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ABSTRACT 

This work is intended to contribute to the search for an explanation 
of the way a really good finite element should behave during analysis of a 
general shell problem. 

The finite element analysis of thin shells is currently receiving much 
attention in the international literature. Indeed it seems that in almost 
every new issue of the engineering journals there is a proposal for a new 
and more efficient shell element. The reason for this is of course the 
underlying complexity of the shell problem and, more specificallyt the 
difficulty of taking bending into correct account. 

In order to elicit an understanding of the use of the finite element 
method in shell problems an in-depth study is presented of the behaviour of 
a vehicle shell finite element. This element is the very simple combined 
constant membrane stress and constant bending moment flat triangle. The 
examination of its behaviour reveals that the characteristics of an 
assembly of these elements are such as to enable recovery, in a remarkable 
way, of each of the types of deformation identified by the classical first 
approximation theory. Recovery of rigid body movement, inextensional. 
bending, membrane action and edge effect- is achieved to an accuracy 
consistent with the order of magnitude of inherent errors of the classical 
theory. Thus, the element is seen to hold a position of fundamental 
importance with regard to the numerical analysis of thin shells. 

Special attention is given to the sensitive low energy bending 
response. This reveals that there are two quite different roles for the 
element bending freedoms. One role concerns inextensional bending 
movements which extend over the whole model. The other role concerns local 
rotational movements which accompany the curvature changes of inextensional 
bending and edge effect. Extensive numerical comparisons are made against 
solutions obtained from the classical theory for shells which are very deep 
with strongly negative Gaussian curvature and which are considered to 
provide very severe tests. Investigation of edge effect concerns a 
cantilevered circular cylinder under edge moment. To complete this 
examination of bending details are given of a matrix procedure which is 
intended to assess thin shell finite element models in their response to 
inextensional bending. 

To conclude this work the results of a preliminary study of the 
mathematical details of convergence of the vehicle element are presented. 
This investigation is specific to the geometry of a circular cylinder and 
clamped boundary conditions. It is shown that, despite the highly 
nonconforming nature of the element, O(h) asymptotic convergence in the 
energy norm is achieved and in this respect is similar in behaviour to the 
Clough-Johnson flat plate shell finite element. 
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LIST OF PRINCIPAL NOTATION 

A Greek index refers to a surface component of a vector or tensor and 

has range (1,2), a Latin index refers to a Cartesian component and has 

range (1,2,3). The Einstein summation convention is employed whereby a 

suffix used once ranges over the indices and a suffix which is repeated is 

summed over the indices 

a determinant of the metric tensor of the undeformed middle surface. 

a CZA covariant components of the first fundamental (metric) tensor of the 

undeformed middle surface. 

ai covariant base vectors of reference coordinate system on the 

undeformed middle surface. 

b determinant of the second fundamental tensor of the undeformed 

middle surface. 

b 
CXO covariant components of the second fundamental tensor of the 

undeformed middle surface. 

c cep covariant components of the third fundamental tensor of the 

undeformed middle surface. 

dA differential element of area of the undeformed middle surface. 

dV differential element of volume of the undeformed shell. 

e :1 orthonormal vectors of a fixed Cartesian coordinate system. 

E Young's modulus. 

E ijkl 
contravariant tensor of elastic moduli. 

9i covariant base vectors of a reference coordinate system in 

undeformed shell. 
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91j covariant components of the metric tensor of reference coordinate 

system in the undeformed shell. 

covariant base vectors of a reference coordinate system in the 

deformed shell. 

9ij covariant components of the metric tensor of a reference coordinate 

system in the deformed shell. 

H mean curvature of the undeformed middle surface. 

h functions of the undeformed middle surface base vectors defined by 
cc 

(2.5.8). 

Gaussian curvature of the undeformed middle surface. 

JKI global stiffness matrix. 

[K global membrane stiffness matrix. Y 
[K 

K global bending stiffness matri X. 

KV effective Kirchhoff shear force on the shell boundary, see (3.5-7). 

L characteristic wavelength of deformation pattern on the middle 

surface. 

11 element side length. 

M shell middle surface. 

M OLA contravariant components of stress couple tensor. 

MV effective normal bending moment on the shell boundary, see (3.5.7). 

M effective twisting bending moment on the shell boundary, 

see (3.5.7). 

M ib number of global mechanisms in the shell finite element model. 

M number of local mechanisms in the shell finite element model. 

N number of degrees of freedom in the shell finite element model. 

Nb number of bending freedoms in the shell finite element model. 

Ni element shape functions. 

N number of membrane freedoms in the shell finite element model. m 

" number of vertices in the shell finite element model. v 

" number of midside nodes in the shell finite element model. s 

" rs number of midside nodes on the boundary of the finite element model. 

0 cc transverse shear force on shell boundary, see (3.5.7). 

1 



minimum principal radius of curvature. '-4. ed, 

position vector of a point in the undeformed shell. 

position vector of a point in the deformed shell. 

t shell thickness. 

T Ot contravariant components of effective membrane force on boundary, 

see (3.5-7). 

t unit vectors in directions of the reference coordinate system of 

the undeformed middle surface. 

i(XI orthonormal vectors on the undeformed middle surface. 

U vector of global Cartesian displacement components. 

u vector of displacement components measured in a local curvilinear 

coordinate system. 

Ul vector of boundary connectors of a shell finite element model. 

U2 vector of interior connectors of a shell finite element model. 

V space of functions containing solution of (6.2.9), see (6.2.6). 

Yh subspace of V 

space of functions containing solution of (6.3.6). 

space of functions containing solution of (6.4.18). 

U strain en ergy per unit area of the undeformed middle surface. 

UY membrane strain energy per unit area of the undeformed middle 

surface. 

UK bending strain energy per unit area of the undeformed middle 

surface. 

xi element geometric connectors. 

xi coordinate functions referred to fixed Cartesian coordinate system. 

X hi space of functions defined by (6.3.3) and (6.3.4). 

X hi space of functions defined by (6.4.2) and (6.4.3). 

X hi space of functions defined by (6.4.12). 

r 
CXP 

Christoffel symbols of the reference coordinate system in space. 

Yij covariant components of the three-dimensional strain tensor. 
0 
YMO covariant components of three-dimensional strain tensor evaluated on 

the middle surface. 



r middle surface boundary curve. 

S (X Kronecker delta symbol. 0 

C ap 
covariant permutation tensor of the undeformed middle surface. 

K covariant components of the shell finite element curvature change. 

X eigenvalue of membrane stiffness matrix [K 
Y 

XK eigenvalue of bending stiffness matrix [K 
K] 

tensor relating base vectors at points off the middle surface to 

base vectors on the middle surface. 

determinant of p" 

V Poisson's ratio. 

V unit vector normal to undeformed middle surface boundary curve r 

in the tangent plane. 

curvilinear coordinates in the undeformed (and deformed) shell. 

total potential energy functional. 

Sn first variation of the total potential energy of the shell. 

Pap curvature change tensor. 

unit vector tangent to to middle surface boundary curve r in the 

tangent plane. 

ýOc rotation of the normal in the &0ý-coordinate directions at the middle 

surface. 

0 strain energy per unit volume of the undeformed shell. 

9 region of two-dimensional Euclidean space used to define the shell. 

0) MO rotation tensor about the normal in the undeformed middle surface. 

011 denotes covariant differentiation in space. 

01 denotes covariant differentiation on the middle surface. 

denotes partial differentiation. 
I 

()h denotes a quantity defined element by element, see Chapter 6. 

denotes a quantity associated with a flat element, see Chapter 6. 

denotes a quantity associated with a patch element, see Chapter 6. 
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CHAPTER 1 

INTRODUCTION 

Thin shells have many useful properties which lend themselves to the 

efficient construction of modern engineering structures and industrial 

equipment. When suitably designed, even very thin shells can support large 

loads, and shells are therefore employed in applications where a 

combination of light weight and strength is essential, such as in the 

aerospace industry. In other cases, for instance in petrochemical plants 

and architectural structures, the combined strength and enclosing 

properties of shells are utilised, as in the design of pressure vessels, 

roofs and domes. 

Their widespread use has been the stimulus for many researchers in the 

field of solid mechanics and the search for a general theory with which to 

describe and analyse the behaviour of thin shell structures under load has 

resulted in an immense and flourishing literature on the subject. The 

motivation for this theory derives from two principal sources. Firstly, 

there is the resulting reduction of a three-dimensional problem to a 

problem which is characterised by two-dimensional field equations. This 

dimensional reduction is achieved by introducing weighted averages, across 

the thickness)of the shell, of the problem variables i. e. displacements and 

stresses. This process hides some of the details of a full three- 

dimensional analysis but leads to an overall gain in simplicity which in 

most cases is necessary in order to obtain a solution to a shell problem. 

Secondly, any shell theory which is to be of practical use must be able to 

properly account for the detailed state of stress and deformation due to 

the interaction of both membrane and bending actions. Moreover, it is the 

struggle to safeguard against bending effects that is one of the most 
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important problems facing the designer of thin shell structures. Indeed, 

it is the degree to which bending effects can be eliminated, localised or 

limited in magnitude that principally determines the stiffness of a shell 

structure. Thusp the designer must be able to correctly evaluate 

displacements and stresses in those regions of the shell where bending 

occurs. 

The difficulties associated with bending effects are reflected in the 

deveiopment of shell theory. Historically, the general bending theory was 

preceded by the so called membrane theory which is considerably simpler 

and, in certain special cases, can give an adequate description of the 

state of stress in a shell. The study of the shell problem using this 

theory neglects all bending moments and transverse shear forces. This 

assumption is justified when the shell has negligible bending stiffness or 

when the changes of curvature and twist of the middle surface ate 

negligible. For membrane theory the number of unknowns is equal to the 

number of equilibrium equations, so that the problem is statically 

determinate (at least in relation to the balance of forces in an 

infinitesimal element of the shell). In general, the displacements 

obtained from solutions of membrane theory may be written as the sum of a 

particular integral and a solution to the corresponding homogeneous 

equation system. The particular integral corresponds to membrane action of 

the shell, albeit in linear combination with displacements due to rigid 

body movement and bending. The homogeneous solution is identified either 

with deformations of the shell as a rigid body or as pure bending of the 

shell. Thus, the solution obtained from membrane theory presents pure 

bending and rigid body deformations on an equal basis. Physically this 

means that a freely flexible shell admits the possibility of deforming 

without offering resistance to such displacements i. e. it can act as a 

mechanism. 

In some problems it may happen that the stress resultants and 

displacements which are found from membrane theory enable the required 

boundary conditions to be satisfied at the edge of the shell. In general 



7 

this is not possible for a membrane shell since the simplified theory does 

not allow it to be loaded along its edge by transverse forces or moments 

and the normal displacement and rotation at its edge may not be restrained. 

A further source of inconsistency in the membrane theory derives from the 

fact that the equations that determine the forces in the shell take no 

account of the compatibility relations of the middle surface strain 

measures. Thus, although the relative simplicity of the membrane theory 

makes it appealing as a starting point for the analysis of shell 

structures, the fact that it is only applicable to a limited class of 

problem forces the responsible engineer to include a proper account of the 

effects of bending into the design process. 

The origins of the bending theory may be traced to early work on flat 

plates by Cauchy (1882) and Poisson (1829). In these works the dimensional 

reduction is based upon a power series expansion of the dependent variables 

in the coordinate perpendicular to the middle surface of the plate. Later, 

Kirchhoff (1876) introduced a theory of thin plates, based on the following 

kinematic assumptions: 

- points which lie on one and the same normal to the undeformed middle 

surface also lie on one and and the same normal to the deformed middle 

surface; 

- the displacements in the direction of the normal to the middle surface 

are equal for all points on the same normal. 

Kirchhoff's theory proves to be very fruitful and is widely used in 

mechanics and engineering today. 

The first attempt to formulate a general bending theory for thin 

shells is accredited to Aron (1874). A first complete linear theory, based 

on Kirchhoff's work on plates, is given by Love (1927), and is often 

referred to as Love's first approximation. Subsequent theoretical efforts 

have been directed towards improvements of Love's formulation and the 

associated differential equations. Despite its shortcomings Love's theory 
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occupied a position of prominence for the best part of a century. The 

central problems, namely a satisfactory derivation of the constitutive 

relationst together with an appraisal of their accuracy as compared with 

the governing three-dimensional equations were not resolved until the early 

1960's. It is worth noting that a factor in developing the modern shell 

theory is the use of the tensor calculus to provide a concise means of 

expressing properties of the geometry and deformation on an arbitrarily 

curved surface. 

Because of the complexity of the governing equations the available 

analytical solutions to thin shell problems are limited in scope and 

generally do not apply to arbitrary middle surface geometries, loading 

conditions, boundary conditions, or many other aspects of practical design. 

These complications which attend the solution of problems involving thin 

shells have, therefore, motivated the development of approximate methods of 

solution based on techniques of numerical analysis. With the advent of the 

digital computer the finite element method has come to the fore as an 

approach to thin shell analysis. Satisfactory results have been obtained 

when treating thin shells, such as occur in curved aerodynamic surfaces, 

but results have not met with universal acceptance and there is an 

awareness that reliable results are not always guaranteed. Difficulties 

arise in both the shell theory to be used and the discretisation process 

for developing a finite element model. The two difficulties appear to be 

mutually exclusive of each other. On the one hand shell theories are 

characterised by: 

" including or excluding)strong membrane-bending interaction; 

" use of a shallow or deep-shell description of the middle surface 

geometry; 

" including or excluding transverse shears; 

" including or excluding large rotation and strain effects. 
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On the other hand, in finite element models attempts are made to include as 

general a formulation as possible. These concerns are compounded by 

significant costs in computing and the absence, until recently, as in 

Morley and Mould (1987), of any routine means by which to verify finite 

elements for general shells of arbitrary Gaussian curvature. 

It is evident that, as a result of the coupling between membrane and 

bending actions due to the shell curvature, the physical behaviour of a 

thin shell is quite unlike that of a flat plate, and this causes great 

perplexity over their analysis and design. For example, there are often 

large areas of the shell middle surface where membrane stresses constitute 

the only design concern and stresses may be calculated purely from 

equilibrium considerations and the membrane theory. Most shell finite 

element models attempt to provide for both membrane and bending capability 

and so are clearly overcomplicated for this to be their sole purpose. 

Their complexity derives from the fact that unless the shell is adequately 

constrained (in addition to the rigid body constraints), the displacements 

from membrane theory are not unique and are quite meaningless, at least for 

the purposes of stiffness design, despite being capable of generating 

accurate membrane stresses. Uniqueness of displacement is assured only 

when the bending actions are also taken into account. Also, knowledge of 

the performance of finite elements in flat plate problems has only limited 

use in deciding upon their suitability for use in shell problems. This is 

especially evident when it is noted that there is no assurance of lowest 

order convergence like that conferred by the well-known constant strain and 

constant curvature change criteria. J 

In the displacement formulation for thin shell finite elements it is a 

relatively straight forward matter to obtain a satisfactory representation 

of the membrane stresses. However, it is quite a formidable task to 

introduce a capability into a finite element shell model which is able to 

give a proper account of the effects of bending and of inextensional 

bending in particular. In the absence of this capability the finite 

element model is overstiff and has given rise, see Morley (1972) and 
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Stolarski and Belytschko (1982,1983), in the literature to notions like 

, sensitive solution', 'membrane locking' and benefits of 'reduced 

integration'. Each of these problems are consequences of the fact that it 

is so easy for the element fibre strains of bending to be overwhelmed by 

the strains of membrane action. Bending is also central to the continuing 

controversy over the merits of curved shell finite elements where coupling 

between membrane and bending is essentially predetermined at element level 

in comparison with flat elements where coupling occurs only after assembly 

of the model. In both cases there is also a dependency upon the nature of 

interelement connection i. e. so that it does not inhibit an otherwise 

available capability for bending. 

The ensuing complications are acceptable, and the higher computing 

costs justifiable, only when bending is taken into correct account so that 

there is versatility in responding to all the requirements of bending 

effects. Decisions based on finite element shell models really require a 

deeper insight than is presently available into the true role of bending. 

In this work a study is made of the behaviour of a very simple six 

node triangular flat finite element in relation to exact results from thin 

shell theory and which reveals considerations which are fundamental to all 

shell finite element formulations. In the absence of simple constant 

strain patch tests the objective in validation of finite element shell 

models must be to search for versatility in responding to the different 

kinds of deformation which are identified by the classical theory, namely: 

" rigid body movement where it is required to calculate displacements to 

the exclusion of membrane strain and curvature change; 

" linextensionall bending, where it is required to calculate curvature 

changes (and stress couples) and their displacements to the exclusion of 

membrane strain; 

" 'pure' membrane action, where it is required to calculate stress 

resultants and membrane strains to the exclusion of bending moments and 

curvature change; 
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- edge effect, where it is required to calculate membrane strains 

stress resultants, curvature changes, stress couples and displacements. 

The approximate nature of the classical theory is used to advantage in 

deciding upon acceptable deviation of numerical solutions from membrane 

action or from inextensibility of bending. The criteria follow from a 

fundamental result of Koiter (1959,1960) which states that " ... Love's 

strain energy expression as the sum of extensional energy and bending 

energy is a consistent first approximation of the basic assumption of plane 
f stress, and the relative error in this approximation does not exceed t/R 

or (t/L) 2 
whichever of these may be critical. In this result t is the 

thickness of the shell, R is the smallest principal radius of curvature 

and L is the smallest wavelength of deformation pattern on the middle 

surface... ". This result has seen many important consequences in classical 

theory and so cannot be ignored in finite element analysis of shells which 

aims to give numerical solutions of the classical theory. 

In Chapters 2 and 3 some of the elements of classical linear thin 

theory are discussed. The development follows that of Koiter (1959,1960, 

1961,1966,1970), Sanders (1959), Naghdi (1963,1972) and Leonard (1961), 

and as such is effected in a curvilinear coordinate system on the middle 

surface using the tools of tensor calculus. 

In the design process the engineer must make A selection from 

available shell finite elements in order to achieve an appropriate accuracy 

for a given problem. A brief review of the principal types of finite 

elements that have been proposed for solution of shell problems is given in 

Chapter 4. This is not intended to be comprehensive but is provided to 

give a flavour of the approaches that have been developed from the many 

researches in the field. The need for verifying finite element accuracy is 

becoming more widely recognised, see Morley and Morris (1978), Morris 

(1985) and MacNeal and Harder (1985), and it is clear that general 

procedures for validating shell finite elements are needed to facilitate 

the designers choice and so provide confidence in the resulting numerical 
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solutions. In order to part way meet this demand comparison solutions for 

inextensional bending and membrane actions are presented which can be used 

to investigate such capability in all types of shell finite element models. 

Also considered is the solution to the well-known problem of a cantilevered 

circular cylinder under constant end moment which is subsequently used to 

investigate the recovery of the displacements and stresses of edge effect. 

Use of these comparison solutions in Chapter 5 leads to a detailed 

examination of mechanisms in the so called transitional and membrane 

models. The transitional model derives from the bending model by removing 

the bending rigidity from each finite element in the shell model. The 

bending freedoms are then clearly identified since the finite element model 

is then able to behave as a mechanism under bending action. The membrane 

model then derives from the transitional model-by removing the midside 

rotation connectors. It is then appropriate to compare its behaviour 

against the classical membrane theory for a real shell. On examination it 

is found that the membrane model is susceptible to a number of movements 

which are pure mechanisms and which extend over the whole of the finite 

element assembly. A fundamental result follows, namely that the number of 

these mechanisms is related to the number of elements on the finite element 

model boundary. The transitional model displays these same mechanisms in 

addition to mechanisms of local rotation at the element sides which find 

their interpretation in the bending model where they accompany the 

curvature changes of inextensional bending and of edge effect. Thus, two 

very different roles are established for bending freedoms in thin shell 

finite element models. 

For the purposes of engineering design the most convincing examination 

of bending needs to be specific to the finite element bending model. It is 

essential that it be in accord with results of classical theory for the 

real shell and be consequent upon the actions of edge effect and 

inextensional bending. As in classical theory, it is exceptional for 

inextensional bending to occur other than in the presence of membrane 

strain and so this requires a definition which is in accordance with 
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Koiter's fundamental result. The bending model is examined for recovery of 

linextensionall bending action under displacement and rotation prescribed 

patch test problems. Accuracy of the finite element solution is assessed 

in the same spirit as in Koiter's development of a consistent first 

approximation theory. It is found that good recovery is obtained not only 

of the displacements but also of curvature change and of membrane strain. 

Also a satisfactory ratio of extensional to bending strain energy is 

obtained which provides a very convenient global measure of assessment, 

again in accordance with Koiter's result. 

The ability to recover the above curvature changes is indispensable 

for a satisfactory response of the bending model to local edge effect. 

Because of axisymmetry it is necessary to consider only one longitudinal 

strip of elements. Surprisingly good agreement is obtained with the 

comparison solution for stress resultants and stress couples as well as for 

displacement. With regard to the controversy over the respective merits of 

curved and flat elements, it is important to note that the total absence of 

coupling between bending and membrane action in this model evidently does 

not constitute a deficiency. The assessment of peak stresses of edge 

effect derives entirely from consideration of a single flat strip of flat 

finite elements. To conclude the investigation of bending action a matrix 

procedure is described which is intended to identify the ability of a shell 

finite element assembly in response to inextensional bending. The matrix 

procedure is an elaboration of the well-known principle whereby rigid body 

movements are revealed from eigenvalue analysis of the stiffness matrix 

without need for reference to actual comparison solutions. The last two 

sections of Chapter 5 present results of numerical experiments which 

investigate the capability of the vehicle element to represent the effects 

of membrane forces. The first of these establishes that the element is 

able to recover 'pure' membrane action in the bending model to the 

effective exclusion of curvature change, in a manner consistent with first 

approximation theory. The final section presents results of testing the 
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vehicle element in estimating the initial buckling loads of flat plates and 

cylindrically curved panels. 

It is evident from the numerical results presented in this work that 

the importance of a curved element geometry does not play as fundamental a 

role as might be expected from intuition. This is considered further in 

Chapter 6 where some of the mathematical details of convergence of the flat 

vehicle element are investigated. Here results are presented for the 

specific geometry of a circular cylinder and clamped boundary conditions. 

This work is seen as a first step toward a general analysis able to account 

for arbitrary middle surface geometry and boundary conditions and provides 

theoretic al results which support those from the numerical experiments 

considered above. 
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rLI A DTLID 1) 

TENSOR PRELIMINARIES AND NOTATION 

2.1 Introduction 

Tensor calculus is widely used in the modern treatment of the theory 

of thin shells, see, for example, Naghdi (1963,1972), Niordson (1985). 

This means of formulating the governing equations offers advantages over 

earlier theories, such as those of Golldenveizer (1961) and 

Novozhilov (1959), among which the generality and compact form are to be 

emphasised. 

The aim of this chapter is to summarise some of the ideas and selected 

results from the tensor calculus and the differential geometry of surfaces 

and to provide opportunity to introduce the notation used in the 

derivations given in the sequel. More elaborate accounts of these subjects 

can be found in, for example, FlUgge (1972), Naghdi (1963,1972), 

O'Neill (1966). 

2.2 Geometry of the middle surface 

A commonly used notion of a thin shell is of a body that can be 

described by two curved surfaces whose distance apart is small compared 

with their other dimensions. If the shell has no other boundary than these 

two surfaces then it is said to be closed or complete. If it is not 

complete then it is assumed that it is bounded by a curve on the middle 

surface and a normal section along this curve. More precisely, the 

geometry of a shell may be described in the following manner. Consider a 



simply connected surface M in three-dimensional Euclidean space, bounded 

by a curve r, and let it be determined by the parametric representation 

r=r(& cc ) (2.2.1) 

where r is the position vector from the origin of a fixed right-handed 

Cartesian coordinate system and the domain of definition of the parameters 

&0-' ((x = 1,2) is a bounded open subset S? in the &0ý-plane, with boundary 

BQ , see Fig. 2.1. It is assumed that there is a one-to-one correspondence 

between the coordinates (& 1 
1& 

2)GS? 
and the points of the surface M. 

Let a unit normal vector be erected at every point of mur and denote 

the perpendicular distance of a point on the normal from M by &3, so 

that -0 is the surface M, and let 

< it 
-2 

(2.2.2) 

where t is, in general, a function of the coordinates ý* although in 

the sequel it is taken to be constant. Consider now a closed region in 

space, the points of which are given by 

.E( 
&"', &3)= r(&x, O) +&3a3* (2.2.3) 

The three-dimensional body whose particles occupy this region is called the 

shell, the surface defined by (2.2.1) is called the middle surface and t 

is called the thickness of the shell. 

There are, of course, many ways of constructing coordinate systems on 

a surface. Therefore, in actual calculation, it is necessary to refer 

quantities to a fixed Cartesian coordinate system xi (i - 1,2,3) so that 

the coordinates xi are independent of the choice of the curvilinear 

coordinates ýi in the shell. Thus the position vector r has the 

alternate representation 



i 
E= ei (2.2.4) 

where ei are unit vectors in the positive xi directions. 

3 The covariant base vectors of the middle surface ý. 0 are defined 

by 

ot I (X I 
(2.2.5) 

where the comma preceding the subscript is used to denote partial 

differentiation with respect to the surface coordinates. It is assumed 

that the condition 

I ýjj xa 21 ý' 0 (2.2.6) 

is satisfied everywhere on the middle surface. 

The scalar product of these surface tangent vectors defines the 

symmetric covariant metric tensor or first fundamental tensor of the middle 

surface 

a,,, ý ýjc,, 20 . (2.2.7) 

The symmetric contravariant metric tensor is defined by the equations 

ax cc aa xo =0 (2.2.8) 

where &ýýc is the Kronecker symbol. The determinant associated with the 0 

metric tensor is denoted by a and is given by 

a= det(a 
ao) - (2.2.9) 
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Let ýOt and to'+dto' be the coordinates of two neighbouring points on 

the middle surface. The length of the infinitesimal line element 

connecting these points is determined by 

2 dr-dr - (ds) .a oco 
d &Ocd &0 (2.2.10) 

the right hand side of this equation is known as the first fundamental form 

of the surface. The element of surface area is then given by 

dA = ýa d&1d&2 

which, because of the relation 

1ý1 xa 21 =a, (2.2.12) 

and the assumption expressed by (2.2.6), is a strictly positive quantity 

everywhere on the middle surface. 

