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Abstract 

Motivation: The distribution of biological features strongly indicates their functional relevance. Compared to DNA-related 

features, deciphering the distribution of mRNA-related features is non-trivial due to the existence of isoform ambiguity 

and compositional diversity of mRNAs. 

 

Results: We propose here a rigorous statistical framework, MetaTX, for deciphering the distribution of mRNA-related 

features. Through a standardized mRNA model, MetaTX firstly unifies various mRNA transcripts of diverse compositions, 

and then corrects the isoform ambiguity by incorporating the overall distribution pattern of the features through an EM 

algorithm. MetaTX was tested on both simulated and real data. Results suggested that MetaTX substantially outper-

formed existing direct methods on simulated datasets, and that a more informative distribution pattern was produced for 

all the three datasets tested, which contain N6-Methyladenosine sites generated by different technologies. MetaTX should 

make a useful tool for studying the distribution and functions of mRNA-related biological features, especially for mRNA 

modifications such as N6-Methyladenosine.  

Availability: The MetaTX R package is freely available at GitHub: https://github.com/yue-wang-biomath/MetaTX.1.0.  

 

1 Introduction  

Recent development of high-throughput sequencing technologies has en-

abled the transcriptome-wide profiling of RNA modification sites 

(Dominissini, et al., 2013; Dominissini, et al., 2012; Meyer, et al., 2012; 

Schaefer, et al., 2009). To date, more than 170 different types of RNA 

modification have been identified in all three kingdoms of life, many of 

which have been found to play important roles in various biological pro-

cesses. For example, N6-Methyladenosine (m6A) can regulate the stability 

and translation efficiency of mRNA (Mauer, et al., 2017; Slobodin, et al., 

2017; Wang, et al., 2015; Wang, et al., 2014), and affect the circadian 

clock, cell differentiation, neuron production, alternative splicing and 

RNA-protein interaction (Fustin, et al., 2013; Geula, et al., 2015; Liu, et 

al., 2015; Pendleton, et al., 2017).  

One basic way to characterize a biological feature is to see how it is 

distributed with respect to a gene, which may be shown in the form of a 

metagene plot (Beauparlant, et al., 2016), also referred to as a meta-gene 

(Shin, et al., 2009) or aggregation plot (Kundaje, et al., 2012). The distri-

bution of a biological feature strongly indicates the potential functional 

relevance of the feature of interests, although such association may not be 

direct or causal. For example, the enrichment of histone modification 

H3K4me3 near to transcription start sites is clearly linked to its transcrip-

tion initialization function (Barski, et al., 2007). However, compared to 

DNA-related features (such as histone modification and DNA methyla-

tion), deciphering the distribution of mRNA-related features (such as 

mRNA modifications) is non-trivial due to the following reasons: 

 Isoform Ambiguity. Although actually located in the heterogeneous 

transcriptome, mRNA-related biological features are often denoted 

only by genome-based coordinates in bioinformatics databases. The 

isoform-specific belongings of mRNA related features may be una-

vailable in the presence of multiple isoform transcription of the same 

gene due to technical limitations. For example, most of the existing 

epitranscriptome profiling approaches, such as MeRIP-seq and 
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miCLIP, suffer from the isoform ambiguity issue, and instead report 

only the genome-based coordinates of RNA modifications. When an 

RNA modification site overlaps with multiple transcripts according 

to the transcriptome annotation, it is not clear which transcript is as-

sociated with the site. This creates obvious difficulty when charac-

terizing the distribution of the feature of interest. 

 More complex landscape of mRNAs. The distribution analysis for 

DNA-related features is usually based on two landmarks only, i.e., 

the transcription start and transcription end positions, while the anal-

ysis of mRNA-related features should involve four landmarks of the 

mRNAs molecule, i.e., 5’end, start codon, stop codon and 3’end of 

mRNAs, making it more complex than the case of DNA-related fea-

tures. 

