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Abstract 

 

Medical volume segmentation got the attraction of many researchers; therefore, many techniques 

have been implemented in terms of medical imaging including segmentations and other imaging 

processes. This research focuses on an implementation of segmentation system which uses several 

techniques together or on their own to segment medical volumes, the system takes a stack of 2D 

slices or a full 3D volumes acquired from medical scanners as a data input. 

 Two main approaches have been implemented in this research for segmenting medical 

volume which are multi-resolution analysis and statistical modeling. Multi-resolution analysis has 

been mainly employed in this research for extracting the features. Higher dimensions of discontinuity 

(line or curve singularity) have been extracted in medical images using a modified multi-resolution 

analysis transforms such as ridgelet and curvelet transforms. 

The second implemented approach in this thesis is the use of statistical modeling in medical 

image segmentation; Hidden Markov models have been enhanced here to segment medical slices 

automatically, accurately, reliably and with lossless results. But the problem with using Markov 

models here is the computational time which is too long. This has been addressed by using feature 

reduction techniques which has also been implemented in this thesis. Some feature reduction and 

dimensionality reduction techniques have been used to accelerate the slowest block in the proposed 

system. This includes Principle Components Analysis, Gaussian Pyramids and other methods. The 

feature reduction techniques have been employed efficiently with the 3D volume segmentation 

techniques such as 3D wavelet and 3D Hidden Markov models. 
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The system has been tested and validated using several procedures starting at a comparison with the 

predefined results, crossing the specialists‟ validations, and ending by validating the system using a 

survey filled by the end users explaining the techniques and the results. This concludes that 

Markovian models segmentation results has overcome all other techniques in most patients‟ cases. 

Curvelet transform has been also proved promising segmentation results; the end users rate it better 

than Markovian models due to the long time required with Hidden Markov models. 
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Chapter 1          

Introduction 

 

1.1. Introduction to Medical Image Segmentation Systems 

 

Medical imaging is the process of creating images of the human body for clinical purposes, 

a medical procedure seeking to reveal, diagnose or examine disease, or a medical science 

including the study of normal anatomy and physiology [1] (the imaging of removed organs 

and tissues can also be performed). 

Medical image segmentation is the process of labeling each voxel in a medical 

image dataset to indicate its tissue type or anatomical structure. The labels that result from 

this process have a wide variety of applications in medical research and visualization [1][2]. 

In recent years, the demand for medical image segmentation systems has risen significantly. 

Both commercial and healthcare organizations require methods to facilitate the process of 

analysis undertaken by their staff. 

The segmentation system input data is a grayscale digital medical imagery such as results 

of the most popular scanners: Positron Emission Tomography (PET), Computed 

Tomography (CT) and Magnetic Resonance Imaging (MRI). The desired or the segmented 
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output contains the labels that classify the input grayscale voxels. The purpose of 

segmentation is to provide richer information than that which exists in the original medical 

images alone. The collection of labels that is produced through segmentation is succinctly 

described with regard to function as a voxel by voxel guide to the original imagery [2]. 

Segmentations are also valuable in building anatomical atlases, researching the shapes of 

anatomical structures, and tracking anatomical changes over time. 

2D grayscale images on a light box are insufficient for many applications, due to the 

classical methods of medical image analysis. When detailed or quantitative information 

about the appearance, size, or shape of patient anatomy is desired, image segmentation is 

usually the crucial first step [3]. Many interesting applications are based on image 

segmentation, including 3D visualization, volumetric measurement, research into shape 

representation of anatomy, image-guided surgery and detection of anatomical changes. 

In contrast to generic segmentation methods, methods used for medical image 

segmentation are often application specific, they can use the prior knowledge for particular 

Objects Of Interest (OOI) and other expected or possible structures in the image. This has 

led to the development of a wide range of segmentation methods addressing specific 

problems in medical applications [4]. The study of detecting lesions in the human body is an 

important application of segmentation tools. A contour detection algorithm based on a radial 

edge-detection filter was developed for Digital Imaging and Communications in Medicine 

(DICOM) images acquired from medical scanners such as PET, CT or MRI. The objective of 

segmentation algorithm is to define a Region Of Interest (ROI) in terms of size and type; this 

may be a lesion, or any foreign object in the human body [1]. 
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Computational time is an important issue that must be kept in mind when using any 

application [5]; computational time is very important in medical image segmentation 

systems. In order to implement a real time system, the employment of slow segmentation 

methods should to be either avoided or accelerated (if applicable). Many accelerators are 

available, but not all of them can be used to accelerate the segmentation process due to the 

data loss that should be avoided in medical imaging, as well as other important factors. 

The slowest blocks in the proposed system were accelerated using some Feature 

Reduction (FR) techniques. FR or dimension reduction is the process of reducing the 

number of random variables under consideration and can be divided into feature selection 

and feature extraction. 

 

1.2. Aim of the Project and Research Objectives 

 

Due to the important roles of medical image archiving and analysis, and their wide range of 

uses, this research has several applications. The reason for doing this research is to 

investigate the best way to implement a robust, accurate and automatic segmentation 

system; this may include multiple techniques used together to ensure that best 

segmentation results are delivered. The system was tested first on predefined phantom data 

before its generalization it for real clinical applications, as well as it used to be as fast as 

possible. 

The main aim of this research is to enhance the application of some segmentation 

techniques, and use them together with other implemented techniques in medical volumes 
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segmentation to make the system more accurate, robust, lossless and faster in 

computational time. This aim can be achieved by targeting the following objectives: 

 

 Review the related literature that has been previously done in the area of medical image 

processing and its applications. 

 Investigate the use of wavelet transform and higher dimensional multiresolution analysis 

including ridgelet and curvelet transforms in medical image segmentation systems. 

 Enhance the use of Hidden Markov Models for medical image segmentation by using 

gray scale values to generate the observation sequence and the emission matrix. 

 Segment medical volumes directly using 3D techniques instead of applying 2D 

techniques on each slice independently, in order to get more accurate results. 

 Accelerate the slowest blocks in the proposed system to reach a fast time segmentation 

system using software accelerators such as FR techniques. 

 Come up with a new automatic, unsupervised and real time segmentation system 

incorporating different segmentation techniques to be used with the scanners directly. 

 Validate the implemented system for real clinical applications using several procedures 

and pre-analyzed clinical datasets affected by lesions. 

 Investigate the use of the proposed systems for other purposes. 

 

1.3. Motivations 

 

Two fundamental aspects of medical imagery make segmentation a difficult problem. The 

first aspect is the imaging process itself, and the second is the anatomy that is being 
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imaged. For any imaging process, the output image’s interactions with the tissues of interest 

will provide clinically relevant information about the tissue in the resulting output image. 

However, this does not mean that the anatomical feature of interest will be particularly 

separable from its surroundings; it will not be a constant grayscale value, and its borders will 

not be presented by strong edges. In fact, due to noise in the image as well as the 

inhomogeneity of human tissues, the interaction of the imaging process with the tissue of 

interest will often produce a “grainy” region that is more detectable by the human eye than 

by sophisticated computer algorithms. Therefore, simple image processing such as 

thresholding is not generally successful when applied to medical image segmentation. 

 Thresholding and some other simple image processing techniques are lossy 

techniques; this means that many important features will be lost in the transformed image 

after applying those techniques for medical image segmentation. These features could be 

presenting an important factor in quantifying the cancer. Some other lossy techniques are 

used within the proposed system, but the data loss occurred here are mostly in the noise 

surrounding the main obstacles. Wavelet transform is an example of those techniques, 

unwanted noise is lost and the important features are extracted. Although wavelet is lossy, 

but it is very solid in the proposed system, the original image can be extracted from the 

transformed output at any time. 

 The preferred type according to data loss is the lossless techniques, those 

techniques transformed the image and segment it without any data loss, curvelet transform 

is one of the lossless techniques. Applying curvelet transform on medical images deliver a 

transformed output highlighting the important features without any changes in the other 

image features. 
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Many segmentation techniques have been implemented for the purpose of medical image 

segmentation, some of them could deliver a good segmentation accuracy but fail in other 

performance factors, such as the long computational time required for segmentation. The 

segmentation process accuracy is very important in medical imaging and cancer diagnosis; 

the transformed image (segmented one) should be as much reliable as possible and 

significant errors (especially for the detection stage) are not accepted. The work that have 

been done before in this area with its limitations and benefits will be further explained in 

detail in chapter 3. 

The proposed system focuses on facilitating the process of analyzing medical 

images, particularly complex images that cannot be analyzed easily based on the 

radiologists vision. Different techniques have been implemented in this thesis and used 

together to deliver an accurate, lossless, solid, fast and easily analyzed segmented output. 

Fig. 1.1 illustrates the proposed medical image segmentation system which has been 

designed to address the segmentation difficulties and facilitate the work of the end users. 

The segmentation process can be done in two ways, either to use 2D segmentation 

techniques to segment all slices one by one and then do the volume reconstruction to create 

the segmented volume. The other way is to use the 3D segmentation techniques directly on 

the scanner output without any partitioning into slices. 
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Medical Volume Source (System Input)
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Volume 
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Fig. 1.1: The proposed medical image segmentation system 
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1.4. Contributions to knowledge 

 

 Some of the proposed techniques have been used before in other applications 

including image processing and other areas. Multi-Resolution Analysis (MRA) using 

wavelet transform has been previously used in signal processing, power system 

protection, numerical analysis, managing databases, face recognition, image 

compression and many other applications, including medical image segmentation. 

The novelty here is to enhance the wavelet transform; different decompositions and 

filter types have been implemented in this study to deliver the most possible accurate 

results. Higher dimensional singularities MRA such as ridgelet and curvelet 

transforms have been implemented here to improve segmentation process. These 

two transforms have been implemented before in other applications, but never used 

for medical image segmentations, especially in collaboration with other system. 

 The second novelty implemented in this study is the enhanced use of Hidden Markov 

Models (HMMs) in medical image segmentation; HMMs have been employed for the 

purpose of medical imaging as well as other imaging applications. What is new here 

is the use of a new kind of observation sequence to train the image data, and the 

consideration of gray scale values in forming the probability matrices during the 

training HMM process. This makes the segmented results more accurate, and 

renders sharper edges. Pseudo 2D HMMs, which have been used previously only in 

face recognition applications, are employed here to strengthen the process of 

applying HMMs on medical images, and to make it lossless. 



Chapter 1: Introduction  

 

S. Al Zu’bi Thesis                                                                                       Page 9 of 207 

 
 

 3D medical volume illustration and segmentation is available, but it has been avoided 

by many researchers because of the long computational time required, which greatly 

affects the overall segmentation system quality. This has been considered in this 

thesis, and the 3D segmentation techniques were accelerated by reducing the 

medical volume features without significant data loss. Feature reduction using 

Gaussian pyramids and wavelet transform have been used before, but the important 

contribution here is the employment of principle component analysis in reducing the 

volume dimensions. 

 The proposed system itself defines a contribution to knowledge; the system 

implemented is to be employed with medical scanners to facilitate radiologists’ 

analysis. The system includes new features such as MRA and statistical modeling, 

which can segment in collaboration with other previously available techniques, 

enabling the execution of segmentation process in the fastest applicable time. 

 

1.5. Thesis Road Map 

 

The structure of this thesis is as follows: 

 

 Brief overviews for the popular medical imaging modalities that their output 

images have been used in this thesis are provided in Chapter 2. The visualization 

and analysis software applications which are helping in validating the proposed 

techniques are introduced in this chapter as well. 
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 In Chapter 3, a summary of modern methodologies utilized for medical volumes 

segmentation is discussed, along with the methods used to measure the system 

performance. 

 Chapter 4 presents the use of 2D multiresolution analysis for medical image 

segmentation system. Wavelet transform and new higher dimensional MRA 

transforms such as ridgelet and curvelet have been used in the medical image 

segmentation system for extracting the important features from the medical 

images. 

 An enhanced version of HMMs has been implemented and used in chapter 5 for 

segmenting medical images automatically. Results of using HMMs for segmenting 

a proposed phantom dataset have been analyzed also in this chapter. 

 In Chapter 6, medical volumes have been segmented directly using different 3D 

segmentation techniques without slicing the medical volume into a stack of 2D 

slices. 3D thresholding, 3D discrete wavelet transform and the new 3D HMMs are 

implemented in this chapter, and results using the proposed dataset are provided. 

 Chapter 7 presents feature reduction techniques that can be help in accelerating 

the computational time of medical image segmentation process. Different feature 

reduction techniques are used here to reduce the dimensionalities of the tested 

datasets. Computational time acceleration results are provided in this chapter. 

 In Chapter 8, the proposed system has been validated using different procedures. 

Patients’ real clinical datasets which are previously analyzed by the end users of 

the system (radiologists) are tested, and the results achieved are compared to 
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their provided report of the diagnosed patients. The proposed system will be also 

validated in this chapter using a special survey filled in by those end users. 

 Final conclusions and suggestions for future work are documented in Chapter 9. 

 Appendix A presents the survey used to validate the proposed system with the 

end users. 
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Chapter 2              

Overview of Medical Imaging 

using 3D Acquisition Systems 

 

2.1. Introduction  

  

In this chapter, a brief overview of using different scanners for acquiring the medical 

volumes has been introduced. The acquired data sets can be taken at different 

environments and different ways. The first step in the scanning process produces isolated 

parts of the scanned volume; different techniques can be applied then to reconstruct the 3D 

volume. Finally, the reconstructed volume can be divided into a number of slices which have 

the same thickness to facilitate the process of locating ROI in the scanned body part. 

 Three different scanners outputs have been used in this research, which are the 

most popular scanners: PET, CT or MRI scans. These scanners are briefly explained in 

section 2.2. Section 2.3 illustrates different volume reconstruction techniques that have been 

used within the scanners. The visualization and analysis software that have been used in 
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this thesis will be introduced in section 2.4. In section 2.5, the work presented in this chapter 

has been summarized. 

 

2.2. Acquisition Systems  

 

In this section, the most popular medical scanners have been introduced. 

 

2.2.1. Positron Emission Tomography 

 

In modern clinical diagnosis, PET is becoming one of the most frequently utilized medical 

imaging modalities. PET is a tomographic technique which is used to measure physiology 

and function rather than anatomy by imaging elements such as carbon, oxygen and nitrogen 

which have a high abundance within the body [6]. The most significant difference between 

PET and its close relative Single Photon Emission Computed Tomography (SPECT) is that 

the radio-pharmaceuticals used in PET emit positrons, which results in the creation of two γ-

rays after annihilation with an electron in tissue [7]. For this reason, the instrumentation used 

in PET is designed to produce imagery containing less noise and superior spatial resolution 

than in SPECT [8]. 

PET imaging is utilized in the clinical specialties of oncology, cardiology and 

neurology. The major disadvantages of PET revolve around its astronomical cost, typically 

£1.5 million for a system [1], and the need to have specialized equipment in close proximity 

to produce positron-emitting nuclides as their half-lives are extremely short [8][9][10]. 
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PET imaging is a diagnostic imaging modality used to map the distribution of positron 

emitting radio-pharmaceuticals within the body. These agents are created using a cyclotron 

and are radioactive equivalents of biologically active molecules, Fluor-Deoxy-Glucose (FDG) 

radio pharmaceutical which contains 18F and 11C is used. As illustrated in equation (2.1) 

isotopes such as 18F and 11C undergo radioactive decay by emitting a positron, where a 

positron is a positively charged electron (e+) and a neutrino v [5][8][10]. 

 

  
      

                                  (2.1) 

 

The positron travels around 1mm in tissue in a random manner before annihilating with an 

electron. As illustrated in equation (2.2), this reaction creates two γ-rays with energies of 

511keV. These γ-rays travel in opposite directions at angle 180o to one another [8]. 

 

                                          (2.2) 

 

The PET system comprises of an entire ring of scintillation crystals which surround the 

patient because both γ-rays must be detected. A schematic of a PET head scanner showing 

annihilation coincidences is illustrated in Fig. 2.1.  
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(a)

(b)  

Fig. 2.1: Detection scheme for PET imaging. (a) Transaxial view of detection system. (b) The anterior view shows how only 

radio-nuclides in a particular cross-sectional plane will be detected by the rings of detectors [11]. 

 

In Fig. 2.1, the scintillation crystals are used to convert the energy of the γ-rays into light, 

which can be converted into the electronic signal by Photo Multiplier Tubes (PMT). The 

image is formed by analyzing the spatial distribution and the magnitude of the electric 

signals from each PMT. A large number of scintillation crystals are required for the detection 

of anti-parallel γ-rays which are placed in a circular arrangement around the patient and are 
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coupled to a smaller number of PMTs. Coupling each crystal to a single PMT would increase 

the scanner cost prohibitively, but would allow for the highest obtainable spatial resolution 

[5][8]. As the two γ-rays are formed simultaneously, they are detected within a specific time 

window, determined by location of the radio pharmaceutical within the body and the 

diameter of the detector ring [12]. The location of the two scintillation crystals that detect the 

γ-rays defines a line along which the annihilation must have occurred. This line is forming 

the basis of signal localization in PET. This signal localization accounts for the superior 

detection efficiency in PET than in SPECT, which requires the collimation of single γ-rays. 

The γ-ray energy of 511keV in PET is much higher than the energy of γ-rays in conventional 

nuclear medicine. This high energy means less attenuation of γ-rays occur in tissue. This is 

a second feature resulting in the high sensitivity of PET. The spatial resolution in PET 

depends on the number and size of individual crystal detectors and is normally within the 

range of 3mm - 5mm [13][14]. 

 

2.2.2. Computed Tomography  

 

The technique of X-ray CT was invented in 1972 by Godfrey Hounsfield. Allan Cormack had 

independently completed earlier work on the mathematics of this technique and in 1979 they 

were jointly awarded the Nobel Prize in Medicine [15]. 

To obtain an image from a thin slice of tissue, the X-ray beam is collimated to give a 

thin beam. To produce a 1D projection the total number of X-rays that are transmitted 

through the patient is recorded by means of detectors which are situated opposite the X-ray 
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source. The 2D distribution of tissue attenuation coefficients within the slice determines the 

signal intensities in this projection. The X-ray source and the detectors are then rotated by a 

certain angle and the measurements repeated, continuing until sufficient data has been 

collected to reconstruct an image with high spatial resolution [8][16][17]. 

CT is used for a wide range of clinical conditions, one of the most important 

applications being the investigation of head trauma. It is also useful for the diagnosis of 

many abdominal diseases and for the detection of pulmonary disease [17]. CT provides 

geometric superiority and slightly increased spatial resolution over MRI, however, CT 

exposes the patient to high doses of radiation and may be invasive when the administration 

of contrast agents is required [18]. Examples of CT imagery are shown in Fig. 2.2. 

 

(a
)

(a)                                        (b)
 

Fig. 2.2: CT images (a) Transaxial CT lung slice. (b) Transaxial CT head slice [19]. 

 

CT is a medical imaging device which combines in a single gantry system for both PET and 

an X-Ray, so that images acquired from both devices can be taken sequentially, in the same 

session from the patient and combined into a single superposed image [18].  

PET/CT has revolutionized many fields of medical diagnosis, by adding precision of 

anatomic localization to functional imaging, which was previously lacking from pure PET 
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imaging. For example, in oncology, surgical planning, radiation therapy and cancer staging 

have been changing rapidly under the influence of PET/CT availability, to the extent that 

many diagnostic imaging procedures and centres have been gradually abandoning 

conventional PET devices and substituting them by this scanner type. Although the 

combined device is considerably more expensive, it has the advantage of providing both 

functions as stand-alone examinations, it can be assumed as two devices in one [19]. 

While a CT scan provides anatomical detail (size and location of the tumour, mass, 

etc.), a PET scan provides metabolic detail (cellular activity of the tumour, mass, etc.). Fig. 

2.3 illustrates an example comparing PET/CT scans with both PET and CT scans.  

 

 

Fig. 2.3: An example illustrates the benefits of using PET/CT 
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2.2.3. Magnetic Resonance Imaging  

 

In July 1977, the first MRI exam ever performed on a human being took almost five hours to 

produce one image. The images were quite ugly compared to today's standards. Dr. 

Raymond Damadian and colleagues worked for seven long years to reach this point. They 

named their original machine Indomitable to capture the spirit of their struggle to do what 

many said could not be done. 

The basic design used in most MRI machines is a giant cube, the cube in a typical 

system might be 7 feet tall by 7 feet wide by 10 feet long (2 m by 2 m by 3 m), although new 

models are rapidly shrinking. There is a horizontal tube running through the magnet from 

front to back known as the bore of the magnet [20].  

 

MRI Scanner Cutaway

Patient

Patient 

Table

Scanner

Magnet

Gradient 

Coils

Radio 

Frequency 

Coil

 
Fig. 2.4: Basic design of MRI scanner [20] 
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The lying patient slides into the bore on a special table, the patient goes in head first or feet 

first. MRI scanners vary in size and shape, and newer models have some degree of 

openness around the sides, but the basic design is the same (Fig. 2.4). Once the body part 

to be scanned is in the exact centre or isocentre of the magnetic field, the scan can begin. 

Doctors use an MRI because it is one of the limited ways to see inside your body 

without to cut you open.  An MRI system can create axial images as well as images in the 

sagittal plane and coronally or any degree in between, without the patient ever moving. If 

you have ever an X-ray, you know that every time they take a different picture, you have to 

move. The three gradient magnets discussed earlier allow the MRI system to choose exactly 

where in the body to acquire an image and how the slices are oriented. Fig. 2.5 defines the 

three main axis that can be acquired from MRI. 

 

 
 

Fig. 2.5: Axial, coronal and sagittal slices 
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2.3. 3D volume reconstruction  

 

Image reconstruction is the process of mapping the radio activities as a function of location 

for parcels or bits of tissue and will be constructed and plotted (converting the 1D protection 

to cross sectional image). The image plane formed between two crystals in the same ring (n: 

Direct plane) or between two crystals in adjacent rings (n-1: Cross plane) produces 2n-1 

image planes. Coincidence events can be grouped into projections images (called 

sinograms). If the septa between crystals removed, the number of planes will be n x n which 

produces the 3D. There are two main ways for reconstruction [27]: 

 

 Filtered Back Projection (FBP): FBP has been frequently used to reconstruct 

images from the projections. This algorithm has the advantage of being 

simple while having a low requirement for computing resources.  

 Iterative expectation-maximization algorithms: These algorithms are now 

the preferred method of reconstruction. It is a better noise profile and 

resistance to the streak artifacts common with FBP, but it has higher 

computer resource requirements than the FBP. It requires the projection 

matrix specification to link unobserved images to the observed projection 

counts. 

  

There are two approaches to reconstruct data from PET scanner: (1) Treat each ring as a 

separate entity, so that only coincidences within a ring are detected, and the image from 

each ring can then be reconstructed individually (2D reconstruction). (2) Allow coincidences 

to be detected between and within rings, then reconstruct the entire volume together. 
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3D techniques have better sensitivity because more coincidences are detected and used, 

and therefore less noise, but are more sensitive to the effects of scatter and random 

coincidences, as well as requiring correspondingly greater computer resources [23]. 