Associated tensors are denoted by the same kernel letter, and the 

raising and lowering of indices is performed by means of the metric tensors 

a ao and a (XO respectively. The contravariant base vectors of the middle 

surface are given by 

a aA a, \ , (2.2.13) 

and provide the following scalar products 

a cc -a0=a ap a cc -a cc (2.2.14) 

The antisymmetric surface permutation tensors C eta and vO'O are 

defined by the non-zero components 



12 21 
c= _c = 1/i(a, c 12 E 21= vfa (2.2.15) 

The unit vector normal to the middle surface is defined by means of 

the cross product of the tangent base vectors 

cc x aa ý13 ccOýl 
(2.2.16) 

so that the vector triad a 1' ý21 ý3 ' in that order, form a right-handed 

coordinate system. 

The curvature of the middle surface is characterised by the second 

fundamental form 

dr-da 3= -b d ot d0 (2.2.17) 

where the symmetric second fundamental tensor or curvature tensor is 

defined by 

etß ý 23 ' 2ce, ßý -23, ß* 2cc * (2.2.18) 

The components of the third fundamental tensor c ap are identified as the 

coefficients of the third fundamental form of the middle surface: 

da -da =C deccdZß (2.2.19) 3, cx -3, ß ccß 

so that 

c bmýb)' bXb), o (2.2.20) 

Note that the convention adopted in (2.2.17) is such that for positive 

curvature of a sphere the positive direction of the normal to the surface 

is towards its centre. 
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From the curvature tensor two important scalar quantities can be 

derived; these are the surface invariants known as the mean and Gaussian 

curvatures H and K of the middle surface 

1xb ýbX Ka (2.2.21) 

where b is the determinant of the components of the curvature tensor, 

b- det(b 
CEO) - 

(2.2.22) 

In the following discussion partial derivatives of the base vectors 

and unit normal are required. These may be expressed as linear 

combinations of themselves according to the well-known formulae of Gauss 

rxb ot X ot 
cce-x ccOýý3 -r,, a + beX (2.2.23) 

and Weingarten 

bxa- -b 
x (2.2.24) 

m-X - ocxýl 

where rX denotes the Christoffel symbol (of the second kind) of the 
ap 

middle surface. The Christoffel symbols can be expressed in the following 

manner in terms of the metric tensor 

X1 Xw 

c(o =r (a,, 
), (, + au)o, a,,,,,, )) 

(2.2.25) 

It should be noted that the Christoffel symbols are not, in general, 

components of a tensor although, as can be seen from (2.2.25), they are 

symmetric in the indices cc and 0. 

So far the discussion has focused on some of the geometric properties 

of the two-dimensional middle surface. But the shell is actually a 

three-dimensional body so that it is also proper to consider quantities 



associated with a point off the middle surface and to express these in 

terms of quantities defined on the middle surface. 

Recall that the set of normal coordinates in space is such that the 

position vector r of a point in the shell is given by (2-2-3). 

Differentiation of this expression, with respect to &0ý and ý3, gives 

the following expressions for the base vectors in space 

21 

ot = ýý -&3bXa. = ji 
x 
a. , (2.2.26) 

cc M- ot- . 
93 ý ý13 ' 

where 

0.60 3 bo (2.2.27) 
oc ot cc 

is a second order tensor, of mixed variance, relating the base vectors at 

the points r(&O', & 3) 
and r(&c', O) . The components of the metric tensor in 

space gij (i, j - 1,2,3) are given by the scalar products 

332 
gotp =9 cc. . 

9p ý 'Oto - 2& b 
OCP +c oco 

gcx3 ý -Iloc*Fý3 =0 (2.2.28) 

g33 ý -F, 3*-F, 3 ý1 

with associated contravariant components 

ik 
= 6i (2.2.29) g gkj i 

These tensors are used to raise and lower indices on space tensors. 

The vectors gi satisfy the relation, c. f. (2.2.16), 

1- a0 (2.2.30) 
-93 f ýýc(OR K 

-ý 
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where 

c 010 = Ile 015 
(2.2-31) 

and 

det(p .. (2.2.32) 0 

The derivatives of the base vectors Ii may be written in terms of 

the Christoffel symbols in space, c. f. (2.2.23) and (2.2.24), 

Kij m ij£k 'K tj m- jklli ' 

where 

1 kl ) yg (gjl, i , gli, j - 9ij'I : Lj 

(2.2.33) 

(2.2.34) 

so that 
iý is symmetric with respect to the indices i and j, as in ij 

(2.2.26). From (2.2.23), (2.2.24) and (2.2.26) it follows that the 

Christoffel symbol in space with two or three indices 3 vanish and the 

symbols with one index 3 may be expressed in terms of the second and third 

fundamental tensors of the middle surface: 

r3r cc r3r3=0 33 33 3cc (x3 

^3 33 r 
oco 

r PCX b 
ap c oto 

(2.2.35) 

cc cc cc 3 r 30 r 03 -b 0+c CEO 

It follows from (2.2.34) and (2.2.35) that the Christoffel symbols in space 

with three Greek indices reduce to the values given by (2.2.25) when 

evaluated on the middle surface, i. e. 
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.xx 
Ctß 

(z o) -r otß . 
(2.2.36) 

The element of volume dV of the shell is defined by the usual vector 

triple product 

dV ý -kx 
k*F13 d& 1d &2 d& 3= Vg d&ld ý2 d& 3 (2.2.37) 

where g is the determinant of the space metric, c. f. (2.2.9). Recalling 

(2.2.27) and (2-2.28) allows (2.2.37) to be written in the form 

dV - vla 
11 

- 2& 3H+ (& 3)2 K] d &ld &2 d &3 (2.2.38) 

where use is made of the identity 

det(gij) = det(g,,, ) -p2a (2.2.39) 

together with 

det(po) = 
fFL[l 

-2 &3H + (t3)2 K] (2.2.40) 0a 

2.3 Covariant differentiation 

In a curvilinear coordinate system the partial derivatives of a vector 

do not transform between coordinate systems as tensor quantities. However, 

there is an operation in the tensor calculus, known as covariant 

differentiation, that does preserve the tensor character. 

Covariant differentiation in space is denoted by an additional 

subscript preceded by a double vertical line. The rules for covariant 

space differentiation are given by 



TI Ik =Tk' 

ii+. i1 T ilk =Tkr IJ 

(2.3.1) 

^1 Ti Ilk = Ti k-rAT, 

.j^1.1 
T ii I Ik = T' k-r ikTlj -r JkTil' 

where T is a scalar, Ti and Ti are the contravariant and covariant 

components of a space vector, T ij are the covariant components of a 

second order space tensor and the Christoffel symbols in space are given by 

(2.2.35). The covariant derivatives of the metric tensor are zero, see 

FlOgge (1972). Moreover, in Euclidean space the order of covariant 

differentiation is immaterial. 

A space vector T at a point on the middle surface may alternatively 

be written as a linear combination of the base vectors and unit normal 

vector 

T3a3, (2.3.2) 

where Tcý and T3 constitute a contravariant space vector. On the other 

hand Tc' may be regarded as a contravariant surface vector and T3 as a 

surface invariant. Similar decompositions hold for covariant space vectors 

and also for space tensors defined on the middle surface. The rules for 

connecting the covariant spatial derivatives of space vectors and tensors 

and the covariant surface derivatives of the surface representation of 

these vectors and tensors are summarised below: 



cc 3. Mo; r3 Tcý, + ffýrý' + rc'ýT Tb x3 

33333 T, + r. ýr b ONT 9 

TT rx 3 
cy C&I 0- Wx -r- T(Ylo -b cir3 (xjJ3 

25 

(2.3.3) 

TrxT+br 3110 3,0 - 3ý'X = 310 Xý 

T Iýp Tr3- 141 T3 
OCO IIXX CA 11 

; )73 0 ox ýo - r,, 7 0 

=T OCOIX -b 073 0-b, &3p etc. 

The geometry of the middle surface is non-Euclidean, so that it is not, in 

general, possible to interchange the order of repeated covariant surface 

differentiation, although this is possible for a surface invariant. 

2.4 Geometry of the shell boundary 

The boundary conditions appropriate for the shell problem are obtained 

in the next chapter from a consideration of the principle of virtual work 

and the line integral which results through application of the divergence 

theorem. In order to put these in a suitable form, the geometry of the 

boundary curve r of the middle surface is described. 

At any point of r, see Fig. 2.2, there are three mutually 

perpendicular unit vectors v, -r, a3' where -c is a tangent vector to r 

and v is a normal vector to r perpendicular to a3. The positive 

sense of x is taken to be such that v, T, a31 in that order, will 

define a right-handed coordinate system, see Fig. 2.2. It is convenient to 

define the boundary r by -r(ýc) , where T is the arc length along r 

measured from some invariant point on the curve. The unit vector -r in 



26 

the middle surface is expressed in terms of the covariant and contravariant 

base vectors according to 

d& xxx 

- a, \ d-r 

Similarly, the unit vector v may be written 

Xýi 
x=c xv 

T 
11 ax* (2.4.2) 

The differential element of arc length dT along the boundary is related 

to the differential element d&O' of the coordinate curves by 

,r dr - ýjoc d& (x (2-4.3) 

so that 

-C cc dx=d &c' (2.4.4) 

Expressions for derivatives of quantities defined along the boundary 

follow from (2.4.4). Thus the total derivative of a scalar T with respect 

to the Gaussian coordinates is given by 

dT BT 
-= Ir cc 

cc 
(2.4.5) 

and the gradient T 
I(X 

may be resolved along the directions normal and 

tangential to the boundary curve according to 

aT BT 
(2.4.6) 

av ar 

Note is made of the divergence theorem on the middle surface for the 

conversion of surface integrals into line integrals and vice-versa. If 
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To' is a contravariant surface vector then the divergence theorem may be 

written 

is? TCL I 
(x vla d&1 d& 2= Jr Txvx d-r (2.4.7) 

2.5 Practical components 

Although the tensor calculus provides a natural and concise means by 

which to express the governing equations of a thin shell when referred to 

an arbitrary curvilinear coordinate system it does give rise to the 

following practical problem. The covariant and contravariant components of 

a tensor do not have the same kind of physical significance in a 

curvilinear coordinate system as they do in a rectangular Cartesian system. 

In fact they do not generally share common units of measurement, so they do 

not relate directly with quantities capable of physical measurement and 

special difficulty arises when the axes are oblique, as is commonly the 

case in a typical shell problem. This is at odds with the requirements of 

engineering and finite element analysis where it is required to determine 

the magnitude of quantities such as displacements, strains and material 

properties in any specified direction on the shell middle surface. 

McConnell (1931) is generally attributed the first satisfactory 

explanation of the physical components of a tensor. His approach is to 

consider a tensor field referred to an orthogonal curvilinear coordinate 

system and to define the physical components at a given point as its 

components in the rectangular Cartesian system whose axes are parallel to 

the curvilinear coordinate axes at that point. This definition is adequate 

so long as the tensor components are defined in an orthogonal coordinate 

system, however, as mentioned above it is generally desirable in shell 

problems to have quantities capable of direct physical measurement in an 

oblique coordinate system. The required extension of McConnell's 
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definition can be found in the work of Truesdell (1953) where 

transformation formulae are given for the left and right physical 

components of tensor fields referred to an oblique curvilinear coordinate 

system. 

The following considers a different approach developed by 

Morley (1987) to meet present day requirements in engineering and finite 

element analysis whereby physically measureable quantities are defined 

which have orthogonal components orientated as required with respect to the 

tensor coordinates whether these are orthogonal or oblique - these are 

called practical components. 

Recall from (2-2.3) that the position vector r of a point on the 

middle surface is expressed as a function of the curvilinear coordinates 

&0' and is used to define the base vectors a cc 
', see (2.2.5). Now define 

unit vectors t 
CX 

tangent to the coordinate curves &0' by the relations 

where 

a (no sum) a- Ot Cc 

acc (2.5.2) 

so that these vectors satisfy 

-11*11 ý 12'12 ý 1, t 1*12 ý Cos 0, (2.5.3) 

where 0 is the angle included between the coordinate curves as shown in 

Fig. 2.3. From this it follows that the components of the metric tensor 

are given by 

a11 = (a1)2 

11 
a 22 /a 

a 12 ý" a 21 ýa1a2 Cos 0, 

a 
12 

=a 
21 

=-a 12 /a 9 

2 
a (a 22 2) 

(2.5.4) 
22 /a 
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where 

a= det (a 
CXO 

(a 1a2 sin 0) 2 

(2.5.5) 

1/a = det (a'xo) 

Let t,,, denote an orthogonal set of unit vectorsp see Fig. 2.3, 

where 

.! Oct *. 
lot ý&I of ice = tccl (2.5.6) 

oc 

and 

11, -. 11 = COS X, t 11*12 = Cos (o 'ý X) ' 

12"ll = sin X, 
-121*12 ýs in (P + X) .1 

(2.5.7) 

It is possible to resolve the (orthogonal) vectors tcxr along the 

directions of the base vectors a Ot according to 

ja, =h 
(X 

'ý! a 9 (2.5.8) 
(X 

where 

sin (o + X) 2 sin X 
11 a1 sin 

h It . a2 sin 

(2.5.9) 
I Cos (a + X) 2 Cos X 
21 a1 sin 0 h 2t- a2 sin 

Equation (2.5.8) may be inverted to give 

ho"t (2.5.10) 
a (x - cc 
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vhere 

ha cos X, h 21 
-a sin X 

(2.5.11) 

h 11 
=a cos (0 + >, ), h 21 

=a sin (P + X) . 2222 

It is now shown, by examples, that the h-symbols have the property that 

products with any surface vector or tensor in any curvilinear coordinate 

system ko' give the orientated physical components referred to orthogonal 

coordinates. To this end the physical properties of Wý', and 0" are M cc 
summarised by 

c(l 00 cc t cc cc, hMh 
(X ,=& cc 

h 
(X 

ha, =60,, 

h ot 
th 

0" = &*' 
ot (X cc (x, 

h oc h Oct 
ot ocr 0 

(x I cxo 0 h 
cc a= al P 

cc 0 of hcxl hp, a oco c(f f 

h eel h cct 
(X a, 

vla =h1, h 21 h 1, h 21 
1221 

ap c loph 
cer Of 

p cc cx 0 

cz 
tßt 

etß (X 1 h 
(X 

hßa8ßt9 

C(A (X a 
h 

eel 
h 

ot? 

h1 Ih 
2, 

-h1 Ih 
21 

1221 

1 ot 
f of cc 0 

2 'oto c Whor I 

(2.5.12) 

where c" , etc. are the permutation tensors, of the oblique and 

orthogonal coordinate systems. (Note that in these equations the summation 

convention for repeated indices with primes has been extended to any 

position -) 
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Consider the surface vector T given by 

x3x3 T ax +Ta3. T),! l +T 3a (2-5-13) 

Substitution into these relations from (2.5.10) gives 

h cc? T cc tI+T3a=h cx 
IT tI+T3 (2.5.14) 

cc -cc -3 cc Ot. -(X 3ý 

and, remembering that the vectors t 11' 121 and a3-ý! 
3 

are orthogonal 

to each other and of unit magnitude, it follows that the quantities 

OL cc I cc cc T 
oc 

hc(, Tcx =h cc 
T, T (2.5.15) 

are the components of T measured in the directions of the vectors t 
Oct 

which can be orientated as required with respect to the coordinates &a by 

specifying the angle X. These are called the practical components of the 

3 
surface vector T. By definition it follows that T. T3 is identical 

with its practical component. 

In classical physics only scalars and vectors have physical 

significance and tensor components are determined by equations relating 

them to measured vector components and scalars. This observation underlies 

the definition of practical components for tensors of higher order. By way 

of illustration consider the following tensor equation relating vector 

components Rcc and SaI 

T c(o s0 (2.5-16) 

where Toto are identified as the contravariant components of a second 

order tensor. The practical components of R(x and S0 are defined as in 

(2.5.15) giving 

cc (X h(xt R 
cci 7hßsß19 
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where R,,, and S., are referred to the orthogonal directions of the 

vectors t 
(x ,. 

Substituting from (2.5.17) into (2.5.16) and making use of 

the relations listed in (2.5.12) gives 

Rh Oct h or T (XOS 
cc ot 0 

which is the defining relation for the practical components 

x, ß' otß T, ßp ý hct hT 
c (X xß 

(2.5.18) 

(2.5.19) 

Making use of the properties of the h-symbols it follows that 

T-h cc ho, T f c(l of c(l a oco 
h ocr hTa, p cx cx 

mc h cc 
Ih 

of Vp 
cc 0 oc 

=. h cct hßf T (X 
(y ß-ß, 

h (XI ho'Tao 
cc 0 

at 0 Vo -h hg, T 
M cc Otto? 

T oc h oc hT 
.0 cc ot 

oco cc a h 
Oct 

hp, T 
ccr of 

(2.5.20) 

where Vx'O' 
= T,,,,, etc. Practical components of general tensors of all 

orders follow from similar considerations. 

In applications it will be necessary to determine values of the 

trigonometric functions of the angle X specific to given directions on 

the middle surface. To this end 1, et the coordinate & 21 be aligned along 

a curve on the middle surface whose points are specified by the position 

vector 

r(& 
21 )- (2.5.21) 
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The element of arc along this curve is 

d-c -a 21 dý 21 

and the unit tangent vector is given by 

(2.5.22) 

1=I, 
a (2.5.23) 121 -a 21 t'21 a 21 

ýoc'2 2 

where 

(a 21) 
2. (& 1 

21 a 1) 
2 

+2& 
1 

21& 
2 

21 aIa2 Cos 0+ (& 2 
21 a 2) 

2. (2.5.24) 

The required trigonometric relations appropriate to a point & 21 
on the 

curve follows from the scalar products, see (2.5.7), 

sin Xt1 ýl a+1ý2a cos 
-21*11 a 2f 21 1 a,, 21 2 

(2.5.25) 

sin + X) ta cos +2a 21 a 2f 21 1 a,, 21 2 

and 

Cos 
1 (sin + X) sin p cos X) 

sin 
(2.5.26) 

cos + X) cos 0 cos X sin sin X 

The unit vector tangent to the middle surface and orthogonal to 121 is 

given by 

11212 
a 21 sin 01(& 21 aI cos 0+& 21 a2 )t 1 21 a1+& 21 a2 cos P)t2l 

(2.5.27) 
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In applications such as finite element analysis it is frequently 

required to calculate principal values of symmetric tensors e. g. the 

principal curvatures and principal stresses. The use of the relationships 

satisfied by the h-symbols provides a concise expression for these values. 

Principal values of a symmetric tensor T 
CC5 occur, see Malvern (1969), 

when 

Th ot 
lho, T =0 (2.5.28) 1121 -12 ctO 

Substituting from (2.5.9) and making use of (2.5.4) and (2.5.5) shows that 

this condition is satisfied when the angle X is such that 

tan 2X - 
(2T 11 v(a -T 11 a 22 sin 20) 

(2.5.29) (T 11 a 22 cos 20 - 2T 12 a 12 +T 22 a 11Y 
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ruAPTPP 11 

ELEMENTS OF FIRST APPROXIMATION THIN SHELL THEORY 

3.1 Introduction 

Shell theory is based on a reduction of the equations of elasticity 

from three to two dimensions. In this chapter some of the elements of the 

linear theory of thin shells are briefly recalled, see Koiter (1959,1960, 

1961,1966,1970), Sanders (1959), Naghdi (1963,1972), Leonard (1961). 

The intention is to indicate the nature and complexity of the shell 

problem. 

To begin, the deformation of the middle surface is considered. The 

strain measures used to describe a change in configuration are introduced 

and the compatibility equations relating these quantities are given. 

Attention is then directed to the statics of the shell. From a 

three-dimensional state of stress it is possible to derive statically 

equivalent forces and moments, acting at the middle surface, and to deduce 

two-dimensional equations of equilibrium, expressed in terms of these 

integrated quantities. This is followed by a derivation of the boundary 

conditions appropriate to the two-dimensional equations of equilibrium. 

The connection between the kinematics and statics of the middle 

surface is considered in the section on Love's strain energy expression. 

Here details are given of Koiter's (1959,1960) fundamental result 

concerning the consistency of first approximation shell theories founded on 

the basic assumption of plane stress. It is noted that the inherent errors 

of this approximate theory allow for a certain degree of freedom in the 

definition of the curvature change tensor and also have ramifications in 

the assessment of numerical solutions to the shell problem. 
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The remaining sections briefly discuss the static-geometric analogy 

and the simplified membrane and shallow shell theories. 

3.2 Deformation of the middle surface 

Consider a point in the shell with Gaussian coordinates &i in the 

undeformed state and let u denote the displacement vector which carries 

the a material point in the shell to a new position in space in a deformed 

configuration of the shell. The new position is given by 

r+ (3.2.1) 

It is found that the deformation of the shell can be adequately described 

by two tensor fields which characterise the stretching and bending of 

differential line elements. 

After the change of position defined by (3.2.1) the distance da 

between two neighbouring points of the shell in the initial configuration 

changes to d-O in the deformed configuration, where, c. f. (2.2.10), 

g ij dd &j (3.2.2) 

and g-ij is the metric tensor in space of the deformed coordinate system. 

The quantity 

(d cT) 
2_ (d a) 

2= (gij - gij) d& 1d Eý (3.2.3) 

is a measure of the change in distance between two neighbouring points in 

the shell during deformation. The strain tensor yij is defined by 

i (3.2.4) yij = 2(gij - 9ij) - 
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The covariant components of the strain tensor may be expressed in 

terms of the displacement vector as follows. The deformed base vectorq are 

defined as the partial derivatives of (3.2.1) with respect to the Gaussian 

coordinates: 

. 
Ei = E, i=Z, i (3.2.5) 

so that 

9ij = Ri * -9j = 9ij , 
. 
9i * 1% j, 9, j* 1% i (3.2-6) 

and substituting into (3.2.3) gives 

yij - 
1(gi (3.2.7) 2 

Let the displacement vector be decomposed into covariant components 

according to 

Uk, ý 
k1 (3.2.8) 

and, using the rules for covariant space differentiation, allows the 

derivatives in (3.2.7) to be written 

2, i=kI ji-ýl 
k (3.2.9) 

so that 

yij ý 
1(u 

+u 
kl 

u (3.2.10) 2 illi jI ii +9kI liul I li 

Now choose as a reference coordinate system that given by (2.2.26), so 

that the components of the space metric tensor are given by (2.2.28). The 

basic kinematical assumption of classical Kirchhoff-Love theory is that the 
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normals to the undeformed middle surface are mapped to normals of the 

deformed middle surface without any change in length. This assumption 

requires the components of, the spatial metric tensor to be specified by 

33 2- 
goto ýa mo - 2& 5 

ap + (ý )c 
oco 2 9oc3 = 0, g33 =1, 

where a., and are the first, second and third fundamental 

forms of the deformed middle surface. The base veclors a on the 
cc 

deformed middle surface are calculated from (3.2.5) by setting &3 =0 

i. 

-oc M 
(3.2.12) 

The components of 5 
MP and -c 

up are determined by relations similar to 

(2.2.18) and (2.2.20). It follows that the strain tensor of (3.2.3) may 

therefore be written 

aoo 2 &3 (boto -b+ (ý3)2( c-c (3.2.13) 2 oto cep oco 

so that, neglecting terms in (& 3)2, the geometry of the deformed shell is 

specified to first order by the first and second fundamental tensors of the 

middle surface. This prompts the following choice for the middle surface 

strain measures: 

01- 
ycxo - ý(acxo - a,,, ) Pc(o (XO -b ao 

(3.2.14) 

vhere the notation 0 indicates evaluation on the middle surface. 

Clearly the explicit equations for the tensors of membrane strain and 

curvature change in terms of the displacement components are very 

complicated. A fundamental assumption of a linear or small strain theory 

of elasticity is that displacement gradients are small. This allows the 
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expression for the strain tensor in surfaces parallel to the middle surface 

to be simplified by neglecting the quadratic terms, so that 

l(U +u 
cxß 2 cy 1 Iß ßI Im, - (3.2.15) 

On the middle surface the spatial covariant derivatives may be expressed in 

terms of surface derivatives by using (2.3.3), so that 

1(u 
+ U010c) -b OCO 2a 10 oce3 

(3.2.16) 

The rotation about the normal to the middle surface is described by the 

antisymmetric tensor 

01)= 
l(U 

-u)= 
l(U ), (3.2.17) 

ccß -- i(uß 11 cc - uce 11 ß2 ßl. iß 2 cx, ß7 u ß, x 

where again use is made of the relations given in (2.3.3). 

The rotation of the normal at the middle surface is defined by the 

surface vector ý 
OC , given by 

1 e 
(X -w cc3 -i 

(U3 11 (x -u al 13) 9 (3.2.18) 

but the component of transverse shear is required to vanish in Kirchhoff 

theory so that 

=I (u (3.2.19) YO f al 13 + U3 1 lot) ý0' 

and using this to substitute into (3.2.18) gives 

ýcc =u 311 cc . 
(3.2.20) 

Use of the rules of equation (2.3.3) relating covariant spatial and surface 

differentiation gives 
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f=Ubxu+ b'ýi (3.2.21) 
cc 31cc + cc Xý U3, a oc x* 

The rotation about the middle surface normal is given by 

e=h (X 
Ihßfw (3.2.22) 12 ccß ' 

The expression for the curvature change tensor p Oto 
in terms of the 

displacement components is, see Koiter (1966), Niordson (1985), 

Pap =U31 ocA - coce3 +b auxIa +b ex I cc +b alex 
(3.2.23) 

It is noted that any independent pair of linear combinations of the 

tensors (3.2.16) and (3.2.23) constitute an equivalent description of the 

middle surface. In particular, the following modified tensor of curvature 

change 

1xx 
p- (b YXO +b (3.2.24) 

mo mo 2 cc oyxoc 

has advantages in general discussions on shell theory, see Budiansky and 

Sanders (1963). 

3.3 Compatibility equations 

The local deformation of a shell at a point on the middle surface is 

completely described by six numbers, three membrane strains and three 

bending strains. Considered as functions of the coordinates ýc' they 

cannot be independent since they determine a cto and 5 
Oto which are not 

independent. There must therefore be relations connecting the strain 

measures. These are the equations of compatibility. In tensor form these 

may be written, see Koiter (1961,1966), 
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c otx COP y (YO I)4J +b OCON1 
0 

(3 3.1) 

pa + PX4 + ppywX] I+Q ywX IV + yW IX-41 

where here, and in the sequel, the notation I is dropped and it is 

understood that the membrane strain tensor is evaluated at the middle 

surface. 

