X ∼ N(µ, σ
2

n ) and thus X−X ∼ N

(
0, (1+ 1

n)σ
2

)
, then X−X

Sn

√
1+ 1

n

∼

tn−1 and

Pr[X < ξ̂p] = Pr[X < X + cSn] = Pr

[
X −X

Sn
< c

]
= p.
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This conclusion shows that, when the original sample X is from a normal distribution

an exact prediction interval for a new random variable X can be readily obtained.

The derivation of the exact prediction interval rest on the assumption that the

original sample is independent and identically drawn from a normal distribution.

Although, the normal distribution is extensively applied in both theoretical and

practical statistics, it is often the case that the normality assumption fail to hold.

If a random sample X = {X1, ..., Xn} is from an unknown distribution F , then there

exist different approaches to transform it to be approximately normal with the most

employed of these known as the Box-Cox transformation, (see Sakia (1992) for a

review).

To transform a random sample X = {X1, ..., Xn} to one that is approximately

normally distributed, say Y = {Y1, ..., Yn}, Box and Cox (1964) propose a

transformation function

Y = gλ(X) =


Xβ−1

β , when β ̸= 0

log(X) when β = 0,
(2.6)

where β is a transformation parameter to be estimated. Without loss of generality,

the Box-Cox transformation techniques (2.6) only admits strictly positive random

variables, however, there are variants of other similar transformations (see Sakia

(1992)) that can accommodate any real values. Generally, consider a random variable

X ∼ F (x) and a random variable Y = Gβ(X) ∼ N(µβ , σ
2
β) where G(.) is a known

monotonic function and the inverse G−1(.) exist. Let ξp be the 100p% quantile of X,

and ξYp be the pth quantile of Y , then

ξYp = µβ + σβΦ
−1(p),

and

ξp = G−1
β (ξYp ).
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From the preceding discussion under normal distribution and according to

Theorem 1, it follows that if ξYp is estimated by

ξ̂Yp = Ȳ + cSY,n,

with the constant c given by equation (2.5) then for any random variable Y

independent of sample Y = {Y1, ..., Yn}, P [Y < ξ̂Yp ] = p. Now define the estimate of

ξp by

ξ̂p,β = G−1
β (ξ̂Yp ), (2.7)

thus, for any a random variable X independent of sample X,

P [X ≤ ξ̂p,β] = P [Gβ(X) ≤ ξ̂Yp ] = P [Y < ξ̂Yp ] = p.

In order to examine the small sample performance of the proposed method and

to facilitate numerical comparison simulations are conducted based on four different

populations: D1, standard normal; D2, standard exponential; D3, two-parameter

Weibull with shape and scale parameters equal to 2 and 1 respectively; D4, standard

log-normal. For each population model 5000 replications are used.

Let the coverage error be the difference between the coverage probability and

the nominal coverage; P [X < ξ̂p] − p. Table 2.1 lists approximate coverage errors

obtained from simulations for p = 0.90 where the transformation parameter λ is

calculated using the MATLAB function boxcox which makes use of unconstrained

linear optimisation where the likelihood function, derived from assuming that the

transformed data is normally distributed, is maximised. The results indicate that

the method produce very accurate coverage with increased accuracy for large sample

sizes. However, as it can be noted from Table 2.1 for p = 0.90 the proposed method

appear to overestimate.
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Table 2.1: Coverage errors (multiplied by 1000) with p = 0.9 based on Box-Cox
normal transformation.

n D1 (Norm) D2 (Exp) D3 (Weib) D4 (Lognorm)

12 11.0 12.0 13.0 15.0

14 9.1 9.7 11.0 11.0

16 7.7 8.2 8.8 9.4

18 6.7 7.1 7.5 8.0

50 3.7 4.4 4.8 4.8

100 2.1 2.3 2.4 2.4

2.3 Exponential Distribution-based Methods

Due to its attractive features, the most celebrated and noteworthy of which is

the memoryless property, the exponential distribution has become one of the most

extensively employed in both theoretical and applied statistics.

Let X = {X1, ..., Xn} be a positive exponential distributed random sample

with respective density and distribution functions f(x) = 1
λ exp(− 1

λx) and F (x) =

1− exp(− 1
λx). Then the 100p% quantile of the distribution is given by

ξp = −λ log(1− p). (2.8)

A natural unbiased estimate of ξp can be achieved by replacing the unknown

parameter λ by its maximum likelihood estimator λ̂ = 1
n

∑n
i=1Xi.

However, estimating the quantile ξp with ξ̂p = −λ̂ log(1− p) does not improve

the predictive accuracy, in the sense that for a new random variable X independent

of sample X, E{Pr[X < ξ̂p]} < p. The proof of this arises from noting that the

sum of independent and identically exponential random variates follows a Gamma

distribution, that is, Y ≡
∑n

i=1Xi ∼ Γ(n, λ), where

Γ(n, λ) =
yn−1

Γ(n)λn
exp

(
− 1

λ
y

)
. (2.9)
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The proportion p of the area below ξ̂p is

E{P [X < ξ̂p]} = 1−
∫ ∞

0
exp

(
− 1

λ
log(1− p)−

1
n y

)
yn−1

Γ(n)

1

λn
exp(− 1

λ
y)dy

= 1−
∫ ∞

0

yn−1

Γ(n)

1

λn
exp

(
− 1

λ
[1 + log(1− p)−

1
n ]y

)
dy

= 1− [1 + log(1− p)−
1
n ]−n

×
∫ ∞

0

yn−1

Γ(n)

[(1 + log(1− p)−
1
n )]n

λn
exp

(
− 1

λ
[1 + log(1− p)−

1
n ]y

)
dy

= 1− [1 + log(1− p)−
1
n ]−n .1

= 1− [1− 1

n
log(1− p)]−n. (2.10)

Given that log

(
1− 1

n log(1−p)
)n

= n log

(
1− 1

n log(1−p)
)
then using the logarithmic

series, − log(1 − z) =
∑∞

k=1
zk

k for |z| < 1, one can express the last component of

equation (2.10) as

− n log

(
1− 1

n
log(1− p)

)
= −n

∞∑
k=1

(log(1− p))k

knk
.

Subsequently, it follows that

− log(1− p)− n

∞∑
k=2

(log(1− p))k

knk
< − log(1− p),

and thus 1− [1− 1
n log(1− p)]−n < p.

To circumvent the deficiency in the predictive accuracy, ξp can be estimated

by an alternative calibrator

ξ̂p =

(
1

(1− p)1/n
− 1

) n∑
i=1

Xi, (2.11)

then for a new random variableX independent of sampleX, a zero coverage prediction

interval

E{P [X < ξ̂p]} = p,

is attained.
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The estimator ξ̂p defined in equation (2.11) is not an unbiased estimator of ξp,

however it provides a prediction interval with zero coverage error. As a matter of

fact, let cn(p) =
1

(1−p)1/n
− 1, and Y =

∑n
i=1Xi, then Y ∼ Γ(n, λ),

EF {F (ξ̂p)} = 1−E{exp(− 1

λ
cn(p)Y )}

= 1−
∫ ∞

0
exp(− 1

λ
cn(p)y)

yn−1

Γ(n)

1

λn
exp(− 1

λ
y)dy

= 1− (1− p)

∫ ∞

0

yn−1

Γ(n){λ(1− p)1/n}n
exp(− 1

λ(1− p)1/n
y)dy = 1− (1− p) = p.

Due to

∫ ∞

0
exp(− 1

λ
cn(p)y)

yn−1

Γ(n)

1

λn
exp(− 1

λ
y)dy =

∫ ∞

0
exp(−cn(p)y)

yn−1

Γ(n)
exp(−y)dy,

the conclusion of zero prediction coverage error, E{P [X < ξ̂p]} = p, is independent

of the selection of parameter λ and holds true for all λ > 0. When λ = 1 which

corresponds to the simple exponential distribution Exp(1), ξ̂p = cn(p)
∑n

i=1Xi

provides a predictive interval end point with zero coverage error.

In the following discussion, the the idea of the exponential distribution method

is extended to general distributions.

Consider a sample X = {X1, ..., Xn} from a general but known distribution F

with an existing and unique inverse function F−1. Let Y denote an exponentially

distributed random variable such that Y = − logF (X) and Yi = − logF (Xi).

Further, let dn(p) =
1

p1/n
− 1 and

Ŷp = dn(p)
n∑

i=1

Yi; (2.12)

if the 100p% quantile ξp = F−1(p) is estimated by

ξ̂p,F = F−1(exp(−Ŷp)), (2.13)



2.3. Exponential Distribution-based Methods 24

then it is still the case that, for any random variable X independent of sample X,

EFP [X < ξ̂p,F ] = p.

By noting that,

P [X < ξ̂p,F ] = P [− logF (X) > − logF (ξ̂p,F )] = P [Y > Ŷp],

together with the fact that Y ∼ Exp(1), then the Ŷp given by equation (2.12) equals a

constant times a Gamma distribution Γ(n, 1). Consequently, it follows that EP [X <

ξ̂p,F ] = E exp(−Ŷp) = p.

On substituting Yi = − logF (Xi) into equation (2.12) it can be observed that

an alternative expression for ξ̂p,F is given by

ξ̂p,F = F−1

(
(

n∏
i=1

F (Xi))
1

p1/n
−1

)
. (2.14)

Theorem 2: If X is a random variable independent of sample X from

distribution F , then ξ̂p,F given by equation (2.14) provides a prediction interval with

zero coverage error for X.

Table 2.2: Coverage errors (multiplied by 1000) with p = 0.9 based on exponential
distribution method.

n D1 (Norm) D2 (Exp) D3 (Weib) D4 (Lognorm)

12 0.18 -0.55 0.43 -0.30

14 -0.48 0.16 -0.22 0.32

16 -0.37 0.14 0.31 0.32

18 0.085 -0.16 0.015 0.30

50 0.014 -0.070 -0.064 -0.010

100 0.0040 0.020 -0.054 0.0071

To illustrate the accuracy of prediction interval (−∞, ξ̂p,F ), Table 2.2 display

approximate coverage errors obtained from 5000 simulations for the same four
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distributions as employed for Table 2.1. Unlike Table 2.1, Table 2.2 contains both

positive and negative coverage errors. It is also worth noting that the proposed

prediction interval is comparable with I5 of Hall and Rieck (2001) which in their

simulations is shown to have the lowest values of coverage error.

The zero coverage quantile estimator of equation (2.14) is not restricted to

a known functional form distribution function, F . The idea readily extends to a

nonparametric data driven methods for estimating F . For instance, the cumulative

distribution function F can be replaced by an empirical function, Fn, or a smoothed

distribution function, Fn,h, with a smoothing parameter h.

2.4 Chapter Summary

The main idea and findings of this chapter can be summarised as follows.

• Two novel and easy-to-implement methods are proposed for improving the

coverage accuracy of prediction interval. The methods are constructed based on

well known distribution transformations and are theoretically shown to provide

exact and zero coverage error prediction intervals.

• The exponential distribution-based method is demonstrated to have a natural

extension to a nonparametric setting, which maybe useful when one is not

prepared to assume the distributional functional form of a random variable

under study.

• The numerical study, encompassing the analysis of small sample performance,

indicate that both the normal and exponential transformation methods produce

very accurate coverage for prediction intervals.



Chapter 3

Kernel Quantile-based

Estimation of Expected Shortfall

The focus of this chapter is on the introduction of kernel-based expected shortfall

estimators with the objective of reducing bias. Bias-reduction technique is particularly

effective in reducing the tail estimation bias as well as the induced bias arising from

kernel smoothing and finite sampling fitting, and thus serve as a natural approach

to the estimation of extreme quantiles of return distribution. By taking advantage

of the integral representation of expected shortfall, a new type of expected shortfall

estimator is proposed. The performance of the proposed estimators are investigated

through simulation studies and the methods are applied to real data.

3.1 Introduction

The ability to accurately and meaningfully measure the risk associated with a

portfolio plays an important role in market risk management. The most common

and widely used risk measure is value at risk (VaR), which under normal market

conditions is defined as the maximum potential loss of a portfolio over a prescribed

holding period and for a given confidence level. Since its emergence from JP

26
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Morgan and subsequent acceptance and endorsement by the Basel Committee in

1996 (Basle Committee Banking Supervision (1996)) and in the latest proposed Basel

II norms (Basle Committee on Banking Supervision (2003)) the estimation of VaR

has been the subject of abundant research. Following the Basle guidelines, financial

regulators have adopted VaR for designing capital adequacy standard for banks and

financial institutions. In addition, financial firms have adopted VaR for internal risk

management and allocation of resources, see (Danelsson et al. (2005)).

Shortly after the introduction of VaR as a benchmark for calculating the

market risk of a portfolio research was underway to determine the meaning of

economically meaningful risk measure. To this end, Artzner et al. (1997) introduced

the concept of coherent risk measures (see also Artzner (1999), Artzner et al. (1999)

and references therein). They argued that a risk measure should satisfy a set of

four desirable properties: monotonicity, sub-additivity, positive homogeneity and

translation invariance. In this context Artzner (1999) demonstrate that VaR is not a

coherent risk measure due the fact that it fails to satisfy the sub-additivity property.

This implies that the risk of a portfolio can be larger than the sum of stand-alone risks

of its components when measured by VaR, the consequence of which goes against the

modern portfolio theory which states that diversification leads to reduction in risk.

In order to construct a risk measure that is both coherent as well as easy

to compute and estimate, the expected shortfall (ES), defined as the expectation of

losses above VaR for a given time horizon, was proposed and discussed by Acerbi et al.

(2001). Furthermore, Acerbi and Tasche (2002) then provided an integral presentation

of ES while Acerbi and Tasche (2001) showed that for α ∈ (0, 1) ES arises in a natural

way from the estimation of the “average of the 100α% worst losses” in a sample of

returns of a portfolio.

Estimating and forecasting VaR has received a considerable amount of attention

in the literature (see Jorion (2001), Manganelli and Engle (2001)) and there has

recently been an increase interest in nonparametric estimation of ES. One of the

simplest nonparametric approach for computing ES is the sample average estimator
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in which first VaR is calculated as the quantile from the empirical distribution of

returns and thereafter ES is computed as the average of realizations falling below the

VaR estimate.

With the intention on improving the accuracy of expected shortfall estimate,

Scaillet (2004) proposed an alternative estimator to the sample average that is based

on kernel distribution smoothing. Chen (2008) studied the sample average and kernel

estimator proposed by Scaillet (2004) and contrary to expected result, the author

conclude that in comparison with the simple sample weighted average estimator,

kernel smoothing does not produce more accurate calculation of ES.

The truncated mean estimator together with the kernel smoothing method

proposed by Scaillet (2004) can all be classified to fall under the umbrella of two-step

nonparametric methods: first nonparametric estimation of VaR, then nonparametric

estimation of the expectation of a variable truncated at the VaR estimate. Fermanian

and Scaillet (2005) also explore some interesting applications of these methods in

credit risk environment.

While the estimator of Scaillet (2004) is interesting, it may have a substantial

bias arising from the boundary effects of kernel estimation for small probability levels.

In fact Chen (2008) demonstrate that kernel smoothing induces bias and since the

variance is not reduced this consequently leads to an increase in mean square error.

In this chapter an integral representation which provides mathematical tractability

for studying the analytic properties of expected shortfall is exploited. Using the

integral expression, one-step nonparametric expected shortfall estimation method is

presented and a number of kernel based estimators including bias-corrected ones are

proposed.
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3.2 Expected Shortfall

Let X be the random variable describing the future value of the profit or loss of a

portfolio at some fixed time horizon T from today, and α ∈ (0, 1) be a probability

level. Usually, α is taken as a small percentage of the profit and loss distribution.

The quantile with level α is defined as

q(α) = sup{x|P (X ≤ x) ≤ α},

and, in keeping with the convention of reporting losses as positive, VaR is defined by

V aR(α) = −q(α). (3.1)

If the truncated mean exists, that is E[X−] < ∞, where X−=max(−X, 0), then the

tail conditional expectation and the expected shortfall are respectively defined as

TCE(α) = −E{X|X ≤ q(α)},

and

ES(α) = − 1

α
{E[XI(X ≤ q(α))]− q(α)[P (X ≤ q(α))− α]} (3.2)

where I(A) is an indicator function taking a value of unity when A is satisfied and

zero otherwise. Delbaen et al. (2000) reported that the TCE does not in general

satisfy sub-additivity. Acerbi and Tasche (2001) proved that while ES(α) satisfies

sub-additivity, in general TCE(α) does not. However, if X is a continuous random

variable, then

ES(α) = TCE(α) = − 1

α
E[XI(X ≤ q(α))]. (3.3)

Based on the structure of truncated expectation, Scaillet (2004) presented a

nonparametric kernel estimator of ES associated with a portfolio, and derived the
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asymptotic properties of the kernel estimator and its first-order derivative with respect

to portfolio allocation in the context of a stationary process satisfying strong mixing

conditions. Its asymptotic performance and optimal bandwidth were considered by

Chen (2008).

The proceeding discussion draws on the fact that ES can be expressed as an

integral of a quantile function via a simple integral transformation. That is

ES(α) = − 1

α

∫ α

0
q(p)dp, (3.4)

see Pflug and Römisch (2007), for example.

This expression provides mathematical tractability for studying the analytical

properties of ES. For instance, it is clear from (3.4) that ES(α) is continuous in α

while this is not obvious from (3.2). Moreover, from (3.4) it can be observed that

given the quantile function, q(p), is specified, ES(α) can be estimated via an explicit

computation.

3.3 Kernel Density and Distribution Estimation

This section reviews the concept of kernel density and distribution function estimation

which form the foundation of the expected shortfall estimation method to be

introduced afterwards. The material of this section relies heavily on the work of

Wand and Jones (1995) and Silverman (1986).

3.3.1 Kernel Density Estimation

Given a sequence of n independent and identically distributed observations x =

(x1, x2, ..., xn) from an unknown univariate probability density function f with

corresponding distribution function F , the kernel density estimation of f is given
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by

f̂h(x) =
1

nh

n∑
i=1

K

(
x− xi
h

)
,

where K(u) is a kernel function and h is a strictly positive constant called the

bandwidth.

In most applications, the kernel function is chosen to be a positive zero-centred

symmetric density function satisfying

∫ ∞

−∞
K(u)du = 1,

∫ ∞

−∞
uK(u)du = 0

∫ ∞

−∞
K2(u)du <∞,

∫ ∞

−∞
u2K(u)du = σ2K

where 0 < σ2K <∞. Despite the existence of numerous kernel functions, it is by now

well documented (see Wand and Jones (1995)) that K(u) has minimal influence on

the accuracy of the density estimator and as result a natural choice that has gained

great popularity is the Gaussian density ϕ(x) = (2π)−1/2 exp(−x2/2). Furthermore,

the usage of density functions such as the Gaussian, as kernels, ensures that the

density estimator f̂h(x) inherits all the continuity and differentiability properties of

K(u).

The selection mechanism of the scale parameter h is of crucial importance in

kernel density estimation, and consequently this area has been the subject of on going

research focusing on identifying data-driven procedures of selecting the parameter and

more importantly reduce the associated bias, see Jones et al. (1996) for a discussion.

In order to choose h and differentiate between alternatives it is necessary to establish

a measure of closeness between the estimated f̂h(x) and target density function f(x).