 Compositional diversity of mRNAs. Additionally, it is important to 

note the existence of compositional diversity among different 

mRNAs. For example, some mRNAs may have short CDS but a su-

per long 3’UTR, while some others may have very short 3’UTR, or 

even no 3’UTR at all for some cases, according to the transcriptome 

annotation database. The vast compositional diversity among differ-

ent mRNAs makes it difficult to compare across multiple mRNAs 

(or genes), and may bring concerns about the validity of the overall 

distribution pattern necessary for characterizing mRNA-related fea-

tures. 

The reasons provided above (see Figure 1), together compound the diffi-

culty and complexity of distribution characterization for mRNA-related 

features.  

To date, a number of software tools have been developed for decipher-

ing the distribution of mRNA-related features. Guitar was the first method 

dedicated to sketching the transcriptomic view of RNA-related genomic 

features, and provided an open source R/Bioconductor package (Cui, et 

al., 2016). The Perl/R pipeline MetaPlotR was invented for plotting met-

agenes of various modified sites (Olarerin-George and Jaffrey, 2017). A 

Shiny web framework-based web server txCoords was invented for tran-

scriptomic peak re-mapping (Yan, et al., 2017). The epitranscriptome da-

tabase MeTDB (Liu, et al., 2018) provided a web-based graphical user 

interface for the Guitar R package (Cui, et al., 2016). The RNA modifica-

tion annotation database, RNAmod, also supported metagene plot func-

tionality along with various annotations of diverse mRNA modifications 

in different species (Liu and Gregory, 2019). Despite the efforts that have 

been made, only simple heuristic strategies have been taken by the above 

approaches to resolve the aforementioned difficulties, e.g., retaining only 

the longest transcript of a gene in the analysis to avoid isoform ambiguity, 

keeping only the mRNAs with both 5’UTR and 3UTR longer than 100nt 

to ensure they are relatively comparable. None of the above approaches 

quantitatively formulated the problem of concern, and a general and rig-

orous solution has yet to be available. 

We propose here a rigorous statistical framework, MetaTX, for deci-

phering the distribution of mRNA-related features in the presence of iso-

form ambiguity and compositional diversity of mRNAs. Through a stand-

ardized mRNA model, MetaTX first unifies various mRNA transcripts, 

some of which may have vastly different compositions, and then corrects 

the isoform ambiguity by incorporating the overall distribution pattern of 

the feature through an EM algorithm via a latent variable. MetaTX was 

tested on both simulation data and real RNA N6-methyladenosine data 

generated from three different epitranscriptome profiling approaches 

(Chen, et al., 2015; Olarerin-George and Jaffrey, 2017; Schwartz, et al., 

2014). Results suggested that MetaTX consistently exhibited an improved 

performance with higher accuracy on simulated data compared to the Gui-

tar (Cui, et al., 2016) and MetaPlotR (Olarerin-George and Jaffrey, 2017), 

which did not consider biases from isoform ambiguity, and reported more 

prominent distribution patterns for all the three datasets tested. MetaTX is 

available as an open source R package, and is a useful tool for studying 

the distribution and functions of mRNA-related biological features, espe-

cially for mRNA modifications, such as N6-Methyladenosine and Pseu-

douridylation.  
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Fig. 1. Isoform ambiguity and compositional diversity of mRNAs. Although 

physically located on the RNAs, many mRNA-related features are only recorded by 

genome-based coordinates, the transcript-level to which they belong remains unclear 

due to technical limitations. In the above example, the RNA modification site is de-

noted by genome-based coordinate, and overlaps with 4 isoform transcripts of the 

same gene. It may be associated with the 3’UTR of isoform 1, near the stop codon 

on the CDS of isoform 2, etc., which may cause problems when characterizing the 

distribution of this mRNA-related feature. Note that, isoform 1 has longer 3’UTR, 

isoform 2 has no 3’UTR, and isoform 3 has longer 5’ UTR, while isoform 4 has no 

5’ UTR at all. The compositional difference may make it difficult to compare across 

multiple mRNAs of the same or different genes. 