3.4 Equilibrium equations 

In a shell the system of stresses is described by a stress resultant 

tensor N ap corresponding to tension and shear stresses, a stress couple 

tensor Mc'O corresponding to bending and twisting moments and a vector 

Q(x of transverse shear forces. As in plates all these forces and moments 

participate in establishing the equilibrium of the shell but, because of 

its curvature, they interact with each other in a much more complicated 

way. 

All these resultant stress quantities are related to the 

three-dimensional stresses throughout the shell as follows. Consider the 

section through the shell shown in Fig. 3.1. The subelement of height 

dý3 has area 

dA = dr x ýE3 dO = dA x RX (3.4.1) 

where it is noted that the line element vector defining the base of this 

subelement is given by 

x dr = EXd& (3.4.2) 

and 



42 

dA 
cc = Zcc)ý &Xd 0. (3.4.3) 

Across this subelement a force dF is transmitted which can be written in 

terms of the stress tensor according to 

dF - dF x+ dF 3 
Z 

l\ 
4 

(3.4.4) 

= Uax dAccg>, +a oc3 dA 
ccE3 * 

The first term represents a force in the tangent plane parallel to the 

middle surface, while the second represents a force normal to the shell. 

These stresses are now used to derive statically equivalent forces and 

moments acting at the middle surface and then to deduce the two-dimensional 

equations of equilibrium expressed in terms of these integrated quantities. 

Integrating across the shell thickness gives the resultant 

/2 
dF 3a3f /2 

a cx3 dA 
cc a3d&xf 

/2 
a oc3 iotXd &3 (3.4.5) 

h/2 -h/2 -h/2 

and using (2.2.31) to express the permutation tensor C,, X in terms of the 

permutation tensor c ax on the middle surface gives 

/2 3x /2 
oc3 3 

h/2 
dF 

-ý 3a3 d& c ccX 

fh/2 
ap d& . (3.4.6) 

The vertical force may now be written 

dF 3 
E; aXd 

&x0 cc (3.4.7) 
ýh/2 

--3 

where 

f 12 
aoij d ý3 (3.4.8) 

-h/2 
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is the transverse shear force acting on the shell. 

Next consider the first term of (3.4.4). This term contains a factor 

which dependst týrough (2.2.26), on ý3, so that this equation may be 

used to express the force in the reference frame defined by ýý(x : 

/2 xx 
ý- 

a)ý 114) ý3 . dF 
f/2 

crmxi ded &3, g E: c4ld 
ea 

4) 

f/2 
cr (3.4.9) 

h/2 -h/2 
041 

-h/2 

Define the stress resultant tensor by 

cco 
/2 0 fh/2 

aoý jiXd &3 (3.4.10) 

so that 

/2 x rh/2 
dF £X = c��, dýýic4'a 

11 . 

The force dF has a moment arm &3 a3 with respect to the centre of 

the section and hence a moment 

dm =&3a3x dF =&3 (a ax a3xy,, \ +a cc3 a3x 
. 
93 )dAce . (3.4.12) 

Since a3ý 
-93 

the second term on the right hand side is zero and the 

total moment of forces dF in the section element is therefore 

/2 f12 3 
aa a xý! ýwd Z3 

th/2 
dM = 

-h/2 

>' 
3x pe eccco pd 

= E: ca d& xf /2 ou ocw 11(04, lj 
CA 09= 

-h/2 

Define the stress couple tensor by 

(3.4.13) 

c(o = 
ý12 

ý3 aceX 
03 m 

h/2 
jjýy d& (3.4.14) 

So that 
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/2 
dM -c ax c ß), d ýýSoß a4 . 

th/2 

- 

The stress resultants Nap, M MP and Q* must satisfy certain 

differential equations which express the equilibrium of the shell element. 

These equations are obtained from the three-dimensional equations of 

equilibrium, see Green and Zerna (1954), 

a 13 
1 ii 0, (3.4.16) 

0 (3.4.17) ijk aý 

where Fi are the components of volume forces distributed throughout the 

shell. The idea is to integrate these equations after multiplying through 

by a suitable factor so that the resulting integrals coincide with those 

used to define the membrane stress resultant, moment resultant and 

transverse shear force. 

The equations of equilibrium in terms of the above stress resultants, 

together with the resultants of the externally applied forces fi and 

moments mo' , are, see Naghdi (1963), 

xot (X bXýO X+f0 (3.4.18) 

b�, 
qjNll 

x+f30 (3.4.19) 

Xoc a ot m Ix -Q+m=0 (3.4.20) 

and from (3.4.17) 

ace 0 Xcc 
býi )=0 (3.4.21) 
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which expresses the equilibrium condition of moments about the normal of 

the middle surface. 

The analysis of Section 3.1 shows that six measures of strain are 

sufficient to describe the deformation of the middle surface. However, it 

is suggested by (3.4.18), (3.4.19) and (3.4.20) that ten stress measures 

are involved since NO'P and MO'P are not, in general, symmetric. These 

equations may be simplified by defining the following modified stress 

resultants 

1(mmo 
+ mox), N oto =N mo + VN Xot (3.4.22) 2x 

which are symmetric, the symmetry of Nc'P follows from (3.4.21), and using 

(3.2.20) to eliminate the transverse shears the remaining equations of 

equilibrium now read 

- CCX (x -lix -ßx b-2b "-'M 
X+ ret -0, 

(3.4.25) 

b- >'p b >i wlj ý xp 
+r30 b Xp 0 11 

(X cc (x X33x 
vhere r=f-b xm ,r=f+m 

It is later required to introduce a further definition for a modified 

stress resultant given by 

. ccß "ß -xß ß- Xce) +b 'm (3.4.24) 

^ c(p The equations of equilibrium written in terms of N and M(xo are 

(X 
= 

ox 90) 
+ ro' 0 (bNX bX Nb XN 

N, 
X 

(3.4.25) 

c(o 3 
mb+r0 I ap cx e 

It is noted that since the above derivation of the equilibrium equations 
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starts from the three-dimensional equations for a volume element of a shell 

they do not involve any approximations. 

3.5 Boundary conditions 

By means of a direct calculation, see Niordson (1985), it is possible 

to show that the familiar three-dimensional internal work expression 

1a ij 
y dV 21 ij (3.5.1) 

reduces exactly to the following integral over the shell middle surface 

fs? (N oco Yoco +M OCO p cco 
) va dt1dt2 (3.5.2) 

when the deformations are constrained by the Kirchhoff assumptions. This 

result is independent of the stress distribution throughout the shell. 

The principal of virtual work may be written 

+- ap -12 (ýOOsy 
ap 

M Sp 
ap 

) iýa d& d& 

-f fisu 
i Va d& Id &2 

- 
fr 

t 

(Rýý6u 
cx + 6su 

3+ 
Rlllsý 

cc 
) d-r 

= 

(3.5.3) 

vhere the overbar notation indicates a prescribed value of applied traction 

in the domain S? and on the part of the boundary curve rt vhere 

tractions are imposed. Substituting into (3.5.3) using (3.2.16) and 

(3.2.23) and applying the divergence theorem gives a surface integral, from 
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which the equilibrium equations of (3.4.25) are recovered, and a contour 

integral along the edge of the middle surface 

poc ogY)V 6u 
- Pot ý om Jr (( N- + 2b 

y0 cc +Mv0 &u 3, cc - 10 v cc 
Su 3) d-r 

(3-5.4) 

-fr 
ýN*Su 

cc + 5su 
3+ (R 

vva+R 'r -Y a c(p Sý 
oc 
) d-c 

where 2V and R 
IT are applied edge bending and twisting moments, and 

V Oc ,x cc are defined by (2.4.1) and (2.4.2). Using (2.4.6) the partial 

derivatives of Su 3 may be written 

2 6U3 ! &U3 
&U 3, m=V ot +T cc _1 (3-5-5) 

2v 2-C - 

so that a further integration by parts reduces the first term of (3-5.4) to 

- Oce 
v 

86U3 fr (( N- O(X 
+ 2bogy)v 6u +Mv y0 (X 0a av 

- P(X a0 
- ov (x + -60ý v cc 

&U 3) d-r (3.5.6) 
8-r 

- 
31+ 

The boundary conditions follow by considering arbitrary Yariations of 

6ui and ý"u 3)1 Bv along the edge curve: 

- OCC - ox X0 cc 
-c )= + 2b )v +abv+ 

C(O (3.5.7) 
ot 0 (X 0 IV I 

cc 

and at a corner point 



cc 131+ (3.5.8) 

where To, KV, Mv, M. are the effective membrane force, Kirchhoff shear 

force and normal and twisting bending moments at the middle surface 

boundary. 

The equilibrium equations together with the above boundary conditions 

provide the means to formulate a well-posed mathematical problem. In 

principle there are two different lines that could be followed. 

on the one hand, the displacements ui can be selected as unknowns. 

The membrane strains and curvature changes may be expressed in terms of u. 

Next the constitutive equations may be used to give stress and moment 

resultants in terms of ui and finally the equations of equilibrium yield 

three partial differential equations for the three unknowns. The equations 

are of second order in u Ot and of fourth order in u3* There are 

precisely four boundary conditions of either kinematic or static type. 

From (3.5.4) and (3.5.7) it is possible to prescribe 

either Tcc or u 

and either KV or u3 (3.5.9) 

and either Mv or 
au3 

av 

at the boundary. 

The second way to formulate a well-posed problem is to take the six 

strain measures as unknowns. Use of the constitutive relations and 

equilibrium equations gives partial differential equations for three of the 

unknowns. The equations of compatibility give another three differential 

equations enabling all six strain measures to be determined. 
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3.6 Love's strain energy expression 

In an elastic shell the work done by the applied loads is stored in 

the shell as an internal energy, usually called the elastic strain energy. 

For the development of a first approximation shell theory a simple 

expression for the strain energy may be obtained on the basis of the 

following assumptions introduced by Koiter (1959,1960): 

" the geometry of the shell is such that the ratio of its thickness to the 

smallest principal radius of curvature is negligible compared with unity 

i. e. t/R << I; 

" the strains are small everywhere in the shell; 

" the state of stress is approximately plane so that the effect of 

transverse normal stress may be neglected. 

Further, it is assumed that the material of the shell is homogeneous and 

isotropic so that the strain energy per unit volume of the undeformed body 

may be represented by a quadratic function of the strain components 

according to Hooke's law. 

The strain energy density of the undeformed shell may be written, see 

Green and Zerna (1954), 

I ijkl 1 ij y (3.6.1) P Yij'ýkl To ij 

and, making use of the assumption of plane stress, this may be simplified 

to 

y a5y, \ll 
(3.6.2) 

where E ijkl is the contravariant tensor of elastic moduli, defined by 
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E ijkl E 

2[vg 
ij 

g 
kl 

+12v (g ik 
9 

ji 
+9 

ii 
9 

ik (3.6-3) 
V 

where g'j is the contravariant metric tensor in space, E is Young's 

modulus, and v is Poisson's ratio. The relationship between the stresses 

Cr 
ij 

and the corresponding strains is 

CF 
c(O 

= Ecfo>"lYxp fa 
a3 = CF 

3 cc = ct3 
3=0. (3.6.4) 

For the approximation of plane stress the transverse shear strains are 

zero, consistent with the Kirchhoff theory, so that the transverse normal 

strains may be written in terms of the strain in surfaces parallel to the 

middle surface according to 

zx (3.6.5) Y33 YX 

The strain energy per unit area of the undeformed middle surface is 

obtained by multiplying (3.6.2) by the differential element of volume, see 

(2.2.38), and then integrating through the thickness of the shell 

01-2&3H+ (& 3)2 KI d& 3 (3-6.6) 
h/2 

Assuming the strain energy density t to be a smooth function of the 

Gaussian coordinates provides for the Taylor series expansion with respect 

to the coordinate &3 

3 §(&""0) +&3 §113(&"0) + (3.6.7) 

Recall that the shell is assumed to be composed of homogeneous material so 

that the covariant derivatives of the tensor of elastic moduli with respect 

to &3 are all zero, this allows the above expression to be written 
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jomoý41 0 3' 30 P+& (3.6.8) Pao 
+& yocO 113 + 

[Yý41 
yXv 113 + 

Now substitute into (3.6.6) integrate with respect to &3 and retaining 

only the first two terms gives 

t0 C(04 *a3, OCOY u yceoy4 + 
ý; E (3.6.9) 24 ocA 113 YL 113 ' 

vhich is Love's approximate strain energy expression. The first term 

represents the extensional strain energy UY due to the middle surface 
0 

strains y,,, , and the second term represents the bending strain energy UK 

due to the change of curvature of the middle surface. 
Let Y denote the absolute value of the largest extension of the 

middle surface, K the largest physical change of curvature and L the 

smallest 'wavelength of the deformation pattern' on the middle surface so 

that 

dyl 
m ()(Uy)p 

jýKI 
(3.6.10) d cr d cy 

where do is the element of arc on the middle surface. Koiter (1959, 

1960) shows that the relative error in neglecting the higher order terms of 

(3.6.8) does not exceed the order of magnitude 

t 

In other words, Love's strain energy expression is justified as a 

consistent first approximation on the basic assumption of plane stress, and 

has an accuracy limited by the order of magnitude estimates given in 

(3.6.11). 

Koiter's (1970) arguments show further that the transverse shear 

stresses obtained from equilibrium conditions are in general of order t/L 

times the bending stresses and their omission from the strain energy 
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2 implies a relative error of order (t/L) The transverse normal stress 

is, in general, of order t/R or (t/L)2 times the direct or bending 

stresses so omissiori of its contribution in the strain energy involves 

relative errors of the same order of magnitude. 

This fundamental result has many important consequences in classical 

theory. Of importance for practical applications of the theory is the fact 

that it is possible to add to the expressions for the physical components 

of the changes of curvature terms of the type y/R multiplied by a 

non-dimensional factor of order unity. This allows for possible 

simplification of the tensor of change of curvature by addition of suitable 

terms of this type. In particular, mention is made of one more equivalent 

definition for the curvature change tensor, see Koiter (1966), 

b (3.6.12) 
kaý 

5ocO - aP * 

3.7 The static-geometric analogy 

The literature on the linear theory of shells refers to an interesting 

and useful analogy between the homogeneous equilibrium equations in terms 

of stress and moment resultants and the compatibility conditions in terms 

of membrane and bending strains. This is the static-geometric analogy of 

Golldenveizer (1961) and Lurie (1961). Its importance lies in the fact 

that it leads in a natural way to the introduction of stress-functions. 

The exact correspondence between the static and kinematic equations 

is, however, exhibited only when a special choice is made from among the 

alternative but equivalent forms of the stress resultant tensor and 

curvature change tensor. The detailed study of Budiansky and 

Sanders (1961) shows that a static-geometric analogy can be constructed in 

- OCO terms of the tensors 00 
,MI Yap and P C(p 
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It is convenient to define the new quantities 

- 0(5 
=-c (XXCNY), 

Il 
- ot5 c otx EN (3.7.1) p Pxv - 

Inserting these definitions into the equations of compatibility, see 

(3.3.1), gives, after some algebra, 

x0c cc^ Xv 
+1 oc^ >41 V C41 b 

11 y y(b 11 y-b li y0 (3.7.2) 

^ mo ^ OCO yI oco 
+b c(op .0 (3.7.3) 

These are precisely of the same form as the equations of equilibrium 
i 

given in (3.4.25) for the homogeneous case r-0 

The static-geometric analogy has the following useful consequence. 

Since the equations of compatibility are identically satisfied whenever the 

strain tensor y ap and curvature change tensor p (XO are derived from a 

set of arbitrarily selected displacements u a. and u3' the stress 

resultant tensor and stress couple resultant tensor must be derivable from 

a vector and a scalar function so that the homogeneous equations of 

equilibrium are satisfied. 

The explicit expressions for y ap and p (Xo 
in terms of the middle 

surface displacements are given by (3.2.16) and (3.2.24) so that 

. mX U3 
1 

c pp +Z b)o, (3u,, u. 

(3.7.4) 

bo(3u )+ A), 
p 1 01 4 lp 11 1 co - UO) Ili 

. CXX I (U +ubu3 (3.7.5) 2 x1v 11 Ix xv, 

Now let X 
(X 

(&0') be an arbitrary vector function and X3 be an arbitrary 

scalar function. If the stress resultant tensor and couple resultant 

tensor are defined by 
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.c OCX Cap + tbX(3XCOjp - )ý10)) X3 1 >4j 

(3.7.6) 
Iw ýbp (3)ý 1(4 - Xw I J) + X(%Xp 1(41 

- otx oil 1 Tx bx1 (3.7.7) 2 Xlp + XpIX XU 3 

then these static measures will satisfy the equations of equilibrium 

irrespective of the choice of X 
(X and X3 ' 

The solution of a real shell problem in terms of stress functions 

proceeds by using (3.7.6) and (3.7.7) to find the stress resultant tensor 

and stress couple resultant. Then the constitutive relations and the 

compatibility conditions are used to obtain a system of three partial 

differential equations for the three unknown functions X 
(X and X3. In 

finite element analysis, however, it is necessary to know the displacements 

and rotations of the middle surface so that formidable difficulties are 

encountered with the present means of solution. It is quite impracticable, 

except for surfaces of simple geometry, to integrate strain-displacement 

relations when the strains are obtained from stress functions. 

3.8 The membrane state 

For shells the membrane state is an approximation that has been found 

useful in many cases of practical interest. Putting MCýý E0 in (3.4.25) 

gives the following system, 

N+f 

-b ae +f3 
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which consists of three equations for the three unknown components N(YO 

which are consequently statically determined. 

In cases of practical interest the justification of the use of these 

equations can only be established a posteriori by the following procedure: 

(1) N'70 are determined from (3.8.1). 

(2) The strain tensor y is found from Hooke's law. 

(3) The displacements u 3. are found by integrating (3.2.16). 

(4) p ap 
is determined from (3.2.24) and W40 from Hooke's law. 

(5) The terms neglected from the equilibrium equations are calculated and 

their contribution to the order of magnitude estimates given by 

(3.6.11). 

3.9 Shallow shell theory 

In some applications it is possible to define a plane which is nearly 

parallel to the middle surface. If this is used as a reference plane and 

two components of the position vector are chosen to be parallel to the 

plane and the third perpendicular, then the height of the middle surface 

above the plane is given by 

x3=x3 (X 1x2)- (3.9.1) 

The shallow shell theory makes two simplifying hypotheses. The first 

is a geometric assumption, 

CC 
<< 1, (3-9.2) 

i. e. the surface slopes with respect to the reference plane are negligible. 

The second is a kinematic approximation which assumes that the 

in-plane (; isplacements are small in relation to the normal component. 

Thus, the rotations become 
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ýot =u3, cc' 
(3-9-3) 

and the membrane strain and curvature change tensors are given by 

(u +u)-x3u1 (3.9.4) 
ceß ý7 (X, ß ß, cc 9 ecß 3 

poto =U3, cep * 
(3-9.5) 
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CHAPTER 4 

PATCH TEST SOLUTIONS FOR SHELL ELEMENTS 

4.1 Introduction 

Confidence in the use of the finite element method in shell problems 

should rest upon satisfaction of certain sufficiency tests which are 

derived as solutions to the classical theory. 
-However, 

a major shortcoming 

which has impaired the development of shell elements is that they are not 

always tested against a set of problems which fully examine the 

capabilities required in a really good shell element. Study of the 

governing equations considered in Chapter 3 shows that there are four 

characteristic solution types corresponding to rigid body, inextensional 

bending, membrane and edge effects. Thus, in patch test evaluation of a 

candidate shell element the philosophy centres on the requirement that each 

of these four effects must be properly represented and able to be recovered 

by the finite element model to within the accuracy afforded by first 

approximation theory. Inadequacies of a candidate shell element in this 

spectrum of attributes must be seen as a severe handicap to its use in 

solving practical shell problems. 

It is widely accepted that confidence is secure in the validation of 

elements for flat plate problems but it is hardly the case with respect to 

curved shells. A particular handicap is that the well-known patch tests 

requiring recovery of rigid body modes and a set of three linearly 

independent constant membrane strains and/or three linearly independent 

constant curvature changes, see Zienkiewicz (1973), are no longer 

available. Inst2ad resort has to be made to membrane strain and curvature 

changes which are only approximately constant to within the accuracy 
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afforded by shell theory, see Morley (1972) and Morley and Morris (1978). 

To compound this difficulty a problem exists when testing and using shell 

elements with respecýt to the widely differing energy levels of membrane and 

bending. Because shells are much stiffer in membrane action than in 

bending, the stiffness matrix will have a high condition number which may 

lead to numerical problems of ill-conditioning. Rigid body modes 

contribute zero strain energy while the membrane/bending energies differ by 
2 

a large factor of the order (R/t) Of course, the singularities due to 

the zero energy rigid body movements may be removed by prescribing the 

rigid body hold but there is no corresponding control available to deal 

with the low energy contribution from bending actions. Note that the 

static-geometric analogy shows that a similar ill-conditioning of the 

stiffness matrix is to be expected in equilibrium elements but with a 

reversal of the roles of membrane and bending modes. Studies of some basic 

computational difficulties of numerical stability and the condition number 

of stiffness matrices in shell problems are given in the work of 

Fried (1971,1975). 

Bearing in mind the above difficulties it is not surprising to find 

that several alternative approaches have been proposed to the direct use of 

deep shell theory in developing shell finite elements. The following 

briefly considers some of the many contributions which endeavour to obtain 

numerical solutions to the shell problem using the finite element method. 

There are four options that have emerged in shell element formulation: 

"a flat element approximating the actual shell curvature and formulated 

using plate theory; 

"a curved element reproducing the actual shell curvature and formulated 

by shell theory; 

"a curved element approximating the actual shell curvature and 

formulated by shell theory; 

"a solid or degenerated solid element. 
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The first option is the earliest and simplest type of finite element 

used in solving shell problems. The actual curved middle surface is 

approximated by a faceted assembly of flat elements. Because the element 

is flat there is no coupling between the membrane stiffness and bending 

stiffness at element level, this occurs only on assembly of the individual 

element matrices. Thus it is possible to adopt a standard plane stress 

element to represent the membrane stiffness of the shell together with a 

standard plate bending element to represent its bending stiffness. 

Although flat rectangular and quadrilateral elements are restricted in 

their use (because all four nodes should be in the same plane) these were 

the first successful shell elements to be programmed and were used in arch 

dam design and for the analysis of cylindrical shell roofs, see Zienkiewicz 

and Cheung (1965) and Zienkiewicz (1965). 

It is clear that if the geometry of a doubly curved shell is to be 

approximated by flat elements then it is only triangular elements that are 

really acceptable. The two earliest triangular elements are due to 

Zienkiewicz et al (1968) and Clough and Johnson (1968). Both groups of 

authors employ the constant strain triangle for membrane stresses together 

with their own plate bending elements, see Bazeley et al (1965) and 

Clough and Tocher (1965). Use of the constant moment element in shell 

analysis is reported by Herrmann and Campbell (1967) and by Dawe (1972). 

The advantage of employing an assembly of flat elements to represent a 

shell structure lies primarily in their simplicity and ease of formulation. 

In addition, they easily handle rigid body movements without incurring any 

error. For practical purposes the flat element approximation permits 

an easy coupling with edge and rib members, a facility sometimes not 

present in curved element formulations. On the other hand it must be borne 

in mind that because of the geometrical approximation of the curved shell 

considerable errors are likely to be incurred for coarse meshes. Another 

difficulty is that most shell elements have just two rotational degrees of 

freedom per node in the local element coordinate system. The in-Plane or 

drilling rotation is missing, see Allman (1988a, 1988b, 1988c). This can 
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result in a singularity of the stiffness matrix on transformation to the 

global coordinate system if the elements meeting at a node are coplanar. 

It is also to be noted that due to the different orders of polynomials used 

to describe the element displacement, fields in plane stress and plate 

bending elements, the displacements will not be compatible along element 

edges as adjacent elements are not, in general, coplanar. 

In the case of curved elements the complexity of the actual shell 

geometry and the use of shell theory can lead to very complex formulations 

with consequent high computational costs. Major difficulties are 

encountered in the formulation of these elements as a result of 

inadequacies in representing rigid body modes and ineffective 

representation of the coupling between membrane and bending responses at 

element level. Aspects of the representation of rigid body movement in 

curved shell finite elements has been considered by many authors, including 

Ashwell and Sabir (1971), Mebane and Stricklin (1971), Fonder and Clough 

(1973), Fried (1975), Morley (1972) and Dawe (1974). The basic problem is 

that if the displacement components are chosen to be those tangential and 

normal to the element middle surface then the rigid body movement of the 

element cannot be exactly represented by the usual polynomial shape 

functions since they are properly represented by transcendental functions 

of the surface coordinates. The term 'membrane locking' is coined by 

Stolarski and Belytschko (1982,1983) to describe the second problem. They 

show that it is derived from an inadequate representation of inextensional 

deformations. Due to the curvature of the element a bending deformation is 

accompanied by stretching of its middle surface and so membrane energy is 

generated, effectively increasing the bending stiffness, and this can cause 

a bending dominated response to be replaced by a spurious membrane 

dominated response. 

One of the first curved elements is due to Grafton and Strome (1963). 

They describe an element which is a simple conical frustum intended for use 

in analysing pressure vessels under axisymmetrical loading. The 
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displacements of the shell are approximated using the radial and axial 

components and the rotation at each nodal point. 

Olsen and Lindberg (1968) formulate a stiffness matrix for a four 

noded cylindrical shell element. An incomplete quartic (12 term) 

polynomial is used to describe the radial displacement, while the in-plane 

displacements are described by an incomplete cubic (9 terms). The element 

connectors at each node are the displacement values together with first 

derivatives giving a total of 36 degrees of freedom. By finding 

eigenvalues of free vibration of the unconstrained stiffness matrix the 

authors found that only'the rigid body translations in the circumferential 

and longitudinal directions are represented exactly, the remaining modes 

are represented only approximately. 