A widely used criterion for finding the optimal bandwidth h is to minimise the Mean

Integrated Square Error (MISE) . Let Bias(f̂h(x)) = E(f̂h(x))− f(x), MISE can be
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expressed as

∫
MSE(f̂h(x))dx =

∫ [
V ar

(
f̂h(x)

)
+

(
Bias2f̂h(x)

)]
dx

where MSE(f̂h(x)) = E
[
(f̂h(x)− f(x))2

]
.

Under the assumption of continuity of the second order derivatives of f(x) it

has been shown (see Silverman (1986)) that the respective variance and bias of a

kernel estimator are

V ar
(
f̂h(x)

)
=
f(x)

nh

∫
K2(u) + o

(
1

nh

)

and

Bias(f̂h(x)) =
h2

2
σ2Kf

′′
(x) + o(h2).

The last two equations illustrate the trade off between the bias and variance of kernel

estimator in the minimisation of MISE. That is, as the scale parameter h increases,

variance decreases while bias increases and thus resulting in oversmoothed density

estimate that obscure possible important features. As h decreases the opposite effect

is observed.

3.3.2 Kernel Distribution Function Estimation

The simplest and most commonly used used estimator of the cumulative distribution

function is the empirical distribution function, defined as

F̂n(x) = n−1
n∑

i=1

I(xi ≤ x),

where I is an indication function. By calling upon the standard result F
′
= f , then a

natural smooth alternative estimator to distribution function is the kernel distribution
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function estimator (Nadaraya, 1964) defined as

F̂h(x) =

∫ x

−∞
f̂h(u)du =

1

n

n∑
i=1

Ah(x− xi),

where Ah(u) = A(u/h) and

A(x) =

∫ x

−∞
K(u)du. (3.5)

By considering second-order properties of the estimator F̂h(x) and the assumption of

continuity of f(x) and existence of f
′
(x), Azzalini (1981) has shown that as n → ∞

MSE of kernel distribution function can be approximated by

ah4 − ch/n+ F (x){1− F (x)}, (3.6)

where

√
a =

f
′
(x)

2

∫ b

−b
σ2Kdu, c = f(x)

(
b−

∫ b

−b
A2(u)du

)
.

3.4 Nonparametric Estimation of Expected Shortfall

Let q(p) be a 100p% (0 < p < 1) quantile of F . Then there are three basic kernel

quantile function estimators of qp given by:

(1) distribution function based estimation from the inverse solution of

Fh(x) = p; (3.7)

(2) density function based estimation from the integral solution of

∫ q(x)

−∞
fh(x)dx = p; (3.8)
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(3) kernel weighted sum of order statistics (Parzen, 1979):

q̂(p) =

n∑
i=1

[∫ i
n

i−1
n

Kh(t− p)dt

]
x(i), (3.9)

where x(1), x(2), ..., x(n) are the sample order statistics.

The above three kernel quantile estimators (3.7), (3.8), and (3.9) are shown

(see Sheather and Marron (1990) and Cheng and Sun (2006)) to have equivalent

asymptotic performance under the asymptotic mean square error (AMSE) criterion:

AMSE =
p(1− p)

n
v2(p) +

h4

4
(v

′
(p)σK)2 − h

n
v2(p)ψ(K),

where v = q(p)′, v′ = q(p)′′, σ2K =
∫∞
−∞ u2K(u)du and ψ(K) = 2

∫
uK(u)A(u)du.

Let {xi}ni=1 denote the returns of a profit and loss distribution. The sample

average ES estimator is defined as

ES⋆(α) = −
∑n

i=1 xiI(xi ≤ q̂⋆(α))∑n
i=1 I(xi ≤ q̂⋆(α))

(3.10)

where I(.) is an indication function and q̂⋆(α) = x([(n+1)α]) is the value at risk (100α

sample quantile estimator) obtained from the [(n+ 1)α]-th order statistic.

The idea of kernel estimator proposed by Scaillet (2004) is based on replacing

the indicator of equation (3.10) by a smooth kernel distribution function such that a

two-step kernel estimation of ES from the basic definition (3.3) is given by

ẼSh(α) = − 1

nα

n∑
i=1

xiAh(q̂(α)− xi),

where q̂(α) is the solution of Fh(x) = α and A(x) is the integrated kernel (3.5) with

Ah(u) = A(u/h).

Alternatively, a one-step kernel estimator of ES from equation (3.4) is given by

ÊSh(α) = − 1

α

∫ α

0
q̂(p)dp.
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Clearly, ẼSh(α) is a sum-type estimator, whereas ÊSh(α) is an integral-type

estimator.

From asymptotic results on kernel estimation (Parzen, 1979), the bias of

all these estimators is O(h2) as h → 0. Theoretically, it is difficult to compare

the performance of a one-step kernel estimator to a two-step one. However, in

the proceeding discussion some analytical properties of these estimators including

asymptotic bias and mean-square errors are considered. Under some conditions, to

be discussed in Section (3.5), these asymptotic properties do support ÊSh(α) over

ẼSh(α).

3.5 Analytic Properties of ẼSh(α) and ÊSh(α)

In comparing the properties of the two estimators the following basic assumptions

from Chen and Tang (2005) are employed.

A1 The process {Xi : 1 ≤ i ≤ n} is strictly stationary and α-mixing, and

there exists a ρ ∈ (0, 1) such that the mixing coefficient α(k) ≤ Cρk for all k ≥ 1.

X1 is continuously distributed with f and F as its density and distribution functions

respectively.

A2 f(q(p)) > 0 where p ∈ (0, 1) and f has continuous second derivative in a

neighborhood B(q(p)) of q(p). The second partial derivatives of Fk, which is the joint

distribution function of (X1, Xk+1) for k ≥ 1, are all bounded in B(q(p)) uniformly

with respect to k.

A3 Let the kernel function A(t) =
∫ t
−∞K(u)du, where K is a univariate

probability density function with continuous bounded second derivative and satisfies

the following moment conditions:

∫ ∞

−∞
uK(u)du = 0 and

∫ ∞

−∞
u2K(u)du = σ2K <∞.
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A4 The smoothing bandwidth h satisfies h→ 0, nh3−τ → ∞ for any τ > 0 and

nh4 log2(n) → 0 as n→ ∞.

Assumptions A3 and A4 are the most commonly used in kernel smoothing

literature with the latter imposing the range of values admissible by the bandwidth,

h. Similarly, A2 capture standard conditions for kernel quantile estimation and

is required when evaluating bias and mean square error of f(q̂(p)). Finally, the

stationarity and α-mixing condition A1 are satisfied by a number of common

stochastic models such as the GARCH, continuous-time diffusion and stochastic

volatility models.

Under the assumptions A1–A4, Chen and Tang (2005) gave the mean square

error of q̂(p) as follows

MSE(q̂(p)) = n−1σ2(p;n)f−2(q(p))− 2n−1h bK f−1(q(p))

+
1

4
h4 σ4K{f ′(q(p))f−1(q(p))}2 + o(

h

n
+ h4), (3.11)

where bK =
∫∞
−∞ uK(u)G(u)du, σ2(p;n) = {p(1 − p) + 2

∑n−1
k=1(1 − k/n)γ(k)} and

γ(k) = cov{I(X1 < q(p)), I(Xk+1 < q(p))} for positive integers k. Clearly, σ2(p;n) =

p(1− p) for independent process.

From (3.11) an upper bound for the mean square error of one-step estimator

ÊSh(α) can be expressed as:

MSE(ÊSh(α)) ≤ 2

nα2

(∫ α

β
σ2(p;n)f−2(q(p))dp

)
+

h4σ4K
4α2

[∫ α

β
f ′(q(p))f−1(q(p))dp

]2
− 4hbK

nα2

(∫ α

β
f−1(q(p))dp

)
+ o(h/n+ h4).

Owing to mathematical complexity, it is difficult to compare the two type of

estimators by their mean square errors. However, one may be able to compare their

biases. In fact, from Chen and Tang (2005) and Chen (2008) the bias of a quantile

estimator is:
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Bias(q̂(p)) = −1

2
h2σ2Kf

′(q(p))f−1(q(p)) + o(h2) (3.12)

and the bias of a two step kernel ES estimator is

Bias(ẼSh(α)) = − 1

2α
h2σ2Kf(q(α)) + o(h2). (3.13)

Using the fact that q′(p) = f−1(q(p)) and equation (3.12), the bias of a one step ES

estimator can be expressed as:

Bias(ÊSh(α)) =
1

2α
h2σ2K

[
f(q(α))− lim

β→0
f(q(β))

]
+ o(h2). (3.14)

Remark 1: Asymptotically, equation (3.13) shows that the two-step

kernel estimator always underestimates ES, but integral-type estimator may not

underestimate it, depending on the sign of 1− limβ→0 f(q(β))/f(q(α)) from equation

(3.14).

Remark 2: The condition |1 − limβ→0 f(q(β))/f(q(α))| ≤ 1 holds for some

(but not all) distributions. In fact, the following observations can be made:

1. Because f(q(β)) tends to the left end of the support of f(x) where f(x) is

usually increasing in the left tail, when β tends to zero. This implies f ′(q(β)) >

0 and 1− f(q(β))/f(q(α)) < 1 provided f ′(q(β)) > 0;

2. It can be seen that f(q(β))/f(q(α)) ≥ 0 when β is very small. For example,

under normal distribution with f(x) = 1√
2πσ

exp
(
− (x−a)2

2σ2

)
, we may see that

0 < f(q(β))
f(q(α)) < 1.
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3.5.1 Bias Reduction of Kernel Estimators

According to the kernel based jackknife rule (see Jones and Signorini (1997) among

others) if η̂h is the kernel estimator of ηh with bias O(h2), then as h→ 0,

η̃ = 2η̂h − η̂√2h

theoretically improves bias from O(h2) to O(h4). There is usually data scarcity in

the tail of a distribution, especially in the far tail. Consequently, for small p, proper

kernel estimation of the quantile q(p) is difficult. The simulation study in Section 3.6

shows that the bias reduction technique is particularly effective for the estimation of

ES(α) when α is small.

3.5.2 One and Two Steps Kernel Estimators

In this section a number of two-step kernel ES estimators are introduced. Furthermore,

for comparison purpose a two-step estimator together with its bias reduction version

is also presented.

The two-step sum type kernel estimator and its bias reduced form are given

by:

Est1(2S): ẼSh(α) = 1
nα

∑n
i=1 xiAh(q̂(α) − xi), where q̂(α) is a kernel estimator of

q(α).

Est2(2S)br(1) : the bias-reduction version ẼSr(α) = 2ẼSh(α)− ẼS√
2h(α).

Two-step kernel estimation requires selection of the smoothing parameter h

twice; initially to estimate value at risk and the second time to smooth the excessive

losses. The selection of h is of crucial importance and is well understood to be

a difficult task especially for smoothing the tails of underlying distributions with

possible data scarcity. Hence, the fewer times h is selected the simpler the estimator.

To this end, the following three one-step kernel estimators are considered.

Est3(1S)dens :ÊSf (α) = − 1
α

∫ α
0 q̂(p)dp, with q̂(p) being estimated by kernel
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density function;

Est4(1S)dist : ÊSF (α) = − 1
α

∫ α
0 q̂(p)dp with q̂(p) being estimated by kernel

distribution function; and

Est5(1S)order : ÊSKq(α) = − 1
α

∫ α
0 q̂(p)dp with q̂(p) being estimated by kernel

weighted order statistics.

Note that Est5(1S)order can be expressed explicitly as ÊSKq,h(α) ≡ ÊSKq(α) =

− 1
α

∑n
i=1 x(i)

∫ i
n
i−1
n

∫ α
0 Kh(t − p)dp dt. Furthermore, a bias reduced version of this

estimator,

Est6(1S)br(5) : ÊSKqr(α) = 2ÊSKq,h(α)− ÊSKq,
√
2h(α)

is considered. Additionally, Remark 1 of section 3.5 shows that the two-step kernel

estimator almost always underestimates ES but the one-step kernel estimator may

not.

Henceforth, where it is convenient the above estimators shall be referred to as

estimators 1 to 6 respectively.

3.6 Monte Carlo Study

In this section simulation experiments are conducted to assess the performance of the

six estimators discussed in the previous section. In all simulations the standard

normal density is fixed as the kernel function and the bandwidth selection rules

proposed by Sheather and Jones (1991) and Bowman et al. (1998) are employed

for kernel density and distribution estimation respectively.

Model 1: Normal Distribution

Suppose that the return of a financial asset X is normally distributed such that

X ∼ N
(
µ, σ2

)
, (3.15)
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then

E[XI(X ≤ q(α))] = µΦ

(
q(α)− µ

σ

)
− σ√

2π
e−

[q(α)−µ]2

2σ2 .

Hence the true value of ES is

ES(α) =
σ

α
ϕ

(
q(α)− µ

σ

)
− µ,

where and ϕ(.) and Φ(.) respectively denote the standard normal density and

distribution functions.

Although a normal distribution is widely applied, it is by now well documented

that financial asset returns have a distinct feature of leptokurtosis and are therefore

non-Gaussian. A possible remedy to this problem is to consider mixture distributions,

see (Zhang and Cheng, 2005; Giacomini et al., 2008) and the references therein.

Model 2: Mixture Normal Distribution

Assume that X is the return of an asset with a mixture normal distribution

f(x) = τf1(x) + (1− τ)f2(x), (3.16)

where f1(x) and f2(x) are the density functions ofN(a1, σ
2
1) andN(a2, σ

2
2) respectively.

Then under (3.16) the true value of ES is

ES(α) =
τσ1
α
ϕ

(
q(α)− a1

σ1

)
+

(1− τ)σ2
α

ϕ

(
q(α)− a2

σ2

)
−τa1 − (1− τ)a2.

Model 3: Mixture t Distribution

Assume that X is the return of an asset with a mixture Student-t distribution

f(x) = τf1(x) + (1− τ)f2(x), (3.17)
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where f1(x) and f2(x) are respectively the density functions of Student-t distribution

with degrees of freedom 3 and 5. Under (3.17) the true value of ES is given by

ES(α) =
1

α

(
9τ

2
√
3πΓ(3/2)(3 + q(α)2)

+
125(1− τ)

2
√
5πΓ(5/2)(5 + q(α)2)2

)
.

Before proceeding to the calculation of ES, the finite sample performance of

the three kernel quantile estimators described in Section 3.4 are assessed empirically.

Table 3.1 shows the average bias induced by the three quantile estimators for a sample

size of 100 and 1000 replications. From the table it can be observed that there are no

significant differences in results obtained from the three estimators. The table further

confirms the fact that the accuracy of the kernel quantile estimators diminish as one

attempts to estimate extreme quantiles.

Table 3.1: Mean bias comparison of the kernel quantile estimators based on
cumulative distribution, density and order statistics for a sample size of 100 with
standard error in brackets multiplied by 100.

Distribution Density Order statistics

α = 0.01 α = 0.05 α = 0.01 α = 0.05 α = 0.01 α = 0.05

Model 1 -0.0173 -0.0127 -0.0171 -0.0127 0.0056 0.0092

(0.2883) (0.1818) (0.2881) (0.1810) (0.3433) (0.2077)

Model 2 0.0210 0.0148 0.0210 0.0148 0.0256 0.0186

(0.0762) (0.0492) (0.0762) (0.1809) (0.0904) (0.0554)

Model 3 0.7270 0.4226 0.8316 0.4226 0.7526 0.5242

(7.6468) (0.0492) (9.3140) (0.1809) (12.8185) (2.6595)

To investigate the accuracy of the six estimators, now attention is directed

towards the estimation of ES for all three models discussed in Section 3.5.1 at loss

probability levels 0.01 and 0.05 and sample sizes n=100 and 300, where the mixing

proportion τ = 0.5 and mean and variance in (3.15) are chosen to be 0.05 and 0.01

respectively.
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Furthermore, since the extreme value theory (EVT) approach has gained great

popularity in estimating ES (see McNeil (1999), and the references therein) this

method will be included in the comparison study by fitting a generalised Pareto

distribution (GPD) to the the lower tail of the distribution as explained in McNeil

and Frey (2000).

Table 3.2 reports the bias of the ES estimators and 95 percent bootstrapped

confidence bands of biases with sample size 100 based on 1000 replications. The

results for sample size 300 are presented in Table 3.3.

Numerical results show that, in most cases, all kernel-based methods tend

to underestimate the theoretical ES and this fact is consistent with the theoretical

result explored in remark 1 of Section 3.5. However, these estimators have different

performances. First, despite having similar asymptotic results and with reference

to remark 1 of Section 3.5, the four non-bias reduced estimators (1, 3, 4 and 5)

have different bias performances under finite samples n = 100 and n = 300. In

particular, at both 1% and 5% levels the two step estimator, estimator 1, performs

better than the two one-step non-bias reduced estimators (3, 4) but more or less the

same as another one-step non-bias reduced estimator 5. Secondly, on comparing the

performance of estimator 2 to estimator 1 and that of estimator 6 to estimator 5, it can

be observed that, in agreement with asymptotic results, bias-reduction does improve

the estimation accuracy with finite sample. Additionally, it is worth noting that, the

biases from estimator 1 to 4 maybe partially caused by the kernel estimation of q(p)

in the first place, whereas estimators 5 and 6 do not rely on any initial estimation of

q(p). Finally, it can be observed that the one-step bias reduced estimator 6, derived

from estimator 5, performs best with the smallest bias and narrower confidence bands.

Table 3.2 empirically demonstrate that the EVT method also underestimate

the true expected shortfall.

In order to gain a better understanding of the bias as a function of α, Figure 3.1
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Figure 3.1: Based on model 1, the estimated bias with 95% bootstrapped confidence
bands for Est5(1S)order(left) and Est6(1S)br(5) (right) with n = 100.
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Figure 3.2: Model 1 estimated bias, n = 100 and α taking equally spaced
values between 0.01 and 0.05. The top graph displays the bias and 95 percent
confidence bands for Est1(2S) (dash) and Est2(2S)br(1) (dot); the bottom graph show
Est3(1S)dens (dot) and Est4(1S)dist (dash). The confidence bands for the dotted and
dashed lines are respectively given by solid starred and solid circled lines.
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displays smoothed bias estimates and their 95 percent bootstrapped confidence bands

for model 1 with n = 100 and 40 equally spaced levels of α ranging from 0.01 to

0.05. Graphs for estimators 1 to 4 are shown in Figure 3.2. Plots of all estimators

show an increase in bias as α decreases; however, such a slight increase does not

make estimation accuracy weak. The wider confidence bands for the lower quantiles

indicate greater uncertainty in estimating ES, primarily due to scarcity of data.
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Figure 3.3: Based on Model 2, the estimated bias for n = 100 (top) and n = 300
(bottom). The dash-dotted, dashed, circled, solid, starred and dotted lines denote
estimators 1 to 6 respectively.

Comparison of the biases of the estimators for n = 100 and n = 300 reveal

that bias does not always decrease with large sample size. This observation is further

illustrated by Figure 3.3 which shows the calculated bias for all six estimators under

the normal mixture model for n = 100 and n = 300. The results for the remaining

three models are roughly the same and are therefore omitted. Furthermore, the bias

reduction version of estimators 3 and 4 were also considered but it was concluded

that these performed no better than estimator 6.
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3.7 Empirical Study

In this section the proposed kernel estimators are applied to estimate the ES of two

financial series. These two financial series are the daily returns of the Dow Jones

and S&P500 indexes for the period from 01/01/2002 to 31/12/2004, comprising 750

observations. Figure 3.4 displays the log-returns series for the two indexes.
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Figure 3.4: Log-returns of the DJI and S&P500 indexes.