2 Methods 

In this section, we first introduce the standard mRNA model, through 

which mRNAs of diverse compositions may be unified, and then propose 

our overall formulation for the distribution analysis of mRNA-related fea-

tures. An EM solution is then provided to resolve the isoform ambiguity 

problem via the overall distribution pattern inferred.  

2.1 Coordinate Standardization 

To unify the mRNAs with diverse composition, we considered a standard 

mRNA model, in which the three main components of mRNA (5’UTR, 

CDS and 3’UTR) were each divided into the same number of bins of equal 

width, for every individual mRNA. Figure 2 illustrates the process of co-

ordinate standardization, and we refer to each bin of mRNA by its coordi-

nate on the standardized mRNA model. Conceivably, as the corresponding 

coordinates on different mRNAs are located on biologically similar re-

gions, they are likely to be associated with the same type of biological 

features, or regulated by the same type of signal (such as the same type of 

RNA modification).  The coordinates of different mRNA were then made 

comparable. It is worth noting that, although not explicitly stated, many 

existing approaches will have assumed a similar standardized mRNA 

model in their analysis. 

In practice, we also considered the flanking regions of the mRNAs, in-

cluding 1kb promoter regions before the 5’end and 1kb tail region after 

the 3’end. These two regions are also independently divided into the same 

number of bins with equal width. Although theoretically there should be 

no mRNA-related features originating from these two regions, there are 

always quite a few mRNA-related features that fall into these regions due 

to incomplete transcriptome annotation, isoform ambiguity, noise, etc.  
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These two regions are used as the negative control regions in our analysis; 

the signal within these two regions directly reflects analysis bias. 
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Fig. 2. Coordinate Standardization. The three main components of mRNA, i.e., 

5’UTR, CDS and 3’UTR, were each divided into the same number of bins of equal 

width, respectively, for every individual mRNA. As the corresponding bins (referred 

to as coordinates) on different mRNAs are located on biologically similar region, 

they are likely to be associated with the same type of biological features. The coor-

dinates of mRNAs, which are of diverse composition, were then made comparable. 

2.2 The MetaTX Model 

2.2.1 Basic formulation 

We refer mRNA features to biological features that reside on mRNAs, 

such as, m6A RNA methylation sites, microRNA binding site, etc. Of in-

terests here is the distribution of mRNA-related features over the standard 

mRNA model, as is shown in a metagene plot. We denote the total number 

of mRNA-related features by S. As previously stated, we independently 

divided the 5’UTR, CDS and 3’UTR of mRNAs into a number of bins 

with equal width, respectively. We assume there are a total of C bins (or 

coordinates) on each mRNA. The parameter C is essentially the resolution 

of our distribution analysis. A greater C may result in a distribution anal-

ysis with high-resolution, but also increases the computation load.  

With the coordinates of mRNA standardized, it is now possible to cal-

culate the standardized coordinate of each mRNA-related feature in the 

mRNA that overlapped with it. Let T represent the total number of tran-

scripts. We denote the overlap between features and mRNAs with a three 

dimensional matrix 
, ,: { | 1,...., , 1,..., , 1,...., },s t cO o s S t T c C    with 

, , 1s t co  indicating the s-th feature overlap with the c-th coordinate on the 

t-th mRNAs on the genome, suggesting a possible association between the 

two; and
, , 0s t co  otherwise. It should be noted that a feature may overlap 

with more than one mRNAs due to isoform ambiguity, and
, , 1s t co  does 

not necessarily mean that the s-th feature is actually associated with the t-

th mRNA.  

Additionally, we denote the width of the c-th coordinate on the t-th tran-

script by
,t cw with {1,..., }t T and {1,..., }.c C  This parameter is im-

portant in penalizing the varying width of the corresponding bins on dif-

ferent mRNAs. When the corresponding component is not available, e.g., 

an mRNA without 3’UTR, the width of the corresponding bin (coordinate) 

should be set to 0.  