Bogner et al (1967) construct a cylindrical element in curvilinear 

coordinates. This element employs a sixteen degree of freedom bicubic 

Hermite polynomial for each of the displacement components resulting in a 

48x48 stiffness matrix. Cantin and Clough (1968) report on a related 

element, which uses the same bicubic representation of the radial 

displacement but employs bilinear polynomials for the in-plane 

displacements. It has 6 degrees of freedom at each node, function values 

of each displacement, together with first derivatives and mixed second 

derivative of the radial displacement, giving a 24x24 stiffness matrix. 

Cantin and Clough observe that the polynomial shape functions employed to 

represent the element displacements cannot reproduce the rigid body modes 

of the curved element. In order to correct this they suggest that 

trigonometric functions be included in the displacement representation. 

Displacement compatibility is satisfied only at nodal points. A simplified 

form of Cantin and Clough's element, which reduces the size of the element 

stiffness matrix to 2040, is given by Sabir and Lock (1972). 

A doubly curved shell element based on shallow shell theory is given 

by Connor and Brebbia (1967). The in-plane displacements are represented 

by bilinear polynomials whereas the normal displacement is represented by 

the same twelve term polynomial used by Olsen and Lindberg (1968). The 
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displacements are compatible along the element boundaries but compatibility 

of normal displacement slope is not satisfied. The displacement expansions 

are, in general, unable to represent all the rigid body movements. 

Henshell et al (1971) construct a cylindrical hybrid shell element 

from the principal of minimum complementary energy by assuming a fourteen 

term optimum stress function within the element. Bilinear polynomials are 

used for the in-plane displacements and a version of the 

Birkhoff-Garabedian (1960) polynomial, modified so as to include rigid body 

modes, is used for the normal displacement. 

As in flat plate analysis, both single field and subdivided approaches 

have been used in the construction of curved triangular elements. 

The displacement field proposed by Bazeley et al (1965) for flat 

plates is adopted by Strickland and Loden (1968) in a formulation of a 

doubly curved triangular shell element using shallow shell theory. This 

field, which describes the radial displacements, is accompanied by linear 

polynomials for the tangential displacements. 

Bonnes et al (1968) subdivided a curved triangular element into 

subregions. Applying Reissner's (1960) shallow shell theory, the radial 

and tangential displacement fields are described by cubic polynomials in 

each subregion. The resulting formulation has 36 degrees of freedom per 

element, 9 degrees of freedom at each vertex, the displacement components 

and the two first derivatives of each component, and three degrees of 

freedom at the midside positions, the derivatives of displacements in the 

outwards normal direction. Neither interelement compatibility nor rigid 

body movement requirements are met. 

A similar approach is taken by Sander and Idelsohn (1982) who derive a 

family of curved triangular and quadrilateral elements based on deep shell 

theory. The elements are subdivided into three or four regions in each of 

which the tangential displacements are represented by linear, quadratic or 

cubic polynomials while the normal displacement in each case is taken as a 

cubic polynomial. 
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Several authors have constructed elements which provide for strict 

interelement compatibility of displacement fields and exact representation 

of rigid body modes. ' These elements are embedded in deep shell theory and 

employ high order polynomials in their formulation. The SHEBA element of 

Argyris and Scharpf (1968), the element of Dupuis and Godl (1970) and the 

element of Dawe (1975) are examples of such refined elements. The SHEBA 

element employs an isoparametric quintic polynomial representation for all 

the displacement components giving an element with 63 degrees of freedom 

comprising the displacement with first and second derivative at each vertex 

together with normal derivatives at the midside nodes. Cartesian 

displacement connectors are used to construct the stiffness matrix so that 

the element is able to exactly represent rigid body modes. The work of 

Dupuis and GoEl is based on a shell theory written in terms of a Cartesian 

coordinate system where the equations are expressed in relation to the 

height of the middle surface above a reference plane. The displacement 

patterns employed are high order rational or quintic polynomials giving 

rise to elements with 27 or 56 degrees of freedom. Dawe (1975) develops a 

conforming triangular element using a constrained quintic polynomial to 

represent each displacement component. It has the same vertex connectors 

as the SHEBA element but the normal derivative is constrained to be of 

cubic variation so that the element has a 54 degrees of freedom. 

An element related to that of Dawe, formulated using shallow shell 

theory, is given in the work of Cowper et al (1968,1970). This also uses 

a constrained quintic polynomial to represent the normal displacement 

component but employs cubics to describe the in-plane displacements giving 

a total of 36 degrees of freedom. 

The fact that second order derivatives are used by such elements leads 

to difficulties in taking account of the boundary conditions and to 

difficulties where there are abrupt changes of curvature. Moreover, 

analytical functions describing the middle surface geometry are necessary. 

Consequently, this type of element is useful only in the hands of an expert 

if they are to be used for application to general shell problems, and 
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therefore their range of application within a commercial finite element 

package is rather limited. 

The compatibility conditions required by the principle of minimum 

potential potential energy demand continuity of the normal displacement 

slope across interelement boundaries for a shell element based on Kirchhoff 

theory. Difficulties in forming a fully conforming Kirchhoff theory shell 

element with simple connectors have prompted the development of elements 

based on theories which relax the Kirchhoff assumptions. 

In one approach the displacements of the middle surface and rotations 

of the normals are each independently assumed. Melosh (1966) employed this 

for plate bending problems and Utku (1967) applied it to shallow shell 

elements. However, all of these elements inherit problems of excessive 

shear stiffness for coarse meshes and slow convergence. 

To overcome such problems of an otherwise attractive approach, the 

imposition of the Kirchhoff hypothesis at a discrete number of points in 

the element was proposed and used by Wempner et al (1968). This scheme has 

become known as 'discrete Kirchhoff theory, (DKT). Several examples of 

application of this approach appear in the literature. Wempner et al 

describe a rectangular shell element. Although the formulation is for 

general shells the applications were limited to flat plates and cylindrical 

shells. Dhatt (1970) gives a triangular shell element based on shallow 

shell theory. All displacement components are described by cubic 

polynomials giving 27 degrees of freedom. Batoz and Dhatt (1972) present a 

related element which employs linear polynomials for the in-plane 

displacements which are coupled with the transverse displacements in order 

to satisfy the rigid body modes for shallow shells. Murthy and Gallagher 

(1986) present a curved shell element with 27 degrees of freedom, 9 at each 

vertex. The degrees of freedom are the tangential and normal displacement 

components and their first derivatives with respect to the curvilinear 

coordinates of the middle surface. The strain energy density is calculated 

using the linear shear theory described by Wempner et al (1968). The 

strain displacement relations are initially defined in terms of 
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displacements and rotations referred to local coordinates on the middle 

surface and are subsequently transformed to global coordinates enabling an 

isoparametric repres-entation of the middle surface displacements and exact 

recovery of rigid body movements. 

The fourth alternative route to shell element construction was 

introduced by Ahmad et al (1968), based on the isoparametric formulation of 

three-dimensional solid elements. At first sight it seems that the use of 

solid elements could be used directly for shell problems by reducing their 

dimension in the direction of the shell thickness and imposing kinematic 

and stress constraints consistent with Kirchhoff theory. However, unless 

special care is taken the performance of this type of element deteriorates 

rapidly as the shell becomes thinner. In particular such shell models tend 

to be overstiff due to shear and membrane locking, see Parisch (1979), 

Hughes and Liu (1981), Stolarski and Belytschko (1982,1983). These 

undesirable effects reflect the difficulty solid elements have in 

representing zero in-plane and transverse shear strain states without 

disrupting bending behaviour. These problems have been alleviated in many 

cases by use of reduced or selective integration schemes, see Pawsey and 

Clough (1971) and Zienkiewicz et al (1971). Such effects are particularly 

prevalent when coarse meshes are used to model high stress gradients or 

when highly distorted elements are present in the mesh. However, reduced 

integration does not guarantee a problem free element. An immediate 

problem is that it reduces the rank of the stiffness matrix and so may 

result in the development of spurious kinematic modes, see Hughes et al 

(1977), Belytschko et al (1984,1985). Also reduced integration is 

accompanied by a deterioration of membrane-bending coupling which is a 

central characteristic advanced in favour of these elements. 

Two such elements which have come to the fore in recent years are the 

Semiloof element of Irons (1976) and the QUAD4 element of MacNeal (1978). 

The first element is similar to the element of Ahmad et al but provides for 

only one normal rotation at the so-called Loof nodes at each side, thus 

resulting in 32 degrees of freedom for the element. The discrete Kirchhoff 



66 

hypothesis is introduced at the Loof nodes and a reduced integration 

technique is applied. The second element is a 4-node quadrilateral which 

is basically a thick shell element where the shear stiffness is improved by 

applying a reduced integration technique and secondly by adapting the shear 

modulus according to the actual shell thickness. 

4.2 Inextensional bending solutions 

Fundamental to any candidate finite element for shell analysis is the 

need to provide a facility to adequately model the deformations consequent 

upon bending action. The consequences of any shortcoming in this respect 

are severe when finite elements are used to analyse a shell which undergoes 

inextensional bending because it is so easy for even a small membrane 

strain to cause the membrane energy to overshadow the bending energy. This 

underlines the difficulty that the displacements of inextensional bending 

need to be accurate solutions to the governing equations. Indeed it is 

only rarely that attempts have been made to solve these equations other 

than for shells with a simple circular cylindrical or hemispherical middle 

surface, see e. g. Krauss (1967), FlUgge (1973). This lack of access to 

accurate solutions to more general shell shapes has proved a great handicap 

in finite element assessment. 

In determining the displacement field corresponding to an 

inextensional bending action it is necessary to integrate three homogeneous 

partial differential equations which have, in general, non-constant 

coefficients. Emphasis in the classical theory of shells is concerned with 

the derivation of relations and governing equations in terms of 

displacement components which are tangential and normal to the middle 

surface. However, with the finite element method in mind, the solutions 

given in the sequel are formulated in terms of displacement components 

referred to a fixed orthogonal Cartesian coordinate system. The middle 

surface geometry is defined by quadratic or cubic polynomials whose 
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coefficients are determined by specifying the orthogonal Cartesian 

components at points on the middle surface and/or at the boundary. This 

specification allows easy control of Gaussian curvature and depth of shell 

and so provides a very wide spectrum of shell geometry. 

The membrane strain tensor is given by 

oc + Uß +x3u3+U3x3)- 
, mß - i(U ,ßt Ot 9a, ßt et ,ß 

The rotation vector f 
Ot of the normal in the directions xx on the 

deformed middle surface is defined by 

1 (U 3x3 

-Fa 
(4.2.2) 

and the rotation about the normal of the undeformed surface is given by 

ý=1 (U 12-u2 
'1 

+x3 
'1 

u32-x32u3 j) (4.2.3) 
2 -Fa 

Advantage is taken of the arguments of Koiter (1966) concerning the 

equivalence of definition of the curvature change tensor. In particular 

the modified definition (3.6.12) provides considerable simplification and 

provides, under the assumption of small strains and rotations 

(U 3-x3u1x3u+x3u1+x3u2 (4.2.4) 
I-a Pao 'i ,2 Pao 9 OCO I, ccO 2 

Note that when the displacements of an arbitrary rigid body movement 

u=a1+ C(2x - ot 5x 

u2= cc 3- ýx 2x 
1- 

cc 6x 
3 (4.2.5) 

u3= cc 4+a 5x + cc 6x 
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vhere o,,, .... cc 6 are constants, are substituted into (4.2.1) and (4.2.4) 

then the components of the membrane strain and curvature change tensors are 

zero as required. 

Consideration is now given to the inextensional bending of surfaces 

with explicit polynomial representation, see Morley (1982,1983a, 1984) and 

Mould (1989), 

i-i 2 j-1 
a k(i, j)(x ) (X ) (4.2.6) 

i=l j=l 

where the degree of polynomial is pý2, and a k(i, j) are constants with 

1 
yi(i-1) +i (4.2.7) 2 

The components of the linearised membrane strain tensor, see (3-2.16) and 

(4.2.1), satisfy the first of the differential equations (3.3.1) of 

compatibility 

c 0A COP yc CA cx3u3 (4.2.8) 
U-0, xv ý- ao I XP 

The differential operator implicit in this equation occurs frequently in 

plate and shell theory and is known as Pucher's (1934,1938) operator. For 

inextensional bending solutions the strain components 

yao =0. (4.2.9) 

Evidently, solutions for U3 of the homogeneous equations 

c ax c 
Pp 

x3 ae 
3 

xv =0 (4.2.10) 

determine inextensional bending deformations of the shell surface defined 

by (4.2.6). Integration of (4.2.10) determines the remaining displacement 

components as 
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x31u31 dx 1+ F(X 2 

10 
2 

x3u3 dx 2+ G(X 1 

022 

where the functions F(x 2) 
and G(xl) are obtained from the relations 

2 
[2x 3u3_9x3u3 dx 2_ (X 3u3) 

12 7xi 22 12-G, 1 

-a1 (X 32u3 )IX2 
= 0]Ixl =0 ax 

G- 2x 3u3_ax3u3 dx 1- (X 3u3 
-) -F 912 

72- 
r 

11 22 
x0 

-a2 (X 31u3 )lxl 
= 0]1X2 =0 ax 

(4.2.12) 

which are found by considering the equation Y12 -0 along the coordinate 

lines xI=0 and x2=0- 

With the finite element method in mind solutions of (4-2.10) are now 

sought in the form of a polynomial series 

u3=+ßx1+ßx2+Vi1 i-j 2 j-1 (4.2.13) ßo 12L ci(i, j)(x ) (X )1 
i=3 j-1 

where the degree of the polynommial qý2 and where 00,01,0 2 and 

c MID are constants with 

li(i-1) 
+i 2 (4.2.14) 

Examine, first, the role of the linear terms of (4.2.13). It is easily 

seen that they make no contribution to (4.2.10) and their substitution, 

together with (4.2.6), into (4-2-11) and (4.2.12) yields 
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1-121312212 2] u. - ßl[a2x1 +a 4(xl )2 +a5xx+a7 (x )+a8 (x )x+a9x (X )+F (X2) 

(4.2.15) 

u2. _ ß2 [a 
3x1+a5x1x2+a6 (X 2)2+a 

8(X 
1)2x2+a9x1 (X 2)2+a 

10 (X 2) 3] 
+ G(x 1) 

and 

F(x 
2)= 

-(a ß+aß+G1 )x 2_ßa (x 2)2_ßa (x 2)3+C 
3122 lix =0161 10 F 

G(X 1)- 
-(a A+a 2ß2 +F 21x 2= 0 )x 1-ß2a 

4(x 
1)2_ ß2a 7 (X 2)3+CG 

(4.2.16) 

where G1 IX1 = 0, F2 IX2 = 0, CF and CG are unknown constants. 

Recalling (4.2.5) and using (4.2.6) to substitute for X3 shows that 

(4.2.15) and (4.2.16) are, in fact, the explicit expressions for the Ul 

and U2 displacement components of an arbitrary rigid body movement, and 

provide the following correspondence between constants: 

F2 jx2 
=0= -cc2 - ce6a 2' 00 ý 

'i 
ix 1.0ý oc 2- oca 3' ol '-- Oc5 I 

OC 1- 'x 5a3' 

a3 - (x 6 a, . 

(4.2.17) 

Now consider the determination of the remaining coefficients of 

(4.2.13) i. e. those corresponding to the quadratic and higher order 

polynomial terms. Substitution of (4.2.6) and (4.2.13) into (4.2.10) gives 

pT [AIE =0, (4.2.18) 

where 
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x11x29... 9 (X )p-11 (4.2.19) 

is a vector of polynomial terms, 

.ST- 
[c V C2"**' clh(q+4)(q-l)l (4.2.20) 

and the elements of the matrix [A] are linear combinations of the 

constants a k(i, j) * If (4.2.18) is to hold for a general point on the 

shell middle surface then 

[A]c =0. (4.2.21) 

This is a homogeneous system of %(p +q- 3)(p +q- 2) equations 

involving %(q + 4)(q - 1) unknowns. Thus, existence of a vector c 

satisfying (4.2.21) generally requires 

(q + 4)(q - 1) > (q +p- 3)(q +p- 2) , (4.2.22) 

from which it is concluded that, in general, the highest order polynomial 

representation of the middle surface which admits exact inextensional 

bending solutions of the form described by (4.2.1l)-(4.2.13) has p-3 

The Fortran computer program described by Mould (1989) considers the case 

p=3i. e. a cubic parametric representation. The coefficients c MID 

of (4.2.13) are obtained by solving the eigenvalue problem 

[A] T [A]. S =0. (4.2.23) 

The elements of an eigenvector corresponding to a zero eigenvalue determine 

the required constants. 
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4.3 Edge effect problem 

FlUgge's (1973)-equations are widely accepted as the standard of 

comparison for circular cylindrical shells but, keeping within the context 

of classical first approximation theory, the following makes use of the 

much simpler but equally accurate Morley-Koiter equations, see 

Koiter (1968), Morley (1959). 

Let the middle surface be described by coordinates of principal 

curvature (& I 1& 
2) 

where &1 is the arc-length along a generator and &2 

the arc-length in the circumferential direction, perpendicular to the 

generator. The parametric equations of the middle surface are 

xx2. R sin x3-R cos 
RR 

The components of the metric tensor are 

a 11 ýa 22 ý1a 12 ýa 21 0 (4.3.2) 

and 

b ll ýb 12 ýb 21 ý0b (4.3.3) 22 R 

Since the coordinates are Cartesian, all Christoffel symbols vanish and 

covariant derivatives reduce to partial derivatives. 

The axisymmetric homogeneous form of the governing equilibrium 

equations for displacement components uI along a generator and u3 along 

an outwards radial direction are 

v 
U1,11 

+ -u 3,1 0 
R 

2 (4.3.4) 

-u I'l +2R 
ý1)2 

+ 1) U3 + 
--2 

0 
RR( d( R 
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where the non-dimensional parameter k is defined by 

k c. 1-12 (4.3.5) 12 

Consistent with these equations are the (modified) components of stress 

resultant 

Et u3 
NIl 

V2 
(ul" +vR 

N 
Et U3 

+ Vu + (I - v)k 
(ul, 

1+ Ru 

(4.3-6) 

22 2 I'l 3,11) 

and (modified) components of stress couple 

-3) m ll -D 
(U3,11 

+R2 
u 

(4.3.9) 
1-vu3 

m 22 -D 
(VU3,11 

- ---u I 'i 
+ 

--2) RR 

vhere D is the flexural rigidity, 

Et 3 

12(l -v2 
(4-3-8) 

The associated (modified) transverse shear force is 

1 
-m (4-3.9) 
R 

The governing equations (4.3.4) give 

kd (R2 d2 
+ 1ý2 + ;d (4.3.10) 

! 
-)u3 =0 2 d( ý1)2 e 

which leads to the solution, on omitting terms of relative order (t/R) 21 
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+ 
(A 

3 si n+A4 Cos exp 

vu 3 
uR 

wi th 

3(l -v2)M1 +12-12 
4p4p 

(4.3.11) 

(4.3.12) 

The six constants Ao,..., A 6 occurring in equation (4.3.11) are determined 

so as to satisfy the following boundary conditions 

H11=H � N11=Q1=O � 

U3=U3,1 =0, 

vhere 1 is the length of the cylinder. 

4.4 Membrane solutions 

at 

at 

(4.3.13) 

Recall the discussion of Golldenveizer's static-geometric analogy 

given in Section 3.7. This shows that the analysis and solutions given in 

Section 4.2 for the exact displacements of inextensional bending are 

directly related to the exact stress functions of homogeneous membrane 

actions. However, in finite element evaluation it is necessary to know the 

displacements and rotations of the shell middle surface. It is 

impractical, except for simple geometries like that of circular cylinders, 

to exactly integrate strain-displacement relations when strains arise from 

stress functions through constitutive equations. For this reason 



75 

Morley (1983b) considers the class of shells having quadratic parametric 

representation and derives approximate solutions using the theorem of 

minimum potential energy. 

The Cartesian components of displacement of a point on the middle 

surface are expressed as quartic polynomials in the surface coordinates 

u 1, .a T' 

2T 

.u3jcT 

where 

j= (&, ), 1 9(& 
2)4)I&QR 15xl (4.4.2) 

and a, b, cQR 
15xl 

are constant vectors to be determined. 

The principle of minimum potential energy for homogeneous membrane 

actions in an isotropic material requires 

SU 
y+ 

SU 
K- 

V(N', &ul) =0 (4.4.3) 

where the membrane and bending strain energies are given in terms of the 

practical components of membrane strain and curvature change according to 

u= 6Dfy2 2+ 2y 2 2v 2212aa dýld ý2 
y 

fQ 

h2 11 11 -ý lr212 1121 
(Y112, 

- Y111 Y2121)j 12 

(4.4.4) 

ý(K2,2 2,2 22 ý2 uKý fS2 
21 If +K 2121 + 2K 

1 21 2+ 1121 - K, 11, K 2121 
))a 

1a2 d&ld 

(4.4.5) 

and the potential energy due to applied tractions is given by 

V(N', Sul) = 
J. ýNj,,, Suj, +9 1121 Su 21) a 21 d& 2 ', (4.4.6) 
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with D the flexural rigidity given by (4.3.8). The membrane strains 

y,,,, and curvature changes Kcxlpl are calculated from the expressions 

(4.2.1) and (4.2.4) using the assumed displacements of (4.4.1) together 

with the definition of practical components given by (2.5.20) and an 

arbitrary, but constant, value of X. Displacements at the shell boundary 

are calculated from (4.4.1) using the relations 

u oc, =uiei*t cc? 1 (4.4.7) 

where the angle X, see Fig. 2.3, is chosen to orient the vector 121 

along the shell boundary r in the positive sense. The boundary tractions 

Nl,,,, N 2121 in (4.4.6) are determined, for these same values of X, from 

the exact stress functions derived, using the static-geometric analogy, 

from the exact displacements of inextensional bending given in Section 4.2. 

Substituting into (4.4.3) gives a (positive definite) linear system from 

which the unknown vectors a, b, c and hence displacements U' are 

determined. 
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CHAPTER 5 

THE CONSTANT STRESS SHELL FINITE ELEMENT 

5.1 Introduction 

The purpose of this chapter is to describe the analysis of thin shell 

structures when the constant bending moment element of Morley (1971) is 

used in conjunction with the constant membrane stress element of Turner et 

al (1956). The results presented in the sequel reveal that the 

characteristics of an assembly of this simple flat element are such as to 

enable recovery, in a remarkable way, of each of the types of deformation 

identified by the classical first approximation theory of continuously 

curved shells. Thus, the element is seen to hold a position of central 

importance with regard to the numerical analysis of thin shells. 

Recall that it is the consequences of bending which have been the most 

troublesome in the construction of shell finite element models. More 

specifically, a shell finite element model must be capable of recovering 

bending strains without them being overwhelmed by spurious membrane 

strains. It is the intention to investigate this particular aspect of 

bending action through use of the exact comparison solutions described 

earlier in Chapter 4. It emerges that there are two quite different roles 

for the element bending freedoms. One concerns inextensional bending 

movements which extend over the whole finite element model. The other role 

concerns local rotational movements which accompany the curvature changes 

of inextensional bending and of edge effect. 

The vehicle finite element considered in this work has an interesting 

history which is now briefly recalled. Constant moment bending elements 

were initially suggested by Hellan (1967) and by Herrmann (1968) based on 
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mixed formulations. In more detail, Herrmann's solution proceeds by way of 

the Reissner mixed variational principle in conjunction with a linearly 

varying normal dispiacement field. This formulation makes use of constant 

bending moments within the element and enforces continuity of the practical 

component M I'll along adjacent element edges. Subsequently, Allman 

(1971) points out that Herrmann's technique is equivalent to an application 

of the complementary energy principle with the linear deflection field 

acting as Lagrangian multiplier terms which ensure equilibrium of the 

normal forces at nodal points. The work of Morley (1971) shows that the 

displacement model developed from the potential energy principle is exactly 

equivalent to the pure equilibrium model vhilst being more suited to 

incorporation into general purpose displacement-oriented computer programs. 

The development of the mixed formulation for application in shell problems 

is given by Hermann and Campbell (1967) who incorporate the constant stress 

triangle to represent membrane behaviour, an equivalent displacement 

formulation is given by Dawe (1972). Here it is preferred to make use of a 

tensor formulation as in Morley and Mould (1987) and to develop the shell 

element by way of a generalised principle. 

5.2 Element matrices 

The element has twelve degrees of freedom and is shown in Fig. 5.1 

arbitrarily orientated with respect to a fixed global Cartesian coordinate 

system xI, x2, x3. The vector U representing the displacement of 

points on the element middle surface may be written in the alternative 

orms 

ue 
:L 

u ai 
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where U1 are the global Cartesian displacement components, uOc are the 

contravariant components of in-plane displacements in the oblique 
3 &"ý-coordinate system, see Fig. 5.1, and u is the displacement normal to 

the element middle surface. 

Vertices of the element are numbered 1,2,3 with geometric connectors 

xi so that the position vector of a point on the middle surface of an 

element is given by 

i 
x (5.2.2) 

where the element geometry is defined in terms of the surface coordinate 

system according to 

x Nj ij = 1,2,3 (5.2.3) 

and the shape functions N3 are given by 

N2=&21N3=1-&I-&2. (5.2.4) 

Local tangent base vectors in the e directions are introduced by 

differentiation of (5.2.2), so that 

r= Xi e. (5.2.5) 
oc ja , Ot :L 

where 

xI= Xi -xIL (5.2.6) 3223 

The element middle surface unit normal vector is obtained from the vector 

product 

ýjj x a2i 
(5.2.7) - - -3 2: i 1ý11 xa2 
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so that 

1123 
a3 iA- (X ix 92 -x2x l) 

a21 (X 31x3x1) 
3 UA l X, 2 21 

a311x2x2x1 3 iA- (x 1221 

The metric tensor a C(p 
is given by 

a =a a cxf3 -- 

so that 

)2a2aa1 2 22 (11) 12 '-- 21 ý1 12 

where the element side lengths are expressed in terms of geometric 

connectors by 

(1 )2=i-xi) (X i-xi), 
12323 

(1 (x i-xi) (X i-xi), 
3131 

(1 )2=i-xi) (X i-xi), 
1212 

1 12 = (1 1) 
2+ (1 2 )2_ (13 )2 1 

1 23 = (1 2) + (1 3) (1 1) 2 

(5.2.8) 

(5.2.9) 

(5.2.10) 

(5.2.11) 

222 1 31 ý (13) + (1 1) (1 2) 
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The area A of the triangular element and determinant a of the metric 

tensor are given by 

2 16A a=1 12 1 23 +1 23 1 31 +1 31 1 12 (5.2.12) 

so that the contravariant components of the metric tensor are determined as 

2 22 2 
a 22 /a (1 1 /2A) aa 11 /a = (1 2 /2A) 

(5.2.13) 

a 
12 

a 
21 

- -a 12 /a = -1 12 /(8A 2 

The displacement components in the local oblique and global coordinate 

systems are related by the transformation formulae 

cc =U- 2ce =u1 (ei * 2a) =Uix19 CX t 

(5.2.14) 

U3 =U3=i3 3 23 = _U -au ai 

vhere u (X 
is the covariant component of in plane displacement in the 

oblique &0ý-coordinate system and xi and xi OC are given above by 

(5.2.3) and (5.2.6). 

