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Complementary split-ring resonators (CSRRs) metasurfaces present interesting 

applications in terahertz biosensing. Indium tin oxide (ITO) is an essential 

optoelectronic material because of optical transparency, high conductivity and good 

stability. In this letter, we innovatively suggest that ITO-based CSRRs metasurface 

can excite multi-peaks resonance in 0.1-2 THz by numerical simulation and 

experimental measurements. The multi-peak-resonance presents red-shift 

characteristics with increasing the external radius of the split-ring. The experimental 

results are in close agreement with the numerical values, which may indicate that the 

proposed ITO-based CSRRs metasurface may play a significant role in visible 

terahertz bio-sensing applications. 
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Over the past decades, terahertz (THz) radiation has attached intensive research 

interest because of its unique properties in this electromagnetic spectral range (1 

THz=1012 Hz). THz metasurface, which is an artificial subwavelength structure with 

extraordinary electromagnetic response in THz radiation, has been extensively 

explored for a wide range of application fields, such as wave beam shaper, waveguide, 

and modulator [1-5]. Meanwhile, it also has potential applications in the biomedical 

research as a biosensor by taking advantage of plasmonic resonances to enhance 

sensitivity [6-8]. The first metasurface designed for bio-sensing applications was 

proposed by Brolo et al in 2004 [9]. This research was extended to THz frequency in 

2007 by Debus et al. [10]. After that, research into THz bio-sensing technology 

relating to metasurface has attracted considerable attention. Singh’s group developed 

a flexible terahertz metamaterial sensor on a low refractive index substrate [11].  

Xie’s group demonstrated graphene-gold heterostructure terahertz metamaterial 

sensor with ultrahigh sensitivity [12]. Okamoto et al. have reported a terahertz sensor 

using photonic crystal cavity with record-high Q factor of 10000 [13]. However, most 

materials studied for metasurface so far are exclusively limited to common metal (Au, 

Ag, Al, Cu) [9], graphene [12] and silicon [14]. Unfortunately, these materials have 

drawbacks including high-cost, low-biocompatibility, poor reusability and instability, 

which restricted their practical applications in THz bio-sensing [15-16].  

ITO is an n-type degenerate semiconductors with wide band-gap (≥3 eV) [17-19]. 

The good biocompatibility [20] and THz plasmonic response [17, 21] make ITO an 

attractive candidate for THz metasurface bio-sensing. Furthermore, the demand for 

highly optically transparent bio-sensing continues to grow in many practical 

applications because it makes the sensing process visible to the naked eye and allows 

visible light photosensitive sensing [22]. Concretely, photodynamic therapy is one 

kind of drug/instrument combination therapy technology which causes cell necrosis, 

apoptosis, autophagy by irradiating tissue/cells with light at specific optical 

wavelength. But, there is limited way to dynamically monitor the process of 

photodynamic therapy and accurately assess the curative effect. Optically transparent 

ITO-based THz metasurface may become suitable for such purpose by providing a 
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transparent platform for the simultaneous implementations of photodynamic therapy 

[23] and THz bio-sensing [24]. Besides, optically transparent ITO-based metasurface 

is very promising for photoacoustic imaging of melanoma cells by providing lower 

noises compared to metallic metasurface [25]. However, there has been few report on 

the ITO metasurface for optically transparent bio-sensing in THz field.  

Fluorine-doped Tin Oxide (FTO) shows very similar optoelectronic properties 

with ITO [26]. With the purpose to make a comparison, numerical simulations were 

carried out to study the performance of both ITO and FTO based CSRRs metasurfaces. 

This letter is organized as follows. We first designed a type of CSRRs metasurfaces 

with ITO and FTO respectively. Then, we described numerical simulation of the 

reflection, transmission, absorption and electric distribution in the 0.1-2 THz based on 

the Drude models of ITO. In section 2, the design of ITO-and FTO-based CSRRs 

metasurfaces are presented. In section 3, characteristics of the proposed CSRRs 

metasurface, such as reflection, transmission, absorption, magnetic field distributions 

are analyzed and discussed. In section 4, the experimental results on transmission and 

reflection are processed and compared. Conclusions are in section 5.  

 

Fig. 1: (a) Schematic of ITO or FTO CSRRs metasurfaces: here the purple and gray 

colors denote ITO or FTO thin film, and quartz substrate respectively; (b) Schematic 

of cross section view of (a); (c) Excellent optically transparent sample of ITO CSRRs 

metasurface on quartz substrate.  

We investigate the CSRRs metasurface consisting of quartz substrate and thin 

film ITO or FTO. The geometry is shown in Fig. 1 (a) and (b). The external and the 

internal radius of the split-ring is 140 μm and 110 μm respectively; and the gap width, 
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which is completely open on one side of the ring, is 20 μm. The CSRR is considered 

to be distributed periodically, while the lattice constant is assumed to be 400 μm. 