All six ES estimators investigated in this study are based on nonparametric

methods and thus making no distribution assumptions. It is by now well established

that one of the stylised fact of real financial time series is the presence of

heteroscedasticity as can be observed from Figure 3.4. In order to account for the

effect of changing volatility and forecast next period expected shortfall, the proposed

six estimators could be applied after the removal of heteroscedasticity through filtering

methods such as the one proposed by McNeil and Frey (2000). In their approach the

authors proposed a semi-parametric method (GARCH-EVT) of calculating VaR and

ES in which a GARCH model is used to model the conditional volatility which are

then used to filter the dependence in the return series by computing standardised

residuals. Since the filtered residuals are independent and identically distributed,

this allows the application of EVT in the form of a GPD to model the extreme left

tail of the residual distribution. To obtain an estimate of next period value at risk

and expected shortfall the left tail of the residual distribution is used to calculate VaR

and ES which are then multiplied by forecasted standard deviation from the GARCH
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model. However, it is noted that, the application of filtering approach proposed

by McNeil and Frey (2000) would render the six estimators semiparametric as this

method requires one to choose a specific model for the conditional mean and volatility

dynamics. Assuming that the conditional mean is zero and the distribution of the

return process is constant, as is commonly the case in many financial applications, to

circumvent the need of following a specific volatility model here Parkinson volatility

estimator (Parkinson, 1980) is used in conjunction with the six proposed estimators

to forecast one period ahead expected shortfall and thus maintain the nonparametric

nature of the six estimators.

Let Ht and Lt denote the respective highest and lowest prices on day t, then

the Parkinson volatility estimator is defined as

σ̂P,t =
ln(Ht)− ln(Lt)√

4ln(2)
. (3.18)

Given the historical evolution of the log transformed prices {rt}Tt=1 = ln(Pt)−

ln(Pt−1) of a financial asset together with the highest {H}Tt=1 and lowest {L}Tt=1

prices, our approach similar to that of McNeil and Frey (2000) can be partitioned

into two stages, where Pt denotes the closing price on day t.

1. Estimate {σ̂P,t}Tt=1 then standardise the returns such that {zt}Tt=1 = {rt}Tt=1/{σ̂P,t}Tt=1

and use the proposed estimators to estimate the expected shortfall of the

standardised returns, ESz(α).

2. To obtain an estimate of next day expected shortfall multiply the standardised

expected shortfall with σ̂P,T , that is, ES(α) = σ̂P,TESz(α). Implicitly this

model free approach uses the current volatility as an estimator of next period

volatility and is different from the method proposed by McNeil and Frey (2000)

which by construction uses a model to forecast volatility. Furthermore, McNeil

and Frey (2000) employed the Generalised Pareto distribution to estimate the

expected shortfall of the standardised residuals.
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Table 3.4: One period ahead Expected Shortfall estimates for loss probability levels
α = 0.01 and α = 0.05 for kernel-based and parametric estimators, where the original
value is multiplied by 100.

DJI S&P500
α = 0.01 α = 0.05 α = 0.01 α = 0.05

Est1(2S) 0.7262 0.4177 0.9842 0.4477
Est2(2S)br(1) 0.5427 0.4087 0.7146 0.4258

Est3(1S)dens 0.6396 0.5091 0.6784 0.5780
Est4(1S)dist 0.5638 0.4710 0.5937 0.5345
Est5(1S)order 0.5581 0.4805 0.8151 0.5952
Est6(1S)br(5) 0.5317 0.3854 0.7091 0.5654

EVT 0.5329 0.4441 0.6109 0.4132

Table 3.4 shows one step ahead ES estimates from the six estimators together

with the EVT approach for both DJI and S&P500 indexes using the procedure

outlined above.

3.8 Chapter Summary

Kernel smoothing is a useful nonparametric method for estimating expected shortfall

(ES). The main results of the chapter can be summarised as follows.

• One step kernel estimators of ES are proposed and are investigated through

Monte Carlo simulation studies with an emphasis on bias. Through numerical

experiments it is demonstrated that these estimators have appealing numerical

performance in comparison to existing two step kernel estimators.

• Several estimators proposed in this chapter, such as estimators 3, 4, 5, are all

shown to be fast, efficient and valid for estimation of ES. The failure of an

estimator of ES is often due not to substandard methodology but rather to the

inaccurate and difficult estimation in the tail of a distribution.
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• In comparison to their non-bias reduced estimators, it was noted that bias

reduction technique with estimators 2 and 6 improve the accuracy of ES

estimates. In particular, estimator 6, a computationally efficient new bias

reduction estimator with an explicit expression is shown to be unrivalled in

reducing ES estimation bias.



Chapter 4

Simultaneous Confidence Bands

for Linear Quantile Regression

Simultaneous confidence bands are frequently used in regression analysis to quantify

the plausible ranges of a regression function or the differences between regression

functions. While this technique has been studied extensively in an ordinary least

square regression setting, the procedures have yet to be extended to a linear quantile

regression framework. In this chapter we fill this gap by proposing a method

for constructing confidence bands for quantile regression function. In particular,

we exploit the asymmetric Laplace distribution together with a modification of an

existing simulation-based method employing the active set method in order to easily

construct simultaneous confidence band for a linear quantile regression functions over

a pre-specified region of the independent variables.

Furthermore, through the introduction of an alternative simulation algorithm

we extend the simulation idea to a classical linear regression and create simultaneous

confidence bands for regression quantile functions when the error terms are normal

and when this assumption is not met. In the latter case the Box-Cox transformation is

utilised to transform the response variable and thus making the procedure non-linear.

Finally, it is demonstrated that compared to the active set algorithm the new

51
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procedure calling upon the threshold acceptance algorithm can improve the coverage

accuracy of confidence bands.

4.1 Introduction

The standard ordinary least square regression method has long been the workhorse

in modelling the mean relationship between independent and response variables.

However, it is well known by now that the information obtained from this attractive

technique is restricted to the conditional mean and fail to offer key insight on different

regions of the conditional distribution.

A natural extension that can account for this deficiency is the quantile

regression technique introduced by Koenker and Bassett (1978). This technique has

received immense interest theoretically and found numerous applications in different

fields such as medicine, social science and finance, see Buchinsky (1998) and Yu et al.

(2003).

Let qθ(y|x) be the 100θ% (0 < θ < 1) quantile of a response variable y

conditional on the independent variables x = (1, x1, · · · , xp)′. In linear quantile

regression models, it is assumed that the relationship between qθ(y|x) and x can

be described by a linear model

qθ(y|x) = x′βθ (4.1)

where βθ = (β0,θ, β1,θ · · · , βp,θ)′ is the vector of unknown regression coefficients as in

classical mean regression. The unknown parameters βθ are estimated by minimising

the sum of residuals
n∑

i=1

ρθ(yi − x′iβθ), (4.2)
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where

ρθ(z) =

 θz, if z > 0

(θ − 1)z, otherwise

and for i = 1, 2, . . . , n, yi is the observed response corresponding to independent

variables xi = (1, xi1, · · · , xip)′.

The central point of this chapter is on the construction of simultaneous

confidence bands for the quantile function x′βθ over a given region of the independent

variables x ∈ X . Specifically, we aim to find lower and upper bound functions l(x)

and u(x) such that

Pr{l(x) < x′βθ < u(x), ∀x ∈ X} = 1− α,

where α ∈ (0, 1), 1− α is the confidence level and the region of interest is given by

X = {x : −∞ ≤ aj < xj < bj ≤ ∞, j = 1, 2, . . . , p}. (4.3)

The flexibility on the region of interest allows an analyst to easily provide bounds aj

and bj that are of some practical or economical importance.

The construction of confidence bands in the manner described provide a useful

measure of uncertainty of the true unknown regression quantile model and assess the

plausibility of different regression functions. In particular, a linear quantile regression

function is a credible candidate on the condition that the entire function is enveloped

within the calculated bands.

Recently, Hardle et al. (2010) considered a bootstrap approach for constructing

uniform confidence bands for nonparametric quantile estimates of regression functions.

Similarly, Hardle and Song (2010) proposed a smoothing method for building uniform

confidence bands for quantile curves by exploiting extreme value theory together with

the asymptotic maximal absolute deviation between the localised quantile smoothers
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and true unknown quantile curve.

On a topic closely related to this chapter, Chernozhukov et al. (2009) introduce

a finite sample distribution free inference method for quantile regression that exploits

the conditional pivotal nature of the quantile regression objective function. The

authors demonstrate the application of the method in constructing confidence regions

as well as bounds for quantile regression parameters that makes use of simulation

techniques for calculating the critical constant. For a generic treatment of simulation

inference on parametric models consult Hothorn et al. (2008).

The original idea of creating simultaneous confidence bands for regression

functions can be traced as far back as eight decades ago through the work of Working

and Hotelling (1929). For a detailed chronological treatment on the evolvement of

the field consult Liu et al. (2005).

Simultaneous confidence bands have a number of practical applications.

For instance Al-Saidy et al. (2003) construct simultaneous bands for dosage risk

estimation, Liu et al. (2004) apply the confidence bands in medicine by considering

the simultaneous comparison of several linear regression models and Sun et al. (2000)

create bands for growth and response curves. As an alternative application consider

a regression quantile model, x′βθ, used to model the relationship between customer

satisfaction (dependent variable) and a number of explanatory variables such as the

quality of service, age of customers, annual income, social status and availability of

products. In this context, simultaneous bands provide the plausible range of the true

but unknown regression quantile model. For instance, a marketing manager may

wish to investigate the key drivers of satisfaction by fitting a 90% regression quantile

and thus by creating simultaneous bands this offers a criterion of deciding whether

any other model (say, fitted with a subset of the original covariates) is a plausible

candidate for x′β0.90. Similarly, as an alternative interpretation of the confidence

bands one can also test the hypothesis regarding the true parameters simultaneously

by testing H0 : βθ = β̂θ against H0 : βθ ̸= β̂θ. Additionally, in inequality studies

social scientists may be interested in investigating the relationship between income
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and a number of explanatory variables such as age, ethnicity, level of education,

occupation and marital status. Furthermore, the researchers may wish to investigate

the disparity between higher and lower earners by taking the difference between, say,

the upper and lower regression quartiles. Through building simultaneous bands for

the difference of two regression quantiles this provide a criterion for differentiating

between regression functions employed to directly model the difference. For a detailed

theoretical treatment and application simultaneous confidence bands consult Liu

(2010).

4.2 Simultaneous Confidence Bands

To construct regression quantiles confidence bands we make use of the simulation

algorithm Liu et al. (2005) who investigated the problem in the classical ordinary

least square setting. To this end, we begin by discussing the problem tackled by Liu

et al. (2005) and demonstrate a natural progression towards the regression quantile

framework by exploiting the Asymmetric Laplace Distribution (ALD) of Yu and

Zhang (2005).

4.2.1 Confidence Bands for Multiple Linear Regression

Given a vector of response variable Yn×1 and a set of covariates {x1,x2, . . . ,xp}, then

assuming the relationship between the response and independent variables is linear

with an intercept term the model can be expressed as

Y = Xβ + ϵ. (4.4)

In the classical presentation of the ordinary least square regression (4.4) β(p+1)×1 =

(β0, β1, . . . , βp)
′ is a vector of coefficients, ϵn×1 is vector of error terms assumed to

be normally distributed, N(0, σ2I), with unknown variance σ2. The i-th row of the

design matrixX is given by (1, xi,1, xi,2, . . . , xi,p) and assuming the inverse of (X ′X)−1
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exist the least square estimates of β are given by β̂ = (X ′X)−1X ′Y and unbiased

estimator of the variance σ̂2 =
∑n

i=1 ϵ̂
2
i /ν ∼ σ2χ2

ν/ν where ν = n − p − 1 is the

degrees of freedom. The objective of the work of Liu et al. (2005) was to provide a

100(1− α)% simultaneous confidence bands of the form

Pr

{
−c < x

′
β − x

′
β̂

σ̂
√

x′(X ′X)−1x
< c, ∀x ∈ X

}
= 1− α (4.5)

for the true regression line

x
′
β = β0 + β1x1 + . . . βpxp,

where the rectangular region is as defined in equation (4.3), c is the critical constant

to be calculated and the term in the denominator of (4.5) correspond to the square

root of variance of x
′
β̂, var(x

′
β̂). The focal point of the work of Liu et al. (2005) is

to determine the value of the critical constant c, however since the distribution of

T = max
x∈X

|x′
β − x

′
β̂|

σ̂
√

x′(X ′X)−1x
(4.6)

is very difficult to derive analytically, the authors propose a simulation approach of

obtaining the distribution of T and therefore determining the value of c. To achieve

this objective Liu et al. (2005) present two algorithms for simulating T ; the first

is based on the branching method while the other is called the active set method

that solves a quadratic programme with inequality constraints. Using real data the

authors show that through simulating a large number of T ’s one is able to determine

the critical constant c as accurate as required.

Throughout the chapter we shall call on the active set method to create

confidence bands for regression quantiles. To this end, it is therefore instructive

at this point to begin with a brief explanation of quadratic programming which is

the main ingredient of the active set algorithm and then produce an explicitly step

by step account of the active set algorithm.
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4.2.2 Quadratic Programme

Quadratic programming is an optimisation technique that can be considered as a

generalisation of the linear progamming method capable of dealing with quadratic

functions. The problem can be described as that of optimising (maximising or

minimising) a quadratic function of p variables subject to m linear constraints over

some region of interest. For a positive semi-definite matrix Hp×p and a column vector

b∗m×1 the problem can be formally presented as

min
x

1

2
x′Hx+ f ′x (4.7)

subject to

Ax S b∗, a ≤ x ≤ b,

where a and b are the respective lower and upper bound constraints on the variable

x, A is a m× p and f is a p× 1 vector. In the special case when H = 0 the problem

reduces to that of solving a linear programme. In the event that all constraints of

equation (4.7) are satisfied such that there exist a solution x∗ = (x∗1, x
∗
2, . . . , x

∗
p)

′ the

problem is termed as feasible, otherwise it is unfeasible.

4.2.3 Active Set Algorithm

Since T as given by equation (4.6) involves maximisation over p-variate function over

the specified region an explicit solution is not easy to obtain. To circumvent this

difficulty, Liu et al. (2005) propose an alternative representation of the quantity (4.6)

that can facilitate simulation of the distribution of T . Through the introduction of a

unique symmetric positive definite matrix Q such that

Q = (X ′X)−1/2 (4.8)
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and by noting that N = σ−1(Q′)−1(β̂ − β) ∼ N(0, Ip+1), equation (4.6) can be

written as

T = max
x∈X

(
∥N∥
(σ̂/σ)

)
|(Qx)′N|
∥Qx∥∥N∥

. (4.9)

Using the standard result νσ̂2/σ2 ∼ χ2
ν the vector f = N/(σ̂/σ) can be simulated

as a quotient of an independent standard normal variable and the square root of an

independent chi-square distribution divided by the number of degrees of freedom,

σ̂/σ ∼
√
χ2
ν/ν.

A direct consequence of this presentation is that the optimisation of (4.9) takes

the form of minimising a quadratic programming problem subject to the constraint:

(Q−1
(j+1,) − bjQ

−1
(1,))x ≤ 0, (ajQ

−1
(1,) −Q−1

(j+1,))x ≤ 0

where for j = 1, 2, . . . , p+1, Q−1
(j,) denotes the j-th row of the matrix Q−1. A detailed

algorithm is as follows:

1. Given the design matrix X calculate Q from equation (4.8)

2. Create a matrix A(2p+1)×(p+1) such that for an index j = 1, 2, . . . , p the odd

rows are composed of

A(2j−1,) = Q(j+1,) − bjQ(1,),

even rows are given by

A(2j,) = ajQ(1,) −Q(j+1,)

and the last row of A is A(2p+1,) = Q(1,)

3. Create an identity matrix H(p+1)×(p+1) and a column vector of zeros b∗ =

0(2p+1)

4. Generate the random vector, f =

(
z1√
χ2
ν/ν

, z2√
χ2
ν/ν

, . . . ,
zp+1√
χ2
ν/ν

)′
where zj are

independent standard normal random variables



4.2. Simultaneous Confidence Bands 59

5. Use the inputs A, b∗, f and H to solve a quadratic programming problem (4.7)

giving x∗+ = (x∗+1 , x∗+2 , . . . , x∗+p )′ and find the norm of the solution, v+ = ∥x∗+∥

6. Replace f with −f and solve the quadratic programme to get x∗− =

(x∗−1 , x∗−2 , . . . , x∗−p )′ and find the norm of the solution, v− = ∥x∗−∥

7. Find the maximum of the two norms, C = max(v+, v−)

8. Repeat steps 4 - 7 a large number of times N and use the [N (1−α)]-th largest

simulated value as an approximation of c = C∗
[N (1−α)], where is C∗ is a vector

obtained from sorting the elements of C in ascending order

4.2.4 Confidence Bands for Regression Quantiles

In the proceeding discussions we shall make use of the asymmetric Laplace distribution

of Yu and Zhang (2005) as a building block towards the creation of confidence bands

for linear regression quantiles.

For a random variable Z with support on the real line the density function of

the asymmetric Laplace distribution, ALD(µ, σ, θ), is given by

f(z;µ, σ, θ) =
θ(1− θ)

σ


exp

(
(z−µ)(1−θ)

σ

)
, if z ≤ µ

exp

(
−(z−µ)θ

σ

)
, if z > µ,

where 0 < θ < 1 is the skewness parameter and σ > 0 and µ ∈ (−∞,∞) are the

respective scale and location parameters.

(Yu et al., 2003; Yu and Zhang, 2005) observed a direct connection between

the ALD and quantile regression and the authors demonstrate that the minimisation

of the check function

min
βθ∈ℜp+1

n∑
i=1

ρθ(yi − x′iβθ) (4.10)
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can alternatively be viewed as the maximisation of

max
βθ∈ℜp+1

(
θ(1− θ)

σ

)n

exp

{
−

n∑
i=1

ρθ

(
yi − x′iβθ

σ

)}
. (4.11)

Viewed from this perspective, the estimator β̂θ of the true 100θ% regression quantile

coefficient βθ can be construed as the maximum likelihood estimator of βθ based on

the regression model

yi = x′βθ + Ui, i = 1, · · · , n (4.12)

where {U1/σ, U2/σ · · · , Un/σ} are independently and identically distributed (iid)

random variables each with a standard asymmetric Laplace distribution, ALD(0, 1, θ).

In the classical regression models, {U1/σ, U2/σ · · · , Un/σ} are assumed to be iid

standard normal random variables, N(0, 1).

Justification of the ALD model errors has been established by a number of

authors in the literature. Specifically, Komunjer (2005) introduce the tick exponential

family distribution and illustrate that maximum likelihood (MLE) based on this

family is the correct specification for quantile regression inference in order to achieve

consistency and other attractive properties associated with MLE. The author further

points out that the asymmetric Laplace distribution is a well known member of the

tick-exponential family.

Additionally, Lee (2009) noted that for parametric models the tick-exponential

family of distributions introduced by (Komunjer, 2005) provide consistent estimators

even when the likelihood function is misspecified. Finally, the employment of ALD-

based likelihood for quantile regression inference was studied more than a decade ago

by Koenker and Machado (1999).

