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46 1 Abstract

47 Age-related comorbidities and consequently polypharmacy are highly prevalent in the elderly, resulting in 

48 an increased risk for drug-drug interactions (DDIs). The effect of aging on DDI magnitudes is mostly 

49 uncertain, leading to missing guidance regarding the clinical DDI management in the elderly. Clinical data 

50 obtained in aging people living with HIV ≥55 years, who participated in the Swiss HIV Cohort Study, 

51 demonstrated unchanged DDI magnitudes with advanced aging for four studied DDI scenarios. These data 

52 plus published data for midazolam in the presence of clarithromycin and rifampicin in elderly individuals 

53 assessed the predictive potential of the used physiologically based pharmacokinetic (PBPK) model to 

54 simulate DDIs in the elderly. All clinically observed data were generally predicted within the 95% confidence 

55 interval of the PBPK simulations. The verified model predicted subsequently the magnitude of 50 DDIs 

56 across adulthood (20-99 years) with 42 scenarios being only verified in adults aged 20-50 years in the 

57 absence of clinically observed data in the elderly. DDI magnitudes were not impacted by aging regardless 

58 of the involved drugs, DDI mechanism, mediators of DDIs, or the sex of the investigated individuals. The 

59 prediction of unchanged DDI magnitudes with advanced aging were proofed by 17 published, independent 

60 DDIs that were investigated in young and elderly subjects. In conclusion, this study demonstrated by 

61 combining clinically observed data with modelling and simulation that aging does not impact DDI 

62 magnitudes and thus, clinical management of DDIs can a priori be similar in aging men and women in the 

63 absence of severe comorbidities.
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64 2 Introduction

65 The number of elderly individuals ≥65 years is estimated to double in the USA and Europe by 2050 (1, 2). 

66 The prevalence of age-related comorbidities increases with advanced aging (3, 4), leading to more 

67 comedications (5) and consequently, to a higher risk for drug-drug interactions (DDIs) (6). However, clinical 

68 studies investigating DDI magnitudes in the elderly are generally not conducted, resulting in a knowledge 

69 gap about how to manage DDIs in aging individuals in clinical practice.

70

71 Organ functions decline with advanced aging with the potential to alter drug pharmacokinetics and thereby 

72 the magnitude of DDIs (7, 8). Significant changes are the reduction in the hepatic and renal blood flow as 

73 well as in the glomerular filtration rate affecting drug clearance. Additionally, the age-related reduction in 

74 body water and the increase in adipose tissue weight can affect drug distribution in the elderly (9).

75

76 The incorporation of age-related physiological changes into physiologically based pharmacokinetic (PBPK) 

77 models allows to conduct virtual clinical trials in the elderly to investigate scenarios that cannot easily or 

78 ethically be studied (10). The model performance is verified against clinically observed data before 

79 extrapolating to unknown scenarios of interest.

80

81 There is a particular need to investigate DDI magnitudes in aging people living with HIV (PLWH) (11), 

82 because their life expectancy is close to the general population (12), and they have a high prevalence for 

83 age-related comorbidities (13), and polypharmacy (14). Furthermore, antiretroviral drugs (ARVs) have a 

84 high DDI potential (15). We previously conducted a clinical study in aging PLWH ≥55 years in the 

85 framework of the Swiss HIV Cohort Study to analyze DDI magnitudes between ARVs and comedications in 

86 the elderly and found similar DDI magnitudes compared with historical data in young adults aged 20-50 

87 years (16). However, the conducted study had limitations regarding the number of studied scenarios and 

88 investigated individuals.

89

90 The objectives of the present study were to firstly assess the predictive potential of the PBPK approach to 

91 simulate DDIs in the elderly and secondly, to investigate comprehensively the impact of aging on DDI 

92 magnitudes, involving different drugs and DDI mechanisms, by the verified PBPK model.
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93 3 Methods

94 We took three different steps to investigate whether aging impacts DDI magnitudes. Firstly, we used the 

95 clinically observed data obtained in aging PLWH ≥55 years for four different DDI scenarios (16) to verify the 

96 predictive performance of our previously developed PBPK framework (10) to simulate DDI magnitudes in 

97 the elderly. Secondly, the verified PBPK model predicted DDI magnitudes across adulthood for 50 different 

98 DDI scenarios with different involved drugs and DDI mechanisms. The simulation results were statistically 

99 analyzed to determine the general impact of aging on DDI magnitudes. Thirdly, a meta-analysis was 

100 undertaken to seek for clinical data investigating DDI magnitudes in young adults aged ≤40 years and 

101 elderly adults ≥55 years to proof the general model-based hypothesis of the present study.

102 3.1 Clinical data to investigate drug-drug interaction magnitudes in aging individuals to 
103 verify the physiologically based pharmacokinetic model

104 In a prospective clinical study, which was conducted at the HIV clinics Lausanne and Basel, PLWH ≥55 

105 years, who participated in the Swiss HIV Cohort Study, were included if they received amlodipine, 

106 atorvastatin, and/or rosuvastatin with a dolutegravir (no interaction expected) or a boosted darunavir (high 

107 interaction potential) containing ARV regimen. The Ethics Committee of Vaud and Northwest/Central 

108 Switzerland approved the study protocol (CER-VD 2018-00369), which is registered at ClinicalTrials.gov 

109 (NCT03515772). Written informed consent was collected for each participant. Plasma concentrations were 

110 collected over 24 hours. Pharmacokinetic parameters were calculated non-compartmentally. Details on the 

111 study design were published previously (16). Historical data from young adults aged 20-50 years, receiving 

112 the same drug combination as the elderly PLWH in our conducted study, were gathered from the literature 

113 for model verification. 

114

115 To verify analyzed DDI scenarios, for which clinically observed data exist only in the young, a structured 

116 literature search was performed to seek for clinical studies investigating DDIs with drugs, we previously 

117 used to analyze the impact of aging on drug pharmacokinetics (7, 17). Observed data were extracted from 

118 the literature using GetData Graph digitizer V. 2.26, which has an excellent accuracy (18). Clinical studies 

119 used for model verification are detailed in Table S1.