 The image reconstruction process is influenced by several features such as the 

Signal to Noise Ratio (SNR) which is due to many variables including radio, time tissue 

attenuation, gamma camera sensitivity and others; Contrast to Noise Ratio (CNR) is also a 

feature which affect to an image reconstruction process. Partial resolution is the last feature; 

it is due to the distance travelled by positron, the ring diameter and the crystal sizes. 

  

2.4. Visualization and Analysis Software Applications 

 

Many applications and software’s can be used for analyzing the proposed system. This 

section discusses a number of utilities used to visualize and analyze the medical image 

datasets considered in this research for segmentation and acceleration. 

 

2.4.1. MATLAB 

 

MATLAB® is a numerical computing environment and a fourth-generation programming 

language developed by MathWorks; MATLAB® allows matrix manipulations, plotting of 

functions and data, implementation of algorithms, creation of user interfaces, and interfacing 

with programs written in other languages. 
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MATLAB® was created in the late 1970s by Cleve Moler, the chairman of the computer 

science department at the University of New Mexico [28]. He designed it to give his students 

access to LINPACK and EISPACK without having to learn Fortran. It soon spread to other 

universities and found a strong audience within the applied mathematics community. In 

1983 MATLAB® has been written in C and MathWorks has been founded in 1984. These 

rewritten libraries were known as JACKPAC. In 2000, MATLAB® was rewritten to use a 

newer set of libraries for matrix manipulation (LAPACK) [29]. 

In 2004, MATLAB® had around one million users across industry and academia [30]. 

MATLAB® users come from various backgrounds of engineering, science, and economics, 

MATLAB® is widely used in academic and research institutions as well as industrial 

enterprises. 

Matlab® has been used in this research for analyzing the data input or the medical 

images. A lot of built in functions for digital image processing are available with Matlab® 

especially in the latest versions after 2007. Matlab® digital image processing toolbox is able 

to perform a large various image processing tasks, and Digital Imaging and Communications 

in Medicine images (DICOM) can be analyzed without any conversion to other extensions. 

Therefore, Matlab® can be considered as one of the best programs that have been used for 

medical imaging. 

Matlab® facilitate the process of analyzing achieved results from the implemented 

techniques in this thesis. The proposed medical image segmentation system has been 

implemented using simple Matlab® instruction and validated using the toolboxes included in 

Matlab®. 
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2.4.2. Amide 

 

AMIDE stands for Amide's a Medical Image Data Examiner. This program is a tool for 

viewing and analyzing volumetric medical imaging data sets, and has been designed from 

the ground up with support for multi-modality imaging. Amide is a powerful freeware 

visualization tool which is able to convert medical images from many scanner specific image 

formats into analyze. The most important property in Amide program is the ability of showing 

the three main orthogonal views for any dataset from any acquisition system. 

An important thing to realize when working with AMIDE is that the program will try to 

abstract away the underlying digital format of the data as much as possible. AMIDE 

presents the digital data to you in analog format so that you do not have to worry about the 

underlying digital format. Whenever possible, units are given in terms of real world units 

(e.g. mm's, seconds), and most operations are not constrained by the discrete nature of the 

underlying data. For example, data in AMIDE is viewed in terms of "slices", not fixed image 

planes. These slices can be taken from the data set at arbitary angles, and can be of any 

thickness (they are not constrained to be integer multiples of the underlying voxel size). You 

may be used to looking at medical images in terms of voxels and integers, but remember 

that the object or subject scanned is an item in the real world, and AMIDE tries to recreate 

this analog signal for you. 

Amide provides a tree view of the study data; this is located on the left side of the 

window which is listing all the objects in the study (Fig. 2.8). The tree structure shows how 

movements will be propogated to other objects in the study. For instance, if a data set is 

rotated, all of its children will be correspondingly rotated. 
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Objects in the tree can be selected for display by left clicking on the name of the object. 

Middle clicking on a data set will make that data set the active data set. The active data set 

is designated by being highlights, and when a function is chosen that can logically apply to 

only one data set. 

Object modification dialog boxes can be brought up by right clicking on the 

corresponding object. ROI's can be added by right clicking on the blank area of the tree, or 

shift-right clicking on one of the objects. Further information about the Amide software tool 

for multimodality medical image analysis can be found in [31]. 

 

 

Fig. 2.6: Amide main window components [31] 
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2.5. Summary 

 

The work presented in this chapter is an overview of modern medical image acquiring 

machines and utilities for visualizing and analyzing the output of these machines. The 

process of generating medical data from the medical image acquiring systems has been 

explained and the software applications used in this thesis  research to analyze and validate 

the system have been introduced. 
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Chapter 3            

Review of Related Literature 

 

3.1. Introduction 

 

The aim of this chapter is to provide a summary of the recent methodologies employed for 

medical image segmentation, although focusing on the literature related to imagery with 

medical significance. In some sections it has been necessary to introduce work which has 

not been applied within this context. This work has been used in other applications but will 

be employed in this thesis as medical image segmentation methods.  

In section 3.2, techniques used for medical image segmentation have been 

summarized, and used in this thesis to evaluate the proposed system performance, this 

include a review of work utilizing thresholding, clustering methods, Markov random field 

models and multiscale techniques. In section 3.3, reviews of related literature of the 

proposed techniques in similar segmentation systems and some other systems have been 

presented. Section 3.4 introduces the procedures of measuring the implemented techniques 

performance. Summary is given in section 3.5. 
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3.2. Volumetric medical image segmentation  

 

Several techniques which have been used previously with medical image segmentation are 

introduced in this section. 

 

3.2.1. Thresholding 

 

Thresholding is the simplest method of image segmentation. From a grey scale image, 

thresholding can be used to create binary images [32], scalar images can be segmented 

using thresholding approaches by partitioning image intensities. This methodology attempts 

to determine an intensity value that can separate the signal into a desired number of 

classes. Segmented images can be achieved by classifying all pixels with intensities larger 

than the threshold value into one class, and all others into another. 

In many applications, the threshold values selection can be done depending on the 

histogram. Multi-thresholding occurs when more than one threshold value are determined 

[33]. During thresholding process, individual pixels in an image are marked as “object” pixels 

if their value is greater than the threshold value (assuming an object to be brighter than the 

background), otherwise; as background pixels (this convention known as threshold above). 

Variants which include threshold below is opposite of threshold above [32].  

Hard thresholding technique is a boolean filter [33]; it is the simplest precursory technique 

for image segmentation. This methodology attempts to determine an intensity value that can 

separate the image g(x,y) into two parts [34]. All pixels with intensities f(x,y) larger than the 
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threshold value T are allocated into one class, and all others into another class. As 

illustrated in equation (3.1), applying hard thresholding technique on an image either resets 

the input to zero or keeps it without any changes [35]. 

 

         
                      

                           
                                     (3.1) 

 

Hard thresholding process is less complex than soft thresholding (equation 3.2), where 

pixels that have values greater than threshold value do not change in hard thresholding [36]. 

Soft thresholding replaces each pixel which has greater value than the threshold value by 

the difference between the threshold value and pixel value, and adds the sine of the pixel 

value [33]. This makes the process more complicated and increases the processing time for 

the algorithm. Fig. 3.1 illustrates a segmented medical brain slice from an MRI scanner 

using hard and soft thresholding techniques. 

 

        
                               

             
  , t: is the threshold value    (3.2) 

 

 
Fig. 3.1: Thresholding technique for medical image segmentation at threshold value t = 180. (a) Original image, (b) Hard 

thresholding and (c) Soft thresholding. 
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Thresholding is called adaptive thresholding when a different threshold is used for different 

regions in the image. This may also be known as local or dynamic thresholding [33]. The 

key parameter in thresholding process is the choice of threshold values. Several methods 

for choosing a threshold exist; users can manually choose a threshold, or a thresholding 

algorithm can compute a value automatically, which is known as automatic thresholding 

[33]. 

Mean or median value would be also used for a simple thresholding method, for 

example, if the object pixels are brighter than the background, they should also be brighter 

than the average. In a noiseless image with uniform background and object values, the 

mean or median will work well, however, this will generally not be the case. A more 

sophisticated approach might be to create a histogram of the image pixel intensities and use 

the valley point as the thresholds. The histogram approach assumes that there is some 

average value for the background and object pixels, but that the actual pixel values have 

some variation around these average values. This may be computationally expensive, and 

image histograms may not have clearly defined valley points, often making the selection of 

an accurate threshold difficult.  

There are many adaptive thresholding techniques; one of them can be applied when the 

pixels comprising ROI is darker than the average value of all pixels or the background pixels 

values, in this case inverse thresholding is the suitable adaptive thresholding [35][37]. 

Inverse thresholding reset pixels with values greater than the threshold value and illustrate 

the rest, this pixels are above the threshold value and may comprise ROI. 

Sezgin and Sankur categorize thresholding methods into different groups based on 

the information manipulated from the algorithm [37]. Some of them are listed below: 
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 Histogram shape-based methods, for example, the peaks, valleys and curvatures of 

the smoothed histogram are analyzed 

 Clustering-based methods, where the gray-level samples are clustered in two parts 

as background and foreground, or alternately are modeled as a mixture of two 

Gaussians. 

 Object attribute-based methods search a measure of similarity between the gray-

level and the binarized images, such as fuzzy shape similarity and edge coincidence. 

 

Significant recent work used thresholding in medical imaging field, it was performed by a 

research group in the Departments of Radiation Oncology, Medical Physics and 

Nuclear Medicine, Cross Cancer Institute, Edmonton, Alberta, Canada [38][39]. These 

studies investigate the affect of threshold size on the segmentation and quantification of 

simulated tumours in PET scanners, for the staging and radiotherapy treatment planning of 

non-small-cell lung cancer. The segmented Phantom PET imagery regions are referenced 

to known volumes; this is quantitatively illustrate the influence of threshold, tumour size and 

background concentration in this application. The results from these studies are summarized 

in Fig. 3.2, where a dimensionless volume of 1.0 represents the ideal image target volume 

for a set of seven spheres of increasing size (sphere 1 has the smallest volume), and image 

threshold represents a percentage of the total image bit-depth. Results show that higher 

image thresholds are required to accurately render the smallest simulated tumours. Similar 

work was performed by another group from Universities Catholique de Louvain [40]. 
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Fig. 3.2: Variation of dimensionless volume with image threshold and spherical tumour diameter [1][38]. 

 

The voxels of a certain object are not necessarily connected after thresholding because this 

technique does not consider the spatial characteristics of an image, thus causing it to be 

sensitive to noise and intensity fluctuations [41]. This means that the results are coupled too 

tightly with the thresholds used, where any change can completely alter the result of the 

segmentation. Furthermore, thresholding does not consider the spatial characteristics of an 

image, thus causing it to be sensitive to noise and intensity fluctuations. For this reason it 

cannot be easily applied to many medical imaging modalities. These drawbacks essentially 

corrupt the histogram of the image-making partitioning via the selection of more problematic 

appropriate thresholds [41]. 

Applying thresholding techniques is a very easy process and can be affected easily by 

surrounding noise. Thresholding techniques are often used as a preliminary step in 

computer vision systems. They have also been used in cardiac MRI tissue classification and 

in digital mammography [42][43][44]. Thresholding techniques have been used as pre-

processing step and/or post-processing step with other segmentation techniques in this 

thesis. 



Chapter 3: Review of Related Literature  

 

S. Al Zu’bi Thesis                                                                                        Page 33 of 207 

 

3.2.2. Clustering  

 

Clustering is essentially the process of organizing objects into groups according to their 

properties without the need of training data [1]. Clustering process classifies each group of 

pixels in an image into one class which has the same or similar properties; this class 

evaluates a specific part of an image [45]. Each class is highlighted in the segmented image 

to illustrate the image as a number of separated regions; ROI may be one of those regions. 

Clustering overcomes the use of training data by iteratively alternating between 

segmenting the volume and characterizing the properties of each class, effectively training 

using the available data [35][45]. Clustering technique is based on multi-threshold values 

which can be set depending on the image histogram. Amira et al. used K-means method for 

segmenting medical volumes [34]; it is one of the most commonly used clustering 

procedures. K-means is also known as the ISODATA algorithm. 

K-means clustering classifies n voxels into K clusters or classes (number of clusters 

used to be much smaller than number of voxels) [34]. This algorithm chooses the number of 

clusters (K) then randomly generates K clusters and determine the cluster centres. The next 

step is assigning each point in the volume to the nearest cluster centre and finally the new 

cluster centres recomputed. The two previous steps are repeated until the minimum 

variance criterion is achieved [34]. This approach is similar to the expectation maximization 

algorithm for Gaussian mixture in which they both attempt to find the centres of clusters in 

the volume. Its main objective is to achieve a minimum intra-cluster variance V which can be 

calculated according to the following equation: 
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where K is the number of clusters, S = 1, 2, . . . K,    is the pixels values and    is the mean 

of all voxels in cluster i. Fig. 3.3 illustrates an example of segmenting a real CT slice by 

classifying the image into 6 different classes. 

 

Clustered imageOriginal image
 

Fig. 3.3: Image segmentation using classification technique. 

 

There are some well known clustering procedures such as: fuzzy C-means clustering [46] 

and the Expectation Maximization (EM) algorithm [47][48][49]. Using fuzzy set theory, the K-

means algorithm is generalized to allow for softer segmentation [50]. It is used also for MRI 

segmentation in the presence of intensity inhomogeneity [51]. The EM algorithm applies 

clustering principles under the assumption that the data follows a mixture of probability 

distributions, usually Gaussian. This approach alternates between the computation of 
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posterior probabilities and maximum likelihood estimates of specific statistical 

characteristics, such as the means and variances associated with the mixture model [47]. 

 In this field, important research has been carried out by collaboration between The 

Departments of Biomedical Engineering and Information Technology, Helsinki 

University of Technology, and Helsinki University Central Hospital, Finland [48]. The 

collaborators developed a contextual real segmentation system for functional Magnetic 

Resonance Imagery (fMRI) activated areas detection and segmentation using clustering 

techniques. This requires the computation of a Statistical Parametric Map (SPM) for the 

data. If the SPM value associated with a particular voxel adjusted to consider some spatial 

information, or differs from the expected non-activation value by more than a specific 

decision value; the algorithm places the voxel into the activation class. This two region 

segmentation algorithm uses the two class Iterated Conditional Modes (ICM) algorithm for 

spatial modeling. It is able to detect extremely small activation areas while it detects 

activations with higher probability than other thresholding techniques. 

 It is necessary with clustering to set an initial segmentation and to initiate the 

parameters. This means that the process is manual and requires a lot of preprocessing 

steps. Clustering algorithms do not directly support spatial modeling. Therefore, it is so 

sensitive to noise and spatial information loss. Clustering algorithms have one big 

disadvantage where the information about the neighbouring voxels is not involved in the 

clustering process. Therefore, the segmentation output neither accurate nor qualitative 

enough. 
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3.2.3. Markov Random Field Models 

 

A Markov Random Field Model (MRFM) is a statistical approach that can be utilized within 

segmentation methodologies to model spatial interactions between nearby pixels. These 

local correlations between pixels are used as a mechanism for modeling various image 

properties. From a medical imaging perspective, this kind of analysis is useful as most pixels 

can be categorized into the same class as their neighbours. It is unlikely that any anatomical 

structure consists of only one pixel under MRFM assumptions [1]. 

 As a MRFM is not specifically a segmentation method, it is often incorporated into 

other segmentation systems such as the K-means or fuzzy C-means algorithms under a 

Bayesian prior model [1]. Given the image data, the segmentation is achieved by 

maximizing the posteriori probability of the segmentation, obtained using iterative methods 

such as ICM or simulated annealing [1]. 

 A recent work utilizing this statistical methodology for medical image segmentation 

has been done in The Department of Medical Image Computing, University Hospital 

Gasthuisberg, Leuven, Belgium [53]. A system based on previous research into tissue 

segmentation from MR brain imagery was developed to overcome the problem of partial 

volume voxels that contain a mixture of two or more tissue types [54]. A modified version of 

the EM is introduced to allow partial volume segmentation along the borders between 

tissues. Spatial interactions are then considered by applying a MRFM. The system is tested 

on both real and simulated data. Results obtained are promising; however, the group 

concludes that general robust partial volume segmentation of brain MRI requires statistical 
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models that describe the spatial distribution of brain tissues more accurately than currently 

available methodologies. An illustration of partial volume classification is given in Fig. 3.4. 

 

 

Fig. 3.4: Partial volume segmentation of a high resolution brain MRI. (a) Input data, (b) expected fraction of white matter, (c) 

grey matter, and (d) cerebrospinal fluid [1]. 

 
Problems associated with a MRFM include the accurate selection of the parameters 

controlling the strength of spatial interactions. Incorrect selection of this parameter may 

result in a loss of important structural detail and an excessively smooth segmentation. In a 

medical imaging context, the loss of anatomical detail is possible and areas of diagnostic 

significance may be incorrectly represented. Furthermore, these approaches typically 

require computationally intensive algorithms, and estimating the parameters is so difficult. 

Resulting segmentations obtained using this methodology are robust to noise and do not 

exhibit many disconnected regions which are apparent using non Markovian approaches. 

 

3.2.4. Multiscale Segmentation 

 

The use of wavelet or multiresolution theory can be used alongside segmentation 

approaches creating new systems which can provide a segmentation of superior quality to 

those segmentation approaches computed exclusively within the spatial domain [1]. 



Chapter 3: Review of Related Literature  

 

S. Al Zu’bi Thesis                                                                                        Page 38 of 207 

 

Wavelet theory which is built on solid mathematical fundamentals uses well established 

tools such as quadrature mirror filtering, subband coding and pyramidal image processing. 

One of the most significant breakthroughs in this field occurred in the late 1980's when 

Mallat employed wavelet theory for multiresolution analysis [55]. This analysis enables the 

exploitation of signal or image characteristics associated with a particular resolution level, 

which may not be detected using other analysis techniques [1]. 

 The use of wavelet theory in the segmentation field of biomedical imagery is utilized 

by collaboration between Faculty of Computing Sciences and Engineering, De Montfort 

University, Leicester, UK and Department of Computer Science, University of 

Warwick, Coventry, U.K [56]. An algorithm was developed for the unsupervised 

segmentation of hyperspectral cellular colon tissue images into regions associated with 

normal tissue cells and malignant cancerous tissue cells. The system works by utilizing a 

modified version of the standard wavelet texture analysis system. This is applied to the 

projection of the image data in the first principal component direction, to reduce the 

dimensionality of the hyperspectral imagery. The wavelet transform is effective in identifying 

different textures [57]. An image decomposed into its corresponding wavelet representation 

can present a variety of textures within the different decomposition subbands. 

Multiscale methodologies are also employed for the segmentation of imagery with no 

medical significance. Interesting and important research has been accomplished by Image 

Communications Group, Centre for Communications Research, University of Bristol, 

UK. Hill et al. investigate the use of the watershed transform for image segmentation [58]. 

As this transform is ineffective for the segmentation of textured image regions, a texture 

gradient is employed to alleviate this problem. Texture information is determined using a 
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Non-Decimated compleX Wavelet Packet Transform (NDXWPT). A marker algorithm is used 

in conjunction with the gradient image obtained to locate significant homogeneous textured 

or non-textured regions. These markers are used for the application of the watershed 

transform. In this system, a parameter minsize controls the levels of segmentation within an 

image and a suitably large value reduces the likelihood of over-segmentation. Some 

illustrations of this approach are shown in Fig. 3.5. The combined system, developed for 

content based image retrieval, provides effective texture and intensity based image 

segmentation. The results achieved using this system are contrasted with results obtained 

using the open source JSEG algorithm, developed at the University of California, Santa 

Barbara. JSEG is an algorithm which separates the segmentation process into colour 

quantization and spatial segmentation. In the former, colours in the image are quantized to 

several representing classes which can be used for region differentiation [58]. A class map 

of the image is then formed by replacing image pixel colours with their corresponding colour 

class labels. The system proposes a criterion for good quality using the class map. 

 

 
Fig. 3.5:  (a) Original Image, (b) texture gradient of image, (c) segmented image using minsize = 300, and (d) segmented 

image using minsize = 1500 [1]. 
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Although the wavelet based approaches proves promising results in many applications 

including image processing and segmentation, it is somewhat limited, it produces good 

results only when the derived first principal component projection covers more than 80% of 

the data variance. As well as there is a slow down for the segmentation process; ROI can be 

detected in any of the four wavelet quadrants at each decomposition level. The quadrant 

selection process is manual and could not be generalized as different quadrant perform 

better than the other with each specific data. 

 The most important problem with using wavelet transform for medical image 

segmentation is the point singularity property. Applying wavelet transform on images detects 

point of discontinuity accurately, but images and especially medical images contain higher 

dimensional singularities that wavelets fail to detect such as ridges (straight lines) and/or 

curves. Therefore, the wavelet transform is limited to be generalized as an accurate medical 

image segmentation technique. 

 

3.3. Proposed Techniques Literature 

 

In this section, the previous work related to the techniques used in the proposed system is 

introduced. This is not limited to the work implemented for medical applications; some other 

implementation of the proposed techniques for non medical applications is included. 
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3.3.1. Hidden Markov Models 

 

A Hidden Markov Model (HMM) is a statistical model in which the system being modeled is 

assumed to be a Markov process with unobserved states [59].  

In a regular Markov model, the state is directly visible to the observer, and therefore the 

state transition probabilities are the only parameters. In a hidden Markov model, the state is 

not directly visible, but the dependent state output is visible. Each state has a probability 

distribution over the possible output tokens. Therefore the sequence of tokens generated by 

an HMM gives some information about the sequence of states. Note that the adjective 

hidden refers to the state sequence through which the model passes, not to the parameters 

of the model; the model is still hidden even if the model parameters are known. 

 HMMs are used to characterize the statistical properties of a signal. They have been 

used successfully in speech and face recognition for a number of decades and are now 

being applied to medical imaging. The following is a list of some research teams who used 

HMMs in their systems: 

 

Group [ I ]  A collaboration between “Language and Media Processing Laboratory, 

University of Maryland, College Park, MD – USA” and “CUI - University of Geneva, 

Computer Science Department, Geneva – Switzerland” [60]. 

 

The main goal that the collaborators were working on is addressing the problem of 

constructing statistical models of images using HMMs developed in speech recognition. In 
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other words, how speech recognition techniques can be extended to image processing. 

They describe a method for learning statistical models of images using a second order 

hidden Markov mesh model. First, an image can be segmented in a way that best matches 

its statistical model by an approach related to the dynamic programming used for 

segmenting Markov chains. Second, given image segmentation, a statistical model (3D 

state transition matrix and observation distributions within states) can be estimated. These 

two steps are repeated until convergence to provide both segmentation and a statistical 

model of the image. 