 

2.2.2 Maximum a Likelihood Estimation (MLE) 

We define a parameter set : { | 1,...., },c c C    where c  is the proba-

bility that a site is located on the c-th coordinate of mRNA, and with 

1
1

C

cc



 . Due to the alternative splicing, a site may be located on sev-

eral distinct transcript isoforms. So we denote the probability that the s-th 

site in the observed data O  resides on the t-th transcript by a variable 

,s t . We should have  
,1

1
T

s tt



 . 

 

The probability of observing all overlapping events of a feature is: 
 

                                            (1) 

 
With the assumption of each feature being observed independently, the 

likelihood of all our observed overlapping events, between the features 

and transcripts, can then be represented by:  

 

  (2) 

 
Furthermore, the estimated parameters are denoted by: 

 

  (3) 

 
2.2.3 Weight Assignment  

Due to isoform ambiguity, a given mRNA-feature may overlap with mul-

tiple transcripts, and the significance of different overlapping events may 

not be the same. There exist two ways to resolve the isoform ambiguity 

problem. One way is to pick the highest expressed isoform when gene 

expression data is available. Considering the limited detectability (or sen-

sibility) of biotechnology, it is often safe to assume the observed phenom-

enon is associated with the most abundant molecule rather than one with 

a lower abundance; Alternatively, an equally popular but more convenient 

method, is to consider only the primary transcript, which is usually re-

garded as the longest one (Olarerin-George and Jaffrey, 2017).   

Since most genes have multiple isoform transcripts, rather than consid-

ering only one isoform transcript with all other transcripts discarded, we 

seek to consider all transcripts simultaneously. This should lead to a more 

reliable result reflecting more general characteristics of the entire feature 

set of interest. Specifically, we introduced a weight
t  to penalize the 

overlapping event observed with a specific transcript, which directly re-

flects the relative importance of the transcript in the problem of concern. 

The probability of observing all overlapping events of a feature then be-

comes: 

 

  (4) 
 

where 
sW  is a normalizing constant equals to 

, ,

1 1

T C

s t c t

t c

o 
 

 . So the like-

lihood of our observation can be represented by: 

 
  (5) 

 

 

As longer transcripts can provide higher relative resolution with respect to 

the location on a standard gene model (see Supplementary Figure S2), 

without loss of generality, MetaTX implements the following default set-

ting of 
t :  

 

  (6) 

 

where 2  represents the degree of penalization for shorter transcripts 

to favor the primary transcript. Keeping only the longest transcript for the 

analysis, as often done in existing studies, would equate to setting  . 

When  is set to 0, all transcripts are considered equally without prefer-

ence. Additionally, it is also possible to customize t  with other infor-

mation such as the expression of isoform transcripts or a combination of 

both the expression and transcript length. 
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2.3 The MetaTX Model 

The MLE problem in (5) may be solved using the Expectation-Maximiza-

tion framework (Dempster, et al., 1977). We introduced the latent varia-

bles 
, ,{ | 1,...., , 1,..., , 1,...., },s t c s S t T c C    where

, , 1s t c   means the s-

th feature is physically located at the c-th coordinate in the t-th transcript; 

and
, , 0s t c   otherwise.  Note that 

, ,s t c  is different from 
, ,s t co , i.e., when 

, , 1s t c  , we should have
, , 1s t co  ; but the other way around may not be 

true. Let 
, , , ,( 1| ; )s t c s t cp P O   be the conditional probability of the s-th 

feature located at the c-th bin of the t-th transcript conditioned on param-

eters   and the observed data O . For each feature s, we should have 

, ,1 1
1

T C

s t ct c
p

 
  . Additionally, ,s t is equivalent to 

, ,1

C

s t cc
p

 . Particularly, 

,s t takes the same value of , ,s t cp where , , 1s t co  . 