120 3.2 Physiologically based pharmacokinetic modelling

121 A whole-body PBPK model was constructed in Matlab® 2017a. The model structure, code, and 

122 assumptions were published previously (10). The model was informed by an aging virtual population 

123 considering age-related changes of demographical (e.g. body weight), physiological (e.g. organ weight), 

124 and biological (e.g. enzyme abundance) parameters with variability (9).
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126 Used drug models for ARVs (i.e. dolutegravir and boosted darunavir) and non-HIV drugs (i.e. amlodipine, 

127 atorvastatin, and rosuvastatin) were developed and verified previously (7, 17). To simulate the combination 

128 of dolutegravir with boosted darunavir, the possibility to induce uridindiphosphat-glucuronosyltransferases 

129 (UGT)1A1 was implemented into the existing PBPK model (10). The turnover rate of UGT1A1 was found to 

130 be 0.0693 1/h (19). In vitro studies investigating the UGT1A1 induction potential of ARVs are generally 

131 missing. It is suggested that cytochrome P-450 (CYP)3A and UGT1A1 are both modulated by the pregnane 

132 X receptor (PXR) and thus have a similar half-maximal inducing concentration (20). The maximal inducing 

133 potential was also assumed to be similar in the absence of data. The prediction of clinically observed DDIs 

134 for raltegravir, a drug purely metabolized by UGT1A1, in the presence of ritonavir, rifampicin, etravirine, and 

135 efavirenz served as the verification of the used assumptions regarding UGT1A1 induction.

136

137 PBPK models were developed for ketoconazole and nilotinib to analyze the impact of aging on competitive 

138 CYP3A inhibition and gemfibrozil and its glucuronide metabolite as inhibitors of the organic anion 

139 transporting polypeptide (OATP)1B1. Their input parameters (Table S2) were obtained from published 

140 models (21-23), tissue scalars were modified to capture the clinically observed data, and verified with an 

141 independent clinical study for our PBPK framework (10). Distribution into the tissues was optimized to 

142 match clinically observed data in young adults (Table S3) and verified with at least one independent clinical 

143 study. The generation of the gemfibrozil metabolite was implemented in the liver by the UGT2B7 clearance 

144 pathway. If compound characteristic of the metabolite were not available from the literature, the same value 

145 as for gemfibrozil was assumed. The intrinsic clearance for gemfibrozil and nilotinib were retrogradely 

146 calculated from clinically observed data considering the in vitro measured fraction metabolized for each 

147 enzymatic pathway (21).

148

149 DDIs were firstly simulated in young adults aged 20-50 years. Successful predictions were judged by 

150 overlaying clinically observed data with the simulation results. We analyzed if pharmacokinetic parameters 

151 were predicted within 1.25-fold (bioequivalence criterion), 1.5-fold, and 2.0-fold of clinically observed data, 

152 which is considered best practice for modelling by the regulatory agencies (24). Simulations were 

153 performed in ten trials containing ten virtual individuals each and were otherwise matched as closely as 

154 possible to the conducted and published clinical trials regarding dose and dosing regimen. Drug 

155 parameters were not modified when performing simulations in the elderly.

156 3.3 Analyzing the impact of aging across adulthood by the developed PBPK model

157 Age-related changes in DDI ratios (in the presence of the perpetrator divided by the absence of the 

158 perpetrator) of analyzed pharmacokinetic parameters (Peak concentration: Cmax, time to Cmax: tmax, area 

159 under the curve: AUC, clearance: CLF, apparent volume of distribution: VdF, and elimination half-life: t1/2) 

160 were estimated across adulthood (20-99 years) in 100 virtual individuals (50% women) per five years using 

161 the verified PBPK model. DDI ratios were normalized to the youngest investigated age group (20-24 years). A
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162 The normalized DDI ratios were fitted to descriptive linear functions containing age as an independent 

163 variable. The analysis was done for men, women, and all virtual subjects to investigate whether sex has an 

164 impact on age-related changes of DDI magnitudes. The correlation between age and normalized DDI ratios 

165 were compared between non-HIV drugs and ARVs as well as between men and women by a t-test. An 

166 ANOVA was performed to investigate whether the impact of aging on DDI magnitudes depends on the 

167 mediator of DDIs (CYP enzymes, UGT enzymes, or hepatic transporters) or the DDI mechanism 

168 (competitive inhibition – binding of drugs is blocked by the inhibitor binding itself to the active site of the 

169 enzyme, mechanism-based inhibition – loss of enzyme by altered transcription/translation caused by the 

170 inhibitor, or induction) and an ANCOVA was performed to investigate the combined effects. The statistical 

171 analysis was done in R 3.5.

172 3.4 Proofing the predicted age-related effect on DDI magnitudes by independent 
173 clinically observed data

174 A literature search was performed using the MEDLINE database to screen for clinical studies reporting an 

175 AUC-ratio in young and elderly individuals for any DDI. Keywords used were “drug-drug interaction” plus 

176 “aging”, “young vs elderly”, or “young vs geriatric”. Inclusion criteria were a direct comparison of the AUC-

177 ratio between young adults with a mean age ≤40 years and aging adults with a mean age ≥55 years to 

178 match our own clinical study, and subjects had to be apparently healthy or having no severe disease and 

179 medication that could potentially affect the DDI of interest. AUC-ratios were normalized to the youngest age 

180 group investigated. Included clinical studies are detailed in Table S4.
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181 4 Results

182 Results of our conducted clinical study in aging PLWH ≥55 years and the comparison of the obtained DDI 

183 magnitudes between amlodipine, atorvastatin, or rosuvastatin and either dolutegravir (no interaction 

184 expected) or boosted darunavir (high interaction potential) and historical data in young individuals aged 20-

185 50 years were published previously (16).

186 4.1 Predictive performance of the PBPK model to simulate DDI magnitudes in the elderly

187 Firstly, published data in the elderly for midazolam in the presence of clarithromycin and rifampicin (25-27) 

188 and clinically observed data from our own clinical study conducted within the framework of the Swiss HIV 

189 Cohort Study (16) were used to analyze the predictive performance of our PBPK framework (10) to 

190 simulate DDI magnitudes in aging individuals. In all cases, the clinically observed data were generally 

191 within the 95% confidence interval of the PBPK model predictions (Figure 1-3) in young (20-50 years) and 

192 aging individuals (≥55 years). The AUC-ratio of intravenous midazolam in the presence of rifampicin was 

193 overpredicted in young and elderly adults (predicted:observed ratio: 1.69 and 1.64), and the AUC-ratio of 

194 midazolam in the presence of clarithromycin and rifampicin was underpredicted in the elderly 

195 (predicted:observed ratio: 0.73 and 0.70). All other AUC-ratios were simulated within 1.25-fold of the 

196 clinically observed data (Table 1). In both investigated age groups, 73%, 81%, and 100% of Cmax and t1/2 

197 values in the absence and presence of the perpetrator were predicted within 1.25-fold, 1.5-fold, and 2.0-fold 

198 of the clinically observed data, respectively.