Let the displacements U1 of the element middle surface be expressed 

by the quadratic polynomial 

uUi Ni + 
INi 

- (Ni ) 
)a i (5.2.15) i Ili 3 

so that the in-plane and normal displacements are given by 

a (5.2.16) u NJ i 

U3=U3 Nj + 
jNj 

- (Nj ) 2) (5.2.17) i Ili 
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where the displacement connector uý is the magnitude of ul at node i 

see Fig. 5.1. The constants 4; j are to be determined so that there is 

continuity of the practical component of rotation ý,, at the element 

midside nodes 4,5 and 6, see Fig. 5.1. 

The membrane strain tensor y oto 
is defined by 

Xxi, ui yß +xi, 
i (5.2.18) 

aß =i«p, CX) 
where derivatives are taken with respect to the oblique &0ý-coordinate 

system, shown in Fig. 5.1. The components of this symmetric tensor are 

22 
Yll 2) s2 Y22 1) -C i 

(5.2.19) 

1((11)2cl 
+ )2 2c 

Y12 ý2 (12 E2 (13) 3) 

wi th 

c1 (x i1 
lý 71- 2x )(U' -), 

1)2 
323 

1 (xi xi). ui - ui) 2231(31 (5.2.20) 

t=1 (X i-xi )(U i-u1)-) 

3) 
21212 

The rotation vector ý 
cc 

is defined by 

i3 ýcc -U f OC -a3= -u Ia 
al (5.2.21) 

so that 

-a 
i (U i-Ui)- (4,1(1 

- 2N') - %p3(l - 2N 3)) 
313 

(5.2.22) 
ii-i 2) 3)) ý2 -a3(U2 u 3) - 

(, p2(l - 2N - 4,3(l - 2N 
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The symmetric curvature change tensor K oco 
is defined by 

,, 
a3 

where the components are 

2(* 1+ *3) 'K 12 ý24,3 t 

(5.2.23) 

22 ý 2(* 2+4,3 ). (5.2.24) 

All these tensors are referred to the oblique &'ý-coordinate system, 

their practical components referred to selected orthogonal directions &c" 

are given by 

h ec 
phß 9 (5.2.25) 

Mß oc ß, yaß 

e, = cx 
,e2 (5.2.26) 

aa oc 

cc a 
Kcxf h 

Oct 
h 

0, K 
c(o 

(5.2.27) 

The coordinate & is chosen to define the outwards pointing 

in-plane normal and & 21 is tangential to the element side. For this 

convention the h-symbols may be calculated using (2.5-23)-(2.5.27) and have 

components for sides 112 and 3 as given in Table 5.1. 

The constants qi 3 of (5.2.15) can now be expressed in terms of 

displacement and rotation connectors. For this purpose it is convenient to 

introduce the notation 

ýJ, j a Op at midside node j (j=1,2,3) , (5-2.28) 

so that the element midside rotation connectors are as shown in Fig. 5.1. 

Equating (5.2.26) at the midside positions of sides 1,2 and 3 in turn gives 

the following expressions 
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_ 11U3 33 2Aýj 1+ /211)u + (1 /21 )u '4 (112 2 31 13 

U3 +33 2Aý1,5 - 21 + (1 /21 )ul (5.2.29) *2 m 12 2 (123/ 2)u3 12 2 

1( 2Af, U3 + 1/2 )u 3+ (1 /21 )u 3 
*3 ýf 16 - 13 3 (13 13 1 23 32 

Having obtained expressions for the element membrane strains and 

curvature changes in terms of the 12 global connectors Uý (i, j = 1,2,3) 
j 

(j - 4,5,6) it is the intention to establish matrix expressions for 

the element stiffness matrix and load vector due to any applied boundary 

tractions. This is achieved through use of a variational principle. 

As is well-known the construction of a fully compatible displacement 

model involves many difficulties, and has led to various finite element 

models based on variational principles other than the principle of minimum 

potential energy. In order to overcome these difficulties many authors 

have proposed generalised displacement methods which allow for relaxed 

smoothness of displacement fields, see Pian and Tong (1969). In 

preparation for the finite element analysis attention is given to the 

variational formulation of the vehicle finite element using a generalised 

principle which provides the governing differential equations for the 

stretching and bending of flat plates as its Euler equations, together with 

their natural boundary conditions. Specialisation of this functional for a 

single element provides a route to the element stiffness matrix. 

In the case of a compatible model, a functional n for the stretching 

and bending of a thin plate is given by Washizu (1982): 

11 =h2E (XOXP KK-fiu ýa d& 1 d& 2 fQ 
21[Ec'O'Y. Oy>,, + Y-2 

CXO ý4j iI 

(5.2.30) 

- 
Jr rN, 

I (,, u (XI . 11 RI, 
cc, 

ý(Xf + ýJ, u 3 
]d& 21 
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where Nl,, 
Y,, 

Ml, 
lx,, 

Q,, are prescribed membrane forces, bending moments 

and transverse shear force on the plate boundary, see (3-5.7). In the 

above expression Y,, O, KOO satisfy the subsidiary conditions of (5.2.18), 

(5.2.23) and it is required that the displacements ui satisfy the 

following: 

"u cc 
is continuous in Qe and on re; I 

"u3 and its first derivatives are continuous in S2 and 

on re, and has piecewise continuous derivatives of 
(5.2.31) 

second order in the entire region of the plate; 

"u cc = (X on rk; 

"U3= 3' ý,, = ý,, on rk 

The overbar notation indicates a prescribed value and rk indicates the 

part of the boundary where kinematic boundary conditions are prescribed. 

Note that the components of the unit in-plane outwards pointing normal 

are related to the h-symbols by the requirement that the typical 

identity holds: 

Jr N ocou 
ot vo-r = 

frN, 
lotluccld& 

21 (5.2.32) 

where Nl,,,, U,,, are the practical components given by 

N, I cc, ýhI, h ccl N aX u, =hxu (5.2-33) X cx cc Oct X 

so 

Nl, 
ccpu I=hh 

c(p N X%p 
cc a ,, 

u, = No'ý 
avx 

(5.2.34) 

and recalling (2.5.12) it follows that 

h (5.2.35) 



86 

For the vehicle element the normal displacement component is defined 

in terms of a quadratic polynomial with vertex and midside connectors. It 

follows that the element normal displacement is discontinuous along edges 

shared by adjacent elements. The continuity requirements demanded by a 

strict application of the functional H may be relaxed and the subsidiary 

conditions may be put into the framework of the variational principle by 

use of Lagrange multipliers. 

Following the ideas of Washizu (1982), introduce Lagrange multipliers 

N ap 
,M 

ap and Nl,,,,, M1,0,1 defined in S? 
e and on rk, respectively. 

Also define line distributions ui,, of displacement and rotation 

between adjacent elements in order to link the respective connectors along 

element edges. The generalised functional appropriate to a typical element 

in the global assembly may be expressed as 

Ih2 OCAJ i ý2 I[ECý041ymoy>, + ýE KKf ui 
]v(a d&ld 2 CEO >4j 

1(u 
+U)] Wx 0, /a d&1d &2 [yacp 

2 cc, 0 0, cc 

- 
fQ [K 

oto +u3, ocOl 
Mc'oVa d&ld &2 (5.2.36) 

e 

frk [Nj (u 
(x, -u oc +M 11(XIOCC, - foc, + 01' (u 3-u3 )]d& 21 

e 
fr rN, 

Iu c(l +R11 cc' 
ýccl + 61 

1 U31 d ý21 

t 
e 

The independent quantities subject to variation are YCCO, KCO; ui ; NOCO 

M CXO ; N110tI, M110, r with no subsidiary conditions. 

The first variation of this functional provides all the fundamental 

equations which underlie the displacement formulation of the element: 
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2 h ý2 611 
9f9 

[(Eo'o' 
y), Ij 

No'o) 6yoto + i2 OOXýIKý, 
- M(xo)6Kcx d&ld 

e 

_ 
152 [ (Naß, 

ß+f 
cc) Syceß + 

(M«ß, 
otß +f 

3) &K�, ) /a dZ'd Z2 

y 
1(u 

+u )) SN" + 
(Koca 

+Ad &ld &2 (5.2.37) 
JS? [(2 

cc, 0, cc 
u3, 

,, 
) 6MO'oj 

e 

[(Uc" 
-u ý21 

oc, 
) &Nj 

oc, + cc oc ')SM 11 cc, + (u 3-u 3) 6Q1 d 
k 

e 
21 fr 

oc 
Nj, 

cc, 
6u 

(XI +( Riloct 
- mlial)sfccr + 01, - QII)Su 3 

]d& 

e 

Recalling the intended connection quantities of the constant stress 

element immediately allows simplification of the functional n9 by 

satisfying the following assumptions: 

CCOX), oco 
=h2 (Xoxp NE Yxp pm 12 EK >41 in 9e 

y 
1(u 

+uK in 9 
Cep 2 C(f 0 0, (x ccO7 -u 3, aO e 

u 0: 
linear in u3 quadratic in &a in 9ef (5.2.38) 

u cc =u Ot on rk 
e 

u3=u3 at nodes on rk at miside nodes on rk 

Consequently the generalised potential energy functional H9 of 

(5.2.36) reduces to 

1 ao &2 n9f9 
[ýN 

Yap + ý1MQýOKIOCO - fiUi] vta d&ld 

ee (5.2.39) 

T fr [NI, 
., u (XI + R1, 

Oct 
f 
Oct 

Id &21 

et e 

Substituting into (5.2.39) from the above expressions and following 

the usual procedure allows the total potential energy to be expressed as 

T (ý'UT [kIy- YTf (5.2.40) 

e 
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where [k] eR 
12x12 is an element stiffness matrix, feR 12x1 is a 

generalised loads vector which may contain contributions from edge 

tractions applied to-the shell if the element boundary coincides with that 

of the shell, and 

uT= [U 1, u2, u3, u1,... q 0 (5.2.41) 1112 114' 0115' 01161 

is a vector consisting of the element global degrees of freedom. It is 

clear from the form of (5.2-39) that the matrix [k] is built up by a 

sequence of matrix multiplications and integrations, in fact 

f [B jT [D][B]vla d& 1d ý2 - A[B] T [DI[B) (5.2.42) 

e 

6x12 The strain displacement matrix [B] re R is found in explicit form from 

(5.2.25)-(5.2.27) and the elasticity matrix [D] eR 
6x6 

, for the case of 

an isotropic material, is given by 

3x3 3x3 
[D 01 [0 1 

[DI = 
3 x3 h2 3x3 

[0 1 -[Dol (5.2.43) 
12 

where 

[ ol 

Et [O'V v0 
D210 (5.2.44) 

1-v0 2(1-v 

5.3 Mechanisms of membrane and transitional models 

In keeping with the terminology of classical shell theory, an assembly 

of these constant stress and constant bending moment finite elements is 
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called the bending model. The bending model is intended to represent all 

the characteristic behaviours of a real shell which may have any depth and 

Gaussian curvature. For the immediate discussion the example real shell 

and 16 finite elements of a bending model are chosen, see Fig. 5.2, to 

project onto the ý0ý-plane as an arrangement of equilateral triangles. It 

is required that the adjacent elements are geometrically continuous and, 

for the present purpose, that the elements meeting at a common vertex are 

not all coplanar. For definiteness, the finite element geometric 

connectors xi are assumed to coincide with the corresponding xi i 

coordinates of the real shell. 

Recall that the element has three degrees of freedom at each vertex and 

one degree of freedom at each midside node. Thus, the bending model has a 

total of N degrees of freedom, 

3n +n vs 
(5.3.1) 

where nv is the number of vertex nodes and ns is the number of midside 

nodes. As an example, the model in Fig. 5.2 has nv = 15, ns = 30 giving 

N- 75 . It is useful to also note the topological relationship 

3n 
v-ns+n rs - 3n r+6 (5.3.2) 

where n rs is the number of midside nodes on the boundary and nr is the 

number of boundaries as in a multiply connected shell. The model in 

Fig. 5.2 has n rs = 12, nr=1. 

The bending freedoms of the bending model are exposed by isolating the 

membrane strains through reduction to: 
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(i) a transitional model where all finite elements are assumed to have 

vanishing flexural rigidity and where ip -0 in (5.2.15) 

(ii) a membrane model where, in addition to (i), the midside connectors 

are removed. 

Initially all models are assumed to be completely free from constraint. 

The membrane model (ii) may be regarded as an assembly of flat 

triangular elements freely hinged along adjacent edges or, equivalently, as 

a framework of bars with frictionless universal couplings at the joints. 

Maxwell's rule for frameworks then shows that the membrane model has 

freedom for M 
ib mechanisms where 

m ib ý 3n 
v-ns-6-n rs - 3n r (5.3.3) 

where nv may be interpreted as the number of joints and ns the number 

of bars. In particular the model in Fig. 5.2 has M ib '9 mechanisms. 

Characteristically, these mechanisms involve nonlocal movements and the 

notation M ib is chosen because these mechanisms are to shown to have the 

capacity to simulate the real shell displacements of inextensional bending. 

The second member of (5.3.3) shows that M ib is independent of the 

interior arrangement of the finite element mesh. In particular, there are 

no mechanisms (and therefore no inextensional bending modes) in membrane 

models of closed shells, like a sphere, since n rs and nr are both 

identically zero giving M ib 'ý 0. 

The transitional model (i) has additional freedoms for M 

mechanisms: 

n (5.3.4) 

which are to be identified as mechanisms of local rotation at element sides 

as occur in element bending. 
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Returning to the bending model, the number Nb of bending freedoms is 

equal to the total number of mechanisms in the transitional model, 

Nb=m ib +MI- 3n 
v-6 

(5.3.5) 

and leaves NM membrane freedoms available where 

Nm=N-Nb-6=ns=M1, (5.3.6) 

It is emphasised that the above formulae refer to shell models that are 

free from constraints. It is possible, for example, to apply a number of 

constraints such that M 
: Lb 

is reduced by the same number. Also note, for 

example, that the three component elements shown compounded in Fig. 5.3 

contribute no more to M ib than a single element which is not compounded. 

In the preceding chapter a detailed description is given of the exact 

displacement solutions for real shells undergoing inextensional bending and 

membrane actions. These solutions are used to examine the displacements 

exhibited by the nonlocal mechanisms in the transitional and membrand 

models. 

In the comparison examples it is assumed that the real shell surface 

projects onto the x'ý-plane as an equilateral triangle, as shown in Fig 5.2, ' 

with side length 2 units and with the three vertices resting on the 

xoý-plane. In the first sequence of examples, the x3 coordinate is 

expressed by the quadratic polynomial 

6x 3= 
-3 + 3(x 1- 1) 2+ 6v3x 2_ 5(x 2)2 (5.3.7) 

I 
which gives a surface symmetrical about x. 1 with principal radii of 

curvature 1.206 and -1.262 at the centroidal position x1.1, x2= I/vf3 

of its projection. Thus, the shell is very deep with strongly negative 

Gaussian curvature and a perspective view is shown in Fig. 5.4. Connectors 

U3 on the boundary of the finite element model (e. g. at the 12 boundary 
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vertex nodes in Fig. 5.2) are assigned with the same values as calculated 

for the real shell. Similarly, three U'Oý connectors are assigned so as to 

fix a rigid body movement in the xo'ý-plane. This is sufficient to constrain 

the mechanisms in the membrane model and so a patch test is constructed 

with a specific inextensional bending movement imposed by the kinematic 

boundary conditions. Values for the constants c l'c2'c3'*'* , see 

(4.2.20), defining the exact comparison solution are given in Table 5.2 and 

solution values of the 

element membrane models 

real shell values; note 

of the elastic constant. 

that exact agreement is 

Ui connectors at the centroidal position in finite 

are shown in Table 5.3 along with the comparison 

that these membrane model solutions are independent 

s and shell thickness. Remarkably, the table shows 

obtained for the membrane models when q-2,3 and 

this holds true for all U3 connectors. The underlying mathematics of 

this phenomenon is yet to be understood but it appears to require a 

projected mesh that is regular but not necessarily equilateral. The table 

also shows that typical engineering accuracy (errors of less than 5%) 

prevails for the higher degree polynomials q. = 4,5 ; this level of 

accuracy is regarded as particularly noteworthy since U3 does not attain 

its most significant value at the centroidal position (see Table 5.3). 

Values of the Ux connectors are also good approximations. 

Note that the membrane model provides no information whatsoever on the 

curvature changes K ib and all membrane strains Yib are identically 

zero. 

For the second sequence of patch tests, the x3 coordinate is 

expressed by the cubic polynomial 

1-2422223 4x 1+ (X 1) + (3 + 2-ý/3)x + (x )- (x ) (5.3.8) 

1 
which gives a more complicated surface again symmetrical about x=1 but 

with principal radii of curvature 1.512 and -2.547 at the centroidal 

position. The shell is also very deep with strongly negative Gaussian 

curvature. Values for the constants which determine the comparison 
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solution are given in Table 5.4. The patch tests for the membrane models 

give solution values for the U3 connector at the centroidal position and 

these are listed in-Table 5.5 along with those for the real shell. Exact 

agreement is obtained when q=3 and, again, this holds true at all U3 

connectors. Again engineering accuracy prevails for the higher degree 

polynomials q-4,5 . 

The evidence is clear that the M ib mechanisms of nonlocal movement 

in membrane and in transitional models of the constant strain and constant 

bending finite element have a remarkable capacity to simulate the 

displacements of inextensional bending while the M, mechanisms of local 

rotation at element midside nodes find their interpretation in the bending 

model where they accompany the curvature change s both of inextensional 

bending and of local edge effect. These elementary considerations provide 

a rationale for shell element design and validation as well as prompting 

new thoughts on mathematical abstraction. For example the numbers M ib 

and M, (see (5.3.3) and (5.3-4)) may be taken as target numbers for shell 

models assembled from any kind of finite element. It is important to note 

that while all bending models are reducible to transitional models (which 

may or may not possess mechanisms), it is only the exceptional finite 

element which allows the further reduction to membrane model and this 

diminishes the central premise advanced in favour of curved shell finite 

elements. 

5.4 The bending model 

For the purposes of engineering design, the most convincing 

examination of bending needs to be specific to the finite element bending 

model, be in accord with the results of the classical theory of the real 

shell and be consequent upon the actions of edge effect as well as of 

inextensional bending. 
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It is pertinent to recall the discussion of shell theory presented in 

Chapters 2 and 3, in particular Love's first approximation for the strain 

energy U as the sum, of the extensional energy UY and the bending energy 

uK1 

U+U 
y 

(5.4.1) 

It is a fundamental result of shell theory that the relative error in this 

approximation does not exceed t/R or (t/L) 2, 
where t is the shell 

thickness, R is the smallest principal radius of curvature, and L is 

the smallest wavelength of deformation pattern. The fact that Love's 

expression contains these inherent errors has far reaching consequences for 

it is pointless to strive for greater relative accuracy in the components 

of extensional and flexural strain energies than the amounts just 

mentioned. This means that there can be an unlimited number of first 

approximation shell theories, their differences are manifest of terms 

having order of magnitude equal to those inherently neglected due to the 

plane stress or equivalent Kirchhoff assumptions. 

The curvature changes K ib of inextensional bending give rise to 

stress couples which usually require membrane stress resultants in order to 

maintain a state of homogeneous equilibrium. Consequently, it is 

exceptional for linextensionall bending to occur under first approximation 

theory other than in the presence of membrane strain Yib ' It is 

therefore necessary to define what is meant by linextensionall bending. 

Evidently this requires the membrane strain Yib to be relatively 

insignificant, 

o( t. 1 
tK), (5.4.2) Yi b z- ä2 ib 

as in the above sense. Note that inextensional bending is a nonlocal 

phenomenon and for the relative error (t/L)2 to become critical it is 

necessary that L<Le, where 
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Leý 0(-FR-t) , (5.4.3) 

which measures the so called zone of diffusion of edge effect. 

Equivalently, inextensional bending may be defined to occur under first 

approximation shell theory whenever 

uy /U 
Ký 

0(t/R) (5.4.4) 

Although this condition is a logical consequence of (5.4.2) a more 

straightforward and less stringent criterion may be set by simply requiring 

the total membrane strain energy to be relatively insignificant in 

comparison with the total bending strain energy according to the basic 

estimate of accuracy of classical theory, i. e. 

uy /U 
Ký 

0(t/R) . (5-4.5) 

The so called real shell inextensional bending solutions clearly do 

not precisely relate with any properly constituted first approximation 

theory where the reference middle surface is capable of extension and is 

free from surface forces. Nevertheless, in view of the above criteria, 

these are acceptable approximations within the limitations of the theory. 

As with the membrane and transitional models the bending model is 

assessed through patch tests, with prescribed kinematic boundary 

conditions, for capacity to simulate linextensionall bending under first 

approximation shell theory. First, attention is given to the shell whose 

reference middle surface is given by the quadratic parametric 

representation of (5.3.7). Displacement connectors U3 and rotation 

connectors on the boundary of the model (e. g. at the 12 boundary vertex 

nodes and 12 boundary midside positions in Fig. 5.2) are assigned with the 

same values as calculated from the exact linextensionall bending solutions. 

On fixing the rigid body movements in the xoý-plane, a patch test is 
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presented which is solved in the usual way with the following values taken 

for the constants 

10 7vv-0.3 
,t-0.01 , (5-4.6) 

where E is Young's modulus, v is Poisson's ratio, and where the value 

selected for the shell thickness t is appropriate to a moderately thin 

shell with R/t = 120 at the centroidal position. Solution values for the 

U3 connector at the centroidal position are shown in Table 5.3 for bending 

models. These values, as well as those for the other displacement 

connectors, differ only slightly from those calculated for the membrane 

model so that good accuracy is maintained in comparison with the real 

shell. 

A more searching examination is given in Table 5.6 where the global 

strain energies Uy and UK are listed as well as the most significant 

principal values of curvature change K ib and membrane strain Yib in the 

finite element which encloses the centroidal position of the bending 

models. The quadratic reference surface of this shell, (5.3.7), gives 

k 0.83x10 1W=0.69x10- 9 

at the centroldal position and 

0.17xlO- 120.28 
xjo-3 

(t)2 
ý. 0.41xlO-4 (5.4.7) 2R 

it) 2=0.83 
X10-4 (5.4.8) 2R 

at a less critical position where the principal radii of curvature are 

0.602 and -1.002. The values of Yib are seen to fulfil the criterion of 

(5.4.2) which provides a local definition for inextensional bending. In 

the global sense, linextensionall bending is defined by (5.4.5) which 

confines the order of magnitude of the strain energy ratio UY /U 
K 

according to the demands of first approximation theory. The last column of 

Table 5.6 lists calculated values of U /U 
K and these are seen to fulfil 
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the criterion of (5.4.5). This is further emphasised in Fig. 5.5 which 

shows the effect of mesh refinement on the value of the ratio of strain 

energies. The values of curvature change Kib of linextensionall bending 

at the centroidal position, although not the most significant, compare 

remarkably well with those for the real shell, especially in view of the 

piecewise constant representation employed. 

The more complicated reference surface for the second sequence of 

patch tests is given by the cubic representation of (5.3.8), where 

-2 
244 

0.66xlO 0.44xlO- LL)ý 
. 0.33xlO- (5.4.9) 2R 

at the centroidal position and 

0.21 xjo-2 
2=0.44 

X10-4 1 
(tý 

= O. Iox, 0-3 2R (5.4.10) 

at a less critical position where the principal radii of curvature are 

0.478 and -2.005. The finite element calculations are carried out in a 

similar manner as described above with values for the Ui connectors at 

the centroidal position listed in Table 5.5. In Table 5.8, the global Uy 

and UK are listed as well as the most significant principal values of 

curvature changes K ib and membrane strain Yib in the finite element 

enclosing the centroidal position. 

The values of Yib fulfil the local measure in (5-4-2) for the 

relative magnitude of membrane strain and curvature change. With the 

exception of the coarse mesh of 16 elements for q=4,5 , the listed 

values of Uy /U K fulfil the measure in (5.4.5). Further results are given 

in Fig. 5.6 which shows a plot of the value Uy /U 
K against increasing mesh 

refinement. 

The extensive and detailed series of patch tests described above 

provide for a significant and demanding assessment of this particular 

finite element shell model. They support the view that bending models 

= 0.44 X10-4 1 

assembled from the flat triangular constant bending moment and constant 
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membrane stress finite element have a capacity to simulate certain modes of 

linextensionall bending of the corresponding real shell under first 

approximation theorý. However, it is to be noted that these tests are in 

no way definitive and are in conspicuous contrast with those for flat 

plates, see Zienkiewicz (1973), dominated by the precision of the constant 

curvature change criteria and the consequent assurance of lowest order 

convergence. This contrast prompts questions concerning shell models 

constructed from other elements, in particular those having doubly curved 

geometry. For instance, it is conceivable that such models could respond 

favourably to certain patch tests yet remain essentially unable to simulate 

other modes of linextensionall bending even with mesh refinement. This 

notion is provoked by the investigation described earlier in this chapter 

which reveals that the nonlocal mechanistic response of the membrane model 

to the displacements of inextensional bending with the number M ib of 

these mechanisms increasing directly with the number of elements at the 

boundary. Thus, for example, M ib m 6,9,15,18 respectively for the 

9,16,36,49 finite element assemblies. It is to be recognised that while 

patch testing can provide for a substantial assessment, it is usually 

limited for practical reasons yet it remains advisable to test for ability 

to simulate additional inextensional bending modes with mesh refinement. 