We define the set of unknown parameters to be estimated as : = 

, ,{ , | 1,..., , 1,..., , 1,... }c s t cp s S t T c C    .To estimate the unknown param-

eters, an EM algorithm is implemented. In the E step of the EM framework, 

we update the latent variable by taking its expected value:  

 

   

  (7) 

 

Next, we define , ,

1 11
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F p 
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  , which equates to, and is a 

simplified result of, the right hand side of (5). Then a lower bound of F
may be found with Jensen’s inequality: 

 

  (8) 
 
 

Taking the right side of (8) as the exponent and the natural constant as the 

base, leads to: 

 

  (9) 

 

Finally, we obtained the lower bound of F according to the inequality in 

(9), denoted by: 
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According to the Lagrange multiplier method, to maximize 1({ } )C

c cf    with 

the constraint 
1

1
C

cc



 , is equivalent to solving the following two equa-

tions: 
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Solving (11), 
1({ } )C

c cf    
attains a maximum when  

1

C

c c



 take values 

below: 
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The EM algorithm of our model may then be summarized as follows: 

 Given
1{ }C

c c 
estimate

, ,{ | 1,...., , 1,..., , 1,...., }s t cp s S t T c C                                                                    

by E step (7).                

 Given
, ,{ | 1,...., , 1,..., , 1,...., }s t cp s S t T c C   estimate

1{ }C

c c 
      

by M step (12).   

 Iteratively perform the above two steps until convergence. The ini-

tial value of each 
c  is set to 1/C. 

2.4 Absolutely abundance of mRNA features  

Combined with the actual width 
,t cw of each mRNA component, we may 

obtain the absolute abundance of mRNA-features for each coordinate on 

the standardized mRNA model, with the unit number of features per nt 

sequence of the mRNA transcript, as follows: 

 

  (13) 

 

The average abundance of the features on the entire mRNA may then be 

calculated in a similar way by: 

 

  (14) 

 
which may be used as a standard to search for the regions (or coordinates) 

enriched with the feature of interest. 

It is important to note that mRNA (rather than DNA) is used as the 

background during the calculation of feature abundance. The shared exons 

of multiple isoform mRNAs were counted multiple times for each indi-

vidual transcript and with all the introns removed. The absolute and aver-

age density 
cd and 

ad estimated from our model is thus likely to be dif-

ferent from those returned from existing genome-based methods. With the 

help of ggplot2 (Ginestet, 2011) and other tools, our MetaTX R package 

provides a visualization of the distribution of mRNA-features alongside 

the standard mRNA model. Inclusion of the promoter and tail regions are 

also optional.  

3 Results 

3.1 Testing on simulated data 

We firstly validated the proposed method on simulated datasets, which 

contained the 5'UTR, CDS, and 3'UTR regions respectively. When gener-

ating the simulated datasets using 1,000 transcripts randomly selected 

from the UCSC gene database, 10 sites were then randomly picked from 

each transcript within the relative mRNA component. As a result, there 

were a total of 10,000 sites, chosen from each mRNA component. After 

remapping, it may be expected that these sites are arranged evenly within 

the corresponding mRNA component, but not in other regions.  

We then drew the distribution of the three simulated datasets, corre-

sponding to 5’UTR, CDS and 3’UTR, via the Guitar, MetaPlotR, filter 

method and MetaTX. Note none of the other methods except MetaTX con-

sider biases from isoform ambiguity problem. Guitar counts the mRNA-

features multiple times for all transcripts when isoform ambiguity exists; 

while MetaPlotR by default retrains only the primary (or longest) isoform 

transcript of a gene to avoid such ambiguity. The filter method discards 

short mRNA components (less than 100 nt) to keep only the information 

located on long components, which should more informative. We also in-

cluded the promoter and tail regions as negative control regions, which do 

not correspond to mRNA regions and thus in theory should not contain 

signals from mRNA-related features. As shown in Figure 3 (a), (b), and 

(c), stronger bias was observed in the results of the direct estimation 
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method and the filter method. After correcting this isoform ambiguity via 

the MetaTX model, the accuracy of estimates increased notably. 