199

200 Secondly, additional drug models were developed for ketoconazole and nilotinib to analyze the impact of 

201 aging on competitive CYP3A inhibition and gemfibrozil and its glucuronide metabolite to investigate the 

202 age-dependency of DDIs mediated by OATP1B1. Clinically observed data for all drugs were always 

203 contained within the 95% confidence interval of the PBPK simulations (Figure S1-S2). Pharmacokinetic 

204 parameters in young adults were predicted within 1.25-fold of clinically observed data (Table S5) except for 

205 the half-life of ketoconazole, which was overpredicted (predicted:observed ratio: 1.30) and the peak 

206 concentration of nilotinib, which was underpredicted (predicted:observed ratio: 0.75). Ketoconazole was the 

207 only drug for which clinically observed data in elderly adults with a mean age of 76 years were available 

208 (Figure S1) (28). Cmax for ketoconazole in the elderly was underpredicted with 5,627 ± 4,297 ng/mL being 

209 observed and 3,827 ± 1,277 ng/mL being predicted (predicted:observed ratio: 0.68), but all other 

210 pharmacokinetic parameters were predicted within 1.25-fold of the clinically observed data in the elderly.

211

212 Thirdly, DDIs with drugs we previously used to analyze the impact of aging on drug pharmacokinetics were 

213 verified against clinically observed data in young adults aged 20-50 years before extrapolating to elderly 

214 individuals using the verified PBPK model. The designs of the used clinical studies are detailed in Table S1. 

215 The predictions captured the clinically observed data adequately in individuals aged 20-50 years (Figure A
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216 S3-S14). The AUC-ratios were predicted within 1.25-fold, 1.5-fold, and 2.0-fold of clinically observed data in 

217 74%, 95%, and 100% of all investigated DDIs (Table 2). Cmax and t1/2 are detailed in Table S6.

218 4.2 Analyzing the impact of aging on DDI magnitudes across adulthood

219 After the successful verification of the PBPK model, all developed DDIs were used to investigate the impact 

220 of aging on the Cmax-, tmax-, AUC-, CLF-, VdF-, and t1/2-ratio (pharmacokinetic parameter of the victim drug 

221 in the presence divided by the scenario in the absence of the perpetrator) across adulthood. The AUC-ratio 

222 was not affected by aging (Figure 4). The slope [95% confidence interval] fitted to the mean of the AUC-

223 ratio of all investigated DDI scenarios was close to zero with -9.6E-05 [-2.0E-04; 7.4E-06] (Table S7). The 

224 drug class (non-HIV drugs vs ARVS) involved in the DDI (p-value: 0.08), the DDI mechanism (p-value: 

225 0.57), the mediator of the DDI (p-value: 0.77), the combination of DDI mechanism and mediator (p-value: 

226 0.58), and the sex of the studied individual (p-value: 0.61) did not affect the negligible impact of advanced 

227 aging on AUC-ratios (Table S7). These results were similar for all investigated DDI ratios (Figure S15-S19), 

228 except for tmax, which was statistically significant different between DDIs involving ARVs or non-HIV drugs 

229 (p-value: 0.03), but the difference in the slope was not judged to be clinically relevant (ARVs: -6.15E-06 [-

230 6.48E-06; -5.83E-06] and non-HIV drugs: -2.90E-04 [-3.09E-04; 2.70E-04]). 

231 4.3 Independent clinically observed data proofed the estimated impact of aging on DDI 
232 magnitudes

233 In a last step, a literature search was performed to seek for studies investigating AUC-ratios in young and 

234 elderly individuals to proof the general model-based hypothesis that DDI magnitudes are not affected by 

235 advanced aging. Our performed literature search yielded 20 studies that investigated DDI magnitudes in 

236 the elderly. Six studies were excluded, because there was no direct comparison between young and elderly 

237 individuals and one study was excluded because the age of study participants was not defined. The 

238 remaining 13 studies investigated 17 DDIs in elderly compared with young healthy subjects. The DDI 

239 mechanism was competitive inhibition in five cases, mechanism-based inhibition in three cases, induction 

240 in seven cases, and mechanism-based inhibition combined with induction in two cases. Ten of the 

241 investigated DDIs were mediated by CYP1A2, four by CYP3A, and three were not specified to a single 

242 enzyme. All included studies demonstrated no changes of DDI magnitudes with advanced aging (Figure 5). 

243 The average ratio elderly (n: 274; age: 68.3 years) / young (n = 298; age = 28.4 years) for the AUC-ratio 

244 was 1.01 ± 0.64, which confirmed our general PBPK model estimates.
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245 5 Discussion

246 Clinical data investigating the impact of aging on DDI magnitudes are sparse, leading to uncertainty how to 

247 manage DDIs in aging individuals in clinical practice. In this study, we demonstrated based on clinical data 

248 in combination with modelling and simulation that DDI magnitudes are not impacted by aging regardless of 

249 the drugs being involved in the DDI, the DDI mechanism, the mediator of the DDI, or the sex of the studied 

250 individual. Thus, the clinical management of DDIs can a priori be similar in the elderly compared with young 

251 men and women in the absence of severe comorbidities.

252

253 The investigation of age-related changes in DDI magnitudes are especially important for PLWH given the 

254 increased life expectancy (12), high prevalence of polypharmacy (14), and the high DDI potential of ARVs 

255 (15). We previously conducted a clinical study in aging PLWH ≥55 years, who participated in the Swiss HIV 

256 Cohort Study, to investigate for the first time DDI magnitudes between ARVs and comedications in elderly 

257 PLWH (16). The comparison with historical data in young individuals, receiving the same drug combination, 

258 yielded no age-related changes in the magnitude of the DDIs (16), comparable to studies conducted with 

259 midazolam and clarithromycin and rifampicin (25-27). However, we could not include enough participants to 

260 adequately power the study and thus, interpretation must be careful. In general, clinical studies in the 

261 elderly are ethically difficult to undertake, because necessary treatments (i.e. ARVs in our study) cannot be 

262 disrupted to establish a controlled scenario, the medication of interest cannot be added, and participants 

263 should not receive any other medication affecting the DDI of interest. Furthermore, it is not feasible or 

264 pragmatic to study every single drug combination in elderly individuals.