The matrix procedure described in the sequel is intended to be helpful in 

this respect. 

It is appropriate to mention that recovery of linextensionall bending 

is notoriously sensitive to error in the prescription of boundary 

conditions. Thus, immediate uncertainty arises whenever the geometry of 

the finite element model is different from that of the comparison real 

shell. This is further aggravated by the element trial functions which 

degrade the quality of displacement and rotation representation. Indeed 

examination of the results given in Tables 5.2-5.7 are noticeably subject 

to these sensitivities most particularly because the locations of the 

midside positions are not coincident for the real shell and bending models 

so that an estimated value for each rotation connector must be used. This 
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prompts the following caution: it is inadvisable to overprescribe the 

boundary conditions for this type of linextensional, bending patch test. 

5.5 Edge effect problem 

Ability to recover the curvature changes of linextensionall bending is 

an indispensable prerequisite for a satisfactory response of the bending 

model to local edge effect. This phenomenon is even more disadvantaged 

than linextensionall bending because access to comparison solutions in 

classical theory for real shells is now limited to the circular cylinder. 

The capacity for the constant membrane stress and constant bending 

moment finite element bending model in simulating the above edge effect is 

examined by modelling the circumference of a circular cylinder with flat 

longitudinal uniform strips. By applying the appropriate conditions of 

axisymmetry at the longitudinal boundaries it is necessary to consider just 

one of these flat strips. Each of these is such that there is a more 

refined gradation of the finite element mesh (so that the element 

dimensions have the same order of magnitude as the thickness) in the 

subregion adjacent to the applied edge moment R as shown in Fig. 5.7. 

A graphical comparison of the finite element results against those of 

the real cylinder are presented in Fig. 5.8 and are seen to provide a 

respectable recovery of the real shell solution. More precise results are 

listed in Table 5.8 where the peak radial deflection u3 is estimated to 

within 10% for the coarsest mesh with closer agreement on mesh refinement. 

Good agreement for the most significant stress resultant N Ge and stress 

couple M 
xx 

(=R) is achieved at the centroid of the first element. The 

fibre stress of bending 6M 
xx 

/t 2=0.240xlO 6 is here more than twice the 

membrane fibre stress NN /t = 0.115xlO 6 
while the ratio UY/U K of global 

strain energies, see (5.4.5), is of order unity. 

An important observation follows with regard to the controversy over 

the merits of flat plate and curved shell finite elements. There are 
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frequent criticisms concerning the use of flat plate elements with regard 

to a supposed deficiency namely, the absence of coupling between bending 

and membrane actions within the individual elements. The above assessment 

of edge effect, which derives entirely from considerations of a single flat 

strip of flat finite elements, shows that these disparagements are without 

foundation. 

5.6 Assessment of inextensional bending by a matrix procedure 

To conclude the invesigation of bending action the rudiments of a 

matrix procedure are introduced. Although specific to the particular 

element described above it holds good promise of further development to 

facilitate the diagnosis of shell finite element assemblies suffering from 

deficiency in response to inextensional bending. The matrix procedure is 

an elaboration upon the well-known principle whereby presumed rigid body 

movements are revealed from eigenvalue analysis of the stiffness matrix 

without need for reference to actual comparison solutions. 

The stiffness matrix of extensional deformation is straightforward to 

obtain, it is simply the stiffness matrix of the transitional model where 

the bending freedoms are made known by the number of extra zero eigenvalues 

over and above those corresponding to the rigid body movements. Each 

associated eigenvector should then be obtained in some linear combination 

of the specific vectors of rigid body, inextensional bending and local 

rotational movement. 

It is convenient to work in terms of a specific example, so attention 

is focused on the simple 6 finite element shell model which projects onto 

the x'ý-plane as an equilateral hexagon as shown in Fig. 5.9. The numerical 

results are specific to the quadratic reference surface of (5.3.7) and 

values for the constants E, v and t are given in (5.4.6). 

The model has nv=7, ns = 12, n rs = 6, nr -1 and when these values 

are substituted into (5.3.1)-(5.3.6) they give 
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33, m ib ý 3, m1- 12, Nb- 15, Nm- 12 (5.6.1) 

Clearly an immediate purpose of the assessment is to rederive these values 

of M ib' Ml, Nb and Nm for they are generally unknown in advance. 

Recall that the global stiffness matrix [K] may be written as the 

sum of the extensional [K 
Y] and flexural [K 

K] stiffness matrices, 

[KI = [K 
yI+ 

[K 
K] ' [K 

y 
It [K 

K' eR 
33x33 

. (5.6.2) 

The assessment begins by testing for the existence of mechanisms in 

the transitional model where each finite element is assumed to have zero 

flexural rigidity. Any absence of suitable numbers and kinds of mechanism 

is taken to indicate that it is unlikely to have a satisfactory response to 

the actions of linextensionall bending and edge effect when [K 
K] 

is non 

zero as in the actual bending model. Let XY denote the eigenvalue of 

[K 
Y 

I., the stiffness matrix of the transitional model, where 

T Nxl [K 
y 

]u 
Iuuuu 

rm R (5.6.3) 

where u denotes a vector of global connection quantities. The 

eigenvalues XY are assumed to be arranged into ascending order of 

magnitude. Select the first n eigenvectors (n as yet unknown) which 

correspond to mechanisms and rigid body movements and arrange them into the 

columns of a matrix 

[A] c- R 33>m 
In< 33 (5.6.4) 

so that a linear combination of these eigenvectors may be written 

[Ald ,d c- R nxl 
2 (5.6.5) 
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where d is an arbitrary vector of constants. Since the bending rigidity 

has been removed it follows that the associated eigenvalues of XY should 

be zero if the eigenvectors, i. e. the columns of [A] , are to qualify as 

describing mechanisms and rigid body movements. In any event, the nth 

eigenvalue should be small enough to satisfy a measure of negligibility 

such as 

x (n) /X (n+1) < UR ,n>6 (5.6.6) 
yy 

as in (5.4.4) and (5.4.5). Every eigenvector in [A] should then describe 

the rigid body movements and nonlocal and local mechanisms in some 

combination. It is now necessary to identify the different kinds of 

movements. 

For the. finite element model of Fig. 5.9 it is found from (5.6.3) that 

there are n= 21 eigenvectors with X=0 where ), (22) 
= 0.67 x, 04 so yy 

that in (5.6.4) 

[A] C- R 33x2l 

In (5.6.5), let 

(5.6.7) 

d- [Dldl , [D] c- R, dl eR (5.6.8) 

where dl is another arbitrary vector of constants and [D] is the matrix 

of eigenvectors satisfying the eigenvalue problem 

[A] T [K 
K 

][A]dl = vd, . (5.6.9) 

The model in Fig. 5.9 gives the required 6 eigenvectors with p=0 so 

that the first six columns in [A'] y 
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R 33x2l (5.6.10) 

are vectors of rigid body movement. 

Now, omit the first six columns of [A, ] and then the primes so that 

n= 15 and 

33x15 15xl RIdR (5.6.11) 

It is good practice'to normalise the columns of this new matrix [A] and 

it remains to distinguish between the nonlocal and local mechanisms. Note 

that it has already been established that 

Nb= 15 ,N=N-Nb-6= 12 . (5.6.12) 

Let [A] be tested in the first instance for single connector (i. e. local) 

mechanisms, in other words test whether there exists one or more vectors d 

such that 

[Ald = (S lk'62k'***'633k) 
T (5.6.13) 

where 6 ij is the Kronecker delta and where the suffix k picks out. the 

single connector which is responsible for the mechanism. In the Appendix 

it is seen on writing 

[A]([A) T [A])- 1 [A) Tu*, 
u* rm R 33xl (5.6.14) 

where u* is a dummy global connections vector, that the symmetric matrix 

T -1 T [A]([A] [A]) [A] (5.6.15) 
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is unique with respect to any substitution of [A] with [A][D] , where 

[D] is arbitrary and of full rank. Moreover, the matrix in (5.6.5) 

reveals each single connector mechanism by its zero column and row with 

unit coefficient at the diagonal position. The model in Fig. 5.9 gives 12 

such single connector mechanisms which reconcile with the 12 mid-side 

rotation connectors giving 

12, m ib ýNb-m1=3 (5.6.16) 

Subsequent removal of the contributions of these 12 single connector 

mechanisms from [A] then permits reduction by standard means to the 

M ib ý3 linearly independent columns which describe nonlocal mechanisms 

orthogonalised with respect to the local mechanisms. The identification of 

a local mechanism which involves more than one connector requires a 

different procedure whose development is left for future research. 

The remaining 12 eigenvectors arising out of the solution to this 

eigenproblem for JK 
YI 

in (5.6.3) are associated with eigenvalues which 
46 

range over 0.67xlO <XY<0.42xlO . These eigenvectors give connector 

values of pure membrane action in the transitional model. Note, however 

that such connector values are not unique. This is because the pure 

membrane stresses remain unchanged when their eigenvectors of connector 

values are supplemented by any combination of the other 21 eigenvectors 

associated with X=0, i. e. associated with rigid body movements and Y 
nonlocal and local mechanisms. This lack of uniqueness is a clear 

reflection of classical membrane shell theory where the stresses derive 

solely from considerations of equilibrium. 

Satisfactory existence of presumed rigid body movements and of local 

and nonlocal mechanisms signals that it is worth giving attention to the 

bending model where the quality of the nonlocal mechanisms can be assessed 

in their interpretation as movements of linextensionall bending. The 

objective here is at first sight somewhat surprising. It is to perform a 

routine series of patch tests for inextensional bending which determine the 
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strain energy ratios UY /U 
K of (5.4.5) simply from examination of the 

global stiffness matrices [K 
Y] and [K 

KI and without any reference to 

the exact solutions*for the real shell. 

A preliminary step is to condense out all the interior connectors and 

so it is convenient to write the strain energy U as 

1T [K]u = 
j( T T) [Kll][K 12] u (5.6.17) u2!! 1 112 

1 

[K [K --Uu 11 
211 22] 

If 

2 

where vector u, 1 denotes the n1 boundary connectors and u2 denotes the 

n2 interior connectors so that 

[K 12 ]eR12f JK 221 GR22. (5.6.18) 

The strain energies UY and UK may be expressed similarly. In Fig. 5.9 

the model gives n1- 24, n2-9 so that 

24xl 9xl 
eR2u2 r= R 

By the usual means, 

112 = -[K 223- 
1 [K 21 ] ul f 

(5.6.19) 

(5.6.20) 

so that this u2 is the solution vector for all patch tests with 

prescribed boundary connectors u1 under the condition of homogeneous 

equilibrium in the interior of the shell model. 

The next step is to seek the appropriate number of vectors u which 

describe linextensionall bending to the satisfactory exclusion of membrane 

strain. Noting that (5.6.20) gives 

-[K 

[II[K 

]Jul 221 21 

(5.6.21) 
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with [I] eR 
24x24 

the identity matrix, it is suitable to consider the 

symmetric eigenproblem 

IKI]I! l = Xlu Ta-1 IKII eR 
24x24 

uQR 
24xl (5.6.22) 

y ý-l 1! 121 -y -1 

where 

JKII JK ]- JK -1 JK ]- JK [K 
y Yll 121 JK 22] y2l y121 

JK 22] 21] 

" [K 12 
I[K 

221- 
1 [K 

y22] 
[K 22]- 

1 JK 21) 

(5.6.23) 

[Kýl [K 
Kllj - [K 12] [K 22]-l [K 

K21] - [K 
K12] 

[K 22]-l [K 21] 

" [K 12] [K 22]-l [K 
K22 

I[K 22]- 
1 [K 211 

with 

uy =1T [K l[Kllul yy 

(5.6.24) 

1T u [K Ký Y-u 01! 
K 

vhere [K 
K] 

is recorded here in readiness for later use. The eigenvalues 

X, of (5.6.22) give y 

X' = 2U (5.6.25) 

and their values are listed in Table 5.9 where the presence of more than 

six X, which are identically zero is to be welcomed but experience with Y 
more complicated bending models indicates that the number of these zeros is 

not easily predictable and hence is not particularly meaningful. 

Investigation of the transitional model has shown that their should be 

M ib ý3 inextensional bending movements. If similar movements exist in 
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the bending model, then their vectors must be contained somewhere within 

the first few eigenvectors of (5.6.22) where the extensional strain energy 

UY is suitably small. In the light of the values listed in Table 5.9 it 

is entirely appropriate to consider for this purpose the first 15 

eigenvectors where the eigenvalues satisfy the measure of (5.6.6) with 

t/R - 0.27 x10-3 I 

= 0.32x10-'5, >�(16)/X, (17). 0.16 . (5.6.26) 
yy 

Let these 15 eigenvectors be denoted by [A] , where 

24x15 R (5.6.27) 

It is now the purpose to determine whether in [A) there is some linear 

combination of the vectors which are capable of describing: 

six rigid body movements which can be fixed on prescribing 

three U3 with three U1u2 connectors in u, , 

three linextensional, bending movements which can be fixed (5.6.28) 

on prescribing the remaining three U3 connectors in u 

in addition to the connectors already prescribed above. 

Similarly as in (5.6.9) and (5.6.10) it is simple to rearrange the 

columns of matrix [A] so that its first six columns are vectors of 

presumed rigid body movement. Now rearrange the rows of matrix [A] so 

that they correspond with (5.6.28) and hence provide the partition 

6x6 6x9 
[All] [A 12] 

24x15 3x6 3x9 
[A] [A 2 11 [A 22] 

15x6 15x9 
JA 31] [A 321 

(5.6.29) 
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where it is good practice to ensure that the columns are normalised. For a 

sensible choice of connectors which fix the rigid body movements, as in 

(5.6.28), the matrix [A,, ] should be non-singular with well conditioned 

inverse; hence the reduction 

6x6 6x9 
[All] [A 121 

3x6 3x9 
[A 21 1 [A 22 

15x6 15x9 
[A 31 ] [A 32 

x> 

6x6 6x9 
[1 6] 101 

3x6 3x9 
[Aj 211 [A 221 

15x6 15x9 
[Aj f Ai2l 311 

vhere [1 6]cR 
6x6 is the identity matrix and 

(5.6.30) 

[Ail] = [A 21] [All] -1 [A i2l = [A 22] - [A 21] 
[All] -1 [A 12] ' 

(5.6.31) 

[AJ I= [A )[A [AJ [A [A [All]- 1 [A 31 31 11 32] = 32] - 31] 12] ' 

If the three inextensional bending movements are present, then the matrix 

[Aj [A T [A - [A [All]- 1 [A [A [A [All]- 1 [A T 
22] i2] 22] 211 121)( 221 21] 120 

(5.6.32) 

should also be non-singular with vell-conditioned inverse leading to the 

final reduction 

6X6 6X9 
[l 61 [01 

3x6 3x9 
[Aý [A 211 2' 21 

15x6 15x9 
[Aj [A 311 k' 

6x6 6x3 
[1 6] 101 

3x6 3x3 
[Aý 211 1,31 

15x6 15x3 
[A' ] [A' 1 31 32 

(5.6.33) 

where [1 31cR 
3x3 is the identity matrix and 
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[All] = [A' ][A ]T([A [A' ]T (5.6.34) 
32 32 ý2 i2l 22 

Each of the last three columns at the right-hand side of (5.6.33) should 

then describe an inextensional bending movement albeit with the likelihood 

of exaggerated curvature changes. 

The actual calculations provide condition number CEI 

CE = II[A , [A' ITIIEII [A' [A , T)-IIIE 
. 13.2 (5.6.25) 221 22 

( 
221 221 

where suffix E denotes the Euclidean norm and this value is considered 

acceptable. Values of U /U are listed in Table 5.10 and these are seen yK 

to be in accordance with the requirement of (5.4.5). Note that a more 

refined analysis where the UK in Table 5.10 are minimised, leads here 

only to very small adjustments in the ratios UY /U K. 

5.7 Membrane action 

In this section results are presented of numerical experiments which 

investigate the ability of the vehicle elements to recover the remaining 

characteristic mode of deformation i. e. membrane action. 

It is appropriate to note that the quality of membrane strain ym in 

a 'pure' membrane action in the bending model, relative to effective 

exclusion of curvature. change Km 9 is measured in classical first 

approximation shell theory by 

tK = 0((t/R)y i. e. K= O(y /R) 
mmmm 

(c. f. (5.4.2)). It therefore follows that 'pure' membrane action may be 

defined to occur under the classical theory whenever 
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uK MY = 0(t/R) , (5-7.2) 

(c. f. (5.4.5)). In a similar manner to the investigation of bending action 

the shell finite element model is assessed through patch tests, with 

prescribed kinematic boundary conditions, now for capacity to simulate 

'pure' membrane action under first approximation theory. As for the 

previous patch test comparison examples it is assumed that the real shell 

surface projects onto the xoý-plane as an equilateral triangle with side 

length 2 units and with three vertices resting on the xoý-plane. The x3 

coordinate is given by the quadratic polynomial 

30x 3= 
-3 + 3(x 1_ 1)2 + 6xl3x 2_ 5(x 2)21 (5.7-3) 

1 
which gives a surface symmetrical about x. 1 with principal radii of 

2 
curvature 3.107 and -5.059 at the centroidal position x1-1, x= 1/vf3 

of its projection. Thus the shell is deep vith strongly negative Gaussian 

curvature. Displacement connectors Ui and rotation connectors ý,, on the 

boundary of the finite element model are assigned with the same values as 

determined by the solutions described in Section 4.4 for the real shell. 

Similarly, three Ua connectors are assigned so as to fix a rigid body 

movement in the xoý-plane. 

Values for the constant vectors a, h, S, see (4.4.1), defining the 

comparison solution are given in Table 5.11. Values obtained from the 

approximate solution of the Ui connectors at the centroid position in the 

finite element models assembled for a range of successive mesh refinements 

are shown in Table 5.12 along with comparison real shell values. Values 

for the constants E and v are as in (5.4.6) and and the shell thickness 

is now t=0.05 . The results of further calculations are given in 

Table 5.13 where global strain energies Uy and UK are listed together 

with the most significant principal values of membrane strain ym and 

curvature change Km in the finit6 element which encloses the centroidal 
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position of the given finite element models. The reference surface of this 

shell gives 

ý1)2 (t)2 2 0.16 0.24xlO 2R 0.39xlO (5.7.4) 

at the centroidal position. The tables show that engineering accuracy is 

achieved and the values of K are seen to fulfil the criteria of (5.7.1) 

which, along with (5.7.4), provides a definition of membrane action. Also, 

in the global sense, 'pure' membrane action of the finite element model is 

demonstrated in that the ratio UK /U is seen to be in accordance with the 

order of magnitude, see (5.7.2), demanded by first approximation theory. 

The values of the membrane stress resultants of 'pure' membrane action at 

the centroidal position also compare favourably with those for the real 

shell. 

5.8 Linear stability problems 

The design of thin walled structural components which are to be 

subject to significant compressive or shearing loads in their plane usually 

involves an estimate of their lowest buckling load. Buckling occurs when 

when a structure converts membrane strain energy into strain energy of 

bending. A thin walled structure having low bending stiffness but high 

membrane stiffness may fail dramatically because large bending deformations 

develop during buckling. 

In order to study buckling using the finite element method a matrix is 

needed that accounts for the change in potential energy associated with 

rotation of line elements under load. This matrix, which is denoted 

[k 
a], 

is called the geometric stiffness or initial stress stiffness 

matrix, and accounts for the effect of existing membrane forces on the 

Lending stiffness. 
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The following analysis follows that of a classical linear buckling 

problem and is therefore subject to the following restrictions. Forces 

applied to the structure are fixed in magnitude, global direction and point 

of application on the structure. Buckling displacements and rotations are 

small, membrane stresses remain constant at the instant of buckling and the 

problem is linear in the displacement variables. 

The restriction to linear problems implies that stresses used to form 

[k 
Cr 

] can be found by a standard linear analysis. A further independent 

analysis is then performed to find the displacements of buckling. In this 

class of buckling problem the distribution of stress is unaltered and the 

analysis proceeds to find the intensity which produces instability. 

A geometric stiffness matrix is derived by adding higher order terms 

to the strain-displacement relations and is described as consistent, see 

Cook (1981), if it is built using the same shape functions used to build 

the conventional stiffness matrix. An assumed displacement field is rarely 

competent enough to model the actual structural deformations, whether the 

problem is static deflection or buckling, and it is interesting to consider 

the effect of using different displacement fields. 

Before buckling occurs it is assumed that the structure is subject to 

a system of two-dimensional stresses comprising a membrane state of unit 

intensity. At some multiple X of this membrane state buckling is assumed 

to occur. The principle of stationary potential energy for the buckling 

problem takes the form, see Washizu (1982), 

6n = 

where 

(5.8.1) 

ý2 +112. (5.8.2) 11 =29 12 etß 
K Ni 

4 dZ'd ix1 
9 

Nxßu 3, ce 
u 3, ß vla dý dZ 
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For use with the vehicle element this functional must be modified so as to 

allow for a discontinuous deflection field. Use of Lagrange multipliers in 

a similar manner to that in Section 5.2 gives 

i tý (xo)qj 1210 
2T 

If 

91K MO 
K 
1\11 

Va d& d& + 
ý* 

u 31 ccU3,0 vla d &ld &2 

eee (5.8.3) 

d& 21 Jr 
'\(u3 - 3)" 3, Xl 

ee 

0 ao where N are initial in-plane stress resultants, X is the multiplying 

factor of the in-plane stress resultants necessary to achieve initial 

buckling and u3 is the line distribution of normal displacement on re 

common to adjacent elements. 

Now seek matrix expressions for the terms in the above variational 

equation. The first variation of the boundary integral is given by 

a &u3 &u 
H re +N 71 

'-2ý) (U 3u = 
re pl? 112 aý 

u3 

0 au 30 au 3 )8(U3 
- u3 )d ý21 (5.8.4) + 

lre (Alt' 
iaZ1, ýN 1121 aý 21 

SE[F IT [E 
(XI 

T [H] Tý ET+ N[HI[E 
cc 

1) d &21 [FIE fre (- 

where 

ju 333 (5.8.5) 1' U2' U3' ý114' ý115' ý1'61 

[F] = 

1 0 0 000 

0 1 0 000 

0 0 1 000 

-1 1 12 /2(l 1) 
2 1 31 /2(l 1) 

2 2A/1 100 

1 12 /2(l 2)2 -1 1 23 /2(l 2) 
2 0 2A/1 20 

1 31 /2(l 3) 
2 1 23 /2(l 3) 

2 
-1 00 2A/1 3. 

(5.8.6) 
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10 -1 1+2 &1 +2e 1-2 0 

0,1 -1 1+2&1+2e 0 1-2e 
(5.8.7) 

1_ 2121122 000 (1-& (5.8.8) 

hIh2 12 (5.8.9) 12 h2, ih 21 i 

where i=1,2,3 as appropriate to the element side. 

From the above it is seen that the boundary integral involves an 

integrand which is cubic in the coordinates ý-a . In the numerical 

calculations a second order Gauss-Legendre integration rule is chosen, 

which is able to exactly integrate a cubic polynomial. 

Transforming to global coordinates gives 

T T' 
+-0 611 §111T) [FIJ (JE I [H) NFE NIH]JE 1) d &21 [F)IT]U , re '-- - re cc cc - 

where the matrix [T] c- R 6x12 
is used to relate w to the global 

connection vector of (5.2.41). 

The remaining contribution to the element geometric matrix derives 

from the second area integral in (5.8.3). This is denoted by 

TTT"12 an SU [T][F] fs? [E 
cc 

] [H] [N][H][E 
(X 

I v(a d& d& [F][T]U (5.8.11) 

where the matrix of initial in-plane stresses is given by 

00 
N1,1, N, 

121 
00 (5.8.12) 
N 1121 N 2121 

1 
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Having established matrix expressions for U9 and 6nr it is now 

straightforward to identify the resulting form of the element geometric 

matrix 

Ik 
uI- 

IT] T IF) 
I JQ 

eIE 
ml 

T [H] T IN] [H][E A d& d& 

(5.8.13) 

+ 
Jre([r 

m] 
T IQ IT 

01NT [H ]TIE d& 21 1 
[F][T] 

Assembly of each of the element matrices [k] and [k 
Cr 

I gives the global 

matrices [K] and [K 
a] where the global matrix is based on an arbitrary 

reference intensity of membrane stress resultants. The modified potential 

energy principle gives, after a first variation, 

su T ([K] 
+ X[K 

a 
I)u =0. (5.8.14) 

This is a generalised eigenvalue equation for the linear stability problem. 

The critical buckling load is associated with the lowest magnitude 

eigenvalue of (5.8.14). The computed eigenvalue will be negative if 

membrane forces are taken as positive in tension. A negative eigenvalue 

also indicates a reversed direction of shear loading. The corresponding 

eigenvectors identify the buckled shape, but not its magnitude. 

The results of a number of simple examples are given in Tables 5.14 

and 5.15 for an isotropic flat plate and a cylindrically curved panel 

subject to various uniform in-plane loading conditions. The kinematic 

boundary conditions for the buckling problem are assumed to correspond to 

either simply supported or clamped edges and the finite element solutions 

are compared with classical solutions given by Timoshenko and Gere (1961). 

The examples are calculated using a range of mesh refinements over the 

whole mesh or, by use of symmetry, from the corresponding mesh over a 

quarter of the plate or panel. In all examples, the constants E, h and 

v are given as in (5.4-6). 
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The three sets of results labelled A, B, C listed for each combination 

of boundary and loading conditions in Tables 5.14 and 5.15 correspond to 

different choices of interpolation for evaluating the terms of (5.8.3) 

which are shown underlined. For case Au3 and u3 are both linear 

polynomials, in case Bu3 is quadratic and is linear and for case C 

both u3 is a quadratic polynomial and the contribution from the boundary 

integral is ignored. Note that case A corresponds to the geometric matrix 

proposed by Cook (1969). 