To quantitatively measure the accuracy of our model, we calculated the 

consistency between the estimated distribution and the ground truth dis-

tribution with the Kullback-Leibler (KL) divergence (Table 1). Results 

suggested that MetaTX substantially outperformed the competing meth-

ods (Guitar and MetaPlotR), and the filter strategy can slightly boost the 

quality of results by removing less informative datasets. 

 

Table 1 Performance evaluation of MetaTX and competing methods 

Methods 
The 3 Tests (and KL Divergence) 

3’UTR CDS 5’UTR 

MetaTX 0.07 0.12 0.06 

Guitar  0.29 1.02 0.22 

MetaPlotR 0.44 1.09 0.32 

Filtered 0.25 1.01 0.26 

3.2 Testing on real data 

Next we analyzed N6-methyladenosine (m6A) datasets derived from dif-

ferent high-throughput sequencing approaches, including an miCLIP-seq 

dataset (Linder, et al., 2015; Olarerin-George and Jaffrey, 2017), a PA-

m6A-seq dataset (Chen, et al., 2015) and an m6A-seq dataset (Schwartz, et 

al., 2014). N6-methyladenosine is the most abundant RNA modification 

on mRNA, and has been regarded to be enriched near the stop codon of 

mRNAs (Dominissini, et al., 2012; Meyer, et al., 2012). 

As is shown in Figure 3 (d), (e) and (g), all three methods reported an 

enrichment of m6A RNA methylation near the stop codon of mRNAs. Alt-

hough the ground truth distribution of m6A on mRNAs is unavailable, it 

is evident that MetaTX reported a more prominent and reasonable pattern 

for all the 3 datasets tested, which is reflected by the reduced signal at the 

negative control regions (promoter and tail DNA regions).  The negative 

control regions do not correspond to mRNA transcripts and thus shouldn’t 

carry m6A signals. It is worth noting that the promoter and tail regions 

were defined in a transcript-specific manner, i.e., each transcript has a dif-

ferent set of promoter and tail. Including all isoforms does not necessarily 

reduce the number of sites being assigned to the negative control region. 

Because the MetaTX model considers all isoform transcripts including the 

very short ones, it actually has larger proportion of negative control re-

gions compared to the method which considers only the longest transcript. 

Meanwhile, consistent of our knowledge (Dominissini, et al., 2012; 

Meyer, et al., 2012), a strong enrichment pattern was also observed around 

the stop codon compared to the methods without correction of the isoform 

ambiguity. The correction seems particularly effective for the PA-m6A-

seq dataset shown in Figure 3 (e). Importantly, MetaTX method achieved 

very stable performance even when we discard all the features without 

isoform ambiguity and keep only those overlap with multiple isoform tran-

scripts, suggesting the capability of MetaTX in dealing with features with 

high degree of isoform ambiguity (see Supplementary Figure S3). In an-

other case study, we showed a different RNA modification mark, m5C 

RNA methylation, is enriched at the 5’UTRs in human (Supplementary 

Figure S4). 

3.3 MetaTX package 

An R package implementing the proposed MetaTX model was developed 

for estimating and visualizing the distribution density of mRNA-related 

features (
cd ) along the standard mRNA model. MetaTX requires ge-

nome-based locations of mRNA-related features and the associated tran-

scriptome annotations in TxDb format (Lawrence, et al., 2013). The stand-

ardized coordinates of mRNA-related features are calculated for the 

5'UTR, CDS and 3'UTR regions, with each region is divided into a user-

defined number of bins (Default 10) with equal length. Including the pro-

moter or the tail DNA regions is optional.  

The MetaTX package has a few useful functions. The remapCoord func-

tion calculates which bin and which component a particular feature over-

laps with according to the genome-based coordinates (the O matrix). The 

metaTXplot function returns a density plot of the input feature set on a 

standard mRNA model, which supports customized relative length of dif-

ferent mRNA components during visualization, e.g., a shorter 5’UTR and 

longer CDS (see Supplementary Figure S5 and Supplementary Figure 

S6). The package also provides an isoformProb function that can return 

the probabilities of a particular feature being located on different isoforms 

(
, ,s t cp ).  The newly developed MetaTX R package is freely available at 

the GitHub repository(https://github.com/yue-wang-biomath/MetaTX.1.0) 

with examples and detailed documentation. 