The collaborators also describe a semi Markov modeling technique, in which the 

distributions of widths and heights of segmented regions are modeled explicitly by gamma 

distributions in a way related to explicit duration modeling in HMMs. They propose a 

statistical distance measure between images based on the similarity of their statistical 

models for classification and retrieval tasks. The problem of learning their model of a given 

image is solved by putting the Viterbi algorithm and the probability estimations in an iteration 

loop [60]. The description of training method for acquiring statistical models of images using 

a hidden second order Markov mesh model was this collaborators main contribution. 

 

Group [ II ]  A research team in “College of Computer and Communication, Hunan 

University, Changsha - China” [61]. 

 

Recent researches have demonstrated the strong performance of HMMs applied to 

information extraction, the task of populating database slots with corresponding phrases 

from text documents [61]. It is well known that the training data coming from different 
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sources is probably different in their formats, although their contents are similar. In the 

previous information extraction researches, all the training data is mixed together to learn 

HMM parameters. But the training data as a whole is multi-component, and it is difficult for 

using statistical learning technique to find optimal model parameters [61]. 

This team presented in their work a new algorithm using HMM for information 

extraction based on multiple templates, which first clusters the training data into multiple 

templates based on the format, then learns model structure parameters from the clustered 

training data and model emission probability parameters from the initial training data. 

 

Group [ III ]  A collaboration between “Dipartimento di Scienze Statistiche, 

Università Cattolica SC, Milano - Italy” and “Biomathematics & Statistics Scotland, 

Macaulay Institute, Aberdeen - UK” [57]. 

 

Paroli and Spezia mentioned in [57] that the main problem in their segmentation research 

consists in estimating the unobserved realizations from the observed ones, given that 

parameters of the conditional distributions, which they assume to be Gaussian, are rising to 

Gaussian HMMs (GHMMs). 

They apply their Bayesian inference and segmentation tools to digital images. 

Complex stochastic image segmenters are based on HMMs, which have the drawback of 

the cumbersome computation of the normalizing constant of the Gibbs density. 

Computational advantages can be obtained by replacing the hidden Markov random field 

with a hidden Markov chain, by transforming the 2D MRFM into 1D Markov chain through a 

Peano-Hilbert scan of the image; the segmented 2D image is then reconstructed by using 
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an inverse Peano-Hilbert scan. HMMs can cluster efficiently the observations, even when 

the number of groups is unknown and no classification threshold is fixed, this can be done 

by segmenting a sequence of pixel intensities 

The collaborators made experiments on square synthetic images of size 128×128 

pixels with two, three and four colours. By the Peano-Hilbert scan, the 2D image is 

transformed into a 1D image, and then pixel intensities are standardized. To validate the 

performances of the HMM, they make comparisons between any segmented image with the 

corresponding synthetic hidden image created for the various experiments.  

 

3.3.2. Ridgelet Transform 

 

In 1998, Donoho introduced the ridgelet transform [62]; Continuous Ridgelet Transform 

(CRT) can be defined from a 1D wavelet function oriented at constant lines and radial 

directions. Ridgelet transforms have been generating a lot of interest due to their superior 

performance over wavelets, while wavelets have been very successful in applications such 

as denoising and compact approximations of images containing zero dimensionalities. 

In dimensions two or higher, wavelets can efficiently represent only a small range of the full 

diversity of interesting behavior. In effect, wavelets are well adapted for point discontinuity 

phenomena, whereas in dimensions greater than one, interesting phenomena can be 

organized along lines, hyper dimensions and other non point discontinuity structures for 

which wavelets are poorly adapted. Ridgelet analysis can effectively deal with line 

discontinuity phenomena in two dimensions. It encompasses a collection of tools which all 



Chapter 3: Review of Related Literature  

 

S. Al Zu’bi Thesis                                                                                        Page 45 of 207 

 

begin from the idea of analysis by ridge functions, which is based on the concepts of 

applying wavelet in the Radon domain. 

Ridgelet transform has been used in many applications including image processing, 

a research team in Key Lab for Radar Signal Processing, Xidian University, Xi’an - 

China used ridgelet transformation to implement their imaging systems [63]. Linear feature 

detection is very important in image processing. The detection efficiency will directly affect 

the performance of pattern recognition and pattern classification. Based on the idea of 

ridgelet, this team presents a new discrete localized ridgelet transform and a new method 

for detecting linear feature in anisotropic images. They did some experiments to prove the 

efficiency of their proposed method. 

For a straight line in an image, the group has been used Radon transform and Haar 

wavelet transform to implement ridgelet [63]. But for a curve, the detection algorithm is very 

complicated. Ridgelet is just a new analysis tool to answer some of the fundamental 

questions, such as the efficient approximation of objects with two- or higher-dimensional 

singularity. Ridgelet describes general functions as a superposition of ridge functions in a 

stable and concrete way. This team advanced a new localized ridgelet transform combined 

with dyadic wavelet transform to detect linear feature in an image in the frame of ridgelet 

analysis.  

The team applied the new method to three images illustrated in Fig. 3.6: a basic 

straight line, a noisy V-shaped linear feature and a real image with linear feature. It can be 

seen from the corresponding experiment results (Fig. 3.7) that the line segments can be 

efficiently detected, and these segments are not integrated into a straight line, but the 

directions of the segments are similar or consistent; furthermore, the total length of these 
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segments is less than or equal to the length of the original straight line. The positions of the 

lines and the length of the lines which is the sum of every segment can be located and 

computed respectively hence an anisotropic image with distinct linear feature is given. 

Moreover, those parameters can be obtained at one time in this team proposed algorithm. 

Their experimental results showed that the new transform is more effective than its classical 

counterpart. This new implemented technique cannot be generalized on all images including 

medical images, as the curves in medical images are so tight and lacks to the ridges which 

are the best case for ridgelet transform. 

 

 

Fig. 3.6: (a) The basic straight line; (b) the noisy V-shaped linear; (c) the real image with linear feature [63]. 

 

 

Fig. 3.7: (a) Detection result of fig. 3.6 (a); (b) Detection result of fig.3. 6(b); (c) Detection result of fig. 3.6(c) [63]. 
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In the field of image segmentation, a research team in the College of Electronic 

Engineering, Northwestern Polytechnical University Xi’an City, Shaanxi Province P. R. 

- China implemented such system [64]. This group implemented a new finite ridgelet 

transform based on the natural straight line, which can overcome the ridgelet drawback due 

to annoying wrap-around effect to the Finite Radon Transform (FRAT), and implement the 

Inverse Discrete Radon Transform (IDRT). The group employed the proposed algorithm for 

segmenting the Synthetic Aperture Radar (SAR) images and obtained satisfied 

segmentation result [64]. 

Due to the large noise in SAR images, it is necessary for eliminating the speckle 

when carrying out edge detection and segmentation. But this step will commonly depress 

the resolution of image. Otherwise, the optimally multi-resolution segmentation of AFRIT 

method does not need to eliminate noise when detection and segmentation, and it show 

obvious effect on extraction of objects with geometrical structure. Fig. 3.8 shows the results 

obtained by the method implemented by this group for SAR image segmentation. 

 

                       (a) Original image                  (b) Result of AFRIT segmentation
 

Fig. 3.8: Segmentation of SAR image using AFRIT method [64] 
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3.4. Segmentation Performance 

 

Many techniques have been implemented worldwide for the purpose of medical image 

segmentation, and many methods have been used to utilize those techniques. In this 

section, some of the performance measurements methods that have been used in this 

thesis to validate the proposed techniques for real clinical applications are listed. 

 

3.4.1. Computational Time  

 

One of the main limitations of many medical image segmentation systems is the processing 

time. The time required to compile the segmentation techniques varies and not the same for 

all techniques. Considering the important movements toward real time systems; less 

computational time or processing time in the segmentation system will be much better to 

achieve this. In the implemented system case, real time processing may offer a straight 

away delivery of the patient results while he is waiting. 

 Computational time is the time required to segment the data inputs (or medical 

images), it is the time between acquiring this data from the scanner machine (PET, CT or 

MRI) until it will be illustrated segmented on the output screen. This can be calculated in the 

proposed system by capturing the exact time at the beginning and the end of each 

technique segmentation code, then subtract those times from each other after process 

completion. 
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3.4.2. Euclidean Distance 

 

Euclidean Distance (ED) is the straight line distance between two single points. It can be 

used within the proposed system to validate results acquired for the predefined datasets. 

For example, the biggest ED between two points located on the edge of a sphere is the 

diameter of that sphere. It can be used with the real clinical data to quantify the cancer 

volume or the dimensionalities of ROI [65]. Equation 3.4 illustrates how to compute the 

distance between two pixels in medical volumes, given the coordinates in X, Y and Z planes. 

 

                          
          

          
                      (3.4) 

 

3.4.3. Dice Similarity Coefficients 

 

Dice Similarity Coefficient (DSC) is a statistical validation metric used to evaluate the 

performance of both the reproducibility of manual segmentations and the spatial overlap 

accuracy of automated probabilistic fractional segmentation. The DSC value is a simple and 

useful summary measure of spatial overlap, which can be applied to studies of 

reproducibility and accuracy in image segmentation. 

The value of a DSC varies from 0 indicating no spatial overlap between two sets of 

binary segmentation results to 1 indicating complete overlap [66]. As illustrated in Fig. 3.9, 

DSC measures the spatial overlap between two samples target regions (A and B). DSC 

value can be calculated as illustrated in equation (3.5), where ∩ is the intersection. 
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Fig. 3.9: DSC overlapping [64]. 

 

                                              
   

   
                                (3.5) 

 

3.4.4. Peak Signal to Noise Ratio 

 

Signal to Noise Ratio (SNR) is also used to differentiate between the qualities of the 

proposed techniques. SNR is used in image processing as a physical measure of the 

sensitivity of an imaging system. Industry standards measure SNR in Decibels (dB) of 

power, and therefore apply the 20 log rule to the peak SNR (PSNR) [67]. They measure and 

define sensitivity in terms of the ISO film speed equivalent; image quality is excellent when 

PSNR is 32 dB and if PSNR is 20 dB means acceptable image quality [67]. 

In this thesis PSNR has been used to measure the performance of some predefined 

real clinical data and proposed phantom data, it is mostly utilized in the eighth chapter of this 

thesis to validate the PET scanners sensitivity to its parameters and generalize them for 

medical image segmentation applications. 
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3.4.5. Mean Square Error 

 

In statistics, Mean Square Error (MSE) of an estimator is one of many ways to quantify the 

difference between an estimator and the true value of the quantity being estimated. MSE 

measures the average of the square of the error. The error is the amount by which the 

estimator differs from the quantity to be estimated [68].  The MSE incorporates both the 

variance of the estimator and its bias. The MSE is equal to the sum of the variance and the 

squared bias of the estimator as illustrated in equation (3.4).  

 

                                                                                                     (3.4) 

 

where     is the variance function and      is the difference function between the 

estimator's expected value (  ) and the true value of the parameter being estimated ( ). 

MSE has been used in this thesis in few locations to measure the quality of the segmented 

images. 

Each single technique mentioned in this chapter has at least one disadvantage, it is 

hard to find one optimum technique without any limitation. For example, HMMs prove 

efficient in many applications but require long computational time. This drawback of HMMs 

is not exist with some of the other techniques such as ridgelet, but ridgelet is so hard to be 

applied with real clinical medical image segmentation. A lot of curves exist in medical 

images, and those curves cannot be assumed as a group of ridges because of its small 

size. 
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As mentioned before, the main goal of this thesis is to implement a segmentation system 

which can use more than one of the available segmentation techniques to segment the input 

data.  It is also provide a segmented output with the most accurate results and lossless 

segmentation. This can be achieved by using the new implemented techniques in this thesis 

with other available ones to cover each other weaknesses. And to come up with a solid, 

accurate and complete medical image segmentation system that deliver outputs in least 

computational time by accelerating the segmentation process using different accelerators. 

 

3.5. Summary 

 

This chapter has presented research utilizing recent techniques for medical imaging. For 

volumetric segmentation, all techniques are varying in their quality of segmenting medical 

volumes. Most recent work has focused on the adaptation of multiscale based encoding 

strategies including wavelet and higher dimensional transforms. 

Automatic or semi-automatic segmentation is so important for cancer diagnosis and 

radiotherapy planning, statistical modeling including HMMs have been introduced in this 

chapter and will be implemented for the purpose of automatic medical image segmentation 

in the related chapter in this thesis. Other techniques such as thresholding, which are 

currently being investigated for PET image segmentation provide little anatomical 

information and the approach is neither robust to noise nor intensity fluctuations. 

Many methods have been employed for medical image segmentation systems. 

Therefore, not all of the implemented techniques have been mentioned in this chapter. This 
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chapter covers the popular techniques in the field that have been used to build a strong 

background of the related literature for this thesis. 

Some other algorithms, which have been employed in this thesis in parallel with the 

segmentation technique have, been implemented to achieve a more accurate system, those 

algorithms will be explained briefly in the related chapters. 
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Chapter 4            

Multi-Resolution Analysis for 

Medical Image Segmentation 

 

4.1. Introduction 

 

Multi-Resolution Analysis (MRA) [69][70][71] has been successfully used in image 

processing specially with image segmentation, wavelet-based features has been used in 

various applications including: image compression [72], denoising [73], and classification 

[74]. Recently, finite ridgelet and curvelet transforms have been introduced as higher 

dimensional MRA tools [75][76]. 

 This chapter is focusing on a robust implementation of MRA techniques to be 

employed in a medical volumes segmentation system, using features derived from the 

wavelet, ridgelet, and curvelet transforms of medical images obtained from a medical 

scanner. The rest of this chapter is as follows: the use of MRA using wavelets, ridgelets and 

curvelets transforms in the proposed system is illustrated in section 4.2. Sections 4.3, 4.4 

and 4.5 describe the wavelet, ridgelet and curvelet transforms rspectively. Experimental 
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study and analysis for using MRA in medical image segmentation system has been 

illustrated in section 4.6. Finally, the summary and the discussion are in section 4.7.  

 
4.2. Proposed System for Medical Image Segmentation using MRA 
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Fig. 4.1: MRA in the proposed medical image segmentation system. 

 

The main aim of this research is to facilitate the process of highlighting ROI in medical 

images, which may be encapsulated within other objects or surrounded by noise that makes 

the segmentation process not easy. Fig. 4.1 illustrates the use of MRA in the proposed 

medical image segmentation system. Wavelet, ridgelet, and curvelet transforms are applied 

on medical images with other pre and post processing techniques to present segmented 

outputs and detected ROI in an easier and more accurate way. 
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4.3. Wavelet Transform 

 

4.3.1. Discrete Wavelet Transform  

 
In the last decade, wavelet transform has been recognized as a powerful tool in a wide 

range of applications, including image/video processing, numerical analysis, and 

telecommunication [77]. The advantage of wavelet is that it performs an MRA of a signal 

with localization in both time and frequency [55][78]. In addition to this, functions with 

discontinuities and functions with sharp spikes require fewer wavelet basis vectors in the 

wavelet domain than sine and cosine basis vectors to achieve a comparable approximation. 

 Wavelet operates by convolving the target function with wavelet kernels to obtain 

wavelet coefficients representing the contributions in the function at different scales and 

orientations. Wavelet or multi-resolution theory can be used alongside segmentation 

approaches, creating new systems which can provide segmentation of superior quality to 

those segmentation approaches computed exclusively within the spatial domain [56]. 

 Discrete Wavelet Transform (DWT) can be implemented as a set of high-pass and 

low-pass filter banks. In standard wavelet decomposition, the output from the low-pass filter 

can be then decomposed further, with the process continuing recursively in this manner. 

According to [79], DWT can be mathematically expressed by equations (4.1) and (4.2): 
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The coefficients aj
(n) and dj

(n) refer to approximation and detailed components in the signal 

at decomposition level j respectively. The l(i) and h(i) represent the coefficients of low-pass 

and high-pass filters respectively. 

 DWT decomposes the signal into a set of resolution-related views. The wavelet 

decomposition of an image creates at each scale j a set of coefficient values Wj with an 

overall mean of zero. Wj contains the same number of pixels as the original image; 

therefore, this wavelet transform is redundant [80][81]. For images, Fig. 4.2 illustrates two 

different decompositions for transforming 2D matrices. 

 

Standard Decomposition

Non-Standard Decomposition

for each row

{do the 1D decomposition for each row}

End

for each column

{do the 1D decomposition for each column}

end

for each row %% or each column

{do the 1D decomposition for each row}

{do the 1D decomposition for each column}

end

 

Fig. 4.2: 2D DWT filter decompositions 

 
 

As illustrated in Fig. 4.2, 1D-DWT can be readily extended into 2D. In standard 2D wavelet 

decomposition, the image rows are fully decomposed, with the output being fully 

decomposed columnwise. In nonstandard wavelet decomposition, all the rows are 

decomposed by one decomposition level followed by one decomposition level of the 

columns [82][83]. Fig. 4.3 illustrates the filter structure of 2D-DWT. 
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Fig. 4.3: 2D DWT filter structure 

 

4.3.2. Discrete Wavelet Packet Transform 

 

Wavelet Packet (WP) is a wavelet transform where the signal is passed through more filters 

compared to DWT based approach. Applying DWT or WP on images generates four 

coefficients; three of them are the detail coefficients and the remaining one is the average 

coefficient. It is worth mentioning that the first level of decomposition is the same for both 

DWT and WP. As illustrated in Fig. 4.4 and Fig. 4.5; the differences start being noticed from 

the second level of decomposition.  
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Fig. 4.4: Architecture of basic discrete wavelet filters (2 decomposition levels).  
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Fig. 4.5: Architecture of basic discrete wavelet packet filters(2 decomposition levels).  

 

The differences between DWT and WP can be seen in the detail coefficients where the next 

or second decomposition of DWT is applied on the average quadrants from the previous 

level (Fig. 4.4). The next decomposition of WP is applied on all previous decomposition 

quadrants (Fig. 4.5).  

 The number of quadrants in DWT is increased linearly by 3 as the decomposition 

level is increased by 1 (replace the LL-filter output by its four transforms), as follows: 

 

Quadrants No. at level K = (Quadrants No. at level K-1) + 3        (4.3) 

 

Details quadrants from previous decomposition levels of WP are transformed; the number of 

quadrants is increased recursively by 4 as the level is increased by 1 (replace each filter 

output by its 4 transforms), as follows: 

Quadrants No. at level K = (Quadrants No. at level K-1)  ×  4       (4.4) 
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An example of applying DWT and WP on a phantom slice at different levels of 

decomposition is illustrated in Fig. 4.6, the average quadrants in both DWT and WP are the 

same, but the details quadrants are transformed in WP unlike DWT [81]. 

 

(b) DWT level1 (d) DWT level2

(f) DWT level3 (h) DWT level4

(a) Original image (c) WP level1

(i) WP level4

(e) WP level2

(g) WP level3 (j) WP  full decomposition

 

Fig. 4.6: DWT and WP for a phantom slice at different decomposition levels. 

 

It can be seen from Fig. 4.6 (i) and Fig. 4.6 (j) that the transformed image quality is very bad 

and the quadrant sizes are very small. This adds limitations to the process of applying WP 

on medical images. 

 

4.3.3. Wavelet Filters  

 

Wavelet filter-banks are derived to suit the needs of specific applications [84][85][86]. In 

image processing, wavelet filters have been created to improve overall efficiency according 

to specific mathematical characteristics [87].  
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In subsequent sections, wavelet uses a set of filters to decompose images depending on 

filter coefficients and the number of those coefficients. The most popular wavelet filter is 

Haar Wavelet Filter (HWF) which takes the averages and differences from the low and high 

pass filters respectively. The Haar basis is used to test algorithm complexity due to its 

simplistic nature [81]. This function allows for the easy calculation of arithmetic operations 

within the decompositions.  

 Daubechies 9/7 filter is also a popular wavelet filter which can be used to test 

segmentation quality [84][88]. This filter is biorthogonal, has symmetric filter coefficients with 

a compact support and is highly regulated with four vanishing moments [89]. 

 

4.4. Ridgelet Transform  

 

In 1998, Donoho introduced the ridgelet transform [62], CRT can be defined from a 1D 

wavelet function oriented at constant lines and radial directions. Ridgelet transforms 

[90][91][92] have been generating a lot of interest due to their superior performance over 

wavelets in compact approximations of images containing high dimensional singularities. 

Wavelets do not isolate the smoothness along edges that occurs in images [93], they are 

thus more appropriate for the reconstruction of sharp point- singularities than lines or edges. 

These shortcomings of wavelet are well addressed by the ridgelet transform; the 

functionality of wavelet has been extended to higher dimensional singularities, and becomes 

an effective tool to perform sparse directional analysis [62][69][94][95]. Generally speaking, 

wavelets detect objects with point singularities, while ridgelets are able to represent objects 

with line singularities. 
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4.4.1. Building Blocks 

 

The ridgelet transform is computed in two steps: a calculation of discrete radon transform 

and then an application of wavelet transform [94]. The radon transform is also computed in 

two steps: a calculation of 2D Fast Fourier Transform (FFT) for the image and then an 

application of a 1D inverse Fast Fourier Transform (iFFT) on all radial directions of the radon 

projections. Then, 1D wavelet transform is applied restrict to radial directions going through 

the origin for three levels of decompositions [94]. 

Applying FRAT on an image can be presented as a set of projections of the image taken 

place at different angles to map the image space to projection space. Its computation is 

important in image processing and computer vision for problems such as pattern recognition 

and the reconstruction of medical images. For discrete images, a projection is computed by 

summation of all data points that lie within specified unit-width strips; those lines are defined 

in a finite geometry [94]. 

 

4.4.2. Finite Radon Transform  

 

Depending on [95], Finite Radon Transform of a real function f(I,j) on the finite grid   
  is 

defined in equation (4.5): 

 

                     
 

  
                                                    

            

 

 
 

Here, L(k,l) denotes the set of points that make up a line on the lattice   
   : 
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To compute the Kth radon projection (i.e. the Kth row in the array); all pixels of the original 

image need to be passed once, and use P histogrammers one for every pixel in the row 

[56]. At the end, all P histogrammed values are divided by K to get the average values. 

 

4.4.3. Finite Ridgelet Transform  

 

Once the wavelet and radon transforms have been implemented, the Ridgelet transform is 

straightforward [69]. Each output of the radon projection is simply passed through wavelet 

transform before it reaches the output multiplier. As shown in Fig. 4.7, ridgelets use FRAT 

as a basic building block where FRAT maps a line singularity into point singularity, and the 

wavelet transform has used to effectively detect and segment the point singularity in radon 

domain. Fig. 4.8 illustrates a clinical chest slice from a CT scanner [96] in the last step 

before image reconstruction at different block sizes. 

 

Input 

Image
FRAT FRITDWT

 

Fig. 4.7: FRIT block diagram 
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P=3 P=7 P=13

 

Fig. 4.8: Ridgelet transform for real CT images at block sizes (3, 7, and 13) 

 

It can be seen from Fig. 4.8 that data loss percentage is increased as the prime number P 

getting bigger. This is due to averaging bigger groups of pixels together and unifying their 

values while P value is increasing. Fig. 4.9 illustrates the block diagram of applying ridgelet 

transform on a clinical example. 