The results show that convergence to a buckling solution is attained 

for each of the test cases. Unfortunately, shortage of time has not 

allowed study of the more fundamental aspect of reconciling the concept of 

mechanisms in thin shell analysis with the actual buckling pattern. 
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CHAPTER 6 

AN ERROR ANALYSIS 

6.1 Introduction 

In this chapter a theoretical analysis of the numerical method is 

given for the triangular flat facet element approximation of circular 

cylindrical shells. The analysis combines the earlier work on the 

differential geometry of surfaces with some of-the tools of finite element 

error analysis to provide estimates for the interpolation characteristics 

for the vehicle element in terms of the characteristic size of an element 

in a regular family of triangulations. Although the considered middle 

surface geometry is simple, the error analysis is very complicated. This 

observation suggests that as a means of validating a candidate shell 

element this type of analysis has limited use as a routine procedure, 

unlike those described earlier which demand recovery of characteristic 

solutions on patches of elements. The intention here is to complement the 

results of the above numerical experiments and give a theoretical 

demonstration of the convergence of the vehicle element. 

It is a consequence of the complexity of the shell problem that 

although the literature has extensive accounts of the performance of shell 

elements in some simple test problems it is only recently that studies have 

become available which examine the convergence properties of shell finite 

elements. Some early work on the approximation of a circular arch subject 

to surface loads and satisfying clamped boundary conditions is given by 

Ciarlet (1975), Kikuchi (1975) and Johnson (1975) considers the case of a 

general arch. The extension of these works to a circular cylinder is given 

by Kikuchi (1984) and Bernadou et al (1988). Until recently there were no 

results for shells having arbitrarily curved middle surface geometry. Here 
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the pioneering work of Bernadou (1976,1980,1982,1988) must be 

acknowledged. Indeed it is in this work that the present less ambitious, 

yet complementary, contribution Is grounded. 

The basic idea in the following analysis is to consider the strain 

energy of the smooth shell middle surface to be approximated by the sum of 

membrane and bending energies determined element by element on the 

approximate faceted middle surface. The goal is then to show that this 

discrete representation of the strain energy can be made to approach that 

of the smooth shell by refining the mesh in a regular way. 

Due to the nonconformity of the vehicle element displacement field it 

is necessary to introduce an intermediate problem which considers an 

approximation over smooth curvilinear triangular patches defined on the 

middle surface, with patch and facet vertices coincident. Since the basis 

vectors for each patch are identical to those of the smooth shell middle 

surface, this approximation may be considered as a finite element method 

which is conforming for the geometry but nonconforming for the 

displacements. 

In order to get an approximate energy from the facet model which is 

consistent with the energy of the smooth shell it is necessary to introduce 

some constraints on the functions used to describe the displacement field 

over the facet and patch surfaces. The required estimate in strain 

energies is derived by considering the difference between facet and patch, 

and patch and smooth shell energies. 

Note that in the following the additional notation ()h is used to 

denote quantities that are defined element by element. 

6.2 The continuous problem 

Consider a portion of a cylindrical shell. on the middle surface take 

curvilinear coordinates (& I 1& 
2) 

where &1 and &2 are in the 

longitudinal and circumferential direction respectively, both having the 
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dimensions of length. The middle surface is assumed to be developed from a 

rectangular region, see Fig. 6.1. 

The displacement and distributed force of the shell are denoted by 

v. (v llv2lv3) and f- (f 1If2If3) where vi and fi are in the &i 

directions. The rotations of the shell are denoted by ýj and ý2 , and 

satisfy 

V 3,1 

V 
1v 

2 3,2 R3 

The shell is assumed to be clamped on the middle surface boundary 

r(BS? ) 

Ylr =0, aýv3lr =0, (6.2.2) 

where BV denotes the outward normal derivative operator. The strain 

displacement relations are given by (3.2.16) and (3.2.23): 

y1-1 11 V1,1 + R'3 pll(v) V3,11 R'I, l 

Y22(9 V2,2 P22 (V) v 3,22 (6.2.3) 

1 (V) v -I(v 3v Y12(v) Y(vl, 2 + V2,1) P12 - . 
3,12 4R 1,2 2,1 

Note that the component of twist P12 has been modified by the addition of 

Y12 /R , as is possible in first approximation theory, in preparation for 

the following analysis. 

The total potential energy of the shell may be expressed as 
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Et 
(I-V)y (v) y0 (v) + vy cc (v) y (v) 

I-N? 

l 

- oc a-- 

2 [(l-v) 
p (V) AV) 

+ vp", (V) p (v) T2- 

-fiv il vla d&1 

(6.2.4) 

The actual displacement of the shell in equilibrium is characterised by 

minimising the total potential energy subject to the essential boundary 

conditions (6.2.2). 

In order to formulate the above problem more precisely introduce 

notation for the function spaces related to S? Use is made of the real 

Sobolev spaces Hm(S? ) with norm where m is a non negative 

integer. In particular the inner product and norm of L2(2) a HO(S? ) are 

denoted by and The space V of admissible displacements 

is defined by 

M= (V - (vi? v 2v3)E «H 1 (9? » 2A2 (9); vir - avv31r - 01 , (6.2.5) 

equipped with the norm 

12,9 + 12 
9) (6.2.6) 1 ly I IV = 

(I IVI 111, 
S? +1 IV21 

11 
IV31 

2, 

Choosing u and v to be arbitrary functions of V and assuming the 

force f to be chosen from (L 2(2)) 
3 

provides the following statement of 

the shell problem: 

Given f r- (L(S2)2) 3, find u c- V that minimises the functional n(u) 

which may be written 

13 JIM L (fi, ui) (6.2.7) 
i=l 
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The necessary and sufficient condition for u6V to be the minimising 

function of the above functional is 

3 
a(u, v) L (fi, Vj) (6.2.8) 

i=l 

where 

a(u, v) = 
Et 

j(j_v)y(x(U)Y5(ý: 
) + vyce(U)YO(v) 

is? 

1-v 20-a oc -0- 

t2 [( 1-v) p cc (u) p 
0(v) 

+ vpo'(u)po(v)] A d&ld &2 1-2 0 cc a- 0 

(6.2.9) 

With regards the existence and uniqueness of the solution to (6.2.8) the 

following results of Bernadou and Ciarlet, (1976) are recorded. 

The bilinear form a(-, -) is V-elliptic in the sense that there exists a 

positive constant C such that 

CI1,!, 12 for any u -- v (6.2.10) Y-- 

It then follows by use of the Lax-Millgram lemma, see Ciarlet (1978), that 

for each fE (L2(S2)) 3, there exists a unique solution to (6-2-9). 

Furthermore 

I Im I IV GfiII 

where C is a positive constant independent of f. 
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6.3 The patchwise defined problem 

Consider a finite element shell model in which an approximation is 

made only of the displacement components. In effect consider a curved 

element approximation based on the curvilinear coordinates (& 1 
1& 

2)- 

Since ?ý is a polygon, it may be exactly covered by a regular family 

of curvilinear triangulations Th and assume each subdivision satisfies 

the regularity conditions, see Ciarlet (1978): 

(i) there exists a constant a such that 

h 
for each KQTh' 

PK 
< (6.3-1) 

vhere h diam(K) and p sup[diam(S): Sa ball contained in K); K 

(ii) the quantity 

max h 
KeTh 

approaches zero. 

(6.3.2) 

For the vehicle finite element it is necessary to consider the 

nonconforming finite element space Xh-X hl xx hl xx h2 ' The functions of 

x hl are such that 

(i) on every KTh they belong to P, (K) ;I 

(ii) on every KTh they are determined by their 
(6-3.3) 

values at the vertices of K 

0 (iii) x hi C- C(S? ) 

and the functions of X h2 are such that 
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(i) on every triangle KQTh' they belong to P2 (K) ; 

(ii) on every triangle K r. Th' they are determined by their 

values at the vertices and the value of ý,, at the 

midside nodes; 
2 (iii) x h2 C- TI H (K) 

K c- Th 

(6.3.4) 

Taking the boundary conditions into account provides for the 

definition of the space Vh in which the patch solution is sought, where 

v hl ý (V 1v c- H1 (52), VII, 0) 

v h2 u ('l '''2 (') , vIr = aJir = 0) ,1 
(6.3.5) 

KcTh 

so that the nonconformity of the patch displacement field is due to the 

normal displacement component vBGV h2 * In other words Vh is not a 

subspace of V and the patchwise problem involves a nonconforming 

approximation. 

The discrete problem for the deformation of the patch model of the 

shell may be expressed as: 

3 Given fE (L (9)) find uV such that 2 -h -h 

3 
ah (u h' v h) ý 2-(fi'vhi) vvh C- Vh (6.3.6) 

i=l 

where the approximate bilinear form a h(' .) is given by 

tß 
a ýt(2h) Yh cc(3ýh) + vyhc, ', (-uh) Yhß(-vh) h(1ýh'vh) 

IK 
7V2 (1-V)Yhcß 

K ET h0 (6.3.7) 

t20(^ 
If PhcP"(! ýh) Phcc + '"h'l(uh) PhP(vh) d &ld &2 

cc -14h 
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6.4 The discrete problem using the vehicle flat element 

The assembly of flat finite elements gives an approximate middle 

surface defined by the approximate mapping 1h which is the linear 

interpolant of r. This approximation replaces the smooth middle surface 

M of the real shell by a faceted middle surface Mh' see Fig. 6.1. By 

construction, the images of the vertices of the triangulation are in the 

middle surface M. 

To each flat facet k-r h(K) ,KeTh it is possible to associate a 

local basis, fundamental forms etc. as in Chapter 5. All these quantities 

are constant over any given triangle KeTh with, in general, 

discontinuities on interelement faces due to the discontinuity of the first 

derivatives of rh* 

Now construct the discrete space Vh in which the facet solution is 

to be sought. To this end first introduce the space 

xh=x hl xx hl XX h2 * (6.4.1) 

This is used to approximate the displacement components vhi on-the local 

base vectors a hi corresponding to a facet displacement field vh Since 

the local base vectors are constant in any given element the functions of 

X hi are determined element by element without regard for the connection 

conditions between adjacent elements. 

The functions of thp space X hl are such that in any triangle KGTh 

with vertices ZI the restriction v h1K 0f any function vh r= X hl 

is such that 

Vh IK '6- PI(K) ; 

vhjK is completely specified by the values VhIK(li) (6.4.2) 

(i = 1,2,3) -I 
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The functions in the space X h2 are such that on any triangle 

K CE Th- with midside nodes A 
:1 

the restriction v h1K of any function 

v hIK c- x h2 is such that 

Vh IK "-ý P2 (K) ; 

vhIK is completely specified by the values VhIK(Ei) , and (6-4.3) 

ýhll IK(AI) (i = 1,2,3). j 

Next consider two facets k+ and k- of the approximate middle 

surface Mh which have a common vertex or edge. The shared vertices and 

midside nodes provide for the following consistency conditions. 

First, a common vertex E may be associated with 

(i) a point on the smooth shell middle surface M. Any displacement 

field veV of the middle surface at the point a may be expressed as 

V(E) =vi (E)a I (6.4.4) 

where the point Z denotes the point in S? whose image under r is the 

corresponding point a on the middle surface; 

(ii) a vertex of the facet k+=rh (K+) . The displacement field ýýh c- 
-Xh 

ofthe faceted surface Mh has the following displacement components at the 

point S+ aa; 

+1 vhi( Z+)ah (6.4.5) 

(iii) a vertex of the facet k- =rh (K-) . Similarly, as in (ii) the point 

a-r. a has associated displacement components 

(Z-) =v (E-)a-1 , (6.4.6) Yh hi h 
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Secondly, a common midside node A may be associated with 

(i) a point on the smooth shell middle surface. The rotation component 

at the point A may be expressed as 

(h x+ bli ll(vh3, X ýAp)) (6.4.7) 

(ii) a midside node of the facet k+ =r h(K 
+ The rotation at the point 

Aý aA may be expressed 

fhl, (ý) ='h hllvh3, cc -i 
(6.4.8) 

(ii) a midside node of the facet k- -rh (K-)-. The rotation at the point 

,C aA may be expressed 

h cc v (A7) hll( hl' h3, % -i 
(6.4-9) 

The consistency conditions require the degrees of freedom of the space 

ýh to satisfy the following. 

(i) The displacement vector vh is continuous at the vertices a of 

the surface so that 

g') =v (E-) =v (E), YE r= T (6.4.10) 3ýh hhh 

(ii) The rotations satisfy 

ýh 1VA 
C- T 

Incorporating these conditions provides for the definition of the 

space ýh 
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r'2-Xh :vh satisfies (6.4.10) and (6.4.11)) (6.4.12) 

Note that a displacement Xh c- Xh associates the functions Vh i element by 

element which are such that 

v hee form a discontinuous plane faceted surface. This follows from 

the fact that v hcelK '12- P, (K) and the displacement components are 

referred to base vectors which are constant element by element and, 

in general, discontinuous between elements. 

(ii) v h3 forms a discontinuous curved faceted surface. This follows for 

similar reasons as in (i) but now vh3jK 6 P2 (K) 

(iii) the displacement field vh cc Xh associates with the approximate 

middle surface a discontinuous curved faceted surface vhich is 

continuous at 

has derivativ, 

Thus, the space 

(H i(g))2>di 2(S? ) 

condition holds 

the vertices of the corresponding triangulation and 

es aVh3 continuous at midside nodes. 

does not have sufficient smoothness for the inclusion 

to hold but only the weaker element by element 

HI (K) XH 
1 (K) XH 

2 (K) (6.4.13) 
K C- Th 

The function space Vh consists of those functions of Xh satisfying the 

essential boundary conditions of (6.2.3). 

The displacement field vheXh of the faceted surface provides for 

the definition, element by element, of the components of approximate 

membrane strain Yho, 5 and curvature change ph CCO as follows 

YhaP (v h2 (v hat +v hoc, (6-4.14) 

PhocP (v hv h3, ccO 
(6-4.15) 
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and the approximate bilinear and linear forms are 

Et ,a---0- 
h(4'wh - 

f, 
T- Yho Yh)yhoc(-Hh) + "ýyh(cx(-vh)yhP(H 

KEThK v2 -h 
(6.4.16) 

oc (- )- 0A 
1; 7 (1-V); )] 4 d&ld ý2 

Ic 

I 
hO 4 Phcc(-vh) + ")Ph(CC(4)PhO(-*"h hI 

3 
fh (v h) (f 

Iv hd (6.4.17) 

So that the strain energy of the faceted shell is approximated by the sum 

of the uncoupled membrane and bending energies of each element. 

The discrete problem for the deformation of the facet model of the 

shell may be expressed as: 

Find uheVh such that 

a h(2h'4) ý fh(-Vh) Vvh6Vh (6.4.18) 

where a h( ... ) and fh(. ) are defined by (6.4.16) and (6.4.17). 

The remainder of the proof depends on some well-known and fundamental 

results of interpolation errors, see Ciarlet (1978), theory of 

nonconforming elements, see Ciarlet (1978), Stummel (1980), Lascaux and 

Lesaint (1975), Rannacher (1979), and error estimates of geometric 

approximation. 

6.5 Patchwise approximation 

Define the nonconforming analogue of the norm 11*11h by 

32 
112 112 llýýhllh T- llvhllll, 

K + llvh2 
I, K + llvh3 

2, K (6.5.1) 
GThI 
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The above may be regarded as a norm over each Vh and can be extended in a 

natural manner so that it is well defined for functions in Vh+V 

Kikuchi (1984) has shown, using the techniques of Stummel (1980), 

that: 

for sufficiently small h, the following bounds hold 

22 Cl I 12ýh I lh ah -vh) 
ý Cl 114 1 Ih (6.5.2) 

for any , where C, and are positive constants independent Eh r= 
-Vh 

C2 

of h and vh.. 

From this it follows that the discrete analogue of (6.2.12) may be 

expressed: 

For sufficiently small h, the solution of (6.3.6) exists uniquely in Vh 

for f r. G2(5ý)) 3. Furthermore 

111 
^(, 

I ifi 111) 

V2 

(6.5.5) 1h I Ih C; I- 
i-I 

This last result ensures the uniform boundedness of the norms of the finite 

element solutions with respect to h- Utilising the discrete compactness 

properties and the convergence theorem of nonconforming methods proved by 

Stummell (1980) provides the route to the proof of the finite element 

solution in the sense 

li m 112h - 21 Ih ý0 
h4O 

(6.5.6) 

Consider the case where the solution ueV of (6.2.9) is sufficiently 

smooth so that 
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V+W (6.5.7) 

where W-H2 (Q)xH 2 (Q)xH 3 (9) with norm 

I IYI 1, = 
(I IV, I I, +I IV 12 +I IV 12 

% 
(6.5.8) 2,9 21 2, S? 31 3, Q) 

In a manner parallel to the analysis of Lascaux and Lesaint (1975) and 

Rannacher (1979) it is possible to obtain the asymptotic estimate 

ý Chlll! IIW (6.5.9) 1 I! lh- 21 Ih 

where C is a positive constant independent of h and u for 

sufficiently small h. 

6.6 Flat element approximations 

Consider the restriction v h1K to a triangle KeT of any function 

ýýh rý 
-Xh . 

For convenience of expression this will be denoted in the 

following simply by Yh . By construction vhcx is a linear polynomial 

over the element, so that for any point 
1 

1& 
2K the following 

hold 

3 
v ha LLiv hcc (E d 

i=l 

3 
v ha, OM LLi, v hcc (E d (6.6.2) 

i=l 

where E (i =12,3) are the vertices of the triangle K and 

Li are the linear Lagrangian shape functions for a triangle. 

The consistency conditions at the element vertices require the 

equality of displacement vectors of the facet and corresponding patch, i. e. 
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Yh(Ed = Yh(ld (6.6-3) 

Resolving each displacement vector along the respective base vectors for 

the facet and patch and then forming scalar products with aho gives 

3 
v (E )=Ld3v (Z ), 1-1,2,3 (6.6.4) hoc -i hoc hi -i 

where the coefficients 

d j(L)-a 
c- K. (6.6.5) hk(D -hk 

Using (6.6.4) and (6.6.5) to substitute into (6.6.2) gives 

3 
v hcc, d hoc (ji) Li, 0 Vhcc(-Ei) (6.6-6) 

It is intended that this inequality be used to relate the derivatives of 

in-plane displacements on the facet to the derivatives of displacements on 

the corresponding patch. This is achieved by considering Taylor series 

expansions as follows. 

Since the mapping defining the middle surface is assumed to be smooth 

the following expansions of the patch base vectors are valid: 

ýýjm +axx )aj 2j 
i ), (L) + O(h )ci (6.6.7) 

a. (E. ) = a. (&) + O(h 2 )C. it (6.6.8) 
3 

where ci and c are constant vectors independent of h. So that, by i ij 

making use of the Gauss and Weingarten relations, see (2.2.23) and 

(2.2.24), the base vectors may be written in terms of corresponding vectors 

at a general point &cK as follows 
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acc(Ei) = ax(j) - 
1(t'l' 

- 
X), cc (Q + O(h 2 )c ot (6.6.9) Ri1! 13 

- -i 

Ix X) 61 2 
ý! cc(jj) = ace(Q - g(&i -& ot a3(Q+ O(h ). ý i, (6.6.10) 

(E )=a (Z) l(eX 
- e>)a (Q + O(h 2 ). q , (6.6.11) 4iýR1 

-1 -i 

The smoothness of the mapping K provides 

1 )' 
-- (&) + O(h 2 )c x T(&i i 

(6.6.12) 

Recall the following properties of the Lagrangian shape functions 

333xxx 
LIL0LL6 (6.6.13) 

and that 

8L 

(X 
O(h' )ci(,, (6.6.14) 

So that the facet tangent base vectors may be expressed 

131122 
Rhoc '-' ýIcc(&) - TR- L Li, 

oc(&i ýý3 + O(h (6.6.15) 

Substituting into (6.6.5) from (6-6.9), (6.6.11) and (6.6.15) gives 

a2 cc d (Z )= &Opc + O(h )coi t (6.6.16) hO i0 

d3 (z &')s 1-13 ti 1) 2] 
+ O(h )c3i . 6-17) L (6 hoc iRi j=l 

P3 (K) and eCI (K) it follows by Taylor since v hcy GP1 (K) vh3 c vhj 

series expansion that for any LcKI 
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v hcx i) =v hcc(&) + (&i )Vhoc, X (6.6.18) 

v h3(-Ei) ý VB(ý) + (&i )v h3, X(ld (6.6.19) 

where GK 

Combining (6.6.16), (6.6.17) with (6.6.6) and making use of the 

properties of the shape functions gives 

v het, ß( e) = vhoc, ß( Q+6 
(X 

6ßZ Vh3( Z) 

i^ 110) .3 11 . O(h) Rehi (&) +O(h)c ap v hp, w+c ocol v 

(6.6.20) 

Thus, substituting into the definition of the facet membrane strain from 

(6.6.20), 

3 
+ O(h) V^ + O(h)c pw cil YhO(4) "ý YccO(4) 

Icao 
h' ocehij, co + (xOivh3 

'd 
11 

(6.6.21) 

which is an expression relating the membrane strains in the facet element 

to those in the corresponding patch. 

To obtain an estimate of the difference of these strain measures it is 

necessary to make use of the following result of interpolation theory in 

Sobolev space, see Ciarlet (1978), 

lvhjlp, 
-, K ý Ch llvhjlp, 

K p= O'l (6.6.22) 

Integrating over K and taking into account the following estimate for the 

size of 

meas(K) = O(h 2)f (6.6.23) 

yields 
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2[3^23^ 12 lb lyho: 
0(2ýh) - yocO (v h) 

10, 
K ý Ch Ivhi 101=, 

K + ý- Iv 
hi 1, -, K] j-1 

(6.6.24) 

< Ch v 12 v 12 v 12 lb [11'hli 
I, K + il^h2i 

1, K + il^h3l 
2, K] 

Attention is now focused on the expression for the facet normal 

displacement component in order to estimate the difference in curvature 

change measures in the facet and the corresponding patch. The analysis is 

considerably simplified by assuming the following property of the 

triangulations: 

the triangulations Th are constructed so that any triangle 

in T has one of its edges lying on a generator of the (6.6.25) 

cylinder, see Fig. 6.2. 

Consider again the restriction of a function to a triangle K. By 

construction v h3 is a quadratic polynomial over K and is such that 

33 
v h3(&) =L Mi(&)vh3 (ji) +L Ni(&)ýhj, (, ýi) (6.6.26) 

i=1 i-I 

33 
v h3, cc(Z) =L Mi, 

(x(Z)vh3 
(Ei) +L, (6.6.27) 

i=l i-1 - -1 

33 

h3, ccß( 
e) =L Mi, 

ccß( 
Z)vh3 (Zi)+LNi, 

ceß(ý)ehll(Ai) , (6.6.28) 
i=l i=I 

where Ai (i=1,2,3) are the coordinates of the mid-side nodes of the 

triangle, and Mi, Ni are quadratic shape functions. 

The equality of displacement vectors at the element vertices imposes 

the following relationship between the normal displacement component of the 

facet and the displacements of the patch 

v (Z )=d J(E (6.6.29) h3 i h3 -i)Vhj(Ei) ' 
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where di are defined by (6.6-5). Expressions for these coefficients are M 

obtained in a similar manner to the derivation of (6.6.16) and (6.6-17). 

Thus by Taylor series expansion 

&1)2 a'(&) + O(h (6.6-30) Ri 2R 21 

a2 (Z i)-a2M9 (6.6.31) 

(E )-a (Q + 
! (Z' - Zl)a (ý) __ ý1)2 a (ý) + O(h 3)1, (6.6.32) 23 i -3 -Ri -1 - 2R 2i -3 - -23 

and similarly, 

ii 

e)(C 
-+ O(h 4)ci 

61i- 

(6.6.33) 

So that, as in the derivation of (6.6-15), the facet base vectors may be 

expressed 

(&) -11-1 Boe( &1+ O(h 3 ). s 0 (6.6-34) 20C Pix(ý )ýý3(D 
R2. oc 

where 

ly; E L. (&ý -&1)2 (6.6.35) 
: L=l I'a I 

1)=1L. (& 11)3 (6.6.36) 
ot 2 CC i 

The facet normal vector a h3 is defined by the vector product 

20 -1 ýýhl xa h2 (6.6.37) 
Fh 
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see (2.1.19). Making use of (6-6-34) to substitute into the above 

definition gives 

3) 
ý102' -Mý3(&) +2 Bl( &1 ) ý3 + O(h (6.6.38) 

Fa. R 

where 

a-I+1 
[(A, ( &1))2 + (A &1))2 - 2B, (&')] + O(h 3)c (6.6.39) h R2 2( 

so that, 

11X ý1))2 + )2 3 
+1 

[(A, ( (A + O(h ! h3 '-- ý3 ý-R2 2(&1) 
1ý3(D )-c3 

(6.6.40) 

With this expression it is possible to determine the quantities d j(z 
B -i 

by forming the appropriate scalar products defined by (6.6.5). The 

resulting expressions are 

d1 (E )= 1[A, (Z1) - (d - ýl)]- + O(h 3) 
cl h3 -i R13' 

d2 (E 1132 (6-6.42) h3 -i 
P2(ý + O(h )C3 ' 

311111112 
h3 (Z 1+ -7y 7-2 ( &i 

RR 

-1 
[(A, ( &1))2 + (A &1))2] + O(h 3)C3 (6.6.43) 

2R 2 2( 3 

Combining (6.6.4l)-(6.6.43) together with (6.6.29) provides the 

following expression for the facet normal displacement in terms of the 

corresponding displacements on the patch: 
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tl)lvhl(li) 

(6.6.44) 2(&1 R 2R 

-1 2((A, (& 2+ (A 1 2]^ (1 )+ O(h 3 J^ I ýR 2(ý )) Vh3 i )cj3vhj(-i) 

Substituting from (6.6-44) into (6.6.28) and recalling the second 

consistency condition of (6.4.11) provides an expression for the facet 

curvature change entirely in terms of quantities referred to the 

corresponding patch: 

PhaO (v hv h3, 

fKl[A 
(& 1 (&il - &1) 1, 

v (E + )v (1j) i1 
Fhl 

-i R2 h2 

2 (ýj 
2R 

-1 2((A, (& 1 )) 2+ (A 1 2]^ (ji) + O(h 3 j^ 
ýR 2(ý )) Vh3 )c3vhj(Ei) 

i, *Oll 
[vh3, 

X R >A11(-Al 

33x^ 
Lmi, 

aeB 
(Ed+LNi, 

mo 
h1, vB, X(M (6.6.45) 

i=l i=l 

3 fR'[A 
(& 1)- (& 1&1 Lm. -v1AE i=l 

i12 )I^hl(li) +k 2"l)vh2( -d 

3 
LN (-hl Klv 
i=l i, C(O 11 hl 

311 
+m-A, (& 

i=l i, (Xol R2 2R 2 

1 
2((A, (ý 1 )) 2 (A 12^ 

ýR 2(& )) lvh3(-Ei) 

0(h)cj 
3. 