The k-th central moment of a random variable Z ∼ALD(µ, σ, θ) is given by

E(Z − µ)k = k!σkθ(1− θ)

(
1

θk+1
+

(−1)k

(1− θ)k+1

)
,
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and thus for U = (U1, U2 · · · , Un)
′ it directly follows that

E(Ui) = σ
1− 2θ

θ(1− θ)
= σeθ, V ar(Ui) = σ2

2θ2 − 2θ + 1

θ2(1− θ)2
= σ2vθ. (4.13)

Let y = (y1, y2, . . . , yn)
′ and without loss of generality the non-singular design matrix

X = [1,x1, . . . ,xp] such that i-th row is given by (1, xi,1, xi,2, . . . , xi,p), then it follows

that

E(β̃θ) = E{(X ′X)−1X ′y} = βθ + σeθ(X
′X)−1X ′1

where 1 is an n by 1 vector of whose elements are 1’s. Hence, when σ is a known

constant, an unbiased estimator of βθ is given by

β̃θ = (X ′X)−1X ′y− σeθ(X
′X)−1X ′1

= βθ + (X ′X)−1X ′U− σeθ(X
′X)−1X ′1 (4.14)

and its variance is

V ar(β̃θ) = σ2vθ(X
′X)−1.

In what follows we shall discuss the creation of regression quantiles simultaneous

confidence bands under two different cases; when the scale parameter σ is known and

later when this quantity is not known.

4.2.5 When σ > 0 is a Known Constant

When σ > 0 is a known constant we construct the following simultaneous confidence

band based on

x′βθ ∈ x′β̃θ ± cθσ
√
vθx′(X ′X)−1x ∀ x ∈ X (4.15)
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where cθ is the critical constant chosen so that the simultaneous confidence level of

the band is 1 − α. Note that the expression inside the square-root sign in equation

(4.15) is simply V ar(x′β̃θ)/σ
2. In order to determine cθ for a specified confidence

level 1− α, we need to evaluate the simultaneous confidence level of the band (4.15)

which is given by

Pr
{
x′βθ ∈ x′β̃θ ± cθσ

√
vθx′(X ′X)−1x ∀ x ∈ X

}
= Pr

{
max
x∈X

|x′(β̃θ − βθ)|
σ
√
vθx′(X ′X)−1x

< cθ

}

= Pr

{
max
x∈X

|x′(X ′X)−1X ′(U/σ − eθ1)|√
vθx′(X ′X)−1x

< cθ

}
(4.16)

= Pr

{
max
x∈X

|(Qx)′QX ′(U/σ − eθ1)/
√
vθ|√

(Qx)′(Qx)
< cθ

}

= Pr

{
max
x∈X

|(Qx)′R|
∥(Qx)∥

< cθ

}
, (4.17)

where

R = QX ′(U/σ − eθ1)/
√
vθ (4.18)

is a random vector.

It can be observed from equation (4.16) that the calculation of the critical value

cθ for simultaneous confidence bands depend on the design matrix X, the rectangular

region X and the constant θ but not on the unknown coefficients βθ. Furthermore,

as will be clarified in the discussion to follow, equation (4.16) is also independent of

σ and thus serve as a major advantage of the simultaneous confidence band (4.15).

To obtain the distribution of |(Qx)′R|/∥(Qx)∥ we employ a similar simulation

method as proposed by Liu et al. (2005). In particular, we apply the same algorithm

as described in subsection 4.2.3 with the exception that the vector f is now defined

by R as given by equation (4.18).

The simulation of the asymmetric laplace distribution random variable U can

be generated by the inverse transformation method. That is, given standard uniformly
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distributed random variable U∗ ∈ [0, 1] then a standard ALD(0, 1, θ) random variable

U/σ can be generated using the ALD quantile function as

U

σ
=

1

1− θ
log

(
U∗

θ

)
I(U∗≤θ)

− 1

θ
log

(
1− U∗

1− θ

)
I(U∗>θ)

Similarly, the simulation of U/σ can easily be accomplished using the presentation of

Yu and Moyeed (2001)

U

σ
=
η1
θ

+
η2
θ − 1

(4.19)

where η1 and η2 are independent exponential random variables with unit mean.

It is worth noting that for the special case of aj = −∞ and bj = ∞ we have,

from the Cauchy-Schwarz inequality, maxx∈X |(Qx)′R|/∥(Qx)∥ = ∥R∥. However,

even in this simple case, it is difficult to determine the distribution of ∥R∥ analytically

and thus a simulation method as given above is a practical way to determine cθ,

especially for a general X . Furthermore, as mentioned earlier, since the number of

replications N can be chosen to be as large as one requires, the simulation method

presented above can be regarded to provide an exact estimate of cθ.

4.2.6 When σ > 0 is an Unknown Constant

In most practical applications the scale parameter σ > 0 is unknown, and in these

situations the maximum likelihood estimator of σ can be calculated by

σ̂ =
1

n

n∑
i=1

ρθ(yi − x′iβ̂θ), (4.20)

which is obtained from maximizing the expression in equation (4.11) with the vector

of coefficients βθ replaced by β̂θ.

On replacing the unknown σ in the confidence band (4.15) with its estimate σ̂

we construct 100(1− α)% simultaneous confidence band as

x′βθ ∈ x′β̃
∗
θ ± cθσ̂

√
vθx′(X ′X)−1x ∀ x ∈ X (4.21)
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where

β̃
∗
θ = (X ′X)−1X ′y− σ̂eθ(X

′X)−1X ′1, (4.22)

and cθ is a critical constant as in (4.15).

When the sample size n is large, one would expect σ̂ to be close to σ and thus

the confidence level of band (4.21) would be close to that of band (4.15).

4.2.7 Confidence Bands for the Difference of two Symmetric

Regression Quantiles

One of the main advantage of the quantile regression technique is on the flexility of

characterising the entire conditional distribution of some variable given its associated

covariates. This advantage allows one to analyse and compare the behaviour

of different parts, such as extreme lower and upper regression quantiles, of the

conditional distribution of response variable. For instance, interquartile range is

useful in quality control. Similarly, the difference of two symmetric extreme quantiles

is a useful measure of variation, (see (Taylor, 2005; Pearson and Tukey, 1965)).

Suppose that the objective is to build simultaneous confidence bands for

the difference of two symmetric quantile regression functions x′βθ1 and x′βθ2

corresponding to regression model (4.12) with scale parameters σθ1 and σθ2 , respectively.

Let βθ,d = βθ1 − βθ2 and β̃θ,d = β̃θ1 − β̃θ2 then it follows from the presentation of

equation (4.14) the simultaneous confidence bands of x′βθ,d is

x′βθ,d ∈ x′β̃θ,d ± cθ,dσd

√
vθ1x

′(X ′X)−1x ∀ x ∈ X (4.23)

where, for σ2d = σ2θ1 + σ2θ2 and assuming the errors for two quantiles are independent,

the variance of the difference of two regression functions is given by

V ar(x′(β̃θ1 − β̃θ2)) = vθ1σ
2
dx

′(X ′X)−1x.
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Note that vθ1 appears in the last equation due to the fact that for symmetric quantiles

θ1 and θ2 such that θ1 = 1−θ2 it follows from (4.13) that vθ1 = vθ2 . The simultaneous

confidence band (4.23) can be expressed as

Pr

{
x′βθ,d ∈ x′β̃θ,d ± cθ,dσd

√
vθ1x

′(X ′X)−1x ∀ x ∈ X
}

= Pr

{
max
x∈X

|x′(β̃θ,d − βθ,d)|
σd

√
vθ1x

′(X ′X)−1x
< cθ,d

}

= Pr

{
max
x∈X

|x′(X ′X)−1X ′((Uθ1 −Uθ2) + (σθ2eθ2 − σθ1eθ1)1)|
σd

√
vθ1x

′(X ′X)−1x
< cθ,d

}

= Pr

{
max
x∈X

|(Qx)′QX ′((Uθ1 −Uθ2) + (σθ2eθ2 − σθ1eθ1)1)|
σd

√
vθ1

√
(Qx)′(Qx)

< cθ,d

}

= Pr

{
max
x∈X

|(Qx)′Rd|
∥(Qx)∥

< cθ,d

}
(4.24)

where

Rd =
QX ′((Uθ1 −Uθ2) + (σθ2eθ2 − σθ1eθ1)1)

σd
√
vθ1

. (4.25)

In order to apply the active set algorithm and calculate the critical constant cθ,d, the

unknown parameters σθ1 and σθ2 are replaced by their respective maximum likelihood

estimators given by (4.20), where θ is appropriately replaced by θ1 and θ2.

4.3 Normal Transformation-based Simultaneous

Bands for Regression Quantiles

In this section we employ a different simulation-based method to construct simultaneous

confidence bands for quantiles of the normal regression model when the residuals are

normally distributed and when the assumption of normality is not tenable.
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4.3.1 Normally Distributed Residuals

For a given vector of response variable y and a set of covariates {x1,x2, . . . ,xp} the

general classical regression setting of equation (4.4) stipulates that the error terms

be normally distributed, ϵ ∼ N(0, σ2I). The problem of constructing simultaneous

confidence bands for quantile functions

qθ,N (y|x) = x′β + σΦ−1(θ) (4.26)

in the general linear regression model has been considered by a number of authors.

For instance, Steinhorst and Bowden (1971) considered simultaneous confidence bands

for the true regression quantile (4.26) simultaneous in x for both θ fixed and when

θ is variable. Turner and Bowden (1977) presented a generalisation of the work of

Steinhorst and Bowden (1971) to a general linear model framework in the case when θ

is fixed. Using the width of the bands as a measuring criterion the authors noted some

improvement over the Scheffé-type bands of Steinhorst and Bowden (1971) but they

conclude that these gains are not conclusive and consequently state that the “best”

procedure has yet to be uncovered. Similarly, Thomas and Thomas (1986) proposed

two different methods for creating simultaneous confidence bands for quantiles of a

standard regression model which can be considered as an alternative extension to the

bands of Steinhorst and Bowden (1971) and the modified version of the Kanofsky

(1968) bands to a regression model.

In the implementation of all of the aforementioned methods the explanatory

variables are not constrained in a some finite intervals like the one given by equation

(4.3) and none are based on simulation technique. In keeping with the simulation

theme of the chapter we put forward a simulation-based method to form simultaneous

confidence bands for quantiles of a linear regression model in which the variables are

constrained.
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The objective here is to construct 100(1− α)% confidence bands of the form

qθ,N (y|x) ∈ q̂θ,N (y|x) + cθ,Nσ
√

x′(X ′X)−1x+ (Φ−1(θ))2κ ∀ x ∈ X (4.27)

such that κ > 0 the covariates are constrained within the region (4.3) and where

q̂θ,N (y|x) = x′β̂ + σ̂Φ−1(θ). As before, the formation of the confidence band (4.27)

relies on accurate estimation of the critical constant cθ,N in order to ensure Pr(T ≤

cθ,N ) = 1− α where

T = max
x∈X

|x′β̂ + σ̂Φ−1(θ)− (x′β + σΦ−1(θ))|
σ
√
x′(X ′X)−1x+ (Φ−1(θ))2κ

, (4.28)

with the subscript N indicating Gaussian errors.

Note that the denominator is the square root of a linear combination of

V ar(x′β̂) = σ2x′(X ′X)−1x and V ar(Φ−1(θ)σ̂) = (Φ−1(θ))2σ2κ. In order for T to

be feasible, in a sense that will become apparent in the proceeding explanation, the

unknown constant κ must be determined. To achieve this one needs to calculate

V ar(σ̂) which can be accomplished through employing the standard result Z1 =

νσ̂2/σ2 ∼ χ2
ν and note that Z2 =

√
Z1 ∼ χν , with χν denoting a Chi distribution

with ν degrees of freedom. From the properties of a Chi distribution it follows that

V ar(Z2) = ν − ω2, where ω =
√
2Γ((ν + 1)/2)/Γ(ν/2) and Γ(s) =

∫∞
0 ts−1e−tdt is

the gamma function. Expressing the variance as

V ar(Z2) = νσ−2V ar(σ̂) = ν − ω2

we have V ar(σ̂) = (ν − ω2)σ2ν−1 and which straightforwardly follows that

κ = 1− ω2ν−1.

Similar to the mean regression bands given by (4.5) it is possible to express

T as function that depends on a combination of standard normal and Chi-square
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random variables, and thus becomes readily set for simulation approach to obtain its

distribution. To observe this, note that equation (4.28) can be written as

T = max
x∈X

∣∣∣∣ x′(β̂−β)

σ
√

x′(X′X)−1x
+ Φ−1(θ)√

x′(X′X)−1x

(
σ̂
σ − 1

)∣∣∣∣
(x′(X ′X)−1x)−1/2

√
x′(X ′X)−1x+ (Φ−1(θ))2κ

(4.29)

From this presentation it can easily be deduced that x′(β̂−β)(σ2x′(X ′X)−1x)−1/2 ∼

N(0, 1) and σ̂/σ ∼
√
χ2
ν/ν. However, in this formulation the maximisation of T can

no longer be accomplished via the active set algorithm of (Liu et al., 2004, 2005)

as described in section (4.2.3). Fortunately, through defining T as a function of p

variates one can nevertheless solve it via different optimisation techniques as will be

illustrated in subsection (4.4).

4.3.2 Non-Normally Distributed Residuals

Although taken for granted, it is by now well established that for numerous practical

applications the assumption of normality is not always tenable and thus there is a

need to account for this lack of fit. In dealing with this issue, one approach that has

gained great popularity is the Box-Cox power transformation Box and Cox (1964) as

given by equation (2.6) in chapter 2. In this technique, after the response variable or

equivalently the errors have been identified to deviate from normality, an assumption

that is particularly sensitive when calculating confidence intervals and hypothesis

testing for regression parameters, an analyst can transform the response variable via

the Box-Cox procedure and then fit a regression function. Finally, the fitted response

variable can be transformed back to the original scale.

Suppose the response variable y is non-Gaussian and let yλ = gλ(y) denote a

vector of transformed response variable y obtained via the Box-Cox transformation

yλ = ((yλ − 1)/λ)I(λ̸=0) + log(y)I(λ=0) such that yλ is approximately normally

distributed. Given this setup our proposed approach can be regarded as a two

step one, with an ultimate goal of creating simultaneous bands for quantiles of



4.4. Calculation of the Critical Constant cθ,N 69

the conditional distribution of y given x, that is, qθ(y|x) = g−1
λ (qθ,N (yλ|x)), where

qθ,N (yλ|x) = x′βλ + σλΦ
−1(θ). The execution of this method can be outlined as

follows; first, build confidence bands of the transformed normal regression quantiles

qθ,N (yλ|x) ∈ q̂θ,N (yλ|x)± cθ,Nσλ
√

x′(X ′X)−1x+ (Φ−1(θ))2κ ∀ x ∈ X

by maximising T from equation (4.28) and finally calculate the simultaneous bands

for the original quantile function via the inverse transform

g−1
λ (qθ,N (yλ|x)) ∈ g−1

λ

(
q̂θ,N (yλ|x)± cθ,Nσλ

√
x′(X ′X)−1x+ (Φ−1(θ))2κ

)
∀ x ∈ X .

(4.30)

While the construction of simultaneous bands for regression quantiles of the linear

regression has been studied by (Steinhorst and Bowden, 1971; Turner and Bowden,

1977, 1979; Thomas and Thomas, 1986) the simple idea of a Box-Cox transformation

in conjunction with a simulation based technique has not been exploited. The

strategy of transforming the response variable is particularly useful in the sense

that the bounds constraining the explanatory variables are unaffected and remain

valid when transforming back the fitted response variable to its original scale via

the monotonic function, g−1
λ . Additionally, the Box-Cox transformation technique

utilises the equivariance property of quantile regression which guarantee the ordering

of observations is preserved. For extensive theoretical and implementation treatment

of Box-Cox quantile regression refer to (Chamberlain, 1994; Buchinsky, 1995; Powell,

1999; Machado and Mata, 2000).

4.4 Calculation of the Critical Constant cθ,N

The maximisation of (4.29) can be achieved by representing the function T as a

quotient of two functions F1 and F2 for the numerator and denominator respectively.
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Let

V =
√

x′(X ′X)−1x

=

(
|(a1,1 + a2,1x1 + . . .+ aj,1xp) + x1(a1,2 + a2,2x1 + . . .+ aj,2xp) + . . .

+ xp(a1,p+1 + a2,p+1x1 + . . .+ aj,p+1xp)|
)1/2

, (4.31)

where the constant aj,k correspond to the j-th row and k-th column elements of

(X ′X)−1. Further, let z1 denote a standard normal random variate and γ ∼
√
χ2
ν/ν,

then the numerator of (4.29) can be expressed as

F1 = |z1 + V−1Φ−1(θ)(γ − 1)|. (4.32)

Similarly, the non-random function corresponding to the denominator of (4.29) can

also be expressed in terms of the unknown variable x = (x1, x2, . . . , xp)
′ as

F2 = V−1(|V2 + (Φ−1(θ))2κ|)1/2. (4.33)

To obtain the critical constant cθ,N the procedures are as follows.

1. Generate z1 and γ

2. Maximise T = F1/F2 using one of the algorithms to be described below (4.4.1)

3. Repeat the last two steps a large number of times N and use the [(1−α)N ]-th

largest simulated value as an approximation for cθ,N

By the same argument as before, for sufficiently large number of simulations N the

critical constant cθ,N can be considered to be exact.

Note that, it is also possible to express the ALD-based confidence bands (4.16)

as a quotient of two functions. One can easily observe this by defining the numerator

of (4.16) as

(X ′X)−1X ′
√
vθ

(
U

σ
− eθ1

)
= w = (w0, w1, . . . , wp)

′ (4.34)
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where, without loss of generality, the regression model (4.1) has an intercept such

that the first column of the design matrix X consist of a vector of ones. Then we can

write (4.16) as

FALD = max
x∈X

|w0 +
∑p

j=1 xjwj |
V

. (4.35)

The multivariate function (4.35) can be solved via simulation by; (i) generate a vector

of standard ALD random variable U/σ and calculate the vector w, (ii) Optimise

(4.35) and (iii) repeat the last two steps a large number of times N and estimate the

critical constant cθ for 100(1−α)% confidence band as [(1−α)N ]-th largest simulated

value.

In the next subsection we proceed by outlining two algorithms that can

accommodate the maximisation of bounded functions.

4.4.1 Simulated Annealing and Threshold Acceptance

Algorithms

Simulated annealing (SA) optimisation technique introduced by (Kirkpatrick et al.,

1983; Černý, 1985) was motivated by the adaptation of statistical mechanic techniques

towards solving optimisation problems. This method has attracted wide application

due to it ability to handle multivariate objective functions of different degrees of

complexity and with or without constraints on both the cost function and the variables

of interest, see Ingber (1993).

The mechanics of this generic algorithm, as the name suggest, operate by

closely mimicking the microstructure behaviour of atoms when heating and slowly

cooling a metal such that the objective function is slowly reduced from an initial high

(temperature) state to one with low energy, and thus giving an approximate solution

of the global optimum. The reduction of the objective function is obtained through

an iterative process that at each state substitute a current solution with a better

randomly generated solution in the neighbourhood until a final solution minimising
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the objective function is reached. During the transition period from one state to

another it is also possible for the algorithm to branch towards a worse solution.