 
Fig. 4.9: Clinical example of ridgelet transform stages 
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Pixels visualization in ridgelet domain is close to their visualization in wavelet domain except 

that in wavelet domain pixels are visualized by point parameters (x,y) in the Cartesian grid 

(first part of Fig. 4.10), any pixels in the image performed as an entry in a 2D matrix. Those 

are visualized in ridgelet domain by line parameters (β,θ) where β is the intercept and θ is 

the angle. Second part of Fig. 4.10 illustrates the radial grid in ridgelet transform [69]. 

 

 

Fig. 4.10: Wavelet and ridgelet visualization parameters 

 

4.4.4. Limitations 

 

Segmentation results achieved by applying ridgelet transformation on medical images were 

not promising. Any medical image contains a lot of curves which comprise most of ROI and 

the other body obstacles. Those curves are still not singularity points after applying radon 

transform. Thus, wavelet transform cannot detect those singularities properly [69][97]. This 

explains why the ridgelet transformation is not suitable for segmenting most of medical 

images. 
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Ridgelet transform can be used in other applications where images contain edges and 

straight lines. Curvelet transform has been introduced here to solve this problem, it can 

detect higher singularities compared to wavelet and ridgelet transforms, and could be more 

suitable and reliable for medical image segmentation using MRA. 

 

4.5. Curvelet Transform  

 

The curvelet transform has gone through two major revisions. It was first introduced by 

Candés and Donoho in 2000 [90], who used a complex series of steps involving the ridgelet 

analysis of the radon transform of an image. Their performance was very slow hence 

researchers developed a new version which is easier to use and understand. In this new 

method the use of ridgelet transform as a pre-processing step was discarded thus reducing 

the amount of redundancy and increasing the speed considerably in the transform [90]. 

Curvelet transform is a new extension of wavelet transform which aims to deal with 

interesting phenomena occurring along curved edges in 2D images [77]. It is a high-

dimensional generalization of the wavelet transform designed to represent images at 

different scales and orientations (angles). It is viewed as a multiscale pyramid with frame 

elements indexed by location, scale and orientation parameters with needle-shaped 

elements at fine scales. Curvelets have time-frequency localization properties of wavelets 

but also shows a very high degree of directionality and anisotropy, and its singularities can 

be well approximated with very few coefficients. As illustrated in Fig. 4.11, curvelet requires 

fewer coefficients for representation and the edge produced from curvelet is smoother than 

wavelet edge [90][95]. 
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Fig. 4.11: An approximating comparison between wavelet (left) and curvelet (right) [90].  

 
The newly constructed and improved version of curvelet transform is known as Fast Discrete 

Curvelet Transform (FDCT). This new technique is simpler, faster and less redundant than 

the original curvelet transform which based on ridgelets. According to Candes et al. in [77], 

two implementations of FDCT are proposed:  

 

 Unequally-spaced Fast Fourier transforms (USFFT)  

 Wrapping function.  

Both implementations of FDCT differ mainly by the choice of spatial grid that used to 

translate curvelets at each scale and angle. Both digital transformations return a table of 

digital curvelet coefficients indexed by a scale parameter, an orientation parameter and a 

spatial location parameter. Wrapping-based transform is based on wrapping a specially 

selected Fourier samples, and it is easier to implement, analyze and understand. 

The new implementation of curvelet transform based on Wrapping of Fourier 

samples takes a 2D image as an input in the form of a Cartesian array f[m, n], where 0  ≤ m 

< M, 0  ≤ n < N, M and N are the dimensions of the array. As illustrated in equation (4.12), 

the outputs will be a collection of curvelet coefficients              indexed by a scale j, an 

orientation l and spatial location parameters k1 and k2 [95]. 
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Each          
  is a digital curvelet waveform, superscript D stands for “digital”. These 

approach implementations are the effective parabolic scaling law on the subbands in the 

frequency domain to capture curved edges within an image in more effective way. As 

mentioned earlier, wrapping based curvelet transform is a multiscale pyramid which consists 

of several subbands at different scales. It is consisting of different orientations and positions 

in the frequency domain. At a high frequency level, curvelets are so fine and looks like a 

needle shaped element and they are non-directional coarse elements at low frequency level.  

Figure 4.12 illustrates an image represented in spectral domain in the form of 

rectangular frequency tiling by combining all frequency responses of curvelets at different 

scales and orientations, where curvelets are needle like elements at higher scale. It 

becomes finer and smaller in the spatial domain and shows more sensitivity to curved edges 

as the resolution level is increased. Thus allowing to effectively capturing the curves in an 

image and curved singularities can be well-approximated with fewer coefficients. 

In order to achieve a higher level of efficiency, curvelet transform is usually 

implemented in the frequency domain. This means that a 2D FFT is applied to the image. 

For each scale and orientation, a product of Ujl “wedge” is obtained, the result is then 

wrapped around the origin, and 2D IFFT is then applied resulting in discrete curvelet 

coefficients. Candes et al describe the discrete curvelet transform in [77] as illustrated in 

equation (4.12). 
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Wedge at scale 4, orientation 4. 
Curvelet is smoothly localized 
obeying the parabolic scaling

Non-directional curvelet 
at coarsest level

 

Fig. 4.12: 5-level curvelet digital tiling of an image [95]. 

 

The difficulty behind this is that trapezoidal wedge does not fit in a rectangle of size 2j x 2j/2 

aligned with the axes in the frequency plane, where the 2D IFFT could be applied to collect 

curvelet coefficients. The wedge wrapping procedure proposed in [77] uses a parallelogram 

with sides 2j and 2j/2 to support the wedge data, the wrapping is done by periodic tiling of the 

spectrum inside the wedge and then collecting the rectangular coefficient area into the 

centre. The centre rectangle of size 2j x 2j/2 successfully collects all the information in that 

parallelogram [98]. 

Fig. 4.13 illustrates the process of wrapping wedge where the angle θ is in the range 

(π/4, 3π/4) and the rectangles have the same width and length as the parallelogram is 

centered at the origin [77]. 
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Fig. 4.13: Wrapping wedge data [79]. 

 
The following are the steps of applying wrapping based FDCT algorithm [77]:  

 

Step 1: Apply the 2D FFT to an image to obtain Fourier samples: 

         
 

 
     

 

 
 

 
Step 2: For each scale j and angle l, form the product: 

                  

 
Step 3: Wrap this product around the origin and obtain: 

                           

 
Where the range for m, n and θ is now 0 ≤ m < 2j , 0 ≤ n < 2j/2 , and -π/4 ≤  θ <  π/4. 

 

Step 4: Apply IFFT to each      , hence collecting the discrete coefficients             . 
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The curvelet transform is a multiscale transform such as wavelet, with frame elements 

indexed by scale and location parameters. Wavelets are only suitable for objects with point 

singularities, Ridgelets are only suitable for objects with line singularities while curvelets 

have directional parameters and its pyramid contains elements with a very high degree of 

directional specificity. The elements obey a special scaling law where the length and the 

width of frame elements support are linked using equation (4.14): 

 

      wi th ≈ length 2                                       

 

Discrete curvelet transform in the spectral domain utilizes the advantages of FFT, during 

FFT both image and curvelet at a given scale and orientation are transformed into the 

Fourier domain. The convolution of the curvelet with the image in the spatial domain then 

becomes their product in the Fourier domain. At the end of this computation process, a set 

of curvelet coefficients are obtained by applying IFFT to the spectral product. This set 

contains curvelet transform coefficients in ascending order of the scales and orientations.  

As illustrated in equation (4.13), the data acquisition geometry separates the curvelet 

expansion of the object into two pieces; this is explained in the following equation: 

 

             
        

                                                 

        

 

 

The first part of equation (4.14) can be recovered accurately while the second part cannot. 

What is interesting here is that one can provably reconstruct the recoverable part, the 

accuracy will be similar to that one achieved even if one had complete data. There is indeed 



Chapter 4: Multi-Resolution Analysis for Medical Image Segmentation 

 

S. Al Zu’bi Thesis                                                                                        Page 72 of 207 

 

a quantitative theory showing that for some statistical models which allow for discontinuities 

in the object to be recovered, there are simple algorithms based on the shrinkage of curvelet 

biorthogonal decompositions, which achieve optimal statistical rates of convergence [90]. 

Fig. 4.15 illustrates the frequency response of curvelets at different scales and orientations 

for some test images using “Curvelab (version: 2.1.2)” in both domains [99]. 

   

 
Fig. 4.14: Curvelets at increasingly fine scales from 1 to 5 (Spatial domain and Frequency domain) [99].  
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From Fig. 4.15, curvelets are non-directional at coarsest level. Fig. 4.15 illustrates a clinical 

data for human chest from CT scanner in spatial viewpoint and its curvelet coefficients in the 

frequency view point. In Fig. 4.15, the low frequency coefficients (coarse scale) are stored at 

the centre of the display. The  concentric  coronae (formed  by black strips) show 

coefficients at different scales and the outer coronae correspond to higher frequencies. 

Each corona has four strips further subdivided in angular panels; each panel represents 

coefficients at a specified scale and orientation suggested by the position of the panel. 

Wedge wrapping is done for all the wedges at each scale in the frequency domain to obtain 

a set of subbands or wedges at each curvelet level, these sub-bands are the collection of 

discrete curvelet coefficients.  

 

 
Fig. 4.15: Clinical slice for the human chest from a CT scanner in spatial (left) and curvelet coefficients (right). 

 

4.6. Experiments and Results Analysis  

 

The end users of the proposed system are the radiologists and specialists who analyse 

medical images for cancer diagnosis. The main radiologists’ goal is to locate the cancer in 

medical images and detect its accurate size with the least errors. This process may be 
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affected by the noise surrounding ROI, which make the process of measuring the exact 

dimensions so hard. A proposed data set has been carried out with the MRA segmentation 

system to validate it for clinical applications. The data name is NEMA IEC body phantom 

which consists of an elliptical water filled cavity with six spherical inserts suspended by 

plastic rods of inner diameters: 10, 13, 17, 22, 28 and 37 mm [100] (Fig. 4.16). 

 

 
 

Fig. 4.16: NEMA IEC body phantom 

 

4.6.1. Performance measurement metrics  

 

Many techniques can be used for segmentation, and each technique has a different 

segmentation performance and quality compared to the others. As mentioned in chapter 3 - 

section 3.4; many performance evaluation techniques are available, but not all of them are 

suitable to judge on MRA performance for segmenting a predefined proposed phantom 

data. Euclidean distance is the best performance metric for evaluating the quality of 

segmenting NEMA IEC body phantom using MRA. Other performance metrics can be used 

instead of Euclidean distance to evaluate different factors. 
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4.6.2. Experimental results 

 
Table 4.1 illustrates the SNR values of extracted features from NEMA IEC DATA SET in 

spatial domain, different levels of decomposition of wavelet domain and at different block 

sizes in ridgelet domain. 

 

Table 4.1: Wavelet and ridgelet comparisons depending on SNR and processing time. 

Domain 

Wavelet Ridgelet 

Spatial 

Level 1 Level 2 Level 3 P = 5 P = 11 P = 31 

SNR (dB) 10.63 11.14 10.95 10.37 11.43 11.88 7.17 

Time (sec) 0.23 0.24 0.50 71.5 29.91 10.01 1.18 

 

It can be seen from Table 4.1 that small values of SNR have been obtained for all 

techniques; this is due to the noise from the acquisition systems itself. This noise will be a 

part of the medical image after the reconstruction of all slices. Relatively better SNR values 

can be achieved with the second level of wavelet decomposition and as the block size (p) is 

getting bigger with the ridgelet transform, where the transformed image is getting more 

similar to the original image. This can be assigned to the major limitation of using ridgelet 

transformation in medical image segmentation where ridges rarely exist in such data. 

MRA transforms have been used with thresholding technique to segment the experimental 

data. Thresholding technique has been applied as a pre-processing step on the original 

images at threshold value (t=35) to remove as much artificial spam sequel produced from 

the scanners. The transform then applied to effectively represent objects with edges which 
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are the contours of the medical images followed by another thresholding at (t=7) to remove 

most of the remaining noise and facilitate the measurement process. 

Fig. 4.17 illustrates the segmentation using curvelet transform. Fig. 4.17 (a) and Fig. 

4.17 (c) illustrate the original images from a CT scanner, Fig. 4.17 (b) and Fig. 4.17 (d) 

illustrate the segmented phantom image and real chest image respectively using curvelet 

transform. As illustrated in Fig. 4.18, results of the proposed segmentation technique vary in 

terms of smooth reconstruction of the spheres. The curvelet transform segments the input 

image and removes artifacts from the image to exhibit smooth and optimal segmentation of 

NEMA phantom. Ridgelet transform detect ROI but does not give promising segmentation 

results due to the lack of ridges or straight lines in the tested data set. Wavelet quadrants 

are varying also in their quality; relatively, the best results have been achieved with the LL-

filter output. 

(a) (b)

(c) (d)  
Fig. 4.17: Curvelet transform for segmentation. (a) NEMA IEC body phantom, (b) segmented phantom slice, (c) original real 

chest slice, (d) segmented real chest slice.  
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Fig. 4.18: Segmentation using conventional hard thresholding and curvelet-based segmentation. (a) Denoised spatial domain. 

(b) First level in wavelet domain. (c) Ridgelet domain. (d) Curvelet domain. 

 

Table 4.2 illustrates NEMA spheres diameters error percentages measured using different 

multiresolution analysis techniques, and compared to previously implemented techniques. 

ED has been used to measure the spheres diameters and calculate the error percentages 

for each technique, sphere diameter error percentages have been calculated as follows: 
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Table 4.2: The error percentages of spheres diameters measurements for NEMA IEC body phantom 

Spheres (mm) 

Error % for measured diameters 

10 13 17 22 28 37 

K-means [1] -4.7 -4.0 -1.94 -1.86 -1.71 -1.7 

MRFM [1] -2.5 -3.0 1.4 1.31 1.28 1.27 

Manual Clustering 5.9 5.08 2.94 2.45 1.79 0.35 

Iterative Thresholding [101] 3.0 3.1  0.6  0.9  1.1  1.8 

Wavelet 

H
a
a
r 

Level 1 -2.9 -2.46 1.35 0.82 0.29 0.05 

Level 2 -10.9  -6.67  3.88  -1.3  -0.76  -1.95 

Level 3 --- --- 5.65  -18.2  2.57  -3.24 

D
a
u

b
ec

h
ie

s 

Level 1 -7.43  -2.69  0.12  2.0 2.17  1.81 

Level 2 -5.2  0.15  -4.24  0.73  0.62  -0.11 

Ridgelet -10.93 -6.67 3.88 -1.30 -0.76 -1.95 

Curvelet 2.65 1.62 1.07 -0.82 -0.33 -0.09 

 

From Table 4.2, in the case of K-means clustering, tumour volumes are underestimated by 

approximately 5-6% in most cases, however, for the two smaller spherical inserts, with 

diameter of 10 mm and 13 mm, respectively, these underestimations are significantly 

greater. For the smallest sphere, more than a 13% volume discrepancy is recorded, with the 

K-means algorithm finding it difficult to quantify the tumour accurately. Sphere 2 volume 

similarly is massively underestimated (11.5%). Unlike K-means clustering, MRFM tends to 

overestimate the volumes of the spherical inserts, with the exception of Spheres 1 and 2. 
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Spheres diameters are reduced to the half with each decomposition level of wavelet 

transform. Three decomposition levels of DWT have been applied on NEMA phantom [100] 

using two different filters (Haar, Daubechies), and the measured diameters were doubled at 

each level to produce a fair comparison with the other available techniques. It can be seen 

that most of the error percentages were decreasing while the spheres diameter increasing, it 

is worth mentioning that there is no upper bound of the spheres diameters to keep the errors 

decreasing because the ROI becomes clearer and easier to be detected and measured 

properly. But tumours in real life are usually very small in the early stage cancer, and the 

problem is to detect those turnouts’ tumours as soon as possible. 

The two smallest spherical inserts are still underestimated in most of the techniques 

and got the largest error percentages. The large volumetric errors encountered using this 

acquisition exist as a consequence of the poor slice thickness setting selected for the scan. 

The 4.25 mm slice thickness causes large fluctuations in transaxial tumour areas to occur 

between image slices. This problematic characteristic occurs most notably with the smallest 

spherical inserts, where single voxel reallocation causes a large deviation in percentage 

error. In Fig. 4.19, the percentage error computed between the actual sphere volume and 

the volumes obtained using all methodologies for each of the six tumours inserts is plotted. 

It can be seen that all techniques are settled down according to the error percentages as the 

sphere diameters increased. 

It can be also seen from Table 4.2 that acceptable error percentages have been 

achieved using ridgelet transform for the big spheres (22 mm, 28 mm, 37 mm), where the 

curves are not sharp and ridgelet detect it accurately as it close to be ridges. But for the 

small spheres, ridgelet weakness for medical image segmentation start appears clearly. 
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Curvelet transform overcomes the weakness of wavelet for segmenting sharp curves and 

detect the small spheres accurately with error percentages (0.82% - 2.65%). For the big 

spheres, errors achieved using wavelet transform are still better than those achieved using 

curvelet transform due to the sharpness of that spheres. But still very good results using 

curvelet transform and acceptable for clinical applications. 

 

 
Fig. 4.19: Visual comparison for error percentages in Table 4.2. 

 

PSNR and MSE have been also used to evaluate the quality of the proposed techniques. 

The original image has been contaminated with Gaussian white noise at σ=20% of the 

maximum intensity. Table 4.3 illustrates a comparison study of curvelet transform with the 
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other traditional transforms, comparison terms PSNR and MSE have been used to test the 

quality of the transformed image. 

 

Table 4.3: Comparison of Curvelet, Ridgelet, and Wavelet denoising in terms of PSNR and MSE. 

Image name 

Curvelet Denoising Ridgelet Denoising Wavelet Denoising 

MSE PSNR (dB) MSE PSNR (dB) MSE PSNR (dB) 

NEMA 41.67 31.93 108.78 26.14 101.12 28.08 

Chest 58.8 30.44 152.45 23.55 147.63 26.44 

 

From Table 4.3, it can be seen that the best results according to both PSNR and MSE have 

been achieved using curvelet transform. Wavelet transform performs better results 

compared to ridgelet transform in both validation metrics. Fig. 4.20 illustrates two noisy 

images and the denoised outputs using both wavelet and curvelet. 

According to a study done by Dettori and Semler [95], the ridgelet-based descriptors 

had significantly higher performance measures in comparison to wavelet-based descriptors, 

with accuracy rates higher than any other wavelet based feature set for all individual organs. 

This is not surprising given the fact that the ridgelet transform is able to capture multi-

directional features, as opposed to the wavelet transform which focus mainly on horizontal, 

vertical, and diagonal features. This can be generalized to most of the images except for 

medical scanners where the weakness of wavelet is not dominant in such images. 
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Fig. 4.20: MRA for image denoising. (a,d) Noisy images. (b,e) wavelet. (c,f) Curvelet. 

 

Curvelet-based descriptors had an even higher performance in comparison to both the 

wavelet and ridgelet, with accuracy rates higher, respectively. The accuracy rate using 

curvelet transform is better, this is expected since the curvelet transform is able to capture 

multi-directional features in wedges, as opposed to lines or points as in the ridgelet or 

wavelet transform. The multidirectional features in curvelets are very effective in extracting 

the important features from medical images, and then segmented accurately. 

As illustrated in the previous tables and figures, it can be seen that more efficient and 

smooth image reconstruction is achieved using curvelet transform. In terms of optimal 

reconstruction of the objects with edges and curves, curvelet-based techniques outperform 

the traditional wavelet and ridgelet transforms. 
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The algorithm presented in this chapter is able to classify normal tissues in CT scans with 

high accuracy rates. These hypotheses will be further tested and validated on different 

predefined clinical data sets in chapter 8 of this thesis.  

 

4.7. Summary 

 
Due to the changing shapes of organs in medical images, segmentation process using 

multiresolution analysis combined with thresholding and/or other techniques as pre- and 

post-processing step allows accurate detection of ROIs. Multiresolution analysis such as 

wavelet transform is extensively used in medical image segmentation and provides better 

accuracy in results. Curvelet and ridgelet transforms are new extension of the wavelet 

transform that aims to deal with interesting phenomena occurring along higher dimensional 

singularities. Though wavelets are well suited to point singularities, they have limitations with 

orientation selectivity hence do not represent changing geometric features along edges 

effectively. Curvelet transform exhibits good reconstruction of the edge data by incorporating 

a directional component to the traditional wavelet transform. Experimental study for using 

MRA in medical image segmentation has shown that curvelet based segmentation of the 

medical images not only provide good quality reconstruction of detected ROI, promising 

results are also achieved in terms of accurately detecting ROI and denoising process. 

Curvelet transform is a new tool and utilization of this technique; it is far from sufficient in the 

medical image processing area. 
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Chapter 5      

Statistical Modeling for Medical 

Image Segmentation – 

Hidden Markov Models  

 

5.1. Introduction  

 

Markov model is a mathematical model of stochastic process that generates random 

sequences of outcomes according to certain probabilities [102]. A stochastic process is a 

sequence of orientation codeword’s. HMMs have three types of topologies: Fully Connected, 

where all states can be reached from any other state such as Ergodic model. The second 

topology type is Left-Right (LR) model such that each state can go back to itself or to the 

following states. The last topology is Left-Right Banded (LRB) model in which each state 

can go back to itself or the next state only [69][102]. 

 For block-based segmentation using statistical classification, an image is divided into 

blocks, and a feature vector is formed for each block by grouping statistics of its pixel 
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intensities [103][104]. Conventional block-based segmentation algorithms classify each 

block separately, assuming the independence of feature vectors. 

Segmentation in MRFM is achieved by maximizing the posteriori probability of the 

segmentation depending on a given image data [105]. MRFM is an earlier version of the 

HMM, where states in MRFM are directly visible to the observer, and then the state 

transition probabilities are the only parameters [106]. HMM [107] are used to characterize 

the statistical properties of a signal. They have been used successfully in speech 

recognition and face recognition for a number of decades and are now being applied to 

medical image segmentation. 

The segmentation using statistical modeling here is novel, as the use of the grayscale 

values for generating the observation sequence is new, it performs well in segmenting 

medical images and overcomes other implemented segmentation techniques. 

In this chapter, statistical modeling using HMMs will be used to segment 2D medical 

images acquired form medical scanners. This segmentation technique is more automated 

compared to the techniques introduced in chapter 4 and proves promising results in medical 

image segmentation. The next section summarizes the background of using HMMs in 

general. The segmentation process of medical images using the proposed HMMs and its 

three stages has been illustrated in section 5.3, the steps that have been followed to 

implement HMMs have been also presented in this section. In section 5.4, experimental 

results of segmentation using HMMs have been illustrated. Finally, the work in this chapter 

has been summarized in section 5.5. 
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5.2. HMMs Mathematical Background 

 

A hidden Markov model is one in which you observe a sequence of emissions, but do not 

know the sequence of states the model went through to generate the emissions. Analysis of 

hidden Markov models seeks to recover the sequence of states from the observed data. 