265

266 We used the PBPK approach to overcome all mentioned limitations in the DDI study design in elderly 

267 subjects. Before extrapolating to unknown scenarios of interest, it is crucial to verify the PBPK model for the 

268 population and the clinical scenario of interest (10). A strength of the present study is the wide range of DDI 

269 mechanism (competitive inhibition, mechanism-based inhibition, and induction) and DDI mediators (CYP 

270 enzymes, UGT1A1, and OATP1B1) included in the PBPK model verification. All clinically observed data of 

271 altered plasma concentrations caused by a DDI were generally within the 95% confidence interval of the 

272 PBPK model predictions for young and elderly individuals (Figure 1-3) which demonstrates the predictive 

273 power of the used approach to simulate DDIs in aging subjects.

274

275 After proofing the predictive potential of the used PBPK model to simulate DDIs in the elderly, we 

276 performed sensitivity analyses on age for 50 DDIs with 42 DDIs that could only be verified in adults aged 

277 20-50 years in the absence of clinical data in the elderly. The verified PBPK model estimated that DDI 

278 magnitudes are unchanged across adulthood (20-99 years) regardless of the involved drugs, DDI 

279 mechanism, the mediator of the DDI, and the sex of the studied individual. 
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281 One advantage of the used PBPK approach over traditional clinical studies is that aging can be analyzed 

282 as a continuous process through sensitivity analysis. Longitudinal clinical studies are not practical, 

283 affordable, and ethically difficult to conduct. Thus, traditional clinical studies compare observed data of an 

284 elderly with a young group, ignoring the continuous physiological changes that impact the pharmacokinetics 

285 of drugs and the magnitudes of drug interactions throughout adulthood (9).

286

287 DDI magnitudes could potentially be affected by advanced aging, because of higher concentration of the 

288 inhibitor and inducer and age-related alterations in the regulation of transcription and translation. Drug 

289 exposure increases with advanced aging due to a decline of drug clearance that is caused by the age-

290 related decrease in hepatic and renal blood flow as well as in the glomerular filtration rate and is 

291 independent of drug characteristics (7). The higher exposure of inhibitors or inducers with advanced aging 

292 appears not to lead to an elevated interaction potential in the elderly. Possible explanation could be that 

293 higher perpetrator concentrations cannot lead to an increased effect for strong inhibitors and inducers such 

294 as clarithromycin, ritonavir, or rifampicin. Strong inhibitors such as ritonavir achieve already a maximal 

295 effect in young individuals; therefore, an increased ritonavir concentration in the elderly is not expected to 

296 result in greater inhibition. The strong inducer rifampicin binds to PXR, forms a complex with the retinoid X 

297 receptor, the complex binds to the DNA response element, and enhances the transcription of metabolizing 

298 enzymes such as CYP3A (29). Higher rifampicin concentrations in the elderly might not lead to an 

299 increased CYP3A level, because the amount of PXR could be a limiting factor. Even if PXR transcription 

300 and translation would be enhanced, a negative feedback loop prevents higher PXR concentrations, and 

301 thus, induction of metabolizing enzymes such as CYP3A (30). Other regulations to prevent high induction 

302 of metabolizing enzymes might exists but were not studied so far. For moderate perpetrators like niltonib or 

303 etravirine, the predicted DDI magnitudes were 10% higher with advanced aging and thus, the effect 

304 appears to be marginal. 

305

306 In contrast to CYP3A4 (31, 32), uncertainty exist whether the transcription and translation of CYP2C9 and 

307 CY1A2 are impacted by advanced aging (33-35), which could result in impaired enzyme activity and 

308 subsequently lower DDI magnitudes. The majority of DDIs collected in the fourth step of the present study 

309 to proof the general PBPK model estimates regarding the impact of aging on DDI magnitudes, were 

310 mediated by CYP1A2. CYP1A2 was either induced (smoking, phenytoin) or competitively inhibited 

311 (cimetidine, ciprofloxacin). The ratio elderly/young of the AUC-ratio ranged from 0.70 ± 0.57 (36) to 1.14 ± 

312 0.58 (37), demonstrating that drug interactions mediated by CYP1A2 are likely not affected by advanced 

313 aging. The results are consistent with our previous work, in which we demonstrated that age-related 

314 changes in drug clearance are not determined by the clearance pathway, amongst others CYP3A, 

315 CYP2C9, and CYP1A2 (7). However, there are reports in the literature indicating that enzyme inducibility 

316 might be different as shown exemplarily for antipyrine with rifampicin (38), where the elderly showed a six-

317 fold lower DDI magnitude than the young group. Differences to other studies investigating age-related 

318 changes in DDI magnitudes are not explainable by frailty as all investigated participants were healthy. The A
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319 comparison between young and elderly subjects was indirect, because the study in young individuals was 

320 conducted earlier, which led to an exclusion in our meta-analysis. The reduced inducibility cannot be 

321 assigned to a specific hepatic enzyme, because antipyrine is metabolized by several different hepatic 

322 enzymes, which can be induced by rifampicin. In two other studies investigating the effect of smoking and 

323 dichloralphenazone on antipyrine with advanced aging, there was no difference in the DDI magnitude 

324 between the two investigated age groups (AUC-ratio elderly/young: 1.02 and 0.78 ± 0.62, respectively) (39, 

325 40). Studies using rifampicin as an inducer were in general heterogenic with the found minimal and 

326 maximal DDI magnitude ratio elderly/young of 0.67 and 1.86 (Table S4). Both studies showed how 

327 variability, which might be explained by the small sample size. These findings indicate no systematic effect 

328 of a certain DDI mechanism or involved enzyme. The found heterogeneity of data represents therefore 

329 patient variability in clinical practice. Taken together, uncertainty regarding the inducibility of hepatic 

330 enzymes exists in the literature probably based on the high variability of enzyme activity (41, 42) and the 

331 low number of subjects included in the clinical studies. Overall, the clinically observed data for various DDIs 

332 (Table S1, Table S4) proofs our PBPK model estimates of unchanged DDI magnitudes with advanced 

333 aging; however, in between patient variability up to twofold might be possible.