However, this seemingly backward step can sometimes be helpful in the sense of

identifying new regions which could lead to a better minimum.

With the goal of creating a faster and more efficient alternative to SA a modified

version called threshold acceptance algorithm was introduced. This algorithm function

in the same way as the original SA with an added condition on selecting a solution

from one state to another. Specifically, transitional solutions are chosen to be

below some pre-specified threshold which is systematically lowered as the algorithm

progress.

For implementation purpose both the SA and acceptance threshold algorithms

can be carried out using the software MATLAB using the functions simulannealbnd

and threshacceptbnd respectively. Finally, although SA and acceptance threshold

algorithms are iterative procedures that provide an approximate solution, when the

sample size is large enough this bootstrap-like method can accurately recover the

distribution of T.

4.4.2 One Dimension Constrained Optimisation

In the special cases when there is one predictor variable and when the covariates

have a polynomial functional relationship the optimisation of T reduces from that

of maximising p-variate function to one of maximising single variate. That is, the

problem can be written as

max
x1

T (x), a1 ≤ x1 ≤ b1

and the MATLAB function fminbnd which is an algorithm based on the golden section

search and parabolic interpolation can be utilised to obtain a solution.
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4.5 Assessing the Coverage Accuracy of the

Confidence Bands

In order to quantify the accuracy of confidence bands and distinguish between

alternative methods of constructing confidence bands two techniques corresponding

to the validity and optimality properties are widely employed, (see Canay (2010)).

The primary of these properties, validity, centres on assessing the coverage levels of

confidence bands with more accurate rule of constructing confidence bands producing

coverage probabilities closest to the nominal confidence level. The optimality property

is usually assessed by calculating the width of confidence bands with a construction

method classified superior if it results in shorter lengths compared to others.

For the empirical work to be carried in section 4.6 we shall consider the validity

criterion for assessing confidence bands built under both the ALD and normal model

errors assumptions described in the last two sections. It can be observed that the

exact coverage probability of bands (4.21), (4.23) and (4.27) depends on the unknown

parameters, βθ, σ, βθ,d, σd and β. For given values of the unknown parameters the

coverage probability of each of the bands (4.21), (4.23) and (4.27) can be assessed via

simulation. In order to clarify this approach, we shall demonstrate it for ALD-based

band (4.21), and the parallel will be applicable for the difference of two regression

quantiles (4.23) and normal error-based band (4.27).

Note that the coverage probability of band (4.21) is given by Pr {V < cθ} =

1− α where

V = max
x∈X

|x′(β̃∗
θ − βθ)|

σ̂
√
vθx′(X ′X)−1x

.

For given values of βθ and σ the algorithm for assessing the coverage accuracy

is as follows:

1. Use the specified βθ and σ to simulate y according to model (4.12)

2. Compute the MLEs β̂θ and σ̂ followed by β̃
∗
θ as given by (4.22)
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3. Compute the random variable V

4. Repeat the last three steps a large number of timesN and approximate coverage

probability by N−1
∑N

l=1(Vl ≤ cθ)

The calculation of V can be carried out by maximising the function maxx∈X V =

maxx∈X F∗
1/F∗

2 using acceptance threshold or SA algorithms where the functions F∗
1

and F∗
2 are respectively given by

F∗
1 = |β̃∗0,θ − β0,θ + x1(β̃

∗
1,θ − β1,θ) + . . .+ xp(β̃

∗
p,θ − βp,θ)|

and

F∗
2 = σ̂

√
vθ

(
|(a1,1 + a2,1x1 + . . .+ aj,1xp) + x1(a1,2 + a2,2x1 + . . .+ aj,2xp) + . . .

+ xp(a1,p+1 + a2,p+1x1 + . . .+ aj,p+1xp)|
)1/2

.

On a similar note, for the difference of two regression quantiles one can also construct

F∗
1 and F∗

2 by replacing βθ1 , βθ2 and σd with β̃θ1 , β̃θ2 and σ̂d respectively.

For confidence bands of normally distributed model errors, (4.27), the above

algorithm can be slightly modified to reflect the Gaussian distribution assumption.

That is, for given values of σ and β simulate y according to model (4.4) and estimate

the parameters σ̂ and β̂. The remaining two steps follows in an analogous manner.

4.6 Empirical Study

To illustrate the practicality of the different methods discussed in this chapter we

employ two data sets and construct confidence bands for quantile regression functions.

The first data set with the response variable approximately normal is the classical

dataset of (Galton, 1889; Pearson and Lee, 1896) which was originally used to study

the relationship between the heights of children and their fathers. The dataset
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consists of 1078 observations of fathers and sons heights at maturity, and since the

objective is to investigate the relationship between the two we use father’s heights as

an explanatory variable x and employ a simple regression model (model 1)

qθ(y|x) = β0,θ + β1,θx,

to capture different quantiles of son’s heights. The data set is available from R

Documentation (2010) and for the purpose of keeping the sample size moderately

large we only use the first 250 cases.

Secondly, we employ the immunoglobulin G data discussed by Isaacs et al.

(1983). The dataset consists of serium concentration (grams per litre) of immunoglobulin

G of 298 children between the ages of six months to 6 years. For this dataset we adapt

a quadratic model (model 2)

qθ(y|x) = β0,θ + β1,θx+ β2,θx
2,

in which the explanatory variable age is used to predict quantiles of the immunoglobulin

G (IgG). Descriptive statistics together with Jarque-Bera p-values are presented

in Table 4.1 for the response variables; son’s heights, IgG and the Box-Cox

transformation of IgG.

Table 4.1: Descriptive statistics of the response variables.

Skewness Kurtosis p-value

Sons heights 0.1546 2.9423 > 0.5000
IgG 0.7685 4.0294 0.0000

IgG (Box-Cox) 0.0019 3.0988 > 0.5000

The p-value indicate that at 5% significance level the assumption of normality

of the son’s heights cannot be rejected while for the variable IgG this does not hold.

However, after the Box-Cox transformation of the variable IgG the test does not

detect deviation from the normality assumption and thus confirm the validity of the
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power transformation in producing an approximate normal distribution, a fact that

is further confirmed by the skewness and kurtosis values.
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Figure 4.1: 95% simultaneous confidence bands for the 5%, 25%, 50%, 75% and
95% regression quantiles based on the ALD errors (red) and normal errors (blue).
These bands correspond to equations (4.21) and (4.27).

Table 4.2 reports the estimated parameters of the two models. It should be
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noted that for both models 1 and 2 there are two distinct cases corresponding to

quantile regression and ordinary least square regression . For the quantile regression

case parameters are obtained using the R software rq function available in the quantreg

package. Additionally, for model 2 the classical regression parameters are obtained

from regressing Box-Cox transformed IgG on age whereas the quantile regression

parameters are obtained from fitting the model to the original data.

We proceed by way of graphical illustration of 95%(α = 0.05) simultaneous

confidence bands for 5%, 25%, 50%, 75% and 95% regression functions of model 1

using the ALD and normal errors procedures as respectively described in subsections

(4.2.4) and (4.3.1). Figure 4.1 depicts the confidence bands with the constraint, x ∈

[59.01, 75.43], corresponding to the minimum and maximum values of fathers heights.

The bounds used here are only for illustrative purposes, in practical applications one

has the flexibility of choosing these such that inference of the model in the chosen

region is of particular importance.

Estimates of the critical constants cθ and cθ,N for models 1 and 2 are presented

in Table 4.3 using programs written in MATLAB. For both the ALD errors approach

and the classical regression model employing normal errors, the critical bounds are

obtained based on 50,000 simulations. The number of simulations is set at 50,000 since

this was found by Liu et al. (2005) to be the minimum number that ensures reasonable

accuracy of the critical constants to within two decimal places. The simulations were

run on Toshiba PC Intel Pentium dual-core with processor speed of 1.73GHz. For

model 1, the respective average times for running 50,000 simulations using active

set and threshold acceptance algorithms were 218.94 and 605.24 seconds. Similarly,

the average times for model 2 using the active set algorithm and threshacceptbnd

MATLAB function were 345.74 seconds and 608.31 seconds respectively. Following

Liu et al. (2005) the standard errors (se) are calculated as a consequence of the central

limit theorem which under some regularity conditions states that ĉθ ∼ N(cθ, α(1 −
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α)/(f2(cθ)N )), where N is the number simulations used. Thus, standard errors is

se =

(
α(1− α)

f2(cθ)N

)1/2

,

with f(ĉθ) evaluated from the kernel density estimate of f and the bandwidth h is

chosen by ĥ = min(1.06σ̂N−1/5, 1.06(ξ̂0.75 − ξ̂0.25)N−1/5/1.348), where ξ̂θ denotes an

estimator of the 100(θ)% quantile of the simulated values.

Table 4.3: Critical constants for ALD errors ĉθ and Gaussian errors ĉθ,N with
corresponding (standard errors) in parenthesis.

θ 0.05 0.25 0.50 0.75 0.95

Model 1
ĉθ 2.4327 2.4394 2.4320 2.4403 2.4417

(0.0036) (0.0035) (0.0036) (0.0036) (0.0034)
ĉθ,N 1.9561 1.9527 1.9704 1.9701 1.9507

(0.0084) (0.0089) (0.0083) (0.0085) (0.0083)
Model 2

ĉθ 2.5383 2.5301 2.5284 2.5310 2.5443
(0.0078) (0.0082) (0.0080) (0.0077) (0.0080)

ĉθ,N 2.1288 1.9920 1.9712 1.9777 2.1332
(0.0199) (0.0257) (0.0296) (0.0285) (0.0192)

From figure 4.1 it can be observed that for all five quantiles the regression

lines calculated from optimising the check function (4.2) and an estimate of the

classical linear regression quantiles (4.26) are almost coinciding. However, it is also

apparent that for all quantiles the bands created with the assumption of normal model

errors are clearly narrower compared with those constructed using the ALD errors

in conjunction with the active set algorithm. Having stated that, it is noteworthy

to re-emphasise that for this dataset the assumption of normality of the response

variable cannot be rejected, as found by the Jarque-Bera test.

Figure 4.2 shows (model 2) 95% confidence bands for 5%, 25%, 75% and

95% regression functions for both ALD-procedure and for Box-Cox transformation

approach (4.30). For the latter case, the Box-Cox transformation parameter λ̂ =
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Figure 4.2: Model 2 - 95% simultaneous confidence bands for 5%, 25%, 75% and
95% regression quantiles based on the ALD errors (red) and normal errors (blue).
These bands correspond to equations (4.21) and (4.30).
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0.4518 is calculated from the boxcox MATLAB function with 95% confidence interval

given by [0.2450, 0.6200]. The covariates are restricted within the interval, [0.5, 6],

corresponding to the minimum and maximum ages. Furthermore, to illustrate the

creation of simultaneous bands for the difference of two regression quantiles figures

4.3 and 4.4 depicts 95% confidence bands for the functions x′(β0.75 − β0.25) and

x′(β0.95 − β0.05) respectively.

Careful inspection of figure 4.2 reveals that for 5% and 25% regression quantiles

the bands obtained under the normal model errors are once gain narrower than

those calculated with the assumption of ALD errors. However, for 75% and 95%

quantiles deviations from the bands between the ALD and normal model errors are

less pronounced. At this point it is important to highlight that these bands are

build with two fundamental differences. First, under the ALD errors assumption the

object is to construct bands for model 2 as presented by (4.1) where the parameters

β̂0,θ, β̂1,θ and β̂2,θ are calculated by minimising the ‘check’ function (4.2), whereas

for the normal errors the parameter set β̂ = {β̂0, β̂1, β̂2} is obtained by maximising

the normal likelihood function. For the latter case, quantile regression functions

are derived through scaling of the estimated mean function x′β̂ by adding σ̂Φ−1(θ).

Secondly, while for the ALD errors the bands are directly build for the regression

function x′βθ using the active set algorithm in the case of normal errors the non-

normal response variable is first transformed to be approximately normal and then

bands are build for the regression functions qθ,N (yλ|x) = x′βλ + σΦ−1(θ) using

threshold acceptance algorithm calling on the MATLAB function threshacceptbnd.

Once the bands of the transformed quantile are acquired the final step is to form

bands for the original quantile function by transforming back to the original scale

and in so doing making the whole procedure non-linear.

From figure 4.2 it can be observed that since the estimated parameters β̂λ, σ̂

and λ̂ remain fixed the quantile regression functions calculated with an assumption of

Gaussian model errors do not have the flexibility of adapting for different quantiles.

On the other hand, since the parameters of quantile regression are re-estimated for
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Figure 4.3: Model 2 - 95% simultaneous confidence band (4.23) for x′(β0.75−β0.25).
An estimate of the critical constant is ĉθ=2.7558 with corresponding standard error
(0.0075).
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Figure 4.4: Model 2 - 95% simultaneous confidence band (4.23) for x′(β0.95−β0.05).
An estimate of the critical constant is ĉθ=2.7661 with corresponding standard error
(0.0082).
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each quantile this results in evolving quantile functions as illustrated by figure 4.2

where the functional form of quantile regressions evolve from a negative quadratic for

5% and 25%, to approximately a polynomial of degree one for θ = 0.75 and finally

turning to a positive quadratic for 95% quantile.

We now turn attention to the calculation of coverage probabilities for the

confidence bands as described in section 4.5 and we explain the set up using band

(4.21) with an analogously extension to the other bands.

The number of replications N is set at 1000 and the unknown parameters βθ

and σ are replaced by their estimators β̂θ and σ̂. To assess the coverage accuracy

we keep the parameter set β̂θ fixed and use the algorithm described in section 4.5 to

calculate coverage probabilities under four different cases, namely, σ̂ ± seσ̂, and σ̂ ±

2seσ̂, with seσ̂ denoting the standard deviation of σ̂. Thereafter, we repeat the same

experiment by keeping σ̂ fixed and allowing the vector of parameters β̂θ to vary by

β̂θ±∆θ and β̂θ±2∆θ, where ∆θ is a vector of standard errors of the quantile regression

parameters. Finally, we allow σ̂ and each parameter in the set β̂θ to randomly vary

within two standard errors such that for each of the 1000 replications one generates

different regression parameters {β̂(k)}Nk=1 and standard deviation {σ̂(k)}Nk=1 which are

then substituted for the real unknown parameters βθ and σ in step 1 of the algorithm

outlined in section 4.5.

Tables 4.4, 4.5 and 4.6 presents the respective coverage probabilities for the two

models for the cases when σ̂ is fixed, the vector of parameters is fixed and random

combination of both σ̂ and the parameter vector within two standard errors. From the

three tables it can be observed that for model 1 confidence bands built under Gaussian

model errors produce coverage probabilities closer to nominal level compare to bands

depending on the ALD errors. Furthermore, the tables reveal the conservative nature

of the ALD-based bands for extreme quantiles with improved accuracy for the median

and lower and upper quartiles regression functions.

For model 2 the coverage accuracy of the Box-Cox transformation procedure are
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Table 4.6: Coverage probabilities where the parameters are selected randomly within
two standard errors.

θ 0.05 0.25 0.50 0.75 0.95

Model 1
ALD errors 0.9870 0.9570 0.9390 0.972 0.9910

Normal errors 0.9510 0.9450 0.9590 0.9500 0.9470
Model 2
ALD errors 0.9990 0.9950 0.9900 0.9950 0.9980

Normal errors 0.9650 0.9550 0.9550 0.9610 0.9660

Table 4.7: Critical constants for ALD errors ĉθ with corresponding (standard errors)
in parenthesis using the threshacceptbnd algorithm. The parameters are randomly
selected within two standard errors.

θ 0.05 0.25 0.50 0.75 0.95

Model 1
ĉθ 1.9719 1.9530 1.9607 1.9666 1.9402

(0.0084) (0.0083) (0.0083) (0.0084) (0.0079)
0.9530 0.9490 0.9500 0.9510 0.9470

Model 2
ĉθ 2.1914 2.3560 2.0480 2.1425 2.2862

(0.0250) (0.0322) (0.0225) (0.0260) (0.0277)
0.9570 0.9530 0.9470 0.9380 0.9570
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very close to the nominal level. However, across all five quantiles the coverage results

show that the ALD-based approach produce very conservative confidence bands as

indicated by coverage probabilities very close to unity. These results are indicative

of the deficiency of the active set algorithm in producing accurate confidence bands

when the covariates have a polynomial relationship as in model 2. To this end, it

will be instructive to compare the performance of the ALD-based confidence bands

in terms of the critical constants and coverage probabilities by substituting the active

set algorithm with the threshold acceptance one.

Table 4.7 reproduce ALD-based critical constants and 95% coverage probabilities

for models 1 and 2 using the threshold acceptance algorithm. From the table it can

be noticed that the critical constants for both models are smaller compare to those

calculated by the active set algorithm. Consequently, the coverage probabilities of

the bands are no longer conservative with coverage closer to nominal level. This

observation is a testament of robustness of ALD maximum likelihood approach for

quantile regression even when the error distribution is misspecified, as noted by Lee

(2009). The improved accuracy in the coverage probabilities however is at the expense

of longer computational time, with the threshold acceptance algorithm approximately

running for twice the time of the active set algorithm.

4.7 Chapter Summary

The focal point of the chapter is on the construction of simultaneous confidence

bands for regression quantile functions when the covariates as bounded in a region.

The proposed techniques make use of simulation techniques to generate distributions

from which the critical constants are calculated. The main theoretical and practical

contribution of the chapter can be summarised as follows:

• Simultaneous confidence bands are created for quantile and interquantile

regression functions exploiting the properties of the asymmetric Laplace
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distribution.

• With a slight modification, the simulation approach is shown to readily extend

in building bands for quantile functions calculated from classical ordinary least

square regression technique when the model errors are assumed to normal or

otherwise. In the latter case, a two step procedure that makes use of the Box-

Cox transformation technique is utilised.

• Through a different presentation of the problem it is demonstrated that one is

able to simulate distributions from which critical constants can be calculated

using either simulated annealing, threshold acceptance and in some special

cases by solving a one dimension constrained optimisation problem.

• Empirical studies demonstrate that the proposed approaches provide accurate

coverage. Notedly, it is shown that in some scenarios, such as when the

covariates have a functional relationship as in model 2, the active set algorithm

provide conservative coverages, an observation that is shown to be remedied by

the acceptance threshold algorithm.



Chapter 5

GARCH Induced Quantile-based

Prediction Intervals for Realised

Volatility

In this chapter we take a practical approach to calculating prediction intervals for

realised volatility using quantile based procedures in conjunction with the GARCH

model. We make use of the intraday returns to model time series of quantiles with the

view of forecasting next period density followed by an application of the distribution

of the difference of two extreme quantiles to create prediction intervals for RV. We

also propose a bootstrap version of this idea together with two adapted extensions

of the HAR model that employs the intraday quantiles of an approximate realised

volatility measure and quantile regression. The proposed procedures are applied to

two data sets and their coverage performances of realised volatility are assessed.

5.1 Introduction

The increasing availability of high frequency intraday financial data has facilitated for

a rich understanding of asset dynamics as well as attracted a great deal of research in

89
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the estimation and forecasting of volatility, a quantity that is of great importance in

financial fields such as risk management. Since the introduction of the AutoRegressive

Conditional Heteroscedastic (ARCH) model and its generalised version (GARCH)

by Engle (1982) and Bollerslev (1986), numerous GARCH-type models have been

proposed with the aim of capturing different characteristics of financial time series,

see Poon and Granger (2003) for an extensive overview. However, despite their

popularity, GARCH-type models have been criticised for relying heavily on model

specification for volatility dynamics and distribution assumptions. Furthermore, due

to the latent nature of volatility and therefore the absence of a benchmark with which

to compare the forecasting performance, the task of models comparison becomes very

difficult.