General and brief information on how to use HMMs in its all steps founded in the Matlab® 

Statistics Toolbox™ 7 User’s Guide with the following example: 

 Consider a Markov model with 2 states and six possible emissions. The model uses: 

 A red die, having six sides, labeled 1 through 6. 

 A green die, having twelve sides, five of which are labeled 2 through 6, while the 

remaining seven sides are labeled 1. 

 A weighted red coin, for which the probability of heads is 0.9 and the probability of 

tails is 0.1. 

 A weighted green coin, for which the probability of heads is 0.95 and the probability 

of tails is 0.05. 

The model creates a sequence of numbers from the set {1, 2, 3, 4, 5, 6} with the following 

rules:  

 Begin by rolling the red die and writing down the number that comes up, which is the 

emission. 

 Toss the red coin and do one of the following:  

 If the result is heads, roll the red die and write down the result.  

 If the result is tails, roll the green die and write down the result.  
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At each subsequent step, you flip the coin that has the same colour as the die you rolled in 

the previous step. If the coin comes up heads, roll the same die as in the previous step. If 

the coin comes up tails, switch to the other die. 

Markov chain is an edge labeled directed graph where each node represents a state, and 

the edge-label have probabilities of moving the state to the end of the directed edge 

[108][109]. When modeling a sequence of observation symbols, it is usual to use an LR 

HMM chain [107] (Fig. 5.1), which has only partial state transition matrix, such that ai,j=0, 

j<i,i> j+step, where step is a constant usually equal to 1 or 2. 

 

X(t-1)

Y(t-1)

X(t+1)

Y(t+1)

X(t)

Y(t)

 

Fig. 5.1: LR Markov chain. 

 
The diagram for the previous model has two states, red and green, as shown in the Fig 5.2. 

You determine the emission from a state by rolling the die with the same colour as the state. 

Transition to the next state determined by flipping the coin with the same colour as the state. 

 The transition matrix is: 

 

   
      
        

  

 



Chapter 5: Statistical Modeling for Medical Image Segmentation - Hidden Markov Models 

 

S. Al Zu’bi Thesis                                                                                        Page 88 of 207 

 

 The emissions matrix is: 

   

 

 

 

 
 

  

 

  

   

 

 
 

  

    

 

 

 

 

 

 
 

  

 

  

 

  

  

State 1

“red”

State 2

“green”

0.9

0.95

0.1

0.05

 
 

Fig. 5.2: HMM state diagram for the proposed model 

 
The model is not hidden because you know the sequence of states from the colours of the 

coins and dice. Suppose, however, that someone else is generating the emissions without 

showing you the dice or the coins. All you see is the sequence of emissions. If you start 

seeing more 1s than other numbers, you might suspect that the model is in the green state, 

but you cannot be sure because you cannot see the colour of the die being rolled. Hidden 

Markov models raise the following questions: 

 

 Given a sequence of emissions, what is the most likely state path? 

 Given a sequence of emissions, how can you estimate transition and emission 

probabilities of the model? 
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 What is the forward probability that the model generates a given sequence? 

 What is the posterior probability that the model is in a particular state at any point in 

the sequence? 

These questions will be answered in section 5.3 where HMMs are used for segmenting 2D 

images. 

HMMs represent a widespread approach to the modeling of sequences as they 

attempt to capture the underlying structure of a set of symbol strings. The use of HMM for 

shape recognition has not been widely addressed. Only few works have been found to have 

some similarities with this thesis proposed approach. At first, He and Kundu [110] utilized 

HMMs to model shape contours through Autoregressive (AR) coefficients. The use of 

circular HMM for recognition improving scaling and deformation robustness is proposed in 

[111][112]. 

HMM is basically a stochastic finite state automation, formally defined by the 

following elements [107]: a set of states S=S1,...,Si,...,Sj,...,SN; a state transition 

probability distribution matrix A = {ai,j} 1 ≤ i, j ≤ N representing the probability to go from 

state Si to Sj ; a set of observation symbols V={v1,v2,...,vk,...,vM}, where vk used to be a d-

dimensional vector (in the case of discrete HMM); an observation symbol probability 

distribution or emission matrix B={bj(vk), 1 ≤ k ≤ M} 1 ≤ j ≤ N, indicating the probability of 

emission of symbol vk when system state is Sj ; an initial state probability distribution π = 

{πi} 1 ≤ i ≤ N, representing probabilities of initial states. For convenience, HMM has been 

denoted as a triplet λ = {A, B, π}, which uniquely determines the model [69]. 
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As HMMs are one-dimensional in nature, a variety of approaches have been adopted to 

represent the two-dimensional structure of images: 

 

 One Dimensional Discrete Hidden Markov Model 

One Dimensional Discrete HMM (1D-DHMM) is an approach for adapting HMMs to 

deal with 2D datasets [113][114]. This involves modeling an image using two 

standard HMMs, one for observations in the vertical direction and one for 

observations in the horizontal direction. During the segmentation phase, 

observations in both the vertical and horizontal directions are extracted and tested 

against HMMs that have been trained on vertical and horizontal observations, 

respectively. 

 

 Pseudo Two Dimensional Hidden Markov Model 

The Pseudo Two Dimensional HMM (P2D-HMM) is a 1D HMM comprising super 

states to model the sequence of columns in the image [113]. Each super state is 

itself a 1D HMM, which models the blocks within the columns. In this approach, 

image columns evaluate a block of pixels which comprise superstates including 

Markov simplestates. This will briefly explained in section 5.3. 

 

 Low-Complexity Two Dimensional Hidden Markov Model 

Low-Complexity Two Dimensional HMM (LC 2D-HMM) consists of a rectangular 

constellation of states, where both vertical and horizontal transitions are supported 

[113][115]. The complexity of the LC 2D-HMM is considerably lower than that in 

P2D-HMM; however, recognition accuracy is lower as a result. 



Chapter 5: Statistical Modeling for Medical Image Segmentation - Hidden Markov Models 

 

S. Al Zu’bi Thesis                                                                                        Page 91 of 207 

 

5.3. Image Segmentation using HMM 

 

The problem with 2D-HMM is the double dependency of Si, j on its two neighbours, Si−1, j and 

Si, j−1, as illustrated in Fig. 5.3. This does not allow the factorization of computation as in 1D, 

where Si, j must only depend on one neighbour at a time. However, this neighbour may be 

the horizontal (Si, j−1) or the vertical (Si−1, j) [108][116]. P2D-HMM will be used in this research 

to implement the 2D HMM structure. 

 

          

          

          

          

          

          

          

          

          

          

 

Si-1,j 

 
Si-1,j-1 

Si,j-1 

 Si,j 

 

Fig. 5.3: Double dependency problem in  2D HMM segmentation. 

 

Each slice is a 2D matrix which can be classified by an optimum set of states with maximum 

probability; these states are mapped into classes or segmented objects. The basic 

assumption of applying P2D-HMM on medical images is to use the embedded-HMM by 
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defining a set of Markovian superstates, within each superstate there is a set of simple 

Markovian states. The superstate is first chosen using a first order Markov state transition 

probability based on the previous superstate. A simple Markov chain is then used to 

generate observations in this superstate. Thus, superstates are related to rows (or any 

equal size blocks), and simple states are related to columns (or smaller blocks comprising 

the superstate) [69][113]. 

As mentioned in chapter 1, Matlab ® has been used in this research for analyzing 

the proposed techniques. The following steps are followed to implement HMMs 

segmentation using: 

 
Step 1: Random state transition and emission probability matrices have been 

generated based on the number of states; these matrices have to fulfill the 

condition of HMMs probability matrices where the summation of each row 

indices values must equal to 1. 

 
Step 2: Create the sequence of observations based on the gray scale values from the 

medical image. 

 
Step 3: Using the guess matrices (randomly generated) and the observation 

sequence, a built in Matlab ® function (hmmtrain) is used to create the exact 

transition and emission matrices. This has been done based on the spatial 

correlation between the adjacent pixels. 

 
Step 4: The most likely states along the image have been calculated by iterating 

viterbi algorithm. This has been calculated using a builtin Matlab ®  function 
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(hmmviterbi), the function inputs are the exact matrices and the sequence of 

observations. And the output is a sequence of the most likely states. 

 
Step 5: Based on the most likely states; each group of pixels that belongs to the 

same state are group together to form a segmented output image. 

As mentioned in section 5.2, using HMMs for segmentation raise some questions to be 

answered. The following steps of applying HMMs will answer those questions: 

 

5.3.1. Defining the initial states  

 
To generate an observation sequence using HMM, an initial state must be chosen according 

to the initial state distribution; then an observation sequence should be chosen according to 

the probability distribution in the initial state [69][108]. Many feature selection techniques 

have been tested in medical images, and the best results were achieved using the grey-

scale values of the medical image pixels to generate the probability distribution matrix. After 

defining the initial states, transition to a new state will take place according to the state 

transition matrix for the current state and depending on the sequence of observations. 

 

5.3.2. Training HMM  

 
HMM considers observations statistically dependent on neighbouring observations through 

transition probabilities organized in a Markov mesh. Training HMM for images is achieved by 

dividing the image into non-overlapping, equally sized blocks, from each of which a feature 

vector is extracted. Each block and its feature vector evaluates the observation which has its 
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own transition probability matrix. Training HMM produces an estimated state transition 

probability matrix and estimated emission probability matrix. 

After building the observation sequence, the model parameters are estimated based on the 

blocks’ statistics. These classes or states were determined using Viterbi algorithm, which 

depends on (1) the sequence of observations; (2) estimated state transition probability 

matrix; (3) emission probability matrix [104][117]. Finally, pixels which belong to the same 

class are grouped together to evaluate a segmented image. 

 

5.3.3. Testing HMM  

 

The feature vectors for a testing image are generated to find a set of classes with maximum 

posteriori according to the trained HMM. The feature vector for each block may be changed 

at every single state. Once the block state is known, the feature vector will be independent 

of the other blocks; any two blocks may be more likely to be in the same state if they have 

close intensities [118]. In other words, testing HMM will generate the state transition 

probability matrix and emission probability matrix for a given comparable data [108][118]. 

 

5.4. HMM Experimental Results  

 

As mentioned in section 4.6, the end users of the proposed system are the radiologists and 

specialists who analyze medical images for cancer diagnosis. NEMA IEC body phantom has 

also been carried out with HMMs segmentations to validate it in clinical applications. HMMs 

can be applied for medical image segmentation in different ways and with different 
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transforms; each way has a different segmentation performance and quality. As mentioned 

in section 3.4; many performance evaluation techniques are available, ED and DSC have 

been used in this section for measuring the performance of using HMMs for medical image 

segmentation.  

HMMs have been used in this thesis for medical image segmentation, which can be 

applied either in its spatial or multiresolution domain using wavelet, ridgelet or curvelet 

transforms. The weakness of HMMs is its long processing time, compared with the other 

available segmentation techniques. NEMA IEC body phantom has been utilized to perform 

the experimental study using HMMs and MRA for medical image segmentation, and the 

achieved results are illustrated in Table 5.1 regarding that equation 4.16 has been used to 

calculate the error percentages. The results have been measured on an HP Laptop with 

Intel Core i7 / 1.6 GHz processor and Graphic card NVIDIA® GeForce® GT 230M with 1GB 

dedicated DDR3 memory, and 4GB RAM. 

Table 5.1: Performance diameter measurements error percentages of using HMMs and MRA for medical 

image segmentation. 

diameters (mm) 10 13 17 22 28 37 Processing time (sec) 

HMM (Spatial) 1.5 0.8 0.1 0.8 0.04 1.0 2007.3 

HMM (Wavelet) --- 11.07 7.82 2.98 1.09 0.27 1321.1 

HMM (Ridgelet) --- --- --- --- --- 2.41 5757.6 

HMM (Curvelet) 1.03 0.69 0.43 0.27 0.11 0.07 1967.5 
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From Table 5.1, applying HMMs on NEMA phantom slice in ridgelet domain failed to 

segment ROI, where most of the spheres diameters could not be detected. As well as the 

long computational time problem which is five times more than the required time for applying 

HMMs on the slice in its wavelet domain. Transforming any image into ridgelet domain 

changes the comprising pixel specifications, as well as the dimensions of the image; this is 

due to the padding row added to each block. Therefore, very long computational time is 

required for segmenting an image in its ridgelet domain using HMM segmentation. 

The image contains the least noise in the curvelet domain compared to other 

domains. Therefore, HMMs prove promising results with curvelet transform and segment the 

proposed phantom properly with more accurate results. Relatively, and according to the 

segmentation error performance, the accuracy of the proposed HMMs segmentations 

mentioned in Table 5.1 can be ordered from the best to the worst as: HMMs with curvelet 

transform, HMMs in spatial domain, HMMs with wavelet transform, HMMs with ridgelet 

transform. 

Recalling the computational time for each method, segmentation using HMMs in 

wavelet domain requires the least processing time as the image size in this transform is 

reduced to half of its original size with each decomposition level. The images size in both 

spatial and curvelet domains are the same, but the difference in the computational time is 

due to the noise occurrence in the image where HMMs will be easier and faster if there is 

less noise. Therefore, computational time required for HMMs segmentation in curvelet 

domain is less than the required time in spatial domain. Fig. 5.4 and Fig. 5.5 illustrate the 

outputs of applying HMM on a slice from NEMA IEC body phantom and a real clinical data 

for human brain in their spatial domains. 
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(a)                                                              (b)
 

Fig. 5.4: Segmented NEMA phantom slice using: (a) thresholding technique and (b) HMM. 

 

(a)                                                       (b)  

Fig. 5.5: HMM for Image Segmentation. (a) Original and (b) HMM. 

 

It can be seen from Fig. 5.5 that different obstacles were merged such as bones and brain 

tissues; this merger is due to the number of HMM classes (states). HMMs decided that brain 

tissue and bones in Fig. 5.5 will be in the same class and gave them the same colour 

because just three HMM classes were used, but each obstacle will be in a separate class if 

the number of classes increased to be equal to the number of obstacles in the image. There 

are some available techniques that can be used to define the best number of classes in 

HMM such as BiC [1][103]. 
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HMMs have been also applied on other clinical data for the human abdomen section 

illustrated in Fig. 5.6 in both spatial and ridgelet domains. The DSC values for the 

segmented slices have been measured and illustrated in Table 5.2 which evaluates the 

performance based on a manual segmented image. 

 

(a) (b) (c)
 

Fig. 5.6: Image Segmentation using HMM. Original (a), HMM on ridgelet (b), and HMM on spatial (c). 

 
Table 5.2: Performance of using HMMs and MRA for medical image segmentation. 

 

Type Number of joint pixels Number of all pixels  DSC value 

HMMs in Spatial domain 212521 524288 0.8107 

HMMs with Ridgelet transform 158905 524288 0.6062 

 

From Table 5.2, better results have been achieved with HMMs in the spatial domain; this 

has been expected due to the change in pixels properties by applying ridgelet transform on 

an image. HMMs have been applied on the chest image after extracting the important 

features using curvelet transform (Fig. 5.7). 
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Fig. 5.7: image Segmentation using HMM and curvelet transform 

 

Structural Hidden Markov Model (SHMM) is a modified version of Markov model which has 

been implemented by Bouchaffra and Tan [119]. We have implement and modify this new 

model to be suitable for segmenting medical images. Despite SHMM proves promising 

results and overcomes HMMs in many applications such as face recognition, its results for 

medical image segmentation were worse than the traditional HMMs and requires much more 

computational time for segmentation. Therefore, we decide not to use it in the proposed 

medical image segmentation system. 

The algorithm presented in this chapter is able to classify normal tissues in medical 

scans with high accuracy rates. These hypotheses will be further tested and validated on 

different predefined real clinical data sets in chapter 8 of this thesis.  
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5.5. Summary 

 

Promising results have been achieved with the statistical models using HMMs; Applying 

HMMs for medical image segmentation has a limitation which is the long computational time. 

HMM could be applied with different MRA transformations such as wavelet, ridgelet, and 

curvelet to improve the proposed system quality. It is worth mentioning that based on the 

experiments carried out on the specific medical data in section 5.4; HMMs can be classified 

as one of the ideal medical image segmentation techniques compared to the work done in 

this thesis using other methods. 
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Chapter 6          

Medical Volume Segmentation 

using 3D Techniques 

 

6.1. Introduction 

 

3D volume is a 3D matrix whose indices represent samples of a certain physical quantity, 

3D volumes may also be called volumetric images [3]. The most common way for generating 

a 3D data set in medical applications is from tomographic devices such as PET, CT, or MRI 

[3]. 3D volume segmentation is the process of partitioning voxels into 3D regions (sub-

volumes), that represent meaningful physical entities which are more meaningful and easier 

to analyze, and usable in future applications. In medical applications, a stack of slices is 

produced from the source of the volumetric images which are the acquisition systems; each 

is a 2D medical image which performs a specific human body section. 3D volumes can be 

evaluated either by the volume they occupy or by their contouring edges.  

The main goal in this chapter is to develop segmentation methods which can be 

applied directly to medical volumes acquired from the scanners without slicing them. The 
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output of applying these methods on 3D medical data will be a segmented volume which 

clearly visualizes OOI, these segmented output is easier to analyze and understand than the 

original scanner output data. Section 6.2 gives a general overview of 3D image processing. 

3D wavelet transform and 3D HMMs for medical volume segmentation are introduced in 

sections 6.3 and 6.4 respectively. And a comparison between the proposed 2D and 3D 

segmentation techniques is illustrated in section 6.5. Section 6.6 includes a summary of the 

work implemented in this chapter. 

 

6.2. Overview of 3D image processing 

 

Any section in the human body can be performed by a stack of 2D medical images (slices), 

these slices are acquired from the acquisition scanners. All slices are grouped together 

using Matlab ® code [120] to form a 3D matrix which evaluates the 3D medical volume. 

Voxels’ classification into objects is performed by requiring that voxels belong to 

certain range and share some predefined properties. Those voxels comprise a distinct or 

segmented OOI from the input volume [3]. Medical scanners are capable of slicing an object 

in a physical sectioning, 3D data set from those devices can be considered as a parallel 

slices stacked to form a 3D volume. 

Nikolaidis mentioned in [3] that Volume Edge Detection (VED) is usually performed 

by convolving the volume with a set of 3D masks; each mask acts as a discrete 

approximation of the partial derivative with respect to a specific direction. VED techniques 

have not been used alone as a volume segmentation technique, because the use of VED 
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comes from the fact that edges are produced by the edge detection operators, and they do 

not form closed contours. Thus, other 3D techniques may be combined with VED to obtain 

better results. 

There are several techniques to perform medical volume segmentation, of which 

thresholding approach is the simplest. If the values which evaluate the voxels that represent 

a specific object in the 3D data set are in a specific range without overlapping the 

background or any other object voxels’ values range, thresholding technique will be the best 

way to segment such volumes [121]. 

Voxels whose intensity falls between two threshold values are assigned to the 

segmented object or OOI. The success of using thresholding as a segmentation technique 

is based mainly on choosing the threshold values; it is not easy to set them automatically. In 

many applications, the threshold values selection can be done depending on the basis of 

volume histogram. Spatial information is not taken into account in thresholding. Therefore, 

the voxels of a certain object are not necessarily connected. In other words, the OOI might 

be a number of completely separated sub-volumes. 

 

6.3. 3D Wavelet Transform  

 

Applying 3D-DWT is not easy; the difference between 2D images and 3D volumes is the 

third dimension (depth or Z-axis). The expected transform after applying one decomposition 

level of 3D-DWT is illustrated in Fig 6.1. 
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Fig. 6.1: 3D volume in wavelet domain. 

 
Applying one level of 3D-DWT is the process of transforming the original volume into 8 

octants in its wavelet domain. Mathematically, 3D-DWT is the process of applying 1D-DWT 

on each vector in Z-axis which has the same X-axis and Y-axis coordinates after applying 

2D-DWT for all comprising frames. Algorithm 6.1 illustrates the 3D-DWT pseudo code, and 

the filter structure of 3D Haar wavelet transform is shown in Fig 6.2. 

 
Algorithm 6.1: Pseudo code for 3D-DWT. 

 

 

(1)  Load 3D data set into V 
(2)  [x y z] = size(V) 
(3)  for k = 1 to z do 
(4)   apply 2D-DWT for each plane in Z-axis 
(5)  end for 
(6)  for i = 1 to x do 
(7)   for j = 1 to y do 
(7)  apply 1D-DWT for all vectors corresponding 

to each pixel in XY plane 
(10)   end for 
(11)  end for 
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Fig. 6.2: Haar filter architecture for 3D-DWT. 

 

Applying segmentation techniques on 2D slices requires more time compared to the time 

required in 3D volumes based approaches. For example, the required time to look for the 

best slice in NEMA IEC body phantom which includes the spheres in full diameters is not 

required in 3D volume segmentation processes. As well as real clinical data, ROI used to be 

clearly visualized in any slice and the required time to locate the specific slice that includes a 

clear view of the ROI is avoided using 3D segmentation techniques. The main drawbacks 



Chapter 6: Medical Volume Segmentation using 3D Techniques 

 

S. Al Zu’bi Thesis                                                                                        Page 106 of 207 

 

for using 2D wavelets in medical image feature extracting is that the features occurred along 

z-axis are not extracted, where 3D wavelet solves this and extract those features properly. 

Segmented volume for NEMA IEC body phantom using 3D-thresholding is illustrated 

in Fig 6.3(a), 3D-wavelet technique is applied on the same phantom data and the selected 

spheres are detected as illustrated in Fig 6.3(b). Another example of applying 3D-DWT on a 

real clinical CT images is illustrated in Fig 6.3(c). 

 

 
 

Fig. 6.3: 3D segmentation techniques. 
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6.4. 3D Hidden Markov Model 

 

Over the past years, HMMs have been explored as efficient statistical modeling techniques 

in speech, image and video understanding, because observed signals can be modeled 

through a first order Markov process. In this section, 3D-HMMs in its general form will be 

introduced. 

Assume a 3D point (       ), where i,j and k are coordinates along the X,Y and Z axes 

respectively. A lexicographic order of the 3D point is defined in equation (6.11): 

 

                                 

    
            

               

                               (6.11) 

 

The observed signal value at the point (i,j,k) has been denoted by ui,j,k and its hidden state 

by si,j,k. The model attempts to capture the statistical dependencies among 3D points 

through the state transition probability illustrated in equation (6.12) [122]: 

 

                                                                                     (6.12) 

 

Where (          ) are all points proceeding (       ) in the lexicographic order. Because of the 

Markov property, there are three preceding points p1,p2 and p3 that affect the state of point 

(       ) as shown in the graphical illustration for the model in Fig 6.7. The hidden states of 

the three neighbouring points are si-1,j,k = p, si,j-1,k = m, si,j,k-1 = n separately.  