3 Vhj (Ii 



This expression is simplified using the following results, which are a 

consequence of the assumption (6.6.25). 

For a typical triangle in the mesh satisfying the assumption of 

(6.6.25), see Fig. 6.2, the quantities A 
(X(& 

1) 
are such that 

A1(1) ir i i) 
+ = 

A 2(& 
1)-01 

1111 (Ei) 9 

mi - 

Thus, using (6.6.46) 

311-1 
m. A (ý )(Z e)- i(ei 

- ý1) v (Z ) 
i=l i, oeßl 1i2i1 h3 i 

(6.6.46) 

11-11-313 X- x^ 
ý i(ý ý) T- m )V iý )(ý2 

i=l i=l i, ccß[vh3(Z) + (ýi h3, l( 
ýi) 

1-3 
iI C(o 

)v B, X(li 

(6.6.47) 

O(h)c xI 
Vh3fX(Y 

where use is made of the fact that a constant is invariant under the 

element interpolation scheme i. e. 

3 
H1 =0 

1=1 ' 
(6.6.48) 
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Similarly, 

1 2^ m 
1, ocß 

(A 1(Z »v h3 (Ei) 
i=l 

123 (A 1(& m i, mj%3(ý) + (&Iý v B, X('i (6.6-49) 

O(h)c Vh3, X(-&i) 

Next, consider the function 

I^ 
1(& )v hl(&) (6.6.50) 

which is a quadratic polynomial and so is invariant under the interpolation 

scheme of (6.6.26)-(6.6.28). Taking derivatives of this expression gives 

(A l(e )vhl(Z», 
cc =A l(ý )vhl, 

(X- 
Vhl 6 

ix ' (6.6.51) 

1(& )Vhl(&))IccP ý -Vhl, oc 
60-v hl, 06 cc 

(6.6.52) 

111221 
= -2v hl, 16 ce 

8ß-v hl, 2 (6 
(X 

8ß+8 
ot 

6 ß) - 

Thus, by (6.6.28), 

111221 
-2v hl, 1& cc 

&0-v hl, 2 (6 
cc 

60+606 
oc) 

(6.6.53) 
33 

LmN (hl, [A 
v 81 i cxßA1(Ei)Vhl(Ei) + i, ctß 1 hl, cc - hl X] - i. 1 

Now look at the function 

121) 2] (6.6.54) 

which has the following properties 
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f (Ei) -0, 

f, 1(") = A1(1) 

(6.6.55) 

f 2(Z) = 

M -6161 CXO a0 

Since v hl is a linear polynomial over K and f(j) is invariant under 

the interpolation scheme it follows that 

33-x 
(&)vhl, 1) p cco 

L mi, 
CO 

f(E i )v hl, I+TNi, c%O 
(hllf X)(Ail)vhl, l i-1 ial 

so that 

1 1,3 11 6v-LN. (hltA (& ))(A (6.6.56) 
cc 0 19 1 i=l II Oto 1 i)vhl, l * 

Substituting into (6.6.53) using (6.6.56) gives 

111221 
-2v hl, 18 ce 

8ß-v h1,2 (6 
ot 

6ß+6 
(X 

8 ß) 

3x^1 
m 

ccJ3ý IN (h v )(A )b (6.6.57) Ei)vhl(Ei) -6(z6ehl, l + i, (xA 1' hl -i X 

321 
Ni, 

oco 
(h,, A, (& ))(Ai)v M12 

Note that the coordinates A (X 1, )ý) of the mid-side nodes are related i 3. 

to the vertex coordinates by 

(6.6.58) 
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Expanding the last term on the right-hand side of (6.6.57) and substituting 

for . from (6.6.58) gives 

21-1^ N 2, ccP 
h ll(aw(ý2 &I )v hl, 2 (6-6.59) 

but for the special mesh with triangles K having side 2 parallel to the 

&2 axis 

20 (6.6.60) hl 

so that the last term of (6.6.57) vanishes. 

Substituting into (6.6.45) from (6.6.47), (6-6.49) and (6.6.56) gives 

I1 1^ 11221' 
Phccý (v hvB, ccP - 96(x6ehl, l - K(6m6O+ 6ct6O)vhl, 2 

3i^ 
O(h) Lv+ C" V, 

jXqj)l 
(6.6-61) 

i=l 

H 
hi i aA h3 

=3i^ 7- (ý )+2, v' ceß 
(V h)+ O(h) 

i=, 
[c3 

v hj -i cceh3, X(Zi )1 

It is now possible to obtain an estimate for the difference in the 

curvature change measures of the facet and corresponding patch. 

Integrating over K and making use of (6.6.22) and (6.6.23) gives 

33 
p Ch 2 [z: 

v 102 2 
PhccO(2ýh) - ocp(2ýh) 

I 
hi sco, K + 1: Ivhi 11,00, 

Kj 

Ch 12 +I IV 12 + JIV 12 lh [IIVhlI 
1, K h2l 1, K h3l 2, K] 

6.7 Convergence and error estimate 

(6-6.62) 

It is necessary to estimate the consistency error 

la 
h (4' Hh )-a h(-vh' W1 'V vh ,whe4' 4 ' -w. 

64 (6.7.1) 
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which represents the error in the strain energies evaluated patch by patch 

and facet by facet. From the definitions of the bilinear forms (6.3.7) 

and (6.4.16) it follows that 

ja 
h (yh' Wh) -a h(3ýh' Eh) 1ý 2- L JEKi 1 

KThi. 1 

where 

Et oc 0^I- (x --1 ý2 Ev (w va d& d Klý 
f 

! -+v-(Yg(^h)yoc -h 
YhP(-Vh)yh,, (! V ýah 

K 

E /a '(Vh) Yhoc(4 d&1 d& 2 
K2'-- 

fK 
1vh 

Et 
V(yA ýdycc(Hh) Yh 

00 
-Ii 

(6.7.2) 

(6.7.3) 

CX (X 
and two similar expressions involving p0 and ph, . Thus it is necessary 

to estimate the terms 

1y (v ) vfa - fa 
K1 ceß h- Yhocß h) 

10, 
K 

1 Poeß h) - Phctß( v h) 
10, 

K h 
10, 

(6.7.4) 

vhich are the differences in strain measures and determinant of the metric 

for the patch and associated facet. 

Consider estimating JE 
K11 . This may be written 

012 ot (^ )y (^ (a d& d& 0 Yh 
otHh) v ("(vh) Yh,, ( h 

fK 
- YhP -h 

fK Va 
h) Yp(y d &ld &2 V/a )yo(^h (6.7.5) 

ß deld ý2 w +1 Ja h[yc'(' )yß(w c'(-h) 
ß4m -h Yhß 2ý Yh« Wh 

K 

Recalling the estimate (6.6.39) it follows that 

I vfa - vla h 
10, 

-, K < Ch 2 (6.7.6) 

and so 
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f (, /a h) Yo'(' )yo(^ ) d& 1 d& 2 Ch 211^ (6.7.7) a 2: ot Hh 
-vh 

I Ih I lHh I Ih 
K 

Similarly, using the estimate (6.6.24) it follows that 

oc d ýld ý2 (a yo(w )--I 
KhI 

Y'PxQh cc h YhO 4)yhcc(Yh)' 

0 oc 121 ýI fK (-/a h- 
va)[Y'p(^h)y (^h) - YhAQh)yhcc(4 )] d& d& 

(6.7. B) 

ß--ß-d eld ý2 w /a [ yoc( )y (w )- x( 

Kß 
Mh cx -h Yh ß 4) Yh �(-wh) 

Ch II ýýh I Ih I llýh I lh 

Combining (6.7.3), (6.7.5)-(6-7.8) it follows that 

JE 
Ki Qýh, Yh )1ý Ch 1 13ýh 1 Ih 1 13ýh 1 Ih 

* (6.7.9) 

Similar analyses show that 

JE 
Ki (2ýh'yh )1ý Ch 1 12ýh 1 Ih 1 13ýh 1 Ih 

'i-1,2,3,4 . 

So that, 

ja 
h(-vh'-wh) -ah (V h'-wh)1 ý Ch llyhllh113ýhllh (6.7.11) 

Using this result it is possible to show the ellipticity of the 

bilinear form ah (-, -) - 

ah (v h' vhah (v hv h) +ah (v h4) -a h(4 v h) 

(6.7.12) 

12 11 v2- Chl hl 
Ih 13ýh 1h 
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i. e. there exists a constant a>0 such that 

2 
ah cc h (6.7.13) 

provided h is sufficiently small. Likewise, there exists a constant M 

such that, for all v h' Vh C- Vh 

la 
h (v h'lh 

la 
h(-vh'ýýh) + (a h(4'-*lh) -a h(-vh'Eh))l 

(M + Ch) 11 v hllhllwhllh 

(6.7.14) 

which shows that a (-, -) is continuous with respect to h- 

It then follows by the discrete form of the Lax-Millgram lemma and 

standard interpolation theory estimates that 

3 
2) 

Y2 
1 111h - 2h I Ih ý Ch (1: 1 Ifi 11 (6.7.15) 

i=l 

Finally, by use of the triangle inequality, the following estimate is 

obtained: 

I 12h - 21 lh ýI 12h - 2h I lh +I 12h - 21 lh 

3 
C 

J(T 
I Ifi 1 12)y' h 

(6.7-15) 

which is similar to the result obtained by Bernadou et al (1988) for the 

Clough-Johnson flat plate shell finite element. 
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CONCLUSIONS 

This work presents the results of a numerical and theoretical 

examination of the finite element method in application to the linear 

theory of thin shells. It is prompted by the increasing concern regarding 

the responsibilities which underlie all finite element analysis. More 

specifically, test results published in the literature are invariably 

inadequate in respect of the wide spectrum of attributes demanded of shell 

finite elements. This situation stems from the complexity of the 

underlying classical theory and the consequent specialism demanded by users 

and developers of shell elements. 

Four main avenues of thought have been followed in shell element 

design (see p. 57) but despite much research effort no single element 

emerges as the most effective based on criteria of accuracy, computational 

cost and simplicity of use. The fundamental difficulty to overcome in 

shell element design is the incorporation of adequate bending capability. 

Inadequacies in this respect are most apparent when the finite element 

model is required to recover displacements of inextensional bending. 

Insight into the role of bending in finite element analysis is gained 

by study of the simple combined constant membrane strain and constant 

bending moment flat triangles. It is shown that an assembly of these 

elements, known as the bending model, is able to recover each of the 

solution types which characterise the behaviour of a thin shell. The 

so-called transitional model derives from the bending model by removing the 

element flexural rigidity and this exposes the available bending freedoms. 

The membrane model then derives from the transitional model by removing 
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mid-side rotation connectors and it is appropriate to compare its behaviour 

against that of the classical membrane theory. 

A detailed examination of the transitional and membrane models reveals 

that the shell model is susceptible to a number of movements which are pure 

mechanisms and which extend over the whole finite element assembly. The 

fundamental result follows, namely, that the number of these mechanisms, 

which are identified as simulating the displacements of inextensional 

bending in the real shell, is directly related to the number of finite 

elements at the boundary and so do not occur in models of closed shells - 

just as with inextensional bending in the classical theory. In identifying 

with the displacements of inextensional bending advantage is taken of exact 

polynomial solutions available for shell middlesurfaces in explicit 

quadratic and cubic representation where depth and Gaussian curvature are 

easily controlled. The example surfaces treated here refer to shells which 

are very deep and have strongly negative Gaussian curvature and so 

constitute severe test problems. It is surprising to find that there are 

displacement prescribed patch tests, for both the quadratic and cubic 

surfaces, where the principal Cartesian displacement component of 

inextensional bending is exactly recovered at each element vertex from the 

mechanism of the membrane model. The remaining displacement components are 

recovered approximately with accuracy dependent on mesh size. The 

transitional model displays these same mechanisms in addition to mechanisms 

of local rotation at the element sides which find their interpretation in 

the bending model where they accompany the curvature changes both of 

inextensional bending and of edge effect. Thus, two very different roles 

are established for bending freedoms in thin shell finite element models. 

The bending model is similarly examined for inextensional bending 

under displacement and rotation prescribed patch tests, specifically in 

regard of its consistency with results of first approximation theory. It 

is found that surprisingly good recovery is obtained not only of 

displacements but also of curvature change to the effective exclusion of 

membrane strain. Also, a satisfactory ratio of membrane to bending strain 
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energy is obtained. The test results are obtained for different mesh sizes 

and are compared in various tables against the real shell values. 

Ability to adequately recover curvature change is considered further 

in examining the response of the bending model to local edge effect. The 

vehicle finite element is used to model the behaviour of a cantilever 

circular cylinder under the action of a uniformly applied bending moment. 

The axisymmetry of the problem leads to consideration of a single 

longitudinal flat strip. Surprisingly good agreement is obtained with the 

comparison solution for the stress resultants as well as for the 

displacements. An important observation follows with regard to the 

respective merits of flat and curved elements. These results demonstrate 

that the absence of coupling of membrane and bending actions in a flat 

element do not constitute a deficiency. 

In view of the subtleties of inextensional bending it is recommended 

that special concern be given to the testing of all candidate shell 

elements for their capacity to deal with this type of problem. As a first 

step toward a routine method of examination the investigation of bending 

action is concluded by giving details of a matrix procedure which is 

intended to identify the ability of a shell finite element model in 

response to inextensional bending. The matrix procedure is an elaboration 

of the well-known principle whereby rigid body movements are identified 

from eigenvalue analysis of the stiffness matrix. 

Two further sets of numerical experimepts demonstrate the satisfactory 

capability of the vehicle element to represent the effect of membrane 

forces. In the first set patch tests are constructed using solutions for 

the displacements and rotations of membrane action in shells having middle 

surface of quadratic parametric representation and negative Gaussian 

curvature. It is found that the element is able to recover 'pure' membrane 

action in the bending model to the effective exclusion of curvature change, 

in a manner consistent with first approximation theory. For the final set 

of results the geometric stiffness matrix is developed and used to solve 

the elastic stability problem for flat plates and circular cylindrical 
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panels. Convergence of buckling solutions is obtained in both cases for 

various boundary and loading conditions. 

To conclude this work the results of a preliminary study of the 

mathematical details of convergence of the vehicle element are explored. 

The investigation is specific to the simple geometry of a circular cylinder 

and clamped boundary conditions. It is shown that, despite the highly 

nonconforming nature of the element, O(h) asymptotic convergence in the 

energy norm is achieved and in this respect is similar in behaviour with 

existing results for the Clough-Johnson flat plate shell finite element. 

By way of final comment, it is believed that this work has revealed 

new insights into the behaviour and fundamental requirements of shell 

finite element models. The elementary considerations of mechanisms in the 

membrane and transitional models seem to provide a rationale for shell 

element design and validation as well as prompting thoughts on mathematical 

abstraction. The development of these ideas is suggested as possible 

future work. 
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APPENDIX 

MATRIX IDENTIFICATION OF SINGLE CONNECTOR MECHANISMS 

Consider a matrix [A] with linearly independent normalised columns, 

[A] cRm xn m>n2=1, Rank [A] -n (a ij) 

as in (5.6.4). The identification of single connector mechanisms 

(movements) essentially reduces to the problem of determining whether there 

is some vector d such that 

[Ald - (S lk'62k*'*' 6 
mk) 

T11<k<m, (A. 2) 

with 6 ik the Kronecker delta and where the index k picks out the 

connector which is responsible for the mechanism. 

The least squares solution vector d in the overdetermined system 

u= [Ald ucR mxl dcR nxl (A. 3) 

is 

d= [Al+u [A]+ cR nxm (A. 4) 

where [A]+ is the pseudo-inverse, 

TT [A]'4'= ([A) [A])- [A] 

Use is made of uniqueness of the form 
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11 - QA] T [A])- 1 [A] Tu*Iu*cR mxl 
I (A. E) 

which is demonstrated by letting 

nxm nxl [D] cR dl cR9 Rank [D] -n 

(A. ) 

= [B]dl , say 

(c. f. (A. 3)), so that 

[B]([B] T [B])- 1 [B] Tu 
jK [A]([A) T [A]) -1 [A] TR. (A. 8) 

Illustratively, suppose that [A] can be partitioned so that 

[A] = 
11 

1, 

(A. 9) A 21 1 

where the scalar in the last column reveals the existence of a single 
T connector mechanism at connector u M. 

in u- (u l'u2"**Um) 
(c. f. Eq. (A. 2)). Then 

AT, A+ATAAT 
[A IT [A] 11 21 21 21 

(A. 10) 
A 21 1 

and on writing 

T1c 11 c 12 QA] [A])- 
T (A. 11) 

12 22 

it follows that 

[C 12] = -[C11 ][A 21 IT [C 22 11+ [A 21] [C11][A 211 
T (A. 12) 

whence 



151 

QA IT [A]) -1 
A 11 c 11 0 

(A. 13) 
01 

where the last column is identical with that in Eq. (A-9) and so reveals the 

presence of a single connector mechanism. 

Uniqueness of the symmetric'matrix (A]([Al T [A])- 1 [A] T (see Eq. (A. 8)) 

therefore means that each single connector mechanism is identified by its 

own zero column and row with unit coefficient at the diagonal. Subsequent 

removal of single connector mechanisms from [A] in Eq. (A. 1) then permits 

reduction, by standard means, to linearly independent columns which 

describe the nonlocal mechanisms orthogonalised with respect to the single 

connector mechanism. 

The matrix [A]([A) T [A])- 1 [A] T 
can sucessfully be used in some other 

circumstances where one connector is dominant in a multiple connector local 

mechanism or movement. Also note that each column in [A]([Al T [A])-'[A ]T 

derives from linear combinations of the columns in [A] . 
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Table 5.1 Values of h-symbols &long sides 1,2,3 of the element. 

side h1h2h1h2hh1, h 
21 

h 
2' 

1, lt 2' 21 212 

11 -1 1 
/2A 1 12 /4Al 10 -1/1 1 -2A/I 10 -1 12 /21 1 11 

21 
12 /4Al 2 -12 /2A 1/1 2 00 -2A/I 212 1 

12 /21 2 

1 
13 /4AI 31 23 /4Al 3 -1/1 3 1/1 3 2A/1 3 2A/I 3 -1 23 /21 31 31 /21 3 
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Table 5.2 Example values of constants cl, c 2' c 3*** for inoxtonsional bending of triangular shell models 
(a** Fig. 5.2) of the quadratic reference surface of (5.3.7). 

q=2 q=3 q4 q5 

cl 0. 0. 0. 0. 
*2 0.300678x10-1 0.152376x10-1 -0.212234x10-1 -0.322396x10-3 
*3 0.347193x10-1 0.460248x10-1 0.277990x10-1 -0.432098x10-1 
c 4 -0.150339X10-1 -0.4 19051x10-2 0.123448x10-1 _O. 198900x10-4 

c 5 0. -0.670804x10-4 0.735445x10-3 -0.267412x10-7 
* 6 -0.250565x10-1 -0.6 98419x10-2 0.205747x10-1 -0.331499x10-4 
* 7 -0.171414x10-2 0.25163 4x10-2 -0.822547x10-4 
* 8 -0.915157x10-2 -0.103913x10-1 -0.384299x10-2 
* 9 -0.857071x10- 

2 0.125817x10-1 -0.411274x1 0-3 

* 10 _O. 50842, x, 0-2 -0.577294x10- 
2 

-0.213 499x10-2 

* 11 -0.169145x10- 
2 0.139820x10-4 

* 12 0.179294x10- 4 0.815934x10-4 

* 13 -0.169145x10-1 0.13982 ox, 0-3 

* 0.298823x10- 4 0.135989x10-1 

* 
14 

15 -0.469846x1 0-2 0.388389x10-4 

* 16 0.362087x10-4 

* 17 0.865817x10-4 

* 18 0.603478x1 0-3 

* 0.288606x1 0-3 

* 
19 

20 0.502 899x10-3 

* 21 0.4810D9X10-4 
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Table 5.4 Example values of constants c,, c 2' c 3- for inoxtensional bending of triangular shell models 
(see Irig. 5.2) of the cubic reference surface of (5.3.8). 

qw 9w q= 5 

c1 0. 
-1 3 c2 0. 11121x10 

c3 0.646307x10 

c4 -0.155560x10 

c6 -0.155560x10 

c7 0. 

c 0. 

c 10 -0.155560x10 
c 11 
c 12 
c 13 
c 14 
c is 
c 16 
c 17 
c 18 
c 19 
c 20 
c 21 

0. 0. 
0.412260x10-1 -0.179977x10-1 

-0.271618x10-1 0.663029x10-1 

-0.358083x10-2 -0.130992X1 0-2 

0. 0. 

-0.358083x10-2 -0.130992x10-2 
0.110490x10-2 

0.322275x10-1 -0.738447x10-2 
-0.255482x10-1 0.331470x10-2 

0.716166x10-2 -0.377141x10-2 
0. 

-0.344896x10-2 
0. 

-0.255482X1D-1 -0.134 255x10-3 

0.161137x10-1 -D. 369224x10- 2 

0. 

0. 

0. 

0. 

-0.517344x10- 
2 

0. 
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Table 5.8 Results for cantilever circular cylinder under uniform edge bending moment. 

Real shell FE bonding model 

coarse srt*sh 
b- fine moshc 

u3 0. 0.1320 0.1189 0.1214 

Nee 0.03597 0.577140 4 0.5748xlO 4 

0.01*798 0.6181xlO 4 0.5944xlO 4 

m 0.03597 0.9959XIO 2 0.100OX10 3 
xx 

0.01798 0.9989xlo 2 0.100OX10 
3 

Mee 0.03597 0.2999xlO 2 0.2531xlO 2 

0.01798 0.301040 2 0.281840 2 

u - 0.2945xlO 1 0.299240 1 0.2988xlO 1 

u 
K - 0.883840 1 0.8489xlO 1 0.856OX10 1 

U /U - 0.3332 0.3525 0.3490 
Y K 

U +U - 
2 0.117840 2 0.1148xlO 2 0.115240 

K 

Cylinder modelled using 128 flat strips each subtending an angle of 2.8125 degrees. 
a at center of leading finite element. 
b 

48 finite elements in longitudinal direction. 
c 96 finite elements in longitudinal direction. 



170 

Table 5.9 Eigenvalu*s X, of (5.6.3) and associated strain energy ratios UY""UK for the hexagonal shell 
bending model (see Irig. 5.7) of the quadratic reference surface of (5.3.7). 

Number X, = 2U 
yy 

U /U 
yK 

Number X, = 2U 
yy 

U /-U 
y 

1-12 0. 0. 19 0.7386xlO 0.110640 
6 

13 0.9557xlO-5 0.188OX10-5 20 0.910SX10 5 0.6598xlO 7 

14 0.158 SX10-3 0.4834X10-5 21 0.105SX10 6 0.689440 5 

is 0.2778X10-1 0.6634xl 0-3 22 0.1158xlo 
6 

0.6194xlO 6 

16 0.864940 4 0.3644xlO 
3 

23 0.127440 
6 

0.3046xlO 5 

17 0.5327xlO 5 0.5825xlD 5 24 0.1630xlO 6 0.2577xlO 7 

28 0.64Q5xlO 5 0.176240 5 
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Table 5.10 Energy of the three linoxtensionall bending movements in the hexagonal shell bending model 
(see Fig. 5.7) of the quadratic reference surface of (5.3.7). 

Number UyUK Uy'ýUK 

I 0.4856xi 0-2 0.1167xlO 2 0.4 161X10-3 

2 0.494 5XIO-2 0.1017xlo 
2 

0.486 8X10-3 

3 0.1942XIO-l 0.310040 2 0.6267xl 0-3 
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Table 5.11 Example values of constant vectors a, b, c for membrane action of triangular shell models of 
the quadratic reference surface of 15.7.3). 

a 

0. 0. 0. 

-0.482803x10-6 -0.396777x10-5 0. 

0. -0.208187x10-5 0. 

-0.104967X1 0-6 0.284937x10- 6 
-0.634674X1 0-7 

-0.531413x10-6 -0.146 465x10-6 0.924589x1 0-7 

0.12542 5x10-6 -0.189747x1 0-6 0.805030x10-7 

-0.47722 Sxlo-7 -0.233340x10-6 -0.148012x1 0-7 

0.183844x10- 6 
-0.280479x10- 

6 
-0.164282x10- 

6 

0.320697x10-6 0.192828x10-6 _O. 301558x10-7 

-0.133 839x10-6 0.9314 Bßxlo-7 0.193004x10-7 

0.873495x10- 8 
0.733368x10- 8 

-0.201270x10-7 
0.207492x1 0-7 0.112285x10-8 0.36514 5x10-7 

0.347759x1 0-7 _O. 18834, x, 0-7 0.122107x10- 6 

0.467554x10-7 0.788306x10-8 0.190071x1 0-7 

0.150173x1 0-7 0.533595x10-8 -0.564881x10-9 
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Fig. 2.1 GeOmetry of a shell. 
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Fig. 2.2 Unit vectors defining boundary curve coordinate system. 
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Fig. 2.3 Unit vectors at a point on the middle surface. 
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Fig. 3.1 Section through a shell. 
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Fig. 5.1 Flat triangular finite element. 
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Fig. 5.2 Equilateral triangular projection of example real shell and its 

typical finite element model onto the x"ý-plane. 
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Fig. 5.3 Example of compounded element which makes no additional 

contribution to the nonlocal mechanisms. 
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Fig. 5.4 Perspective view of the negative Gaussian curvature surface 

defined by (5-3-7). 
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X=L=10 

2R 

R= 10 
L= 10 
h= 0-05 
() 

= 2-81250 
E= 107 
V= 0-3 

491 

Fig. 5.7 Cantilever circular cylinder under uniform edge moment. 

x=O x=1-295 x=3-022 
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Fig. 5.8 Results for cantilever circular cylinder under uniform edge 

moment. 
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Fig. 5.9 Equilateral hexagonal projection onto the xýx-plane of an example 

6 finite element shell model. 
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Fig. 6.1 The mappings r and rh defining the smooth shell middle surface 

I%- . 41 i//T/ 

M and approximate facet middle surface Mh* 
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Fig. 6.2 Example of a triangle satisfying the assumption of (6-6.25). 