334

335 As DDI magnitudes are not impacted by aging, static methods can be applied if an elderly patient receives 

336 two drugs with an uncharacterized DDI magnitude. Estimates are based on the degree of metabolism by a 

337 specific enzyme and the strength of an inhibitor or inducer (43, 44). A PBPK model used in our study is not 

338 intendent for the daily management of DDI queries in the clinic, but the static method provides a more 

339 straightforward supportive tool to rationalize dose adjustments to overcome a given DDI.

340

341 We used a sequential multi-step approach, that might have the risk to propagate assumptions and errors 

342 from one step to the next. Using a mathematical model, it is of tremendous importance to clearly mention 

343 all underlying assumptions, which we have done previously for our developed aging population and PBPK 

344 model (9, 10). The model and its predictive power to simulate pharmacokinetics in elderly individuals was 

345 verified against clinically observed data for 20 non-HIV and HIV drugs, which had different drugs 

346 characteristics, and clinically observed drug concentrations were generally within the 95% confidence 

347 interval of the model predictions (7, 17). Thus, a systematic over- or underprediction based on assumptions 

348 or errors in the population and model can be excluded. In the present study, we simulated 50 different DDI 

349 scenarios in adults aged 20 to 50 years, involving different DDI mechanisms (competitive inhibition, 

350 mechanism-based inhibition, and induction), enzymes (CYP3A, CYP2D6, CYP2B6, CYP2C9, UGT1A1), 

351 and active drug transporter (OATP1B1) and 74.5%, 93.6%, and 100% of AUC-ratios were predicted within 

352 1.25-, 1.5-, 2.0-fold of clinically observed data, respectively. The average predicted:observed ratio was 0.99 

353 ± 0.21, indicating no systematic over- or underprediction of AUC-ratios. The predictive power of our model 

354 to simulate DDIs in aging individuals was verified against data from our own clinical study and independent, 

355 published data (16, 25-27) and all observed data were predicted within the 95% confidence interval. 

356 Furthermore, we verified the predicted impact of advance aging on DDI magnitudes against independent A
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357 clinically observed data, which verified our general model-based hypothesis. In conclusion, all performed 

358 verification with independent data verified the model assumptions and led to the exclusion of systematic 

359 errors in the PBPK model. 

360

361 There are several limitations of our study. Firstly, physiological data to inform the PBPK model are sparse 

362 over the age of 85 years and therefore, simulation results in the very old need to be viewed with caution. 

363

364 Secondly, individuals over the age of 65 years are generally excluded from clinical studies and if included 

365 have no major health problems. Thus, results might not be applicable to frail elderly individuals or aging 

366 subjects with severe comorbidities such as advanced renal impairment stage 4-5. However, our study 

367 delivers a comprehensive overview of conducted DDI studies in the elderly and uses a verified modelling 

368 approach to interpret the existing data broadly. Furthermore, the included aging PLWH in our own clinical 

369 study are representative of 75% of all elderly PLWH ≥75 years (45), who have mild to moderate renal 

370 impairment, hypertension, and receiving combined ARV therapy as well as other comedications. The 

371 investigation if severe comorbidities or organ impairment impact age-related changes in DDI magnitudes is 

372 the next logical step for future clinical studies. 

373

374 Thirdly, in vitro data regarding the induction of UGT1A1 by ARVs were not available in the literature and 

375 based on the same molecular modulation of UGT1A1 and CYP3A (20), the same induction values were 

376 assumed for both enzymes. Clinically observed data of DDIs involving UGT1A1 induction were always 

377 predicted within the 95% confidence interval of the PBPK model, thus qualifying the used assumption. A 

378 last limitation is that the impact of aging on transporter mediated DDIs were only studied for the hepatic 

379 uptake transporter OATP1B1, but other hepatic, intestinal or renal transporters were not investigated and 

380 hence translation must be careful. 

381

382 Fourthly, we used the commonly accepted twofold margin (24) to assess the accuracy of predicted 

383 pharmacokinetic parameters; however, the twofold limit might be too permissive for the interpretation of 

384 AUC-ratios, because it could lead to a misclassification of DDI magnitudes (46). We focused on clinical 

385 relevance, when analyzing the successful prediction of DDI magnitudes. The AUC-ratios that were 

386 predicted outside of the 1.5-fold margin were midazolam + rifampicin (predicted:observed: 1.69), 

387 dolutegravir + atazanavir/ritonavir (predicted:observed: 0.63), and atorvastatin + etravirine 

388 (predicted:observed: 1.54). The differences between predictions and clinically observed data were not 

389 judged to be of clinical relevance given the safety margin of dolutegravir and atorvastatin. In contrast, an 

390 under- or overprediction of the DDI magnitude with the anticoagulant rivaroxaban by twofold could have 

391 clinical consequences for the treated patient (47). In the case of rivaroxaban, all AUC-ratios were predicted 

392 within the 1.25-fold margin (rivaroxaban + ketoconazole: 0.85, rivaroxaban + clarithromycin: 0.96, and 

393 rivaroxaban + ritonavir: 0.99). However, the 1.25-fold margin is still too permissive for narrow therapeutic 

394 index drugs for which the 1.11-fold margin is recommended by the health authorities (48).A
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395

396 In conclusion, by combining clinical data with modelling we elucidated that aging does not impact the 

397 magnitudes of DDIs regardless of the DDI mechanism, the DDI mediators (enzymes, transporters) or the 

398 involved drugs. Thus, the clinical management of DDIs can a priori be similar in aging men and women 

399 compared to young individuals in the absence of severe comorbidities.
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400 6 Study Highlights

401 What is the current knowledge on the topic?
402 Age-related comorbidities are highly prevalent in the elderly leading to polypharmacy and consequently, an 

403 increased risk for drug-drug interactions (DDIs). However, clinical studies investigating DDIs are generally 

404 not conducted in the elderly resulting in missing guidance regarding the clinical management of DDIs with 

405 advanced aging.

406

407 What question did this study address?
408 We combined clinical data with physiologically based pharmacokinetic (PBPK) modelling to investigate the 

409 impact of aging on DDI magnitudes across the entire adulthood.

410

411 What does the study add to our knowledge?
412 The PBPK approach has the predictive power to simulate DDIs in the elderly. Predicted DDI magnitudes 

413 are not affected by aging regardless of the involved drugs, DDI mechanism or the sex of the investigated 

414 individual. This model-based hypothesis was further verified by independent clinically observed AUC-ratios 

415 for 17 DDIs being studied in young and elderly individuals.