 



Chapter 6: Medical Volume Segmentation using 3D Techniques 

 

S. Al Zu’bi Thesis                                                                                        Page 108 of 207 

 

 
 

Fig. 6.4: 3D HMM graphical illustration [122]. p1,p2,p3 are three neighbouring points that affect the state at (i,j,k). 

 

An example of applying 3D-HMMs on a 64×64×8 sub-block contains the second biggest 

sphere (28 mm diameter) from NEMA IEC body phantom has been illustrated in Fig. 6.8. It 

can be seen that the sphere is properly detected but in a non-logical shape, it is close to be 

a cylinder rather than a sphere. This is due to the thickness of CT slice, according to the 

phantom description provided in [100], each pixel in the output images is equivalent to 1 

mm2, and the slice thickness of this data is 5mm. Therefore, if the sphere edge thickness is 

less than 5mm, the visualization will look like a cylinder. The surrounding objects seen in 

Fig. 6.8 are noise due to the scanner itself and HMMs classify them in the same class 

containing the 28 mm sphere. 
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Fig. 6.5: 3D HMM on 64 × 64 × 8 sub-block from NEMA IEC body phantom 

 

In Fig. 6.8, the expected output was different than the illustrated one, this is due to many 

factors. The most important difference is the open top part in Fig. 6.8, this is due to the 

handles that fix the sphere in its exact location in NEMA IEC body phantom which is 

illustrated in Fig. 6.9(a). Fig. 6.9(b) illustrates the visualized NEMA phantom volume using 

Matlab® without any transformation. 
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(a) (b)
 

Fig. 6.6:  (a) NEMA IEC body phantom , (b) NEMA IEC body phantom after stacking all slices. 

 

Slice thickness is playing a very important rule here; a group of layers from the original input 

volume has been replaced by one slice evaluating one of them. This leads to a big data and 

contouring loss in the segmented volumes and can be avoided by reducing the slice 

thickness during the body scan. In the example illustrated in Fig. 6.8, 64×64×8 sub-block 

from NEMA IEC body phantom has been segmented, and the input sub-block has been 

chosen manually. Choosing the best group of slices which evaluate sphere2 (28 mm 

diameter) is also important and can affect the output performance. 

 

6.5. 3D Segmentation Techniques Comparison  

 
Applying segmentation techniques on 2D slices requires more time compared to the time 

required by 3D volume-based approaches. The time required to look for the best slice that 

includes the spheres in full diameters is not required in 3D volume segmentation processes. 
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Segmented volume for the NEMA IEC body phantom presented in previous chapters using 

different 3D segmentation techniques has been illustrated in Fig. 6.6 and the selected 

spheres are detected. Table 6.1 compares the errors in spheres diameters using 3D 

segmentation techniques with the existing measurements using 2D techniques for slice 

number 19. ED has been also used here to measure the spheres diameters and calculate 

the error percentages for each technique, spheres diameter error percentages have been 

calculated according to equation (4.16). The inner diameter has been calculated with the 3D 

techniques based on the measured outer diameter and the spheres thickness.  

 
Table 6.1: 3D segmentation Performance for measuring  the error percentages for each slice diameter. 

Diameters (mm) 10 13 17 22 28 37 Processing time  

2D Wavelet -2.9 -2.46 1.35 0.82 0.29 0.05 0.69       seconds      

2D Curvelet 2.65 1.62 1.07 -0.82 -0.33 -0.09 12.6       seconds      

2D HMM (Spatial) 1.5 0.8 0.1 0.8 0.04 1.0 2007.3       seconds 

3D Thresholding 0.59  0.77  0.17  1.11  2.2  6.08 45.0       seconds 

3D DWT -2.67 -1.93 -0.74 4.75 3.37 0.77 280.3       seconds 

3D HMM 1.01 0.71 0.54 0.27 0.03 <0.01 22080.6       seconds 

 

It can be seen from Table 6.1 that 3D techniques overcomes the 2D techniques on average, 

especially for the 3D HMMs. The major problem of applying HMMs in it 2D mode or 3D 

mode is the long computational time which is much smaller using other available 

techniques. This is due to the training process in HMM, where each pixel used to be 
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compared with all other pixels to decide which class it is used to belong. HMMs overcome 

the other available techniques in two terms: (1) The accuracy of HMMs in detecting objects 

and segmenting them properly with the least error. (2) HMMs are more automated 

compared to all available techniques, where no pre-processing or post-processing steps are 

required. 

This computational time problem is occurred also in the other 3D segmentation 

techniques such as 3D-DWT due to the large amount of data used. Chapter 7 illustrates 

acceleration methods for medical image segmentation techniques, this makes the process 

faster and the patients will be able to take their scan results directly after the scan. 

 

6.6. Summary 

 

MRA has proven promising results in chapter 4 including wavelets and curvelets transforms, 

these transforms segment the testing data properly. HMMs in chapter 5 overcome the other 

techniques especially for the automatic segmentation process. All the proposed 2D 

segmentation techniques were promising and can be applied in real clinical applications for 

segmenting human scans. 3D segmentation techniques introduced in this chapter to 

achieve more realistic and accurate results, where the 3D scans are illustrated as they are in 

real to facilitate the radiologists analyzing process. 

A novel and sophisticated segmentation system was developed for 3D data 

segmentation in this chapter. The developed techniques within the system have been tested 

on NEMA IEC phantom data. The system used to quantify tumours within the data of 

predefined volumes, and these results were compared with those obtained from 2D 
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approaches such as curvelets. Statistical models using 3D hidden Markov models have 

been also investigated for segmenting medical volumes; the weakness of HMMs was its 

long computation time required for the calculation of their models which was much larger 

compared with the other evaluated techniques. 

 Real clinical validations and segmented medical volumes for patients diagnosed with 

cancer will be further analyzed in chapter 8 of this thesis. 
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Chapter 7      

Medical Image and volume 

Segmentation Acceleration 

 

7.1. Introduction  

 

At present, segmentations are mainly performed manually by medical specialists. This task 

appears simple, but the reality is that an in-depth knowledge of anatomy and physiology is 

required. Essentially, the expert observes a particular image, determines borders between 

regions and classifies each region. This is commonly completed slice by slice for a 3D 

volume and lead to slow down the segmentation algorithms performance while images with 

large number of features such as medical images form a high dimensional data array. The 

measurement of dozens of features that represent data similarities causes the redundancy 

of information, which is one of the problems related to high dimensional data. 

FR techniques provide efficient methods for simplifying multi-dimensional data by 

replacing a large number of variables with a smaller number of new variables that preserves 

most of the data's features and without that much of information loss [123][124]. FR in 
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medical image processing is a vital part of improving real-time performance of segmentation 

algorithms. It aims at reducing the size of medical images in terms of dimensionality; hence, 

it is an efficient way of reducing computational time and storage demands for image 

processing algorithms. 2D-FR techniques aim to reduce the coefficients of pixel values in a 

single image and the transformed image has reduced features [123]. 

In this chapter, different 3D segmentation techniques have been used for segmenting 

medical volumes in less computational time using different FR techniques, those FR 

techniques are used to reduce dimensionality of the testing volumes. The structure of this 

chapter is organized as follows: the mathematical background for the implemented FR 

techniques is presented in section 7.2. Section 7.3 presents the results and analysis of the 

proposed techniques. Finally, the work implemented in this chapter has been summarized in 

section 7.4. 

 

7.2. Dimensionality and Feature Reduction Techniques 

 

The use of FR techniques in this research aims to reduce the dimensionality of medical 

volumes. Many renowned FR techniques are available; some of them are highlighted in this 

section because of their simplicity and suitability in the proposed application. 

 

7.2.1. Gaussian Pyramid Reduction 

 

GPR is a hierarchical structure of low-pass filters, pixels comprising the upper levels in the 

Gaussian Pyramid are achieved by averaging pixels that comprising the lower level in the 
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pyramid [125]. The pyramid base (level 0) is an m x n matrix contains pixel values that 

indicate the intensity of the original image without any transformation. 

As illustrated in Fig. 7.1, the upper levels are reduced or low-pass filtered versions of 

lower levels. Each value within level gi is computed as a weighted average of values in level 

gi-1 within a 5 x 5 window [126]. 

 

 

 

 

 

 

Level 4

Level 3

Level 2

Level 1

Level 0 (Base)

 

Fig. 7.1: Gaussian pyramid representation in spatial domain. 

 

Fig. 7.2 illustrates the process of applying GPR in one dimension where each row of black 

squares represents nodes within one level of the pyramid. It can be seen that node spacing 

doubles from level to level while the same weighting pattern or kernel as described in [126] 

is used to generate all levels. This kind of reduction has been implemented and applied to 

the proposed datasets using Matlab®, the level-to-level averaging function is performed by a 

Matlab  ® built in function REDUCE which can be used as follow: 

 

                                                                                                                        (7.1) 
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For a filter kernel w[i,j] of dimension 5 x 5 and reduction factor of 4, function REDUCE is 

applied to image I as illustrated in equation (7.2): 

 

                                                 
   

 
                             (7.2) 
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Fig. 7.2: 1D graphic representation of the Gaussian Pyramid reduction. 

 

This technique reduces image dimensions at each level by half while retaining the most 

image features and allowing image processing algorithms to perform faster. Fig. 7.3 

illustrates an example of applying the first and second levels of GPR on a real DICOM slice 

for the human body. 

(a) (b) (c)  

Fig. 7.3: (a) Original image (512 x 512), (b) First level of GPR (256 x 256), (c) Second level of GPR (128 x 128). 
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7.2.2. Discrete Wavelet Transform 

 

DWT has been introduced in section 4.3 of this thesis as an MRA feature extraction 

technique and joined with pre-processing and post-processing steps to be a segmentation 

technique that can be applied for medical image segmentation and edge detection. DWT 

has proved promising results in image compression [127], face recognition [128] and many 

other applications including feature reduction. The low-pass filter output in 2D wavelet 

transform evaluates the averages of the image. In other words, this output is a similar 

version of the input image but with reduced dimensionality to the half. 

Along with the conventional DWT applications in the field of medical imaging, DWT 

decomposition at different levels provide the capabilities of transforming high dimensional 

image into reduced dimensional image preserving most of the image features. Thus the 

decomposition method can be utilized as one of the robust dimension reduction techniques 

in image processing. The mathematical background of DWT and the use in medical images 

has been briefly introduced in section 4.3. Fig. 7.4 and Fig. 7.5 illustrate the output of 2D 

DWT and an example of DWT for reducing medical dataset features respectively.  
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Fig. 7.4: After each single wavelet decomposition level, the image dimensions reduced by 50%. 
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Fig. 7.5: DWT for medical image feature reduction. 



Chapter 7: Medical Image Segmentation Process Acceleration 

S. Al Zu’bi Thesis                                                                                        Page 120 of 207 

 

Looking at the second decomposition level output in Fig. 7.5 (LL filter output), it looks very 

similar to the input image with preserving the features to the original input. The 

dimensionality of the transformed output is equal to the quarter of the input image 

dimensions. This technique is very promising if looking into broader aspect of dimension 

reduction for 3D medical volumes. In more obvious way; 2D DWT can be used to reduce all 

comprising slices to smaller dimension and then construct the 3D volume. This can be 

applied but the third dimension or the number of slices will not be affected. 3D DWT can be 

used here with medical volumes to achieve the most utilized feature or dimensionality 

reduction with an accurate volume image, that retains most of the important features for 

anatomical study and faster for 3D processing.  

 

7.2.3. Principal Components Analysis 

 

Principal Components Analysis (PCA) is most conventionally used technique for 

dimensionality reduction in the field of image processing. It is widely used in face recognition 

for its ability to reduce the data set dimensionality while retaining as much characteristic 

features as possible. According to Burt and Adelson [126], PCA can be used in medical 

volume segmentation for a number of successive slices from an acquisition system. It can 

highlight the most important features in the first two eigenslices and the rest contains only 

least important features. PCA is a classical linear projection aiming at finding orthogonal 

principal directions of a data set by solving an eigenvalues problem. A small number of 

principal components are retained on a linear and low dimensional subspace while a large 

number of minor components are discarded [123]. 
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An image can be represented by an m x n matrix of pixels values, each corresponding 

image is converted into a column vector (zi) by concatenating successive rows transposed, 

where (Z = z1, z2, ..., zN) is the training set of N images and    is the mean image vector [5]. 

Recalling the standard definition of the covariance matrix: 

 

                         
 

 
                     
                        (7.3) 

 

                                              
 

 
   
 
                                   (7.4) 

 

Let (E = e1, e2, ..., er) be a matrix formed by r eigenvectors corresponding to the r largest 

eigenvalues. Only er eigenvectors should be chosen, which have the highest eigenvalues, 

the higher the eigenvalue (eigenslice) the more characteristic features of an image does the 

particular eigenvector describe. Images with low eigenvalues explain only a small part of 

features which can be omitted [129]. Therefore, the first eigenslices is regularly chosen for 

evaluating the set of input slices. 

For a set of original images Z, the reduced feature vectors (X = x1, x2, ...,xN) are 

obtained by projecting them into the PCA-transformed space following the linear 

transformation illustrated in equation (7.5) where xi is the result and E is the eigenvector in 

the corresponding mean adjusted data matrix: 

 

                                                                                  (7.5) 
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The method in equation (7.3) leads to extremely large and computationally challenging 

covariance matrices as the covariance matrix R has the dimensionality N2 x N2. This 

problem is solved by the scheme proposed by Turk and Pentland [130] in which the 

covariance matrix is calculated using the formula      . The advantage of this method is 

that one has to evaluate only M numbers and not N2. Usually, M << N2 as only a few 

principal components will be relevant. 

A group of images can be used as an example of applying PCA for dimensionality 

reduction. Each image is converted into a column vector X by concatenating successive 

rows transposed. According to the algorithm presented by Gonzalez et. al. [131], each 

image vector is stacked into a training matrix (X=x1,x2,...x5). PCA is applied to the data X 

which returns principal components based on the eigenvectors corresponding to the highest 

eigenvalues. The following presents the implementation steps of applying PCA for image 

dimensionality reduction: 

 
Step 1: As illustrated in Fig. 7.6, column vectors from all image matrices comprise 

matrix A. 
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Fig. 7.6: Form a column vector matrix. 
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Step 2: Calculate mean image and subtract it from each image vector in A as 

illustrated in Fig. 7.7. 
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Fig. 7.7: Calculate the mean adjusted data. 

 

Step 3: Calculate covariance matrix of mean adjusted data using equation (7.6): 

 

                    e n  j  te   t      e n  j  te   t               (7.6) 

 

Step 4: Calculate eigenvectors and eigenvalues of the covariance matrix 

 

Step 5: Select principal components using eigenvectors corresponding to the highest 

eigenvalues. 
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As mentioned before, Matlab® has been used in this research to acquire the results and 

validate the techniques; a built-in Matlab® command which is (princomp) has been used to 

calculate the principal components of a given data as follows: 

 

 [Coeff, Score, Latent] = princomp(A) ; 

 

princomp command returns three variables: Score, Coeff and Latent: 

 

 Score: The principal component Score is the representation of A in the principal 

component space. Rows of score correspond to observations and columns to 

components. 

 

 Coeff: Coeff returns the principal component coefficients (eigenvectors). Coeff 

is a p x p matrix, each column containing coefficients for one principal component. 

The columns are in order of decreasing component variance. 

 

 Latent: Latent returns the principal component variances (or the eigenvalues of 

the covariance matrix of A). 

 
Fig. 7.8 illustrates an example of applying PCA on five DICOM slices from a CT scanner, it 

can be seen that the first principal component of the PCA transformed images has 

significant portion of contrast/feature details and it decreases rapidly from the second 

component or eigenslice in PCA domain. Image features are illustrated in Fig. 7.8 in 

decreasing order due to the eigenvalues of the input data. 



Chapter 7: Medical Image Segmentation Process Acceleration 

S. Al Zu’bi Thesis                                                                                        Page 125 of 207 

 

 
 

Fig. 7.8: PCA for 3D volume feature reduction  

 

Table 7.1 illustrates the eigenvalues for each input image shown in Fig. 7.8 in their 

respective order. The first eigenvalue which represents PCA eigenslice 1 is very large due 

to the greatest data variance in the first principal component. One image will be selected to 

evaluate the whole group; the selection process has been done manually in this research 

 

Table 7.1: Eigenvalues for all experimented images. 

Slice 1 Slice 2 Slice 3 Slice 4 Slice 5 

7.34e-04  1.27e-05  3.70e-06  1.46e-06  8.31e-07 

 

7.3. Results and Analysis 

 

The computational time of medical image segmentation is a very important issue, reducing it 

to the lowest value helps to make the segmentation system real time system. The long 

computational time problem has been mentioned in this thesis many times, it was long for 
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MRA including both ridgelet and curvelet transforms, and much longer with all the 3D 

segmentation techniques due to the huge amount of the tested data. HMMs in both 2D and 

3D versions prove promising results and overcome the other techniques, but the weakness 

of HMMs was the long computational time for segmenting medical volumes. 

One of the problems with high dimensional data is the redundancy of information 

through the measurement of dozens of features that represent the similarity of data. Many 

approaches have been used to solve the long computational time problem using different 

hardware and software accelerators.  

FR reduction technique is one of the well-known software accelerators; it helps to 

reduce the computational time of the segmentation process by reducing the features of the 

experimented dataset. FR techniques provide efficient methods of simplifying multi-

dimensional data. The reduced features images have reduced dimensionality hence it is an 

efficient way for reducing computation time and storage demands for medical image 

segmentation algorithms. For example, HMMs can be applied on a reduced dimensionality 

images instead of the full features volume to reduce the computational time. 

Different experiments on different datasets have been carried out to validate the 

proposed FR techniques for medical image segmentation system. The proposed approach 

has been tested using the NEMA IEC body phantom which has been mentioned before as 

well as real CT chest data. All results have been measured using an HP Laptop with Intel 

Core i7 / 1.6 GHz processor and Graphic card NVIDIA® GeForce® GT 230M with 1GB 

dedicated DDR3 memory, and 4GB RAM. 
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7.3.1. 3D DWT Segmentation without Feature Reduction 

 

3D wavelet technique is applied on the NEMA phantom and the included spheres are 

detected as illustrated in Fig. 7.9. Table 7.2 illustrates the spheres diameters errors using 

3D DWT in spatial domain. Another example of applying 3D DWT on real CT images for the 

human chest data [96] is illustrated in Fig. 7.10 where the edges are detected and the 

comprising obstacles can be seen from different angles. The computational time for the first 

wavelet decomposition level of the chest volume is (280.26 seconds). 

 
Table 7.2: Diameters percentages error using 3D-DWT on spatial domain for NEMA IEC phantom 

Sphere Diameters 10 (mm) 13 (mm) 17 (mm) 22 (mm) 28 (mm) 37 (mm) 

3D-DWT on spatial -2.67 -1.93  -0.74  4.75  3.37  0.77 

 

 
Fig. 7.9: Medical volumes in wavelet domain for NEMA IEC. 
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Fig. 7.10: Medical volumes in wavelet domain for real chest data. 

 

7.3.2. 3D DWT Segmentation and PCA Feature Reduction 

 

Fig. 7.11 illustrates real chest volume after FR using PCA followed by 3D DWT to explain 

how the reduced features volume looks like after reduction. The dimensionality has been 

reduced from 512 x 512 x 62 to 256 x 256 x 5 which is the dimensionality of the LLL wavelet 

filter output. PCA compresses each 7 slices together to produce one slice that includes most 

of their features. 

The required computational time to apply 3D DWT on the reduced features volume 

using PCA is 168.38 seconds while PCA requires 3.3 seconds to reduce the dimensions. 

The overall time is 171.68 seconds which is less than the required time for segmenting the 

full features volume (280.26 seconds). 
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Fig. 7.11: Reduced feature chest volume after applying PCA followed by 3D-DWT. 

 

According to the quality of the reduced features segmented volume using PCA, NEMA 

phantom has been tested and the detected spheres diameters have been measured. Table 

7.3 illustrates the segmentation quality using 2D DWT after compressing the sub-volume in 

NEMA phantom which includes the whole spheres into one slice using PCA; this slice 

includes all the required features needed to measure the diameters (Fig. 7.12). 

 
Table 7.3: Diameters percentages error using 3D-DWT on reduced volume using PCA 

Sphere Diameters 10 (mm) 13 (mm) 17 (mm) 22 (mm) 28 (mm) 37 (mm) 

2D-DWT using PCA 1.2 3.15 0.73 2.26  2.65  0.85 
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Fig. 7.12: The fifth PCA slice which includes most of the required features. 

 

7.3.3. 3D DWT Segmentation and GPR Feature Reduction 

 

The original dimensions for the real chest volume can be reduced using 2 levels of GPR 

from 512 x 512 x 62 to 128 x 128 x 62, where each level of GPR reduce each slice 

dimensionality to the half, the output includes most of the features and without that much of 

data loss. 3D-DWT and thresholding technique can be then applied to the reduced features 

volume using GPR to segment the volume in less computational time. 
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Fig. 7.13 illustrates the real chest volume in wavelet domain with reduced features using 

GPR. The required computational time to apply 3D DWT on the reduced features volume 

using GPR is 67.20 seconds while GPR requires 22.25 seconds to reduce the dimensions. 

The overall time is 89.45 seconds which is much less than the required time for segmenting 

the full features volume (280.26 seconds). 

One level of GPR has been also applied on NEMA phantom to reduce the 

dimensions from 512 x 512 x 35 to 256 x  256 x 35 as illustrated in Fig. 7.14. 3D DWT can 

be then applied to detect ROI and measure the diameters. Table 7.4 illustrates the error 

percentages of measuring the spheres diameters using 3D DWT and GPR. 

 
Table 7.4: Diameters percentages error using 3D-DWT on reduced volume using GPR 

Sphere Diameters 10 (mm) 13 (mm) 17 (mm) 22 (mm) 28 (mm) 37 (mm) 

3D-DWT using GPR 3.85 2.69 1.41 1.05 0.94 0.93 

 

 
Fig. 7.13: 3D-DWT for real CT images after FR using GPR. 
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Fig. 7.14: Reduced features NEMA phantom using 1 level GPR. 

 

7.3.4. HMMs Segmentation and PCA/DWT/GPR Feature Reduction 

 

HMMs have been used to segment the reduced features images as illustrated in Fig. 7.15. 