4 Conclusions 

The distribution of a biological feature strongly indicates its functions, and 

is often the first step when characterizing its functional relevance. To date, 

a number of studies have been proposed for distribution analysis of 

mRNA-related features, but none of them provided a quantitative formu-

lation for the problem of concern.  

We proposed here the first rigorous statistical model, MetaTX, together 

with its EM solution for estimating the distribution of mRNA-related fea-

tures in the presence of isoform ambiguity and differential composition 

among mRNAs. MetaTX was tested on both simulated data and RNA N6-

methyladenosine data derived from different high-throughput sequencing 

approaches, and demonstrated stable performance with more prominent 

and reasonable distribution patterns for all the datasets tested. An open 

source R package was developed for estimating and sketching a global 

view of mRNA-related features along the standard mRNA model. We be-

lieve that MetaTX should make a useful tool for studying the distribution 

and functions of mRNA-related biological features, especially for mRNA 

modifications such as N6-methyladenosine. 

From modeling perspective, MetaTX model is substantially different 

from existing approaches for resolving the ambiguity in RNA data, which 

usually relies on the fact that the read distribution is uniform on a transcript. 

On the contrary, MetaTX model relied on the non-uniform distribution of 

mRNA-related features on the entire transcripts, i.e, the tendency of the 

features to be enriched or depleted at different transcript coordinates. 
For the work reported here we have not discussed: the possibility of an 

mRNA feature overlapping with multiple bins of the same transcript, the 

filtering of highly noisy features mapped to too many transcripts to im-

prove data quality, the possibility of multiple features located on different 

transcripts being mapped to the same genome-based coordinate, or the 

possibility of incomplete or even incorrect transcriptome annotation. All 

of these will have a profound impact on the analysis results obtained using 

the MetaTX method. Meanwhile, the EM algorithms do not guarantee to 

converge to the global optimum, especially on a small dataset. 

It is worth noting that there may be other interesting landmarks on tran-

scripts. For example, it was reported previously that 70% of m6A sites 

were found around the 3’UTR’s last exons (Ke, et al., 2015), making the 

last exon also of interests. However, because the starting position of the 

last exon can appear before or after the stop codon of the corresponding 

https://github.com/yue-wang-biomath/MetaTX.1.0
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transcripts, the last codon cannot be integrated into the current MetaTX 

model. Nevertheless, it should be fairly straightforward to capture the dis-

tribution patterns with respect to new landmarks by altering the transcrip-

tome annotations, e.g., for the MetaTX R package to acknowledge the last 

exon as the new landmark of interests, we may simply alter the transcrip-

tome annotation by labeling the last exon-exon junctions as the ‘pseudo 

stop codons’. 

We discussed in this work the application of MetaTX model to base-

resolution features only. It should be fairly straightforward to extend the 

model to cover wider features such as microRNA binding sites. However, 

more complicated weighting strategy will be necessary for dealing cases, 

e.g., an mRNA feature of 250nt width has 100nt overlap with one tran-

script and 150nt overlaps with another transcripts. Furthermore, although 

the MetaTX model is fairly efficient and can handle transcriptome-wide 

feature sets, it cannot be applied directly to millions of features due to the 

computational complicity of the model. Additional work will be needed to 

allow the model correct raw sequence alignments generated from high 

throughput RNA sequencing experiment.  

Additionally, although our model was originally aimed at deciphering 

the overall distribution pattern of mRNA-related features, it is noteworthy 

that it has explicitly resolved the isoform-specific belongings of mRNA-

related features through the calculation of the parameter 
, ,s t cp , i.e., a by-

product of the MetaTX model is the probabilities of a particular feature 

being located on different isoforms; however, the accuracy and reliability 

of these estimates remains to be examined and tested. 
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