Arising from the need to have a benchmark from which various volatility

forecasting models and estimators could be compared, Andersen and Bollerslev (1998)

introduced the concept of realised variance for high frequency data, that is data

where a number of observations are recorded for each time point during the course

of the trading day. The realised variance is defined as the summation of intraday

squared returns and its square root is referred to as the Realised Volatility (RV).

In evaluating the performance of the GARCH models the authors treat RV as an

observable benchmark and they demonstrate, through the use of Mincer-Zarnowitz

regression technique, that the GARCH models provide accurate forecasts.

Treating volatility as observable rather than latent has given rise to abundant

volatility models, and the interest has transcended beyond the need to only measure

and model volatility, with numerous contributions exploiting the increase availability

of intraday data for forecasting. For instance, Ghysels et al. (2006) introduced the

Mixed Data Sampling (MIDAS) method for time series data sampled at different

frequencies: here the intraday returns are used to forecast realised volatilities via the

use of lag polynomials. Similarly, with the aim of capturing the long memory property

of volatility in a parsimonious manner, Corsi (2009) proposed the Heterogeneous

AutoRegressive (HAR) model making use of realised volatilities obtained from daily,
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weekly and monthly periods in both modelling and forecasting realised volatilities.

Using daily returns, Blair et al. (2001) found great improvements in the forecasting

performance of GARCH models by incorporating realised variance as an explanatory

variable in the conditional variance specification.

Despite having been criticised, GARCH models have been the subject of

numerous research in the field of high frequency data. One area that has received a

number of contributions is on the estimation of parameters of GARCH models using

high frequency data. For instance, Visser (2008) utilises high frequency data and

employs different volatility proxies in the form of realised volatility and range-based

volatility and demonstrate that the estimation of the classical close-to-close GARCH

model can be significantly improved and thus resulting in accurate volatility forecasts.

On the same note, Drost and Nijman (1993) proposed a method for aggregating

GARCH parameters obtained from low frequency data, say monthly, in order to

derive high frequency parameters, such as weekly or daily. Galbraith and Zinde-

Walsh (2000) proposed two methods that uses high frequency intra-day returns to

estimate the GARCH parameters of daily returns in order to estimate conditional

volatility. One of these methods uses the aggregation procedure proposed by Drost

and Nijman (1993) and the other makes use of the method proposed by Galbraith

and Zinde-Walsh (1994) and Galbraith and Zinde-Walsh (1997) where they introduce

measurement error to a realised volatility measure and perform a two stage process

whereby first the parameters of ARCH are approximated and thereafter the GARCH

parameters are derived via a link function.

With regard to estimation and forecasting of realised volatility using GARCH

models numerous modifications and extensions have been proposed in the literature.

For instance, Giot and Laurent (2004) employs realised volatility in conjunction with

ARCH type-models to model value at risk. Similarly, with the objective of forecasting

value at risk Shao et al. (2009) uses high frequency data to forecast realised volatility

via the Conditional AutoRegressive Range (CARR) of Chou (2005). Recently, Hansen

et al. (2010) introduced the so-called realised GARCH model which simultaneously
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models returns and realised volatility measures, such as, realised volatility, bipower

variation and intraday range via a link function relating the realised measure to

the conditional variance of returns. Through application, the authors demonstrate

that their model provide an improvement over GARCH models based solely on daily

returns. Similarly, Christoffersen et al. (2010) propose Generalised realised volatility

model (GRV) with GARCH component that incorporates both the realised volatility

and daily returns.

While the modelling of realised volatility and other realised measures has

attracted a great deal of attention in the literature primarily due to its important

link with risk measures such as value at risk and expected shortfall, the construction

of prediction intervals has taken second stage. From a low frequency (close-to-

close) perspective, this deficiency has been addressed, amongst others, by Pascual

et al. (2006) who proposed a bootstrap approach for predicting the densities of

future volatilities and returns (close-to-close) from the GARCH model. Through

simulation the authors demonstrate quite accurate coverage probabilities for both

returns and volatilities forecasts, a result that is attributed to the ability of the

proposed procedures in dealing with parameter uncertainty. From a high frequency

angle, Galbraith et al. (2001) propose a quantile regression approach for calculating

the conditional quantiles of GARCH models conditioning on past realised volatilities

and past squared returns. While this approach can be used to forecast conditional

quantiles and create prediction intervals, the authors do not conduct such an

evaluation restricting attention only on the analysis of patterns for different within

sample conditional quantiles.

In this chapter we make use of high frequency data and propose a method

for constructing prediction intervals for realised volatility that employs AR-GARCH

model. Specifically, we exploit an alternative approximation of volatility based on

the difference of two extreme quantiles as proposed by Pearson and Tukey (1965) to

directly model and forecast intraday quantiles with the help of AR-GARCH model.

Once the intraday quantiles with their corresponding volatilities are respectively
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forecasted from the AR-GARCH, we make use of known result on order statistics to

obtain a distribution of the difference of two quantiles and from which the prediction

intervals of realised volatility are calculated. Furthermore, we also propose two

adapted extensions of the HAR model of Corsi (2009) with the view to extend the

functionality to construct prediction intervals for RV. One of these adaptations is

based on modelling intraday quantiles of volatility in conjunction with a GARCH

model while the other directly employs the HAR model using quantile regression.

It should be acknowledge that, the idea of using the difference of two

extreme quantiles to forecast volatility has already been presented in the literature.

Specifically, Taylor (2005) exploited the difference of two extreme quantiles to model

and forecast time varying quantiles of (close-to-close) returns using the Conditional

Autoregressive Value at Risk (CAViaR) models of Engle and Manganelli (2004) and

then forecast volatility using the difference of predicted quantiles. On a similar note,

Chou (2005) introduced a GARCH-type volatility model based on the range of price

dynamics.

While there is a close resemblance of the work presented here with that of

Taylor (2005), as it will become apparent in our discussion to follow, we differ in three

fundamental points. First, our primary objective is to create prediction intervals for

realised volatility with a point forecast as a by product; secondly, we make use of high

frequency data. Finally to achieve our goal of creating prediction intervals for RV

we employ an AR-GARCH model to model intraday quantiles of returns to project

the quantiles corresponding to different time points during the day and from which

intervals are calculated using the distribution of the difference of two order statistics.

5.2 Data

For the empirical illustration to follow in Section 5.8 and in order to demonstrate the

proposed ideas during the course of discussion, we use two different equities (AXA

and France Telecom (FT)) obtained from Dow Jones Euro Stoxx 50 covering the
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three and half years period between 25th January 2005 and 24th June 2008. The

prices are recorded every minute over a trading period 9:00 to 17:30 and thus giving

510 minute-by-minute observations. After the exclusion of holidays, weekends and

dormant trading days we are left with 873 days. In the very few events when the

price is missing we employ an imputation procedure whereby the last recorded price

of an earlier time is imputed, thus assuming the price is constant and the return is

zero. Without calculating the optimal sampling frequency, we adopt the approach of

Andersen and Bollerslev (1998) by choosing five minutes sampling frequency which

leaves us with 102 intradaily returns.

For the purpose of forecast evaluation we partition the data into two periods.

The first period, January 2005 to September 2006 (473 observations) will be used as

the in-sample and the remaining 400 days, will serve as the out of sample period.

5.3 Volatility Measures

The central point of the chapter is on the exploitation of the difference of two

symmetric extreme quantiles to create prediction intervals for realised volatility and

thus in this section a brief explanation of this idea and an introduction to the notion

of realised volatility are given calling on the work of McAleer and Medeiros (2008).

We also highlight the relationship between the realised volatility, standard deviation

and quantile measure of volatility.

Let pt denote the logarithm price of an asset observed at time t. A general and

widely employed continuous-time (semimartingale) model for the evolution of the log

price is given by

pt = p0 +

∫ t

0
µudu+

∫ t

0
σudWu,

where µ and σ denote the drift and volatility terms respectively, W is a standard

Brownian motion assumed to be independent of σ. Without loss of generality, let the
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drift term µ be zero and let τ1, τ2, . . . , τM+1 denote M+1 equally spaced time periods

over the course a trading day at which the prices of a financial security are observed.

The central parameter of interest is the integrated volatility over a day t

IVt =

(∫ 1

0
σ2udu

)1/2

, (5.1)

where the day interval is normalised to be in the region [0,1], 0 = τ1 < τ2 < . . . <

τM+1 = 1. Given a continuous model for the evolution of prices, equation 5.1 shows

that IV is obtained as the integral of instantaneous volatilities over the trading day.

As IV is unobserved, a key quantity in estimating IV is the realised volatility.

Building on the work of Merton (1980), Andersen and Bollerslev (1998) and Barndorff-

Nielsen and Shephard (2002) demonstrate that the daily model-free realised variance

can be constructed through the summation of equidistant intraday returns computed

over very short time periods. That is, for a given day t, the daily realised volatility

is defined as

RVt =

( M∑
l=1

r2t,l

)1/2

, (5.2)

where

rt,l = pt,τl − pt,τl−1
, l = 2, . . . ,M + 1,

is the continuously compounded return, and pt,τl is the logarithmic price observed at

time τl on day t. As the sampling frequency approaches zero, supl{τl+1 − τl} → 0,

the realised variance converges uniformly in probability to the integrated volatility:

RVt → IVt,

and thus under the assumption of no leverage effect it gives a consistent estimator of

integrated volatility, McAleer and Medeiros (2008).
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5.3.1 The Difference of two Quantiles as a Measure of

Volatility

The realised volatility has a natural link with the sample standard deviation, which is

used to estimate the overall variability σt on day t. In particular, the sample standard

deviation for zero mean returns on day t is given by

σ̂t =

(
1

M − 1

M∑
l=1

r2t,l

)1/2

. (5.3)

On comparing equations (5.2) and (5.3) it can easily be observed that
√

(M − 1)σ̂t =

RVt. In this chapter, we suggest an approximation of RVt which is based on a different

estimation of the standard deviation σt.

In particular, using the idea that the standard deviation σ of a distribution is

directly proportional to the difference of the two symmetric extreme quantiles of that

distribution, Pearson and Tukey (1965) propose a quantile-based measure of σ as

σ̃ =
ξ1−p − ξp
C(p)

, (5.4)

where p ∈ (0, 1), ξp is the 100p% population quantile and C(p) is a constant dependent

on p. An estimate of σ is then obtained by using the sample quantile ξ̂p. Pearson and

Tukey (1965) found that for p = 0.01, 0.025, 0.05 the corresponding values for C(p)

are given by 4.65, 3.92 and 3.25 respectively. These values are obtained from the

normal distribution, with a slight adaptation for the 5% quantile, and are found to

be suited to a number of other standard distributions. Pearson and Tukey (1965) also

showed that the accuracy of the proposed estimators are directly influenced by the

skewness and kurtosis of the underlining distribution and consequently recommend

the usage of p = 0.05 as it is robust against different skewness and kurtosis values.

The focus of this chapter is on using the formula of Pearson and Tukey (1965)

to find an estimate of the standard deviation σt, but we adapt the constant C(p)

to a more flexible data-driven one. The constant C(p) used by Pearson and Tukey
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(1965) is essentially given by Φ−1(1−p)−Φ−1(p) where Φ(.) is the standard Gaussian

cumulative distribution function. Equivalent to that, when the distribution F (.) of

the data X = {X1, X2, . . . , XM} is not known, an estimator of C(p) can be defined

as

Ĉ(p) = Ĝ−1
M,Y (1− p)− Ĝ−1

M,Y (p),

where ĜM,Y (y) is the empirical cumulative distribution function of the standardised

X. Using the result of the ratio between standard deviation and mean absolute

deviation of zero mean normally distributed variables X the standardised variable Y

is calculated as

Yl =
(Xl −X)

σ̂MAD
,

where σ̂MAD =
√
π/2E|X| and X is the mean of X. We note that (Andersen

et al., 2000, 2003) demonstrate empirically that intraday returns standardised by RV

(5.2) are approximately Gaussian distributed. In the proceeding empirical studies we

shall use this method to estimate the constant Ct(p) for each day t using the daily

compounded returns. In particular, using this new estimate for σt, we propose to

approximate the commonly used RVt by the following measure;

R̂V t =
√

(M − 1)
ξ̂1−p,t − ξ̂p,t

Ĉt(p)
, (5.5)

where ξ̂p,t is 100p% sample quantile calculated from the empirical distribution of

intraday returns on day t.

To illustrate the close proximity between the traditional measure of realised

volatility (5.2) and the one based on the difference of two extreme quantiles (5.5),

Figure 5.1 displays the realised volatility RVt against the difference of quantiles

measure of volatility
√
M − 1(ξ̂1−p,t − ξ̂p,t)/Ĉt(p) for AXA and France Telecom. From

this figure it can be observed that, in consistence with findings of Pearson and
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Figure 5.1: Realised volatilities RVt (5.2) for AXA (left) and France Telecoms

(right) against the estimator R̂V t (5.5) for p=0.05, 0.025 and 0.01 over a period of
873 days.

Tukey (1965), for p = 0.05 the difference of quantile measure gives an almost perfect

estimation of realised volatility. Moreover, for p =0.025 and 0.01 realised volatility for

AXA is always overestimated with increased discrepancies in more volatile periods.

Similarly, for France Telecom it can be observed that p = 0.05 produce the best fit,

with increase divergence from the RV as the quantile is reduced from p = 0.025 to

0.01.
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Table 5.1: Mean absolute errors between the realised volatility and the difference of
quantile measure, multiplied by 100.

p = 0.05 p = 0.025 p = 0.01
AXA 0.054 0.472 1.820
FT 0.012 0.075 0.230
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Figure 5.2: Mean absolute errors for sample frequencies 5, 10, 20 and 20 minutes.

This observation is further demonstrated by higher mean absolute error for

p = 0.025 and 0.01 compared with p =0.05, as shown in Table 5.1. Henceforth,

we shall use p = 0.05 to estimate the RV given by equation (5.5). Furthermore, to

assess the accuracy of the quantile-based measure of RV for different sample sizes in

Figure 5.2 we fix p = 0.05 and plot the mean absolute errors for sampling frequencies

5, 10, 20 and 30 minutes which correspond to 102, 51, 25 and 17 intraday returns

observations. As expected the figure demonstrate that, for the two stocks under

consideration, the accuracy of the quantile-based approximation of RV increases with

more frequent sampled data (large sample size). However, since high frequency prices

are recorded at much shorter time intervals such as every 15 and 30 seconds and the

fact that some markets such as the currency exchange are operating for longer than

eight hours considered here, the availability of a large sample size is not a restricting
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factor.

5.4 The Probability Distribution of Dt = ξ̂1−p,t − ξ̂p,t

Our proposed method of constructing prediction intervals for realised volatility

requires the knowledge of the distribution of RV t or equivalently Dt = ξ̂1−p,t − ξ̂p,t.

Starting with the estimation of quantiles, ξp, in the following discussion this concept

is presented using known results from order statistics.

Assuming the sequence of random sample of returns {Rt,l}Ml=1 on day t

are from an unknown continuous distribution Ft(r) with a density function ft(r),

then the corresponding order statistics associated with this sample are defined as

Ut,(1), Ut,(2), ..., Ut,(M) with Ut,(1) ≤ Ut,(2) ≤ ... ≤ Ut,(M). Dropping the time subscript,

an estimator of a quantile of order p ∈ (0, 1), ξp, can be defined through the

following argument. Let l = [p(M + 1)], where [A] is the largest integer less than

or equal to A, then the area under probability density function less than u(l) is

P (R ≤ u(l)) = F (u(l)). The expected value of the area is given by

E(F (U(l))) =

∫ b

a
F (ul)dl(ul)dul (5.6)

where

dl(ul) =
1

B(l,M − l + 1)
(F (ul))

l−1(1− F (ul))
M−lf(ul)

is the pdf of the l-th order statistic and a and b are its support (Hogg et al., 2005).

The quantity B(., .) is a beta function, and for strictly positive constants ϕ and φ it

is defined as

B(ϕ, φ) =

∫ 1

0
xϕ−1(1− x)φ−1dx =

Γ(ϕ)!Γ(φ)!

Γ(φ+ ϕ)!
.
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Introducing a change of variables z = F (ul) then equation (5.6) can be written as

E(F (U(l))) =

∫ 1

0

M !

(l − 1)!(M − l)!
zl(1− z)M−ldz,

and on comparing the right hand side of the last equation to the integral of a beta

density function

fbeta(u;ϕ, φ) =
(φ+ ϕ− 1)!

(ϕ− 1)!(φ− 1)!
uϕ−1(1− u)φ−1

with support u ∈ (0, 1), it follows that

E(F (U(l))) =
l

M + 1

∫ 1

0
fbeta(u;ϕ, φ)du =

l

M + 1
.

From the last equation, the expected area to the left of u(l) is given by E(P (R ≤

u(l))) = l(M+1)−1 and since p ≈ l(M+1)−1 then as a direct consequence of the above

argument one can estimate the quantile ξp by u(l). There exist a number of alternative

methods in the estimation of sample quantiles all of which give approximately the

same results when the sample size is large, see for example (Parrish, 1990).

By defining l1 = [p(M + 1)] and l2 = [(1 − p)(M + 1)] we can find the pdf of

dl1l2 = U(l2) − U(l1) = ξ̂1−p − ξ̂p (David, 1981) as

fdl1l2 (dl1l2) = K

∫ ∞

−∞
(F (u))l1f(u){F (u+ dl1l2)− F (u)}l2−l1−1 ×

f(u+ dl1l2)(1− F (u+ dl1l2))
M−l2du, (5.7)

where the constant K is defined as

K =
M !

(l1 − 1)!(l2 − l1 − 1)!(M − l2)!
.

It is widely accepted that the distribution of returns evolves over time and thus

in estimating the pdf ft(r) we take a kernel density estimation approach. That is, for
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day t an estimate of the density function of returns is given by

f̂t,h(r) =
1

Mh

M∑
i=1

K

(
r − ri
h

)
,

where K(.) is a kernel function and h is the bandwidth. Throughout the proceeding

discussion we make use of the standard normal density as the kernel function and

employ the bandwidth selection procedure proposed by Sheather and Jones (1991).

The execution of calculating the density (5.7) as well as the corresponding distribution

function requires the usage of quadrature. In this respect, we employ the MATLAB

function trapz which uses the trapezoidal method.

For ease of referencing, in the course of discussion we will make mention of the

distribution of R̂V as (5.7) where the correction constant
√
M − 1/Ĉ(p) is implicitly

factored in the calculation.

5.5 GARCH (p, q) Model

Due to its immense importance in such fields as risk management, portfolio allocation

and derivatives pricing the modelling of volatility dynamics has received a great

deal of attention since the introduction of ARCH models by Engle (1982) and its

generalisation by Bollerslev (1986). Our proposed forecasting procedures will make

use of the GARCH model and thus in what follows we give a brief overview of the

model.