Table 7.5 illustrates the required time for segmenting the reduced features real chest image 

using HMM for one slice. Applying 2-levels of DWT or GPR reduces the image dimensions 

into the quarter and the segmentation processing time into less than 2%. PCA is applied on 

5 slices where ROI is predefined, HMM is then applied on the reduced features slice which 

includes all the required features instead of applying it on 5 slices. 
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Fig. 7.15: Segmented images using HMM in different transforms  

 
 

Table 7.5: Computational time using FR techniques (sec) 

FR Technique Time for FR Time for HMM Time for each slice Time for full volume (62 slices) 

Spatial domain 0 1355.24 1355.24 84024.9 

DWT (2-levels) 0.695 22.17 22.87 1417.9 

GPR (2-levels) 0.628 19.03 19.66 1218.9 

PCA (5-slices) 0.957 1104.8 1105.76 13269.1 

 

From Table 7.5, it can be seen that the best computational time is achieved using HMM on 

GPR, but GPR is affected by data loss problem as well as DWT at higher decomposition 

levels. PCA reduce the computational time by ~84% but still longer than the achieved time 

using the other FR techniques. The point is PCA can be generalized to be more efficient if 

applied on large number of slices such compressing the whole volume into one slice as in 

Fig. 7.12 where PCA compressing NEMA phantom into one slice to reflect the effects on the 

proposed system accuracy. Table 7.6 illustrates the segmentation quality using HMM after 
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FR techniques. Because of the overlapping in the spheres edges after compressing the 

volume into one slice using PCA, outer diameters have been measured instead of the 

inners, and inner diameters  have been calculated based on the sphere edges thickness. 

 
Table 7.6: NEMA diameters error percentages using HMM on reduced features volume with required time  

Diameters  10  13  17  22  28  37  Time (sec) 

HMMs on Spatial Domain 1.5 0.8 0.1 0.8 0.04 1 2007.3 (x 46 slices) 

HMMs with 1 level of DWT  --- 11.07 7.82 2.98 1.09 0.27 1321.1 (x 46 slices) 

HMMs with 1 level of GPR 5.2 4.7 3.5 3.2 2.93 1.88 688.1 (x 46 slices) 

HMMs with PCA               

(using outer diameters)  

1.8 1.1 0.85 0.59 0.34 0.22 1108.1 

 

 

From Table 7.6, it can be seen that accelerating the process is affecting the quality of the 

proposed system by different percentages. The errors achieved using both DWT and GPR 

reductions are higher than the spatial HMM but the required computational time is still less 

than 2/3 of the required time in spatial domain. Errors achieved using PCA and HMM are 

close to the spatial HMM and the required time is ~1.2% of what required in spatial domain, 

which is a very good accuracy and time reduction. 

It can be seen from the previous sections that different computational times and 

spheres diameters’ errors have been achieved using the proposed techniques. Table 7.7 

illustrates a comparison study for the proposed techniques according to the quality of 

detecting ROI in NEMA body phantom and other available techniques. 
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Table 7.7: NEMA spheres diameters error percentages using the proposed techniques and other 

available techniques 

Sphere Diameters 10 (mm) 13 (mm) 17 (mm) 22 (mm) 28 (mm) 37 (mm) Time (seconds) 

K-means [1] -4.7 -4.0 -1.94 -1.86 -1.71 -1.7 --- 

MRFM [1] -2.5 -3.0 1.4 1.31 1.28 1.27 --- 

3D Thresholding * 0.59 0.77 0.97 1.11 2.2 2.28 45.0  x  46 

3DDWT-Spatial * -2.67 -1.93 -0.74 4.75 3.37 0.77 280.3  x  46 

2DDWT-PCA * -1.2 -3.15 0.73 2.26 2.65 0.85 2.07 

3D-DWT using GPR 3.85 2.69 1.41 1.05 0.94 0.93 53.7  x  46 

HMM / Spatial Domain 1.5 0.8 0.1 0.8 0.04 1 2007.3  x  46 

HMMs with DWT --- 11.07 7.82 2.98 1.09 0.27 1321.1  x  46 

HMMs with GPR 5.2 4.7 3.5 3.2 2.93 1.88 688.1  x  46 

HMMs with PCA * 1.8 1.1 0.85 0.59 0.34 0.22 1108.1 

* ≡ using outer diameters. 

 

From Table 7.7, outer diameters have been used in many cases such as 3D segmentation 

techniques and with the reduction using PCA. Therefore, the inner diameters error have 

been calculated based on the thickness of the spheres edges. All spheres diameters 

detected using 3D-thresholding were over estimated by (0.5-2.5 %) and the error was 

increasing while the sphere diameter increasing. 
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By using 3D wavelet transform for segmentation, spheres diameters are reduced to the half 

with each decomposition level of wavelet transform. First level of DWT has been applied on 

NEMA phantom in three different domains (spatial, PCA, and GPR) and the measured 

diameters were doubled to produce a fair comparison with the other available techniques. 

By applying one decomposition level of 3D-DWT on spatial domain and using the LLL filter 

output, underestimated percentages have been achieved for the three small spheres (10, 

13, and 17 mm) and overestimated percentages for the three big spheres (22, 28, and 37 

mm). 

Outer diameters are also measured in the case of applying 2D-DWT on reduced 

features volume using PCA and over estimated results have been achieved for all spheres 

except (10mm and 13mm). Applying 3D DWT on the reduced features volume using GPR 

produce results which are completely opposite to 3D-thresholding technique where all 

measurements are under estimated and the error decreased while the spheres diameter are 

increased. In Fig. 7.16, the percentage error computed between the actual spheres 

diameters and the results obtained using all methodologies illustrated in Table 7.7 for each 

of the six tumours inserts is plotted. 

 

7.4. Summary 

 

Different FR techniques have been implemented to accelerate the segmentation process for 

medical volumes and speedup the computations of the slowest system block. FR is a key 

part in image processing that reduces the curse of dimensionality hence proving an efficient  
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* = using outer diameters. 

Fig. 7.16: The percentage errors, computed between the actual spheres diameters 

 

solution for the real-time performance of the segmentation algorithms. Hardware 

implementations of medical image segmentation algorithms require reduced dimensional 

data as well as low storage requirements. PCA and GPR techniques show promising results 

in terms of reducing computational times for medical image segmentation. Based on this 

performance, these techniques are applied on medical volumes which are significantly 

reduced the processing time for segmenting the proposed data. 
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Applying 3D-DWT on the spatial domain detect the ROI in less error percentages and more 

computational time compared to applying it on the reduced features volumes using PCA or 

GPR. Error percentages in those techniques are close to the errors in spatial domain. GPR 

requires less computational time compared to PCA, but the problem in GPR that data loss 

will start appearing from the second GPR level, where PCA reduction is safe from this 

problem. 

HMMs yield very good segmentation results and overcome many other techniques, 

the limitation of using HMMs in medical image segmentation system is the delay in 

delivering results to the next block in the system. This problem is due to the slowest step for 

applying HMMs for segmentation which is training the model to get the most likely states. FR 

techniques can be applied here to surmount this issue and accelerate this process by 

reducing the amount or the dimensionality of the training dataset. 
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Chapter 8        

System Validation for Real 

Medical Applications 

 

8.1. Introduction 

 

Medical imaging is one of the fastest growing areas within medicine at present, both in the 

clinical setting in hospitals and in Research and Development (R&D). The importance of 

medical imaging for patient management is growing steadily. Medical imaging plays an 

increasingly important role in treatment and diagnosis. Diagnostic and therapeutic medical 

imaging benefits the patient through more rapid and precise disease management, fewer 

side effects, and improved outcome. Furthermore, medical imaging benefits the health care 

system through improved efficiency and more cost-effective solutions. 

The end users of the proposed system are the radiologists or doctors who analyze 

the scanner output and give their reports based on the information from the scan. 

Radiologists use medical imaging technology to diagnose and treat medical conditions; they 

have been used for medical purposes for over a century and remain a cornerstone of the 
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medical field. The proposed system should achieve three overarching objectives: improved 

patient outcome, time-efficient health care, and commercialization of useful innovations. 

These objectives increase the competitiveness of health-related industries and businesses. 

It is intended that physicians use the information gained through the proposed system to 

treat and monitor injuries and diseases while cancer and other medical conditions are also 

treated with radiological technology through the use of concentrated radiation doses. 

 This chapter’s goal is to validate the implemented techniques in this thesis using 

clinical datasets and real applications. The remainder of this chapter is as follows: the next 

section illustrates the effects of sensitivity factors on PET scans, this have been tested and 

generalized using the proposed system. The proposed segmentation techniques’ quality has 

been validated using real clinical datasets in section 8.3. Section 8.4 includes a system 

validation based on a survey filled in by the end users of the proposed system. The work will 

be summarized in section 8.5. 

 

8.2. PET Scanner Sensitivity Analysis 

 

The work in this section has been done in collaboration with Paul Strickland Scanner 

Centre, Mount Vernon Hospital, London, UK. One of the main problems in PET scanner 

is the reconstruction of the original radioisotope distribution within the patient, using the 

projections of data acquired from the scanner detectors at different angles. A statistical 

image reconstruction technique called Ordered Subset EM (OSEM) is used. In OSEM, a 

crude image estimate is initially generated and the corresponding estimated projection data 

is calculated, and then compare these with the real measured projection data. Then, the 
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image estimate is updated based on the ratio or difference between measured and 

estimated projections. This process is repeated for a number of iterations until satisfactory 

convergence of the algorithm is established. This technique is relatively fast as it splits the 

estimated and measured projections into subsets and updates the estimated image before 

the next subset commences. A full iteration has taken place if all subsets have been 

considered. 

Some large volumetric errors encountered using the acquisition systems exists due 

to a wrong choose of those systems variables, such as the consequence of the poor slice 

thickness setting selected for the scan. The 4.25 mm slice thickness causes large 

fluctuations in transaxial tumour areas to occur between image slices. This problematic 

characteristic occurs most notably with the smallest human objects, such as the lesion in its 

early stages or the smallest spherical insert in NEMA IEC body phantom, where single voxel 

reallocation causes a large deviation in percentage error. 

Collaboration with Paul Strickland Scanner Centre in Mount Vernon Hospital was 

established to come up with standards of using the PET scanner variables in the area of 

medical imaging. NEMA IEC body phantom was also used experimentally here, because of 

its similarities to the real clinical data. The phantom was scanned in different environments 

with different scanner variables in each time, and then the best slice evaluating the actual 

spheres’ size will be segmented. 

2D or 3D imaging is a misnomer; the acquired data is reconstructed into 3D volumes 

with either data acquisition mode. 2D or 3D instead refers to the use of collimators to limit 

the signal to detectors (2D), or with no collimators (3D), whereby all signals are acceptable.  
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In 2D imaging, a uniform response across the detectors to emitted radiation occurs which is 

to be desired, and many signals were rejected. 3D imaging mode greatly increases the 

sensitivity of the PET scanner (>5 times typically) compared to 2D imaging. The detector 

response in 3D is not uniform but more peaked. For adequate sampling, this requires more 

bed positions to be scanned for the same body sections. In 2D acquisition mode, a patient 

may be scanned in five or six bed positions as they pass through the PET scanner, but in 

3D mode, seven or eight beds might be required. 

However, the PET system must be able to cope with the additional scattered 

radiation that degrades image quality. In addition the scanner must be able to cope with the 

extra signals being emitted from the patient. So, dead time (time required to process 

information) must be managed properly to avoid paralysis of the system. Furthermore the 

increased signal received will also contribute to a form of noise called randoms, which is 

directly proportional with the square of the signal on opposing detectors. 

In PET-CT scanning the collaborators routinely acquire a whole body scan with their fixed 

PET detectors as the patient moves through the scanner. The PET detectors correspond to 

a bed position of 16 cm, and a series of bed positions allow the entire body to be scanned. 

Each static bed position is scanned for a fixed time; their default is 4 minutes per bed 

position (see Fig. 8.1). 

Clinically, the collaborators in Paul Strickland Scanner Centre routinely use a 

standard 2D imaging protocol with a 4min scan time per bed position, using OSEM 

reconstruction utilizing two iterations and 30 subsets. In 3D scanning, which they use in 

specific circumstances with no collimator, their OSEM reconstruction employs five iterations 

and 32 subsets as routine, with a 4min scan per bed acquisition.  
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Current scan bed position

 

Previous body parts 

scanned positions

Patient moves through 

fixed PET detectors for 

whole body scanning

 

 
Fig. 8.1: PET scanning procedure (time per bed section). 

 

The collaborator aims to investigate the efficiency of our proposed system for segmenting 

lesions of different sizes (represented by spheres in the NEMA IEC body phantom), in a 

clinically realistic setting of relative activity levels and lesion diameters. The influence of the 

sphere size is investigated in both 2D and 3D, with OSEM reconstruction of varying 

iterations for a fixed 4min, 3min and 2min scan time/bed. This clinically realistic study was 

expected to optimize the capability of developed proposed system for future clinical lesion 

detection with lesions of varying size and under different clinical environments.  

Segmentation using curvelet transform was chosen for this experiment, and was 

applied in parallel with multi-thresholding and classification techniques to classify the 

spheres in a separate class from the other comprising objects at least noise included. The 



Chapter 8: Segmentation Validation for Real Application  

 

S. Al Zu’bi Thesis                                                                                        Page 144 of 207 

 

experiment was evaluated based on the ratio between the spheres area to the other area of 

the scanned slice. The actual spheres area can be calculated according to equation (8.1), 

given that the spheres diameters are 10, 13, 17, 22, 28, 37 mm. 

           
 

 
     

     

                                                           

 

Where           is the actual area of all six spheres together. The scan resolution can be 

acquired from Amide software where each pixel size is 4.6875 × 4.6875 mm and each slice 

size is 128 × 128 pixels. The overall slice area and the ratio between both areas can be 

calculated according to equations (8.2) and (8.3) respectively; SBR is the spheres to 

background ratio. 

 

                                                                

 

              
         

                    
                                                (8.3) 

 

Table 8.1 illustrates the results for a sample data provided from the collaborator for different 

scanner variables. It can be seen that the SBR percentages varies based on the scanner 

variables used. To explain the effects of those variables on the output image, Fig. 8.2 

illustrates the changes in the quality of the segmented image based on the scanners 

variables. 
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Table 8.1: Spheres to background ratio (SBR) for different variable samples 

2D / 3D Time / bed section Iteration  SUB SBR (%) 

2D 2 min 1 30 0.46 

2D 2 min 3 30 0.36 

2D 2 min 5 30 0.31 

2D 2 min 10 30 0.24 

2D 2 min 30 30 0.22 

2D 3 min 1 30 0.56 

2D 3 min 5 30 0.59 

2D 3 min 7 30 0.58 

2D 3 min 10 30 0.55 

2D 3 min 20 30 0.53 

2D 4 min 3 30 0.55 

2D 4 min 5 30 0.54 

2D 4 min 15 30 0.42 

2D 4 min 20 30 0.36 

2D 4 min 30 30 0.31 

3D 2 min 1 32 1.1 

3D 2 min 3 32 0.76 

3D 2 min 7 32 0.71 

3D 2 min 10 32 0.69 

3D 3 min 1 32 1.02 

3D 3 min 3 32 0.77 

3D 3 min 10 32 0.71 

3D 3 min 15 32 0.68 

3D 4 min 1 32 1 

3D 4 min 3 32 0.74 

3D 4 min 10 32 0.68 

3D 4 min 30 32 0.64 
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Fig. 8.2: Scanner variables effects on the segmented image 

 

It can be seen from Fig. 8.2 that 3D scans produce closer SBR percentages than 2D for all 

iterations except at IT = 1. It can be noticed that the area evaluating the spheres decreases 

as the IT value increases for both 2D and 3D and for all bed section scanning times. These 

results match the expectation of the radiologists at Paul Strickland Scanner Centre. The 

segmented results achieved at IT =10 are illustrated in Fig. 8.3. 

  Other datasets with different scanning time per bed section were also tested with 

attenuation correction and without attenuation correction. Table 8.2 illustrates the SBR of 

these datasets. 
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Fig. 8.3 (a) IT =10, Time = 2 min, Collimator : 2D (Left), Segmented (Right) 

 

Fig. 8.3 (b) IT =10, Time = 3 min, Collimator : 2D (Left), Segmented (Right) 

 

Fig. 8.3 (c) IT =10, Time = 4 min, Collimator : 2D (Left), Segmented (Right) 
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Fig. 8.3 (d) IT =10, Time = 2 min, Collimator : 3D (Left), Segmented (Right) 

 

Fig. 8.3 (e) IT =10, Time = 3 min, Collimator : 3D (Left), Segmented (Right) 

 

Fig. 8.3 (f) IT =10, Time = 4 min, Collimator : 3D (Left), Segmented (Right) 

Fig. 8.3: Segmented results achieved at IT value (10), where the best results detected 
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Table 8.2: Spheres to background ratio for different time per bed section and attenuation correction 

2D / 3D Attenuation correction Time / bed section SBR (%) Error (%) 

2D Yes 2 min 0.46 -34.0 

2D Yes 3 min 0.58 -16.77 

2D Yes 4 min 0.56 -19.66 

2D Yes 10 min 0.62 -11.05 

3D Yes 2 min 0.72 3.30 

3D Yes 3 min 0.75 7.6 

3D Yes 4 min 0.73 4.73 

3D Yes 10 min 0.7 0.43 

2D No 4 min 2.93 320.37 

 

From Table 8.2, it can be seen that 3D is still much better than the 2D, and the quality is 

increased by increasing the time spent on each bed section in the scanning process. A big 

jump in the SBR can be noticed from the scanned dataset without attenuation correction. 

This is expected as the scanned output is blurred and very hard to analyze. 

 

8.3. Real Clinical Data Validation 

 

In this section, three different real clinical dataset for human diagnosis by cancer have been 

tested. The data include liver cancer, kidney cancer, and lung cancer respectively. These 

data have been acquired from a CT scanner in Diagnostic Radiology and Nuclear 

Medicine Department, King Abdullah University Hospital, Ramtha, Jordan. The data 

was pre-analyzed as usual, and the report was provided to evaluate the performance of the 

proposed system. 
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8.3.1. Liver Cancer 

 

The dataset evaluates the abdominal of a female diagnosed with a cancer located in the 

liver. Fig. 8.4 shows the comprising slices for the patient’s; it is predefined that the cancer 

can be seen in slices 18 - 37, but it is most clearly visible in slice number 22. This slice will 

be passed through the proposed segmentation system to facilitate the radiologists’ analysis 

process. Slice number 22 is illustrated in Fig. 8.5, in which the cancer has been highlighted 

in red based on the provided report referring to the cancer exact location inside the liver.  

 

 

Fig. 8.4: CT scan for female abdomen diagnosed with a liver cancer 
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Fig. 8.5: The original medical image without any transformation, with a predefined cancer location 

 
The purpose of medical image segmentation comes through analysis of those images 

directly without any transformation. Multiple factors make the process of medical image 

segmentation difficult, including the complexity of human anatomy, the irregular nature of 

tissues and organs, as well as individual variations. Regional gray inconsistency, artifacts, 

weak borders and border breaks, which often happen in scanners’ output images, could not 

be analyzed based on the traditional method. As a result, medical image segmentation 

techniques should be implemented. 

The proposed segmentation techniques have been applied on slice number 22 

(illustrated in Fig. 8.5), and Fig. 8.6 illustrate the segmented outputs after applying the 

implemented segmentation techniques on this slice. 
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(a) Thresholding at t = 77            (b) Inverse Thresholding at t = 50 

  

(c) Clustering (6 classes)        (d) Wavelet Transform 

  

(e) RADON Transform       (f) Ridgelet Transform 
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(g) Curvelet Transform       (h) HMMs 

Fig. 8.6: Segmented liver cancer using the implemented segmentation techniques 

 

It can be seen from the segmented images in Fig. 8.6 that ROI has been detected using 

most of the segmentation techniques, but with varying quality. Both thresholding-based 

techniques in Fig. 8.6 (a) and (b) have detected the predefined liver cancer, but the problem 

with those methods is the data contouring loss, whereby much image information has been 

missed in the transformed domain. Therefore, thresholding-based techniques are of limited 

use in medical image segmentation, and are best used as pre-processing or post-

processing steps along with other techniques. Clustering technique (used in Fig. 8.6 (c)) 

provided more accurate results compared to the thresholding techniques. The problem with 

using clustering in medical image segmentation lies in manual thresholding; multi-

thresholding values have been set manually based on the human vision. 

 MRA has been used with this slice, and the outputs of applying wavelet, FRAT, 

ridgelet and curvelet transforms have been illustrated in Fig. 8.6 (d) to (g) respectively. 

Curvelet transform overcomes the other MRA transforms for this dataset, but this cannot be 
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generalized, as each MRA technique performs better than the others with specific data 

types. HMMs overcome all the other available techniques in segmenting the illustrated 

medical slice (Fig. 8.6 (h)). ROI has been detected accurately and the other image 

contouring has not been affected. 

 

8.3.2. Kidney Cancer 

 

The second proposed dataset comprised of 217 slices, with slice thickness of 3.0 mm. 

based on the provided report, the patient is affected by multiple bilateral renal cortical cysts; 

the largest one is seen in the lower pole of the right kidney, measuring about 47 x 45 mm. A 

snapshot taken for the AMIDE window and the ROI has been located by the red lines in 

three different orientations of the patient’s body scan (Fig. 8.7). It can be seen that ROI 

appears more clearly in its biggest illustration in slice 198, this slice is illustrated in Fig. 8.8, 

and the ROI (kidney cancer) has been highlighted by red colour. 

 

 
Fig. 8.7: AMIDE snapshot locating the kidney cancer 
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Fig. 8.8: ROI highlighted in the original image (Kidney cancer) 

 
Different segmentation techniques have been applied on the medical image to segment it 

and detect ROI. Fig. 8.9 illustrates the outputs of applying those techniques on the CT slice 

that affected by kidney cancer: 

 
Fig. 8.9: Segmenting medical CT slice diagnosis by kidney cancer using different segmentation techniques 

 
 (b) Multi-Thresholding at t1=1015 and 

t2=1045 
(a) Clustering 
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(d) First decomposition Level of Wavelet 

transform (DWT) and Haar filter with inverse 

thresholding at t= 2200 

(c) First decomposition Level of Wavelet 

transform (DWT) and Daubechies filter 

(db2) with inverse thresholding at t= 2200  

(e) Ridgelet Transform 

 

(f) Curvelet Transform 

(g) Second decomposition Level of Wavelet 

Packet with inverse thresholding at t=4400  

 

(h) Segmentation using HMMs with 8 

classes 
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It can be seen in the previous images that some techniques segment the ROI properly (Fig. 

8.9 – (a)(c)(d)(f)(h)) and some do not such as ridgelets; additionally, some of them merge 

some obstacles together and make the analyzing process more difficult. Each technique has 

its advantages and disadvantages, and it may segment a part of the medical image 

accurately and the other parts badly. Therefore, the proposed segmentation system intends 

to use all of those techniques to produce the most accurate results with least loss. 

The performance of the proposed techniques for segmenting the illustrated slice in 

Fig. 8.9 is explained in Table 8.3. The area of the cancer has been measured and compared 

to the provided report, and then used to qualify the performance of each technique as well 

as MSE, Data Loss and PSNR. Data loss has been classified here bas on our experience.  