416

417 How might this change clinical pharmacology or translational science?
418 The clinical management of DDIs can a priori be similar in the elderly compared to young men and women 

419 in the absence of severe comorbidities.
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10 Figure legends

Figure 1: Predicted vs. observed concentration time profiles for midazolam in the absence (brighter color) 

and the presence (darker color) of clarithromycin after intravenous administration (a: young; b: elderly) and 

oral administration (c: young; d: elderly). The design of the simulated DDI scenarios is detailed in Table S1. 

Red markers show published clinical data. The solid lines, the dashed line, and the shaded area represent 

the mean of each virtual trial, the mean, and the 95% confidence interval of all virtual individuals, 

respectively.

Figure 2: Predicted vs. observed concentration time profiles for amlodipine (a: young; b: elderly), 

atorvastatin (c: young, d: elderly), and rosuvastatin (e: young, f: elderly) in the absence (brighter color) and 

the presence (darker color) of boosted darunavir. The design of the simulated DDI scenarios is detailed in 

Table S1. Red markers show published clinical data with different markers indicating different individuals. 

The solid lines, the dashed line, and the shaded area represent the mean of each virtual trial, the mean, 

and the 95% confidence interval of all virtual individuals, respectively.

Figure 3: Predicted vs. observed concentration time profiles for dolutegravir (a: young; b: elderly) in the 

absence (brighter color) and in the presence (darker color) of boosted darunavir. The design of the 

simulated DDI scenario is detailed in Table S1. Data for young individuals were normalized to 50 mg for 

comparison with elderly subjects. Red markers show published clinical data. The solid lines, the dashed 

line, and the shaded area represent the mean of each virtual trial, the mean, and the 95% confidence 

interval of all virtual individuals, respectively.

Figure 4: Area under the curve (AUC)-ratio normalized to the youngest investigated age group (20-24 

years) for all drugs (a), for non-HIV drugs (b), for ARVs (c), for competitive inhibition (d), for mechanism-

based inhibition (e), for induction (f), for DDIs mediated by CYP enzymes (g), for DDIs mediated by 

UGT1A1 (h), and for DDIs mediated by OATP1B1 (i). Black, blue, and red markers represent competitive 

inhibition, mechanism-based inhibition, and induction. Circles, crosses, and triangles symbolize CYP-, 

UGT1A1-, and OATP1B1-mediated DDIs. The solid line and the shaded area show the mean ± standard 

deviation. The dashed lines represent the 1.25-fold interval (bioequivalence criterion).

Figure 5: Impact of aging on area under the curve (AUC) ratios for independent clinically observed data 

(mean ± standard deviation; Table S4). Black, blue, red, and green markers symbolize competitive 

inhibition, mechanism-based inhibition, induction, and mechanism-based inhibition combined with 

induction, respectively. All investigated DDIs were mediated by CYP enzymes. The solid line and the 

shaded area show the mean ± standard deviation. The dashed lines represent the 1.25-fold interval 

(bioequivalence criterion).A
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Table 1: Observed vs predicted drug pharmacokinetics in the absence and presence of the inhibitor and inducer in young (20-50 years) and aging individuals 

(≥55 years). Data for dolutegravir are normalized to 50 mg for young individuals to enable comparison with elderly subjects. 

  Young adults Elderly adults 

  Victim in the absence of the 

perpetrator 

Victim in the presence of the 

perpetrator 
DDI ratio 

Victim in the absence of the 

perpetrator 

Victim in the presence of the 

perpetrator 
DDI ratio 

  

  Observed Predicted Observed Predicted Observed  Predicted Observed Predicted Observed Predicted Observed  Predicted 

Midazolam (iv) + Clarithromycin 

Cmax [ng/mL] 50.3 ± 34.7 61.9 ± 13.0 64.8 ± 25.4 69.7 ± 14.5 1.29 ± 1.02 1.12 ± 0.33 63.2 ± 22.9 67.8 ± 14.7 65.7 ± 18.2 74.8 ± 16.5 1.04 ± 0.47 1.10 ± 0.34 

AUC [ng*h/mL] 125 ± 61 134 ± 64 337 ± 117 379 ± 354 2.69 ± 1.60 2.83 ± 2.98 152 ± 68 176 ± 75 361 ± 155 507 ± 354 2.38 ± 1.48 2.88 ± 2.36 

t1/2 [h] 3.6 ± 1.8 4.5 ± 1.9 9.2 ± 3.2 9.7 ± 8.4 2.56 ± 1.56 2.15 ± 2.06 5.6 ± 2.5 6.2 ± 2.1 11.9 ± 5.1 13.7 ± 8.2 2.11 ± 1.32 2.21 ± 1.51 

Midazolam (po) + Clarithromycin 

Cmax [ng/mL] 12.5 ± 7.0 16.1 ± 7.4 40.7 ± 25.4 32.0 ± 10.3 3.26 ± 2.73 1.99 ± 1.12 13.0 ± 5.9 14.9 ± 5.5 31.7 ± 13.1 30.5 ± 8.0 2.44 ± 1.50 2.04 ± 0.93 

AUC [ng*h/mL] 49.4 ± 25.3 56.7 ± 23.9 304 ± 151 289 ± 194 6.16 ± 4.39 5.10 ± 4.03 49.6 ± 39.8 56.4 ± 20.1 336 ± 136 281 ± 189 6.79 ± 6.10 4.98 ± 3.80 

t1/2 [h] 3.7 ± 1.9 4.2 ± 1.3 6.9 ± 3.4 8.3 ± 4.6 1.87 ± 1.33 1.99 ± 1.28 3.7 ± 2.9 5.1 ± 1.7 7.1 ± 2.9 8.9 ± 3.8 1.94 ± 1.75 1.74 ± 0.93 

Midazolam (iv) + Rifampicin 

Cmax [ng/mL]   57.5 ± 12.0   52.9 ± 11.4   0.92 ± 0.28   64.1 ± 14.0   60.2 ± 13.0   0.94 ±0.29 

AUC [ng*h/mL] 110 ± 34  93.9 ± 28.3 48.6 ± 11.8 70.0 ± 19.4 0.44 ± 0.17 0.75 ± 0.31 127 ± 50 136 ± 48 57.7 ± 17.2 101 ± 27 0.45 ± 0.22 0.75 ±0.33 

t1/2 [h] 4.0 ± 1.8 3.5 ± 1.3 1.9 ± 0.6 3.1 ± 1.2 0.46 ± 0.25 0.87 ± 0.47 4.3 ± 1.6 5.2 ± 1.7 2.3 ± 0.8 4.3 ± 1.3 0.53 ± 0.27 0.84 ±0.36 