Let r t = {r1, r2, ..., rT } be a sequence of logarithmic returns obtained from

taking the logarithmic of (close-to-close) prices Pt = {P0, P1, ..., PT } between time

periods t − 1 and t such that rt = log(Pt) − log(Pt−1). A general ARCH(p) can be

written as a combination of the mean and conditional variance equations as

σ2t = c+

p∑
i=1

αiε
2
t−i,
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rt = f(., φ) + εt, εt = σtzt (5.8)

where zt is independent and identically distributed (i.i.d) with zero mean and

unit variance. The quantity εt represent the innovations and the constants

{c, α1, α2, ..., αp} are parameters to be estimated which by construction of the

model must be nonnegative in order to ensure the volatility σt is always positive.

Furthermore, the conditional mean function f(., φ) given by (5.8) is of a general

form and where φ = {φ0, φ1, .., φm} is a set of parameters associated with the

mean equation. The mean equation can be presented in a number of ways such

as autoregressive of order m;

rt = φ0 +

m∑
k=1

φkrt−k + εt,

and depending on the modeller’s perspective in some other application this is set to

be zero or a constant, see Lunde and Hansen (2005).

As an improvement of the ARCH(p) model, Bollerslev (1986) introduced a

generalisation of the ARCH model by adding q autoregressive in the conditional

variance equation. The result is a GARCH(p, q) with the following specification,

σ2t = ω +

p∑
i=1

αiε
2
t−i +

q∑
j=1

βjσ
2
t−j

where for i = 1, 2, ..., p and j = 1, 2, ..., q the constraints ω > 0, αi, βj ≥ 0

ensures that the volatility is always positive with corresponding mean equation as

in equation (5.8). The GARCH(p, q) has gained immense popularity due to its

parsimonious representation of volatility, and its accuracy in capturing volatility

clustering. Furthermore, in most application small p and q values are found to be

sufficient in modelling a variety of financial time series such as equities and currency

exchange rates. A GARCH(p, q) model is known to be stationary with finite variance
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if its satisfies

p∑
i=1

αi +

q∑
j=1

βj < 1,

and in the special case the previous equation sum to unity the GARCH(p, q) is referred

to as integrated I-GARCH(p, q) process.

The estimation of parameters of the GARCH model are achieved through

a number of techniques, with the maximum likelihood approach by far the most

popular. In addition to the conditional mean and variance equations, an essential

ingredient prior to the application of ML method is the specification of the distribution

of zt terms. Although the normal distribution is widely used due to its good

properties, there exist abundant empirical evidences (see for example, Jondeau et al.

(2006)) indicating that the distribution of the residuals εt deviates from normality.

However, it has been shown by Weiss (1986) that the maximum likelihood estimator

produce consistent estimates of parameters with a limiting Gaussian distribution.

For empirical application we shall use a student-t distribution which, in

comparison to the Gaussian, provide a better capture of kurtosis effect observed

in financial time series.

5.6 Prediction Intervals for Realised Volatility

In this section we describe our proposed method for constructing prediction intervals

for realised volatility through modelling intraday return quantiles using the AR-

GARCH model. For comparison purposes we also outline a bootstrap procedure

based on the same idea. Furthermore, we introduce two adapted extensions of the

HAR of Corsi (2009).



5.6. Prediction Intervals for Realised Volatility 105

5.6.1 AR(1)-GARCH(1,1) Prediction Intervals

Let P t̃ = {P0, P1, . . . , PM} denote the evolution of intraday prices observed, without

loss of generality, at equidistant time points t̃ = 0, 1, . . . ,M . The dash superscript is

used to distinguish between intraday and daily time periods with the latter denoted

by t. Furthermore, let r t̃ = {r1, r2, . . . , rM} be a vector of observed logarithmic

returns obtained from the corresponding prices.

For each day t of an in-sample period t = 1, 2, . . . , T we employ the richness

of high frequency data to calculate empirical quantiles corresponding to the number

(M) of logarithmic return observations available during the day and thus create time

series of quantile dynamics. To elucidate the idea consider r t̃ = {r1, r2, . . . , rM}

obtained on a specific day, then the procedures are as follows:

1. Create a vector ϕ = {(M + 1)−1, 2(M + 1)−1, . . . ,M(M + 1)−1} and for each

{ϕt̃}Mt̃=1
calculate the corresponding quantile as u([ϕt̃(M+1)]) where u’s are the

order statistics of r t̃;

2. Repeat the last step for all time periods t = 1, 2, . . . , T such that for each

100ϕt̃% quantile we construct a univariate time series of the evolution of returns

as r̂ϕt̃,t
= {r̂ϕt̃,1

, r̂ϕt̃,2
, . . . , r̂ϕt̃,T

} with a total of M time series corresponding to

different quantiles;

3. For each quantile time series fit an AR(1)-GARCH(1,1)

r̂ϕt̃,t
= φ0 + φ1r̂ϕt̃,t−1 + εϕt̃,t

, σ2ϕt̃,t
= ω + αε2ϕt̃,t−1 + βσ2ϕt̃,t−1 (5.9)

and extract one step ahead mean and volatility forecasts from the corresponding

AR and GARCH specifications as {r̂ϕt̃,T+1}Mt̃=1
and {σ̂ϕt̃,T+1}Mt̃=1

;

4. De-mean the forecasted quantiles as, r̂D
T+1 = {r̂ϕ1,T+1−r, r̂ϕ2,T+1−r, . . . , r̂ϕM ,T+1−

r} where r =M−1
∑M

t̃=1 r̂ϕt̃,T+1
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5. Use the de-meaned mean forecasts r̂D
T+1 to calculate ξ̂1−p and ξ̂p quantiles

from order statistics and compute Ĉ(p) = ξ̂∗,Y1−p − ξ̂∗,Yp where ξ̂∗,Y1−p and ξ̂∗,Yp

are quantiles calculated from the empirical distribution of standardised mean

forecasts, Ŷ =

{
r̂ϕ1,T+1

σ̂ϕ1,T+1
,
r̂ϕ2,T+1

σ̂ϕ2,T+1
, . . . ,

r̂ϕM,T+1

σ̂ϕM,T+1

}
6. Finally, calculate an estimate of RV from equation (5.5) and employ numerical

integration to recover the density function (5.7) from which the end points

RV ∗
γ/2 and RV ∗

1−γ/2 of 100(1− γ)% prediction interval are obtained

The calculation of the normalising constant Ĉ(p) in step 5 can be approached

from a different perspective. Specifically, for each quantile of time series r̂ϕt̃,t
the in-

sample conditional volatilities {σ̂ϕt̃,t
}Tt=1 can be used to obtain standardise returns,

ẑ t,ϕt̃
= r̂ϕt̃,t

/σ̂ϕt̃,t
, and thereafter the end quantiles ξ̂∗,Z1−p,ϕt̃

and ξ̂∗,Zp,ϕt̃
are evaluated

from the empirical distribution. Finally, the correction constant is calculated by

Ĉ(p) = ξ1−p − ξp where ξp and ξ1−p are the averages of the end quantiles {ξ̂∗,Zp,ϕt̃
}Mϕt̃=1

and {ξ̂∗,Z1−p,ϕt̃
}Mϕt̃=1 respectively.

From the procedures described above, a number of key assumptions and

remarks are needed.

• In calculating intraday quantiles of returns we implicitly assume that the

returns are independent and identically distributed. Justification of such an

assumption is supported by the work of Gonçalves and Meddahi (2009) who

proposed an iid and wild bootstrap methods for calculating confidence intervals

for integrated volatility. The premise of the iid method is based on the empirical

finding of high persistence of, and almost constant, volatility over the course of

a trading day.

• In comparison to volatility, the forecasting of next period returns is a difficult

task. This is due to the fact that empirical evidences indicate that the mean of

financial time series returns is very close to zero. However, quantile modelling

and forecasting offer a distinct advantage in the sense that the sign of time series
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remain constant over time (especially for quantiles away from the medians)

and thus improves on the forecasting accuracy as demonstrated by (Engle and

Manganelli, 2004; Xiao and Koenker, 2009) in the context of predicting value

at risk.

• As will be demonstrated in the empirical study of Section 5.8, the use of AR-

GARCH accounts for the heteroscedaticity observed within quantile time series.

5.6.2 AR(1)-GARCH(1,1) Bootstrapped Prediction Intervals

Following Pascual et al. (2006) who used a bootstrap procedure to create prediction

intervals for volatilities of close-to-close returns obtained from GARCH model, here

we employ their idea to construct prediction intervals for realised volatility using the

difference of extreme quantiles.

We begin by calculating 100p% and 100(1− p)% intraday quantiles of returns

and form respective time series of the quantile dynamics over the in-sample period as,

r̂p,t = {r̂p,1, r̂p,2, . . . , r̂p,T } and r̂1−p,t = {r̂1−p,1, r̂1−p,2, . . . , r̂1−p,T }. We then proceed

by fitting AR(1)-GARCH(1,1) model to r̂p,t and r̂1−p,t and estimate the parameter

sets, θ̂p = {φ̂0,p, φ̂1,p, ω̂p, α̂p, β̂p} and θ̂1−p = {φ̂0,1−p, φ̂1,1−p, ω̂1−p, α̂1−p, β̂1−p} .

Next, for each of the two time series we obtain one-step ahead quantile forecasts,

r̂p,T+1 and r̂1−p,T+1, as well as the associated volatility forecasts, σ̂p,T+1 and σ̂1−p,T+1.

Next period forecast of realised volatility is calculated as,

R̂V T+1 =

√
M − 1(r̂1−p,T+1 − r̂p,T+1)

Ĉp

, (5.10)

where Ĉp = r̂1−p,T+1σ̂
−1
1−p,T+1 − r̂p,T+1σ̂

−1
p,T+1. Note that, the correction factor of

√
M − 1 is used based on our observation in section 5.3.1 equation (5.5).

In order to apply the bootstrap procedure for each quantile we employ the

estimated parameter sets to reproduce the original series. That is, for 100p% a
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replication r̂∗
p,t = {r̂∗p,1, r̂∗p,2, . . . , r̂∗p,T } of the original series is obtained by

r̂∗p,t = φ̂p,0 + φ̂1r̂
∗
p,t−1 + z∗t σ̂

∗
p,t, σ∗2p,t = ω̂p + α̂pε

∗2
t−1 + β̂pσ

∗2
t−1 (5.11)

where the initial value r̂∗p,1 is calculated as 100p% quantile from re-sampling

with replacement intraday returns of the first day, σ̂∗2p,1 = ω̂p(1 − α̂p − β̂p)
−1

is the unconditional variance and z∗t are sampled with replacement from the

empirical distribution of the standardised zero centred residuals F̂z. Analogously,

same steps can be taken to construct bootstrap replicated time series r̂∗
1−p,t =

{r̂∗1−p,1, r̂
∗
1−p,2, . . . , r̂

∗
1−p,T } for r̂1−p,t.

Given the new time series, for both quantiles the AR(1)-GARCH(1,1) is

re-fitted and corresponding parameter sets re-estimated such that we have θ̂
∗
p =

{φ̂∗
0,p, φ̂

∗
1,p, ω̂

∗
p, α̂

∗
p, β̂

∗
p} and θ̂

∗
1−p = {φ̂∗

0,1−p, φ̂
∗
1,1−p, ω̂

∗
1−p, α̂

∗
1−p, β̂

∗
1−p} which are then

used to forecast next period realised volatility as in equation (5.10) with r̂p,T+1,

r̂1−p,T+1 and Ĉp replaced by r̂∗p,T+1, r̂
∗
1−p,T+1 and Ĉ∗

p respectively.

Repeating this process a large number of times B, where b = 1, 2, . . . , B, will

result in a distribution of next period realised volatility {R̂V
(b)

T+1}Bb=1. Finally, the

end quantiles of 100(1− γ)% prediction interval for R̂V T+1 are calculated as

[
F−1

R̂V T+1

(
γ

2

)
, F−1

R̂V T+1

(
1− γ

2

)]
, (5.12)

where F−1

R̂V T+1
is the empirical quantile function of R̂V T+1.

5.6.3 HAR Model

One of the most simple, easy to implement and quite accurate realised volatility

forecasting model is the Heterogenous AutoRegressive (HAR) model proposed by

Corsi (2009). In this model the author makes use of additive processes with

heterogeneous components in order to reproduce the stylised facts observed in time

series of realised volatility, the most significant of which is long memory as depicted
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by hyperbolically decaying autocorrelation function. Building on the Heterogenous

Market Hypothesis of Muller et al. (1993) and the heterogeneous autoregressive

conditional heteroskedasticity (HARCH) model proposed by Muller et al. (1997),

Corsi introduced a HAR model that makes use of heterogenous realised volatility

components in the form of daily, weekly and monthly realised volatilities in order

to model and forecast realised volatility. The three component HAR model can be

conveniently defined as

RVt+1 = α0 + αdRVt + αwRVt−5:t + αmRVt−22:t + ϵt+1 (5.13)

with RVt+1−h:t =
1
h

∑h−1
k=0 RVt−k and where ϵt+1 is the Gaussian noise. For h = 5 and

h = 22, 1
h

∑h−1
k=0 RVt−k corresponds to average weekly and monthly realised volatilities

respectively. Since the daily, weekly and monthly components comprising the HAR

model can be calculated from historic data the parameters of the model can be readily

estimated using the simple ordinary least square technique.

5.6.4 HAR-GARCH Model

After having observed the autoregressive conditional heteroskedastic nature of

residuals obtained from the HAR model, Corsi et al. (2008) introduce HAR-

GARCH model in which the residuals are linked with a conditional variance GARCH

specification. Thus HAR-GARCH(1,1) model takes the form

RVt = α0 + αdRVt−1 + αwRVt−5:t−1 + αmRVt−22:t−1 + σtzt

σ2t = ω + αϵ2t−1 + βσ2t−1

ϵt = σtzt, zt|Ft−1 ∼ f(0, 1)

(5.14)

where Ft−1 denotes the information set available up until time t− 1.

In the empirical study to follow we apply the HAR-GARCH(1,1) characterised
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by student-t error distribution with ν degrees of freedom, tν . In this model, realised

volatility is modelled directly and one period ahead 100(1 − γ)% intervals are

computed as

[
R̂V T+1 + σ̂T+1t

−1
ν

(
γ

2

)
, R̂V T+1 + σ̂T+1t

−1
ν

(
1− γ

2

)]
, (5.15)

where t−1
ν (.) is the quantile function of the standardised t distribution with ν

degrees of freedom and R̂V T+1 is the one-step ahead forecast of RV from the HAR-

GARCH(1,1) model.

5.6.5 Quantile-HAR-GARCH Model

The construction of the HAR-GARCH model is build from the observation of very

strong persistence of realised volatility lasting for a long period of time together

with volatility clustering of the residuals of the original HAR model, (5.13). Based

on this finding we propose an adapted extension of this model from a quantile

perspective with the goal of creating prediction intervals for RV. In contrast to

the HAR-GARCH that directly models RV, our proposed modification of the model

henceforth termed QRV HAR-GARCH, employs in-sample daily quantiles of realised

volatilities in order to project the end points of a prediction interval. Specifically,

using the distribution of the difference of two quantiles (5.7) for each trading day we

calculate the in-sample lower and upper bounds of a 100(1−γ)% confidence intervals

for {R̂V }Tt=1 as {R̂V γ/2,t = Lt, R̂V 1−γ/2,t = Ut}Tt=1. Thereafter, these in-sample series

are independently modelled using a HAR-GARCH(1,1) model as

Lt = α0,L + αd,LLt−1 + αw,LLt−5:t−1 + αm,LLt−22:t−1 + σL,tzt

σ2L,t = ωL + αLϵ
2
L,t−1 + βLσ

2
L,t−1 ϵL,t = σL,tzt

(5.16)
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and

Ut = α0,U + αd,UUt−1 + αw,UUt−5:t−1 + αm,UUt−22:t−1 + σU ,tzt

σ2U ,t = ωU + αUϵ
2
U ,t−1 + βUσ

2
U ,t−1 ϵU ,t = σU ,tzt.

(5.17)

Finally, 100(1− γ)% prediction intervals for RV

[
LT+1,UT+1

]
, (5.18)

where LT+1 and UT+1 are forecasted quantiles from (5.16) and (5.17) respectively.
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Figure 5.3: 95% quantiles of R̂V calculated from the distribution of the difference
of two quantiles, (5.7) (grey) and RV from equation (5.5) in (blue dots) for the first
473 days.

Figure 5.3 displays 95% quantile for R̂V over a period of 473 days for both

AXA and France Telecom, where for the former the four cases for which RV is

greater than 0.04 are removed from the figure. Using RV as benchmark, in this

period the estimated quantile are conservative with coverage levels 0.9771 and 0.9897

for AXA and FT respectively. Furthermore, the figure (especially AXA) exemplify

the clustering effect exhibited in quantiles of R̂V where periods of small(large)

changes persist over time. Similarly, by way of illustration Figure 5.4 depicts sample

autocorrelation functions (ACF) of realised volatilities for both AXA and France

Telecom. On the same figure we also plot the ACFs of 5% and 95% quantiles of
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Figure 5.4: Sample autocorrelation functions (ACF) for realised volatilities together

with ACFs for 5% and 95% quantiles for R̂V calculated from the distribution of
the difference of two quantiles, (5.7), for both AXA (top row) and France Telecom
(bottom row).

a quantile-based realised volatility measure (5.5). It can be observed that, even at

lag 50, the hyperbolic decay evident in the raw RV is also captured in the quantiles

of both equities and thus supports the adaptation of the HAR-GARCH to model

quantiles.

5.6.6 Quantile-HAR Model

Availability of covariates in the form of daily, weekly and monthly components

calculated from the historical data permits the forecasting of next period realised

volatility from the HAR model where the parameters are estimated by an easily

implemented OLS procedure. By construction, the HAR model cannot be used to

build prediction intervals since the next period estimates of standard deviation is not

available. However, as a natural extension from the ordinary least square setting, it

is possible to create prediction intervals of next period RV using quantile regression.

Although not GARCH-based, we propose a nonparametric modified extension

of the original HAR model which we call Quantile-HAR (Q-HAR). Similar to the

QRV HAR-GARCH, the proposed adaptation create 100(1− γ)% prediction intervals
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through independently forecasting the lower and upper bounds forming the band.

Specifically, implementation of the Q-HAR utilises the quantile regression technique

discussed in Section 4.1 of Chapter 4 in order to estimate the parameters of 100γ/2%

and 100(1−γ/2)% regression quantiles. The fitted regression quantiles corresponding

to the lower and upper bounds are,

RVt+1,γ/2 = α0,γ/2 + αd,γ/2RVt + αw,γ/2RVt−5:t + αm,γ/2RVt−22:t

RVt+1,1−γ/2 = α0,1−γ/2 + αd,1−γ/2RVt + αw,1−γ/2RVt−5:t + αm,1−γ/2RVt−22:t,

(5.19)

with a 100(1− γ)% prediction interval formed as

[R̂V T+1,γ/2, R̂V T+1,1−γ/2], (5.20)

where R̂V T+1,γ/2 is the next prediction for the 100γ/2% quantile of RV.

We note that Taylor and Bunn (1999) has employed quantile regression

technique to build prediction intervals for exponential smoothing methods through

regressing empirical fit errors in order to forecast error quantiles. A key distinct

difference of this method with the QHAR is on the fact that for the latter a vector of

explanatory variables are readily available and prediction intervals are built directly

rather than fitting regression quantiles to a series of past forecast errors.