 

Table 8.3: Segmentation techniques’ performance based on patient data (kidney cancer data) 

Segmentation Technique 
Cancer Area 

Accuracy (%) 
MSE PSNR (dB) Data Loss 

Classification 93.9 56.0 38.5 Low 

Multi-Thresholding 95.1 97.7 27.8 High 

DWT 

Haar 91.0 102.7 35.2 Normal 

Daubechies 89.5 104.5 34.3 Normal 

Wavelet Packet 83.2 111.2 30.9 Normal 

Ridgelet --- 109.9 30.3 High 

Curvelet 96.2 88.2 29.5 Normal 

HMMs 97.3 43.1 41.2 Low 
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8.3.3. Lung Cancer 

 
Based on the provided report with this dataset, it consists of 221 slices, with slice thickness 

of 3.0 mm. A well-defined lobulated soft tissue mass lesion can be seen in the lateral 

segment of the right lower lung lobe, containing foci of calcification measuring about 38 x 20 

mm. A snapshot taken for the AMIDE window (Fig. 8.10) and the ROI is located by the red 

lines in three different axes of the patient’s body scan. The cancer can be located easily in 

each axial view, but defining the exact edges of the cancer is problematic. Slice number 140 

has been predefined as the slice containing the best view of the cancer in the transverse 

patient scan view. The predefined cancer has been highlighted in the three axial views 

(transverse, coronal, sagittal), as illustrated in Fig. 8.11. 

 

Fig. 8.10: AMIDE snapshot locating the lung cancer 

Transverse Coronal Sagittal  
Fig. 8.11: ROI highlighjted in the original image 
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The lesion highlighted in Fig. 8.11 is located near the lung edge, which make the process of 

quantifying this lesion harder than other locations in the lung. It is hard here to differentiate 

between the pixels comprising the cancer and the calcareous pixels. Therefore, 

segmentation techniques can be applied to facilitate the process of analyzing and 

quantifying the proposed lesion. Fig. 8.12 illustrates segmented transverse axial using 

different segmentation techniques. 

 

         
 
 

         
 

 

(c) First decomposition Level of Wavelet 

transform (DWT) and Daubechies filter 

(db2) with inverse thresholding at t= 1500  

(b) Multi-Thresholding at t1=1035 and 

t2=1080 
(a) Clustering 

(d) Second decomposition Level of Wavelet 

Packet with inverse thresholding at t=4400 

(High-pass filter output - LLHL) 
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Fig. 8.12: Detecting Lung cancer using different segmentation techniques 

 
It can be seen in Fig. 8.12 that all of the proposed segmentation techniques detect the ROI 

(lung lesion), but in varying degrees of quality. Except ridgelet transform which proved its 

failure in medical image segmentation techniques, the reason was provided in chapter 4 in 

this thesis. Some of the techniques detect ROI properly, such as multi-thresholding and 

HMMs with eight classes, but data loss occurs with segmenting the proposed data with 

multi-thresholding. The other techniques segment the ROI and merge the detected object 

(e) Ridgelet Transform 

 
(f) Curvelet Transform 

(h) Segmentation using HMMs with 8 classes (g) Segmentation using HMMs with 4 classes 
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with other objects, such as the lung edge in segmentation using HMMs with four classes. 

The overall quality and performance of each technique for segmenting the proposed data 

set and detecting the predefined lesion are illustrated in Table 8.4. 

 
Table 8.4: Segmentation techniques’ performance based on patient data (Lung cancer data) 

Segmentation Technique 
Cancer Area 

Accuracy (%) 
MSE PSNR (dB) Data Loss 

Classification 68.4 62.3 33.3 Low 

Multi-Thresholding 97.2 92.5 25.6 High 

DWT with Daubechies filter 78.9 106.6 27.4 High 

Wavelet Packet 88.0 109.0 30.3 High 

Ridgelet --- 103.2 28.8 High 

Curvelet 92.1 89.2 24.9 Normal 

HMMs (No. of classes = 4) 96.5 45.6 40.1 Low 

HMMs (No. of classes = 8) 98.8 39.1 44.5 Low 

 

It can be noticed from the experimental results from the real clinical datasets that some 

segmentation techniques’ segmented output with a particular dataset was convincing, but at 

the same time, this technique failed with other dataset. For example, clustering segments 

the dataset with kidney cancer properly and causes a data loss in segmenting the dataset 

with lung cancer, and merges the lesion pixels with other objects’ pixels. Therefore, the 

proposed system used to test all available techniques with each single dataset, and takes 

the decision based on the best segmented results. 
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The clinical datasets have been segmented also using 3D segmentation techniques, and the 

lesions were detected accurately. The available patient data which includes lesions in liver, 

kidney and lung has been segmented using the proposed 3D techniques, the achieved 

results are visualized in Fig. 8.13, Fig. 8.14 and Fig. 8.15 where the OOIs are located.  

 
Fig. 8.13 (a): The first segment (Background) 

 
Fig. 8.13 (b): The second segment (Obstacle edges) 
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Fig. 8.13 (c): The third segment (includes ROI) 

 

Fig. 8.13 (d): The fourth segment (obstacle surfaces) 

Fig. 8.13: Segmenting patient volume data affected by the kidney cancer 
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Fig. 8.14: Segmenting patient volume data affected by the Lung cancer 

 
Fig. 8.15: Segmenting patient volume data affected by the Liver cancer (Located by red arrows) 
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8.4. End Users Validation 

 

It has been mentioned before that the end users of the proposed system are the radiologists 

and doctors, who analyze the scanner output for cancer diagnosis and radiotherapy 

planning. The end users must be happy with the system to validate it and make it applicable 

for real clinical applications.  

 The proposed system was devised to cover the end users’ requirements in the 

process of analyzing medical images, and avoid any weakness based on their point of view. 

Therefore, a survey explaining the implemented techniques and the expected segmented 

output of these techniques was prepared and filled in by the end user specialists. This 

survey focused mainly on arranging the implemented techniques into five different classes 

based on different comparison factors, as well as comparing the output results with other 

results acquired from previously available segmentation techniques for the same 

experimental dataset. This survey is attached in appendix A. 

It is worth mentioning that the number of the filled surveys was just 13, which is very 

small compared to other general surveys, this is due to the nature of the sample (i.e. highly 

specialized professionals). After several meetings with those specialists in the UK and 

Jordan, the conclusion of their point of view met our expectations. Table 8.5 concludes the 

end users’ opinions regarding the proposed medical image segmentation techniques. 

Table 8.5 employs the scale of one to five used to rate the results of using the 

technique (1 indicating very bad results, and 5 indicating extremely excellent results). The 

original input slice is included in the comparison to make it fair, as some of the end users still 

preferred to analyze the original scanner output without any transformations.  
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1 Extremely bad 

2 Bad 

3 Acceptable 

4 Good 

5 Excellent 

 
Table 8.5: Proposed techniques quality based on the survey of end users’  

Questions 

Segmentation Techniques 
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How easy the classification 2.1 2.7 3.0 3.9 2.3 3.3 3.2 2.1 3.7 5.0 

ROI illustration 2.3 3.8 3.6 4.1 2.7 2.8 2.7 2.3 4.2 4.8 

Noise effects 2.5 3.1 4.3 3.4 3.2 1.3 2.8 1.8 3.6 3.7 

Data loss 5.0 2.1 2.2 3.7 1.2 3.6 4.0 3.2 3.8 4.5 

Ease of output analysis 2.1 3.9 3.9 4.0 2.7 2.6 2.7 1.8 4.1 4.1 

Benefits for cancer diagnosis? 2.8 4.2 4.4 4.1 1.3 2.9 2.4 2.8 4.5 4.3 

Better known and commonly used 1.5 4.6 3.8 3.9 2.1 4.8 1.2 1.6 2.2 2.1 

Overall segmentation 2.4 3.5 3.2 4.2 1.3 3.1 2.1 3.4 4.9 4.8 
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It can be seen from Table 8.5 that clustering, curvelet and HMMs surpass the other 

techniques in most of the quality factors. The other techniques perform well in some 

comparison factors. Therefore, some of the end users advised the use of all of the 

implemented techniques, to form an accurate and solid segmentation system. The majority 

of the end users rated HMMs the best for medical image segmentation technique, and 

advised to accelerate this method. 

The rest of the survey (Appendix A) includes assay questions regarding to the 

system techniques and the choice of using 3D volume or a stack of 2D slices for medical 

volume illustration. The end users’ samples varied in their choice between the 3D volume 

illustration and the stack of 2D slices illustration. Some of them preferred to analyze a stack 

of 2D slices, as they are familiar with this, and learning the 3D method would be 

troublesome. Some other chose the 2D method for reasons related to hidden information; 

they mentioned that ROI may be encapsulated inside other objects in the body, and 3D 

choice obscures this from the end users’ vision. 

End users who prefer 3D volume illustration cited the benefits of the proposed 

segmentation system, which can be used to decapsulate ROI or remove the surrounding 

familiar body objects. They prefer 3D volume illustration because of its ease of use, and its 

ability to visualize ROI which is extending through many slices (occupying a very small area 

in each slice); they observed that a stack of 2D slices cannot detect such objects. 

In conclusion, end users who refuse the proposed system do so due to the 

background of their knowledge; they have been taught to use a stack of 2D slices without 

any transformation for medical image analysis. They are not familiar with any transformed 

image except the original scanner output. 
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8.5. Summary 

 

The system has its advantages and disadvantages. Validation procedures are required to 

generalize the system into real clinical applications. Most of the implemented techniques 

have been used before in other applications, and these techniques fail in some applications 

and succeed in others. This chapter has endeavored to activate the proposed techniques in 

the field of medical imaging for cancer diagnosis and radiotherapy planning. Different ways 

have been used to validate the proposed system. First of all, the techniques must produce 

good results with the phantom data, and then the system can be tested on real data. 

Different previously analyzed clinical data which has been segmented using the 

implemented techniques is used here to validate the system. The results obtained have 

been compared to the predefined results of the radiologists. In order to make the system 

more generic, it has been tested with data acquired from different collaborators. The first 

collaborator used the proposed system to validate a general standard of PET variables, 

providing different scans for the same dataset at different environments. They generalized 

the best sensitivity variables for each medical image scan based on the results obtained for 

each variable. The second collaborator provided predefined clinical datasets affected by 

cancer; they also provided the dimensionalities of the cancers. The implemented techniques 

were applied on these data, and the results obtained were performed by the collaborator.  

In order to strengthen the system and make it ready for application with the scanners 

by the end users, a survey of the latter was undertaken to ascertain their perspectives on 

the proposed system. The validation procedure used in this chapter shows that the 

proposed system can be used in real applications to facilitate medical image segmentation. 
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Chapter 9         

Conclusions and Future Work 

 

9.1. Introduction 

 

3D medical volume segmentation is the process of partitioning voxels in a medical volume 

into 3D regions (sub-volumes) that represent physical entities which are meaningful, easier 

to analyze and usable for other applications. The main aim of this research was to enhance 

the performance of new medical segmentation techniques, and use them together with other 

implemented segmentation techniques to make the system more accurate, robust and 

lossless. 

MRA has been applied in this research on medical images to extract the important 

features that comprise ROI; these regions may be the targeted ROIs or any other obstacle 

in the patient body. Applying MRA removes much of the surrounding noise and makes the 

image more clear and ready to be segmented. 

HMMs have been adapted and enhanced for segmenting medical volumes, the use 

of gray scale values from the input image to implement HMM matrices produced a more 

accurate and robust segmentation, as well as automatic segmentation without the need of 
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any secondary support technique. Hybrid implementation of multiresolution statistical 

approaches based on HMMs and MRA (wavelet and curvelet) have generated the most 

accurate segmentation results, where HMMs are applied to clear data instead of noisy input. 

Feature Reduction methods have been used in this research to solve the problem of 

long computational time required for segmentation, this time is due to the huge amount of 

data used in 3D techniques and the amount of process in the case of HMMs. 

The proposed system has been validated using predefined phantom data and 

previously analyzed real clinical data for patients diagnosed with cancer. The system has 

been also used to validate the sensitivity variables in PET scanner; it has been applied on 

one dataset acquired by the PET scanner at different settings. In terms of making the 

system general and suitable for real applications, a survey has been filled in by the end 

users, and the results conclude that the system can be applied to real images and helped 

the radiologists a lot in their analysis. 

The rest of this chapter is as follows: the research objectives listed in chapter 1 are 

revisited in section 9.2 to ensure that it have been successfully addressed. Section 9.3 

illustrates the limitations and restrictions of this research. The future work related to this 

thesis is introduced in section 9.4. 

 

9.2. Research Objectives “Revisited” 

 

The main objectives of this research are listed in Chapter 1, these having been addressed 

along the thesis and achieved using the proposed techniques within the fields of medical 
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image segmentation. Each of these objectives is now revisited to determine the success in 

addressing these issues: 

 

 Investigate the use of wavelet transform and higher dimensional multiresolution 

analysis in medical image segmentation system. 

This research investigates the use of wavelet transform using different filters and 

different decompositions to extract the features from medical images. Most of the noise 

is removed and the comprising objects were visualized clearer with sharp edges. This 

has been made firm with the concepts of higher dimensional MRA using curvelet 

transform, where curves in medical images are extracted properly to be segmented 

accurately. 

 

 Enhance the use of Hidden Markov Models for medical image segmentation. 

The gray scale values of medical images have been utilized in this thesis to generate 

HMM observation sequence. Then, probability matrices were established based on this 

sequence and used to train HMM for medical image segmentation. The segmentation 

results were promising and overcame the other available segmentation techniques. 

 

 Direct 3D medical volumes segmentation. 

The use of direct 3D image segmentation techniques without slicing the medical volume 

into a number of 2D images has been implemented successfully in this thesis; 3D 

thresholding, 3D DWT and 3D HMMs have been implemented successfully. The 

achieved segmentation results using 3D techniques with the proposed phantom data 
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was better than their pertaining 2D versions. The problem related to this is the long 

computational time due to the huge amount of data used for testing. 

 

 Accelerate the slowest blocks in the proposed system using FR techniques. 

The slowest block in the proposed system was the HMMs segmentation, as well as all 

3D segmentation techniques. These techniques have been accelerated by reducing the 

number of features from the tested medical volume without significant data loss, which 

leads to reduce the amount of tested data. Acceleration in this thesis has been done 

using different FR methods, and the best results were achieved with PCA reduction, 

where the third dimension “number of slices” is reduced successfully. 

 

 Come up with a new automatic, unsupervised and real time segmentation system. 

The overall segmentation system was accurate; some of the proposed techniques were 

unsupervised as there is no need for any preprocessing steps to segment the medical 

data accurately. The system is also robust because the cancer could be illustrated 

without any loss in its contouring. The system can be applied in real medical 

applications, the time in some of these applications are a very important factor. 

Therefore, the system is close to be very fast in its computational time, it has segmented 

2D and 3D medical data and located the lesions successfully without significant data 

loss. 
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 Validate the implemented system on real clinical applications.  

 

The system has been validated on real clinical applications using different procedures, it 

has been tested on a phantom data and showed promising results compared to the 

actual phantom information. Three different real clinical datasets for patients diagnosed 

by lesions in different body parts have been also tested, this data has been already 

analyzed by the specialists who had provided cases description reports. The 

segmentation result achieved using our system coincides with the information given in 

the radiologists reports, which means that the system can be generalized for real 

applications. 

To emphasis this, a survey has been filled in by the end users specialists “radiologists”, 

and the conclusion confirmed the validity of this system for real applications. 

  

 Investigate the use of the proposed systems for other applications. Here, the 

proposed system has been used to test the sensitivity of PET scanner to different 

important variables used. One predefined phantom data has been scanned many times 

with different sensitivity variables, and the volumes acquired from these scans have 

been segmented using the proposed systems, and the achieved results were compared 

to the definition of the phantom. Graphs and tables of comparisons were generated and 

the conclusion matches the expectations about those variables. 

 

 

 



Chapter 9: Conclusions and Future Work 

 

S. Al Zu’bi Thesis                                                                                        Page 174 of 207 

 

9.3. Research Limitations 

 

A number of restrictions and limitations have been identified during this research. Although 

that the aim and objectives were fulfilled successfully. These limitations can be summarized 

as follows: 

 

 MRA using ridgelet transform 

MRA using both wavelet and curvelet prove promising result in the proposed 

segmentation system; they extract the points and curves singularities properly from 

medical images which are rich of those singularities. Ridgelet transform has been 

succeed in many applications, where it is able to detect line of discontinuity, but medical 

images are poor to this kind of singularities and applying ridgelet transform here may 

damage the quality of the image instead of enhancing it. As a result, ridgelet transform is 

restricted to be used in the medical image segmentation system, unless for some 

particular images which contain a variety of straight lines such as thigh or shank bones. 

 

 3D segmentation techniques 

It has been mentioned that 3D segmentation techniques overcome their pertaining 2D 

versions which depends on the tested data. But the end users of the proposed system 

have a different opinion (based on the survey – Appendix A), as 3D techniques may fail 

to detect lesions that are encapsulated inside normal tissues. It is impossible to detect 
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this kind of lesion without decapsulating the lesion or removing all pixels comprising the 

surrounding tissue. In this case, the use of 2D segmentation technique is recommended. 

 

 Feature reduction using DWT/WP and GPR 

It has been mentioned in this thesis that segmentation process can be accelerated using 

different FR methods. The use of GPR for reducing features is limited where more than 

two-levels of GPR is prohibited. This is due to data loss which starts from the second 

level in the Gaussian pyramid. This is also happened with FR using DWT and especially 

when the WP decomposition is used, where a noisy output image that lost many of the 

comprising data will be arised with high wavelet decomposition levels. 

 

9.4. Future Work 

 

The following are suggested directions to the future work of this thesis: 

 

 3D Curvelet Transform 

Some 3D segmentation and feature extraction techniques have been implemented in 

this research, and they overcame their pertaining 2D versions. What is interesting here 

is 3D curvelet transform, which has not been implemented yet for the purpose of medical 

image segmentation. This could extract the curves which are occurring along many 

slices in medical volumes. 

Applying 3D curvelet transform on medical images guarantees more accurate 

segmentation results and could be used in many other applications. 
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 Automatic Selection of PCA eigenslices 

An interesting area of research that can be a good future work of this research is the 

selection of the best eigenslice after applying PCA on medical volumes. This process 

has been done in this thesis manually, and the second eigenslice that were selected for 

all the datasets to ensure the least data loss and less noise. But sometimes the less 

features eigenslices may include the exact ROI with less noise, in other words, find the 

required features in a clearer and smaller eigenslice. 

What can be done here is to investigate a procedure for choosing the best eigenslice, as 

well as making this process automatic if applicable. 

 

 Segmentation Technique Decision Making 

The implemented techniques vary in their quality for segmenting medical data. 

Therefore, the end user can be sensitive in choosing the suitable technique. A decision 

making model for selecting the best segmentation technique for a specific medical data 

could be an extension of the work done in this thesis, and will be a very interesting area 

of research. 

 

 Hardware Accelerations “Graphical Processing Units” 

The use of FR techniques in this thesis for image segmentation acceleration was 

promising, FR is a software accelerator that can be applied to medical images before 

segmentation to accelerate the process. Hardware accelerators can also be used with 

the proposed system to do the segmentation in faster time. There are a variety of 

hardware accelerators that are being used nowadays such as Matlab® accelerators. 
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The most recent hardware implementation for real time systems is the Graphical 

Processing Unit (GPU), it has been used in many applications including business, 

accounting, engineering, as well as image processing. The basics of GPU are the 

multithreads processing or parallel computations, where some new versions of the 

GPUs can execute 1000 instructions at the same time. This is not far from the 

segmentation acceleration, where the same segmentation technique could be applied on 

all slices in parallel. 
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Appendix A: 

Validation Survey for 

Medical Image Segmentation System 

 

This survey has been prepared and will be analyzed by Shadi M. 

Al Zu‟bi, a Ph.D. student at Brunel University - West London. 

I am doing this survey to get as much proof to help validate the 

proposed system, which aims to provide radiologists with a fully 

automated medical image segmentation system. The system helps 

to analyze medical images with increased accuracy, reduced noise 

and reduced time, in a simpler way. 

This system will be responsible to facilitate the work of 

radiologist; it is very important to hear from the correspondents 

because they are the end users of the system.  

For further questions, please do not hesitate to contact me on: 

E-mail:  shadi.alzubi@brunel.ac.uk 

Mobile:  (+44)7760 647 880 

 

Name  : …………………………………. 

Job title : …………………………………. 

Date  : …………………………………. 

mailto:shadi.alzubi@brunel.ac.uk
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Note: The following segmented images have been printed out in high quality and provided 

to the specialists with the survey. 

     

                          1) HMMs                                       2) Thresholding at t = 77                      3) Inverse Thresholding at t = 50 

     

            4) Clustering (6 classes)                                  5) Edge function                                      6)Wavelet Transform 

     

             7) Ridgelet Transform                               8) RADON Transform                              9) Curvelet Transform 
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Please fill the following table with numbers from 1 to 5 according to the given 

segmented images: 

1 Extremely bad. 2 Bad. 3 Acceptable. 

4 Good 5 Excellent. 
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a. How easy to classify the content of 

the output image: 
          

b. The segmentation technique  output 

illustrates the ROI clearly: 
          

c. The segmentation technique output 

does not include noise: 
          

d. The data loss in the segmentation 

technique output: 
          

e. How easy is to analyse the 

segmented outputs: 
          

f. Are the presented techniques 

beneficial for cancer diagnosis?  
          

g. In your opinion, Which technique 

is better known and most 

commonly used in medical image 

segmentation? 

          

h. According to the overall 

segmentation process: 
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 In medical image analysis, do you prefer to use automatic segmented 

images or the original scanner output without any transformation? Why? 
 

………………………………………………………………………………………………………………………………………

………………………………………………………………………………………………………………………………………

………………………………………………………………………………………………………………………………………

According to the table that you filled in the previous part, which 

segmentation technique do you think is the best? Why? 

………………………………………………………………………………………………………………………………………

………………………………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………….. 

 What problems may you face during the analysis of medical images? 

 
………………………………………………………………………………………………………………………………………

………………………………………………………………………………………………………………………………………

………………..…………………………………………………………………………………………………………………… 

 Does automatic segmentation using the proposed techniques solves the 

problems mentioned in the previous question? 

 
………………………………………………………………………………………………………………………………………

………………………………………………………………………………………………………………………………………

………………………………………………………………………………………………………………………………………. 
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 The following are two different ways of presenting 3D medical volumes. 

(Notice that you can freely rotate the volume and view it from any specific angle)  

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2D segmentation techniques 

(Slice-by-slice) 

 

3D segmentation techniques 

(After volume reconstruction) 
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 According to the previously illustrated ways of presenting medical 

volumes, which way do you prefer? Why? 

………………………………………………………………………………………………………………………………………………

………………………………………………………………………………………………………………………………………………

………………………………………………………………………………………………………………………………………………

According to the previously illustrated ways of presenting medical volumes, 

which one do you think increases result accuracy? Why? 

………………………………………………………………………………………………………………………………………………

………………………………………………………………………………………………………………………………………………

………………………………………………………………………………………………………………………………………………

Do you have any suggestion to improve the medical image segmentation 

system? 

………………………………………………………………………………………………………………………………………………

………………………………………………………………………………………………………………………………………………

……………………………………………………………………………………………………………………………………………… 

Kind regards 
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