Midazolam (po) + Rifampicin 

Cmax [ng/mL] 18.3 ± 7.1 15.8 ± 7.7 1.8 ± 0.9 1.8 ± 1.7 0.10 ± 0.06 0.12 ± 0.12 23.3 ± 11.4 21.3 ± 9.9 2.5 ± 1.7 2.0 ± 1.6 0.11 ± 0.09 0.09 ±0.09 

AUC [ng*h/mL] 41.9 ± 23.4 43.1 ± 18.7 4.1 ± 3.2 3.7 ± 2.4 0.10 ± 0.09 0.09 ± 0.07 40.0 ± 20.6 74.2 ± 36.5 4.3 ± 2.6 5.6 ± 3.2 0.11 ± 0.09 0.08 ±0.06 

t1/2 [h]   3.7 ± 1.2   3.2 ± 1.1   0.86 ± 0.42   5.1 ± 1.6   4.3 ± 1.3    0.85 ±0.37 

Amlodipine + Darunavir/Ritonavir 

Cmax [ng/mL] 11 12.6 ± 3.4 19.9 21.6 ± 5.8 1.80 1.71 ± 0.65 19.3 ± 4.7 15.0 ± 3.5 32.7 ± 8.8 24.2 ± 5.2 1.69 ± 0.61 1.62 ± 0.52 

AUC [ng*h/mL] 777.0 667 ± 233 1,640 1,423 ± 554 2.11 2.13 ± 1.12 1,155 ± 414 884 ± 265 2,425 ± 739 1,773 ± 535 2.10 ± 0.99 2.01 ± 0.85 

t1/2 [h] 38.0 30.0 ± 2.7 48.4 37.4 ± 5.6 1.27 1.25 ± 0.22 48.1 ± 8.0 34.0 ± 2.8 51.2 ± 0.1 42.9 ± 4.7 1.06 ± 0.18 1.26 ± 0.17 

Atorvastatin + Darunavir/Ritonavir 

Cmax [ng/mL]             4.9 ± 3.6 4.2 ± 2.1 23.9 ± 11.1 20.4 ± 8.7 4.83 ± 4.16 4.89 ± 3.23 

AUC [ng*h/mL]             31.4 ± 4.7 25.3 ± 12.9 193 ± 133 153 ± 79 6.16 ± 4.35 6.05 ± 4.40 

t1/2 [h]             15.3 ± 3.5 9.9 ± 2.4 22.0 ± 12.2 11.2 ± 2.6 1.44 ± 0.87 1.13 ± 0.38 
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Cmax [ng/mL] 7.3 ± 3.1 7.3 ± 2.5 20.1 ± 16.6 17.4 ± 6.3 2.75 ± 2.56 2.38 ± 1.18 9.9 ± 4.3 7.9 ± 2.5 14.3 ± 6.4 21.2 ± 10.0 1.44 ± 0.89 2.67 ± 1.53 

AUC [ng*h/mL] 121 ± 52 97 ± 41 181 ± 97 146 ± 53 1.50 ± 1.03 1.50 ± 0.83 104 ± 33 105 ± 49 167 ± 75 174 ± 91 1.60 ± 0.88 1.66 ± 1.16 

t1/2 [h] 15.5 ± 6.5 15.4 ± 4.9 18.5 ± 7.6 14.9 ± 4.5 1.19 ± 0.71 0.97 ± 0.42 13.1 ± 3.7 16.5 ± 6.4 33.1 ± 4.9 15.1 ± 5.5 2.52 ± 0.81 0.91 ± 0.49 

Dolutegravir + Darunavir/Ritonavir 

Cmax [ng/mL] 4667 ± 700 3,856 ± 1,263 3,967 ± 793 3,571 ± 1,109 0.85 ± 0.21 0.93 ± 0.42 5,114 ± 1,477 4,194 ± 1,308 3,081 ± 1,333 3,643 ± 1,191 0.60 ± 0.31 0.87 ± 0.39 

AUC [ng*h/mL] × 10−3 75.6 ± 14.4 74.6 ± 63.2 52.1 ± 8.3 58.8 ± 48.4 0.69 ± 0.17 0.79 ± 0.93 88.2 ± 34.8 109.3± 95.0 74.9 ± 32.0 79.3 ± 91.8 0.85 ± 0.49 0.72 ± 1.05 

t1/2 [h] 12.1 ± 1.8 10.7 ± 5.6 9.8 ± 1.7 9.7 ± 4.9 0.81 ± 0.18 0.91 ± 0.66 10.4 ± 4.1 14.8 ± 8.3 13.2 ± 5.6 12.3 ± 8.2 1.27 ± 0.74 0.84 ± 0.72 

Key Table 1: Cmax = peak concentration, AUC = area under the curve, t1/2 = elimination half-life, iv = intravenous, po = oral, DDI = drug-drug interaction, 

perpetrator = drug with inhibitory/inducing potential. 
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Table 2:  Predicted vs observed AUC of the control (victim drug in the absence of the perpetrator or extensive metabolizer/transporter phenotype) and DDI 

(victim drug in the presence of the perpetrator or different phenotype) scenario and the AUC-ratio (DDI scenario / control scenario). 