5.7 Evaluation of Interval Forecasts

In this section we present a number of tests that will be employed in evaluating the

coverage accuracy of the proposed models.

One of the most widely used method for testing interval forecasts is the hit

test introduced by Christoffersen (1998). Let {ft+1|t}Tt=1 denote a sequence of next

period forecasts of some variable of interest predicted using available information at
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time t. Then, for lower and upper endpoints of an interval with θ ∈ [0, 1] probability,

{Lt+1|t}Tt=1 and {Ut+1|t}Tt=1, the test is build by defining a sequence of the so-called

hit variable {Hitt+1}Tt=1

Hitt+1 = I(Lt+1|t ≤ ft+1|t ≤ Ut+1|t).

To evaluate the accuracy of models using the nominal coverage criterion Christoffersen

(1998) demonstrate that this is equivalent to testing whether {Hitt+1}Tt=1 is

independent and identically Bernoulli distributed with parameter θ. That is,

H0 : E(Hitt+1) = θ against H1 : E(Hitt+1) ̸= θ

where E(Hitt+1) =
1
T
∑T

t=1Hitt+1. The likelihood ratio used to conduct this test is

given by

LRuc = −2 log

(
ℓ(θ)

ℓ(θ̂)

)
(5.21)

where H =
∑T

t=1Hitt+1, ℓ(θ) = (1−θ)n0θn1 , ℓ(θ̂) = (1−θ̂)n0 θ̂n1 and θ̂ = n1/(n0+n1)

with n1 = H and n0 = T − H. Under the null hypothesis H0 : E(Hitt+1) = θ,

the likelihood ratio test is asymptotically chi-squared distributed with one degree of

freedom, χ2
(1).

While this simple unconditional test is useful, it does not differentiate between

dependency of violations of forecasts from different models. To circumvent this and to

devise a test that can detect dependency in the forecasts, Christoffersen (1998) further

extends the unconditional likelihood ratio test (LRuc) and introduce a likelihood ratio

independence test (LRidn) with a test statistic

LRind = −2 log

(
ℓ(Λ̂2)

ℓ(Λ̂1)

)
(5.22)

where

ℓ(Λ̂1) = (1− θ01)
n00(θ01)

n01(1− θ11)
n10(θ11)

n11
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and

ℓ(Λ̂2) = (1− θ2)
(n00+n10)(θ2)

(n01+n11).

The asymptotic distribution of this test is also χ2
(1) where the quantity nij denotes

the number of observations with value i followed by j with θ̂ij = nij/(ni0 + ni1) and

θ2 is estimated by θ̂2 = (n01 + n11)/T .

Finally, Christoffersen (1998) combined the unconditional and independence

tests to construct a more powerful conditional coverage test with a test statistic

LRcc = −2 log

(
ℓ(θ)

ℓ(Λ̂1)

)
(5.23)

that is under the null hypothesis asymptotically distributed as χ2
(2).

For the empirical study we shall employ the unconditional and conditional

coverage tests to assess the forecasting accuracy of the proposed models in constructing

intervals for realised volatility by replacing ft+1|t with RVt+1, out-of-sample RV.

5.8 Empirical Study

In this section we apply the methods described in the previous section to construct

next day prediction intervals for realised volatility using the high frequency data

outlined in section 5.2. By way of illustration, the dynamics of realised volatilities

together with 5% and 95% quantiles of intraday returns for the two equities are

depicted in Figure 5.5. Similarly, in Table 5.2 we present estimated parameters from

fitting the fitted AR(1)-GARCH(1,1) model on 5% and 95% intraday quantile time

series for both AXA and France Telecom.

Figure 5.5 clearly illustrate the relationship between extreme intraday quantiles

and realised volatility. From the figure, it can be observed that periods of high

volatilities are reflected in large extreme quantiles. Additionally, Figure 5.5 suggest a

degree of presence of heteroscedastic effect in the intraday return quantiles. However,
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such an effect may not be present for the whole spectrum of intraday time series

quantiles, for instance the median time series (or those very close to it) are almost

zeros and thus may not possess such characteristic. In this respect the usage of

GARCH conditional variance specification provide flexibility in accounting for this

important feature. Furthermore, this observation is illustrated through a careful

investigation of Table 5.2 which reports a snapshot of parameters estimated using the

first 473 days for both AXA and FT with a student-t innovation with ν degrees of

freedom. From the figure it can be observed that there are difference in the estimated

parameters of the 5% and 95% quantiles.
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Figure 5.5: Realised volatilities together with intraday 5% and 95% quantiles
calculated from high frequency data for AXA and France Telecom .
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Figure 5.6: Intraday volatility forecasts for day 474 using the AR(1)-GARCH(1,1)
model for AXA and France Telecom.
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Table 5.2: Parameter estimates for the in-sample period January 2005 to September
2006 (473 observations). [Standard errors for parameter estimates are in braces].

φ̂0 φ̂1 ω̂ α̂ β̂ ν̂
AXA
r̂ 5%,t -0.0012 0.3900 2.5588e-7 0.2464 0.3502 2.8756

[8.6153e-5] [0.0409] [9.2543e-8] [0.1437] [0.1669] [0.3009]
r̂ 95%,t 0.0013 0.3422 1.7098e-7 0.3344 0.2824 3.4818

[9.8609e-5] [0.0473] [4.6333e-8] [0.1336] [0.1387] [0.3584]
FT
r̂ 5%,t -0.0012 0.3975 3.0941e-8 0.0595 0.8404 7.0180

[8.5470e-5] [0.0412] [8.0050e-9] [0.0220] [0.0069] [1.0529e-4]
r̂ 95%,t 0.0011 0.4133 3.7270e-8 0.1125 0.7864 4.8737

[8.0841e-5] [0.0398] [2.2008e-8] [0.0491] [0.0934] [4.0726e-4]

Figure 5.6 displays intraday volatility forecasts made from fitting the AR(1)-

GARCH(1,1) model to time series of intraday quantiles using the first 473 days. The

figure gives a static presentation of almost constant intraday instantaneous volatilities,

a result of which was used by Gonçalves and Meddahi (2009) to build confidence

intervals for integrated volatility at a given time point. To re-emphasise, here we

also call on this assumption by treating the forecasted intraday returns as identically

distributed in order to construct prediction intervals for (5.5).

For the purpose of forecasting intraday quantiles the parameters of all models

described in Section 5.6 are sequentially re-estimated daily on a moving window of

473 most recent observations and then we perform out-of-sample interval forecasts

covering 400 days. It should be noted that, for the AR(1)-GARCH(1,1) outlined in

subsection 5.6.1 this involves estimating the parametersM times daily, once for every

quantile. Similarly, for the AR(1)-GARCH(1,1) bootstrap procedure the parameters

are estimated B +1 times for 5% and 95% quantile time series, where the number of

bootstraps B is set at 999.

Our main empirical findings are presented in Table 5.3 which displays the

unconditional coverage C = T −1
∑T

t=1Hitt together with the test statistics for the

LRuc and LRcc tests at both 90% and 95% significance levels. For 90% (95%)
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significance level the critical values of the LRuc and LRcc tests are 2.7055 (3.8415)

and 4.6052 (5.9915) respectively.

Table 5.3: 90% and 95% coverages together with LRuc and LRcc test statistics
evaluated on the out-of-sample period, T = 400 days.

90% 95%

C LRuc LRcc C LRuc LRcc

AXA
AR(1)-GARCH(1,1) 0.8750 2.5947 2.8770 0.9300 3.0121 3.1581

Bootstrap 0.9250 3.0143 3.2055 0.9600 0.9014 1.1711
HAR-GARCH 0.0875 - - 0.0925 - -

QRVHAR-GARCH 0.8325 17.1966 30.4260 0.8600 46.8410 52.7918
Q-HAR 0.8975 0.0276 0.2577 0.9475 0.0518 2.4944

France Telecom
AR(1)-GARCH(1,1) 0.9125 0.7219 10.8629 0.9325 5.2396 5.3979

Bootstrap 0.8625 5.6638 10.5301 0.9075 12.2959 12.2959
HAR-GARCH 0.0450 - - 0.0650 - -

QRVHAR-GARCH 0.8275 20.7452 31.6795 0.8750 35.9124 45.9526
Q-HAR 0.9075 0.2558 6.2250 0.9275 3.7655 9.9147

The main results for proposed procedures in light of their accuracy in covering

next period realised volatility can be summarized as follows.

- While the HAR-GARCH has been shown by Corsi et al. (2008) to provide quite

accurate forecasts of next period realised volatility this observation does not

extend to prediction intervals. From table 5.3 we observe noticeable very

poor nominal coverage levels for HAR-GARCH at both 90% and 95% which is

reflected in the failure of LRuc and LRcc tests, with the hyphen sign indicating

the tests statistics is infinite. Similarly, while the nominal coverages are much

improved, though under covered, the QRV HAR-GARCH is also rejected by the

LRuc and LRcc tests at both 90% and 95% significance levels.

- The computationally demanding bootstrap version of the AR(1)-GARCH(1,1) gives

erratic results, in the sense that for the AXA dataset this approach produces

slightly conservative intervals and is not rejected by both the LRuc and LRcc
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tests at 90% and 95% significance levels. On the contrary, for France Telecom

there is an under coverage at both significance levels as well as rejections from

LRuc and LRcc tests.

- The two competing methods in terms of the three criteria are based on modelling

intraday quantiles using AR(1)-GARCH(1,1) and the adapted HAR, Q-HAR.

The latter method produce very accurate nominal coverage probabilities at

both 90% and 95% levels, with an exception of an under coverage at 95%

level for France Telecom. Furthermore, this model fails only two of the

eight likelihood ratio tests, corresponding to 90% and 95% LRcc test for

France Telecom. Similarly, the AR(1)-GARCH(1,1) approach fails only two

of the likelihood ratio tests corresponding to 90% LRcc and 95% LRuc for

France Telecom. Additionally, the average nominal coverages of the AR(1)-

GARCH(1,1) procedure at 90% and 95% levels are 0.8875 and 0.9313.

5.9 Chapter Summary

The main outcomes of the chapter can be summarised as:

• Using the result of Pearson and Tukey (1965) we demonstrate a link between

the extreme quantile measures of volatility and realised volatility calculated

from intraday returns. We then tie this link with the theory of order statistics

to obtain a quantile-based estimator of realised volatility.

• An AR(1)-GARCH(1,1) model is used to model intraday quantiles calculated

from high frequency data with the objective of projecting the distribution of

intraday returns. Equipped with the density forecast we employ the distribution

of the difference of two quantiles to calculate prediction intervals for RV.

• Two adapted extensions of the HAR model are presented which extends the

functionality of the original model to building prediction intervals for realised

volatility.
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• The proposed procedures are applied to real data and we demonstrate quite

accurate coverage prediction intervals for RV using the intraday returns quantile

forecasting (AR(1)-GARCH(1,1)) method and Q-HAR model.



Chapter 6

Concluding Remarks

The thesis studies some theoretical and applied quantile-based methods relating to

prediction, inference and risk measurement. Here, the main contributions of the thesis

are summarised and a brief outline of possible future research topics are outlined.

6.1 Main Contributions

In chapter 2 two simple and easy-to-implement distribution transformation methods

for constructing prediction intervals of future random variable are proposed. One of

these methods, based on the normal transformation, is theoretically shown to provide

exact prediction intervals while the other, utilising the exponential distribution is

demonstrated to provide zero coverage error prediction intervals. Furthermore,

the exponential distribution method is illustrated to admit any general distribution

function and can therefore be used in a nonparametric framework.

Through exploiting the integral form representation of expected shortfall in

chapter 3 a number of nonparametric kernel-based expected shortfall estimators are

proposed and are numerically studied via Monte Carlo simulations. The notion of

bias reduction is considered and under some theoretical conditions the bias reduced

estimators are shown to outperform non-bias reduced ones, a fact confirmed by

121
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numerical experiments.

In chapter 4 the problem of constructing simultaneous confidence bands for

quantile regression functions when the covariates are restricted in region is tackled.

Asymmetric Laplace distribution together with simulation algorithms form the

building blocks for building the bands which are shown to attain good coverage

probabilities. The procedure is shown to have an easy adaptation to form bands

for interquantile regression functions. Furthermore, the simulation idea is utilised

in creating quantile regression confidence bands for a classical ordinary least square

model when the residuals are normally distributed and when this assumption is not

tenable. The latter case is addressed using the well known Box-Cox transformation

of the response variable.

In chapter 5 a practical approach of creating prediction intervals for realised

volatility is considered. Exploiting a quantile-based presentation of volatility

in conjunction with AR-GARCH we utilise rich information obtained from high

frequency data by modelling and forecasting intraday quantiles of returns from which

the predicted intervals of realised volatility are calculated using the theory of order

statistics. Furthermore, we presented adaptations of the HAR model of Corsi (2009)

and extend their functionality to building intervals forecasts for realised volatility.

Using out-of-sample realised volatility as a benchmark we apply the proposed

procedures to real data and demonstrate quite accurate coverage probabilities for

intervals build from forecasting intradaily returns and the Q-HAR model.

6.2 Recommendations for Future Research

• The exponential transformation method proposed in chapter 2 is applicable for

independent and identically distributed random variable. However, through

filtering it may be possible to adapt this method to create a semi-parametric

approach of constructing prediction intervals for financial time series such as

asset prices.
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• The accuracy of bias reduced estimators in chapter 3 maybe be thoroughly

examined and enhanced when studied through future projection of expected

shortfall. This can be tackled from, say, future scenarios generation.

• A natural progression of chapter 4 is the study of simultaneous tolerance bands

for quantile regression. While this topic has already been explored in the

classical linear regression model (see Limam and Thomas (1988) and references

therein) it has yet to be extended to quantile regression. Similarly, the creation

of simultaneous bands can also be studied in other quantile regression models,

such as quantile regression model for survival data analysis.

• The work presented in chapter 5 raise a number of interesting questions for

future consideration. Three of these are:

1. Investigate the direct modelling of quantiles of integrated volatility as

discussed by (Barndorff-Nielsen and Shephard, 2002; Gonçalves and

Meddahi, 2008, 2009) with the aim of creating prediction intervals. On

a related note, one can also investigate conditions under which the

predictions of independently forecasted end points of prediction intervals

will produce accurate coverage.

2. Since there is a close relationship between volatility and value-at-risk

forecasts, as an extension one can investigate the validity of the models

in building intervals for value-at-risk.

3. In keeping with the GARCH theme, there is scope to introduce a quantile-

based GARCH model similar to the Conditional AutoRegressive Range

(CARR) of Chou (2005).
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Černý, V. (1985). Thermodynamical approach to the traveling salesman
problem: An efficient simulation algorithm. Journal of Optimization Theory
and Applications 45 (1), 41–51.

Visser, M. P. (2008). Garch parameter estimation using high-frequency data.
MPRA Paper 9076, University Library of Munich, Germany.

Wand, M. and M. Jones (1995). Kernel Smoothing. Chapman and Hall, London.

Weiss, A. A. (1986). Asymptotic theory for arch models: Estimation and testing.
Econometric Theory 2 (01), 107–131.

Working, H. and H. Hotelling (1929). Applications of the theory of error
to the interpretation of trends. Journal of the American Statistical
Association 24 (165), 73–85.



BIBLIOGRAPHY 133

Xiao, Z. and R. Koenker (2009). Conditional quantile estimation for garch
models. Boston College Working Papers in Economics 725, Boston College
Department of Economics.

Yu, K. (1997). Smooth Regression Quantile Estimation. Ph. D. thesis,
unpublished, The Open University.

Yu, K., Z. Lu, and J. Stander (2003). Quantile regression: Applications and
current research areas. The Statistician 52, 331–350.

Yu, K. and R. A. Moyeed (2001). Bayesian quantile regression. Statistics and
Probability Letters 54, 437–447.

Yu, K. and J. Zhang (2005). A three-parameter asymmetric laplace distribution
and its extension. Communications in Statistics - Theory and Methods 34 (9),
1867–1879.

Zhang, M.-H. and Q.-S. Cheng (2005). An approach to var for capital markets
with gaussian mixture. Applied Mathematics and Computation 168 (2), 1079
– 1085.


	 Abstract
	 Declaration
	 Acknowledgements
	 Author's Publication
	1 Introduction
	1.1 Quantiles and Their Properties
	1.2 Quantile-based Measures of Location, Scale, Skewness and Kurtosis
	1.3 Moment and Quantile-based Risk Measures
	1.3.1 Standard Deviation
	1.3.2 Value at Risk
	1.3.3 Expected Shortfall

	1.4 Thesis Outline

	2 Improving the Accuracy of Prediction Intervals
	2.1 Introduction
	2.2 Normal Distribution-based Method
	2.3 Exponential Distribution-based Methods
	2.4 Chapter Summary

	3 Kernel Quantile-based Estimation of Expected Shortfall
	3.1 Introduction
	3.2  Expected Shortfall 
	3.3 Kernel Density and Distribution Estimation
	3.3.1 Kernel Density Estimation
	3.3.2 Kernel Distribution Function Estimation

	3.4 Nonparametric Estimation of Expected Shortfall
	3.5 Analytic Properties of ES"0365ESh() and  ES"0362ESh() 
	3.5.1 Bias Reduction of Kernel Estimators
	3.5.2 One and Two Steps Kernel Estimators

	3.6 Monte Carlo Study
	3.7 Empirical Study
	3.8 Chapter Summary

	4 Simultaneous Confidence Bands for Linear Quantile Regression
	4.1 Introduction
	4.2 Simultaneous Confidence Bands
	4.2.1 Confidence Bands for Multiple Linear Regression
	4.2.2 Quadratic Programme
	4.2.3 Active Set Algorithm
	4.2.4 Confidence Bands for Regression Quantiles
	4.2.5 When >0 is a Known Constant
	4.2.6 When >0 is an Unknown Constant
	4.2.7 Confidence Bands for the Difference of two Symmetric Regression Quantiles 

	4.3 Normal Transformation-based Simultaneous Bands for Regression Quantiles
	4.3.1 Normally Distributed Residuals
	4.3.2 Non-Normally Distributed Residuals

	4.4 Calculation of the Critical Constant c,N
	4.4.1 Simulated Annealing and Threshold Acceptance Algorithms
	4.4.2 One Dimension Constrained Optimisation

	4.5 Assessing the Coverage Accuracy of the Confidence Bands
	4.6 Empirical Study
	4.7 Chapter Summary

	5 GARCH Induced Quantile-based Prediction Intervals for Realised Volatility
	5.1 Introduction
	5.2 Data
	5.3 Volatility Measures
	5.3.1 The Difference of two Quantiles as a Measure of Volatility

	5.4 The Probability Distribution of Dt = 1-p,t - p,t
	5.5 GARCH (p,q) Model
	5.6 Prediction Intervals for Realised Volatility
	5.6.1 AR(1)-GARCH(1,1) Prediction Intervals
	5.6.2 AR(1)-GARCH(1,1) Bootstrapped Prediction Intervals
	5.6.3 HAR Model
	5.6.4 HAR-GARCH Model
	5.6.5 Quantile-HAR-GARCH Model
	5.6.6 Quantile-HAR Model

	5.7 Evaluation of Interval Forecasts
	5.8 Empirical Study
	5.9 Chapter Summary

	6 Concluding Remarks
	6.1 Main Contributions
	6.2 Recommendations for Future Research

	 Bibliography