  AUC [ng*h/mL] – control scenario  AUC [ng*h/mL] – DDI scenario  AUC ratio 

  Observed Predicted  Observed Predicted  Observed Predicted 

Midazolam + Ketoconazole 123 ± 76 121 ± 73  1,344 ± 648 1,354 ± 1,490  10.89 ± 8.54 11.18 ± 14.01 

Rivaroxaban + Ketoconazole 892 ± 241 1,071 ± 314  2,298 ± 597 2,341 ± 894  2.58 ± 0.97 2.19 ± 1.05 

Nilotinib + Ketoconazole 9,682 ± 5,686 13,283 ± 13,260  39,314 ± 18,708 56,183 ± 67,376  4.06 ± 3.07 4.23 ± 6.60 

Midazolam + Nilotinib 121 ± 73 149 ± 99  157 ± 71 165 ± 119  1.30 ± 0.98 1.10 ± 1.08 

Repaglinide + Gemfibrozil in PT of OATP1B1 7.8 ± 1.7 7.6 ± 3.5  50.1 ± 13.4 38.0 ± 19.7  6.42 ± 2.22 5.00 ± 3.45 

Rivaroxaban + Clarithromycin 992 ± 249 1,006 ± 289  1,469 ± 360 1,476 ± 456  1.52 ± 0.50 1.47 ± 0.62 

Atorvastatin + Clarithromycin 41.9 ± 19.0 32.7 ± 12.6  108 ± 28 84.4 ± 34.0  2.59 ± 1.36 2.58 ± 1.44 

Etravirine + Clarithromycin 16,344 ± 4,757 14,161 ± 4,984  27,664 ± 8,156 21,409 ± 12,908  1.69 ± 0.70 1.51 ± 1.06 

Midazolam + Ritonavir 30.8 37.8 ± 12.0  169 154 ± 124  5.47 4.07 ± 3.53 

Rilpivirine + Darunavir/Ritonavir           2.30 2.27 ± 1.59 

Atorvastatin + Rifampicin 64.0 ± 21.3 68.2 ± 28.1  12.6 ± 3.2 17.3 ± 7.7  0.20 ± 0.08 0.25 ± 0.15 

Nilotinib + Rifampicin 11,123 ± 4,819 13,411 ± 10,797  2,227 ± 1,122 2,221 ± 615  0.20 ± 0.13 0.17 ± 0.14 

Rilpivirine + Rifampicin           0.20 ± 0.11 0.15 ± 0.10 

Rilpivirine + Efavirenz 3,012 ± 1,871 3,250 ± 1,760  2,218 ± 1,546 2,369 ± 1,223  0.74 ± 0.69 0.73 ± 0.55 

Efavirenz + Rifampicin 200,335 ± 150,433 202,830 ± 127,928  209,062 ± 149,263 166,651 ± 89,725  1.04 ± 1.08 0.82 ± 0.68 

Midazolam + Etravirine           0.69 ± 0.21 0.66 ± 0.11 

Atorvastatin + Efavirenz           0.65 ± 0.31 0.85 ± 0.48 

Atorvastatin + Etravirine 89.1 ± 48.3 59.0 ± 28.8  51.8 ± 31.2 52.7 ± 25.5  0.58 ± 0.47 0.89 ± 0.61 

Dolutegravir + Atazanavir 64,559 ± 12,266 80,393 ± 100,190  177,645 ± 30,200 160,250 ± 187,474  2.75 ± 0.70 1.99 ± 3.41 

Dolutegravir + Atazanavir/Ritonavir 64,559 ± 12,266 76,471 ± 68,411  149,820 ± 23,971 112,081 ± 125,322  2.32 ± 0.58 1.47 ± 2.10 

Dolutegravir + Rifampicin 65,616 ± 46,285 102,641 ± 130,276  32,924 ± 21,428 41,986 ± 53,973  0.50 ± 0.48 0.41 ± 0.74 

Dolutegravir + Etravirine 84,151 ± 18,513 105,295 ± 150,624  19,716 ± 43 27,632 ± 34,591  0.23 ± 0.05 0.26 ± 0.50 

Raltegravir + Ritonavir 11,139 13,632 ± 6,964  8,905 9,356 ± 3,038  0.80 0.69 ± 0.42 

Raltegravir + Rifampicin 12,273 16,349 ± 10,442  7,350 10,007 ± 3,680  0.60 0.61 ± 0.45 

Raltegravir + Efavirenz 12,535 13,556 ± 7,627  7,942 10,635 ± 4,240  0.63 0.78 ± 0.54 

Raltegravir + Etravirine 10,804 ± 12,153 7,479 ± 4,297  8,201 ± 7,622 5,813 ± 2,568  0.76 ± 1.11 0.78 ± 0.56 

Repaglinide + Gemfibrozil 5.8 ± 3.8 4.8 ± 1.5  44.1 ± 24.9 45.5 ± 30.1  7.58 ± 6.57 9.48 ± 6.91 A
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Atorvastatin + Gemfibrozil 35.2 ± 11.8 36.7 ± 14.7  43.6 ± 15.8 50.2 ± 20.3  1.24 ± 0.61 1.37 ± 0.77 

Rosuvastatin + Gemfibrozil 464 ± 223 363 ± 134  897 ± 466 674 ± 303  1.93 ± 1.37 1.86 ± 1.08 

Rosuvastatin + Atazanavir/Ritonavir 18.8 ± 16.1 20.3 ± 6.2  48.9 ± 34.3 65.7 ± 29.5  2.60 ± 2.88 3.24 ± 1.76 

Metoprolol in PM of CYP2D6 668 ± 303 585 ± 472  3,222 ± 137 2,590 ± 2,2276  4.82 ± 2.20 4.43 ± 5.28 

Metoprolol in UM of CYP2D6 668 ± 303 585 ± 472  311 ± 117 243 ± 207  0.47 ± 0.27 0.41 ± 0.49 

Repaglinide in UM of CYP2C8 106 ± 30.9 72.1 ± 27.1  72.4 ± 37.9 65.2 ± 22.7  0.68 ± 0.41 0.90 ± 0.46 

Repaglinide in PT of OATP1B1 4.5 ± 1.6 4.5 ± 1.4  7.8 ± 1.7 7.8 ± 3.1  1.73 ± 0.72 1.74 ± 0.88 

Atorvastatin in IT of OATP1B1 24.2 ± 8.6 25.8 ± 11.2  36.2 ± 20.3 33.5 ± 14.9  1.50 ± 0.99 1.30 ± 0.80 

Atorvastatin in PT of OATP1B1 24.2 ± 8.6 25.8 ± 11.2  59.3 ± 17.4 60.2 ± 27.3  2.45 ± 1.13 2.33 ± 1.46 

Rosuvastatin in IT of OATP1B1 35.0 ± 18.1 42.4 ± 14.1  55.0 ± 22.7 45.4 ± 16.3  1.57 ± 1.04 1.07 ± 0.52 

Rosuvastatin in PT of OATP1B1 35.0 ± 18.1 42.4 ± 14.1  56.7 ± 5.1 60.4 ± 27.4  1.62 ± 0.85 1.42 ± 0.80 

Key: PM = poor metabolizer, UM = ultrarapid metabolizer, IT = intermediate transporter phenotype, PT = poor transporter phenotype.  
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