Periodic boundary conditions have been applied for calculating the transmission (T), 

reflectivity (F) and absorption (A) of a single unit of CSRR. The thickness of ITO 

(FTO) is 400 nm while the thickness of the quartz substrate is 40 μm. THz wave is 

assumed to have normal incidence to the metasurface. The aforementioned CSRRs 

comes from the Babinet’s principle in which the admittance of CSRRs goes to infinite 

and there is a total transmission, where CSRRs can be considered as quasi-static LC 

resonators. CSRRs based on ITO and FTO may provide a convenient way for 

controlling the position of resonance peak by using different radius of the split-ring 

[27-30]. The sample of ITO CSRRs metasurface on quartz substrate is shown in Fig. 

(c). It can be observed that the sample presents excellent optical transparency.  

The following simulations on numerical analysis of electromagnetic response 

based on ITO and FTO CSRRs metasurface are performed by using finite-element 

method (FEM) as provided by COMSOL Multiphysics. In the following, two 

perfectly matched layers (PML) are applied in the top and bottom layers of the 

modeling region. The propagation direction of the EM field is perpendicular to the 

metallic patch, and the incident magnetic field H0 is parallel to the x axis. 

 
Fig. 2: (a) The real part ε’ and the imaginary part ε’’ of the permittivity of ITO and 

FTO at 0.1-2 THz; (b) The frequency-dependent ratio -ε'/ε'' of ITO and FTO at 0.1-2 

THz. The complex dielectric constant was calculated using the parameter of ε∞ equal 

to 4.4, ωp equal to 1.606×1015 rad/s, τ equal to 9.5 fs for ITO [29] and ε∞ equal to 3.85, 

ωp equal to 1.78×1015 rad/s, τ equal to 3.69 fs for FTO [26]. Following the parameters 

provided in refs. [24,27], the calculated skin depth of ITO (FTO) is found to be at the 
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regime 0.75 μm ~ 3 μm (0.8 μm ~ 3.8 μm), provided with that the frequency of THz 

wave lies within 0.1 THz ~ 2 THz. 

The frequency-dependent permittivity of a conductor can be described using the 

Drude model:  

2
p( / )

1 /i

 
 

 
                                         (1) 

2
2

eff 0
p

ne

m



                                             (2) 

where meff is effective mass of the electrons, ε∞ is the high-frequency dielectric 

constant, ε0 is the vacuum dielectric constant, N, τ and ωp present the electron density, 

scattering time and the plasma frequency respectively.  

Based on the computation for CSRRs metasurfaces, the calculated real part ε’ 

and the imaginary part ε’’ of the permittivity of ITO are both larger than that of FTO 

in the range of 0.1 to 2 THz as depicted in Fig. 2 (a). Meanwhile, the more metallic 

behavior is demonstrated by increasing frequency-dependent ratio of -ε'/ε'' of ITO 

than that of FTO [30], as shown in Fig. 2(b). The result suggests that ITO should 

exhibit better electric field behavior than FTO discussed in section 3 which exactly 

explains why ITO possesses better sensing performance than FTO in THz range. 
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Fig. 3: The computed frequency-dependent reflection, transmission and absorption of 

(a) ITO and (b) FTO CSRRs metasurfaces by normal incidence. (c) The distributions 

of magnetic flux density Bz of ITO-based CSSRs corresponding to peaks 1- 6.  

Fig. 3 (a, b) show the computed frequency-dependent reflection, transmission 

and absorption of the ITO and FTO CSRRs in 0.1-2 THz. The reflection (R) and 

transmission (T) are the ratio of the magnitude of the electric field of the reflected 

wave Eref and transmitted wave Etra to that of the incident plane wave Ein respectively, 

while the absorption (A) can be expressed by: A = 1－R－T. There are 6 resonance 

peaks for both ITO and FTO metasurfaces in the range of 0.1-2 THz. This 

multi-resonances characteristic will help to achieve a wide analyte refractive index 

range with competitive resolution and has potential for multi-analyte sensing and 

self-reference [31]. The origin of these peaks may be attributed by the excitation of 

plasmonic (or photonic) eigenmodes in the micro-structures of ITO/FTO thin films. It 

can be observed that FTO-based CSRRs present the broader resonance peaks because 

of its higher dielectric loss (see Fig. 2a). We thus demonstrate the feasibility of 

applying ITO-based CSSRs metasurface for bio-sensing mentioned in the 

supplementary data. The eigen-mode of peak 2 for both ITO- and FTO-based CSRRs 

shows the highest resonance peak, such phenomenon may be relevant to the lowest 

effective refractive index of plasmonic eigen-mode, which will be discussed in the 

following section. 

To gain a better understanding toward the mechanism that governing the 

appearance of multi-peaks as shown in Fig. 3 (a, b), we have also provided the 

distributions of magnetic flux density Bz of ITO-based CSSRs corresponding to peaks 

1- 6 in Fig. 3(c). According to the Babinet’s priciple [27], there exists a electric 

current density Jx at the gap region, as a result, the magnetic flux density Bz at the 

upper and lower edges of the gap demonstrates positive and negative signs, 

respectively. Due to the electromagnetic oscillation that incorporated with the 

Fabry-Perot nature of the split ring, the arm of CSRR demonstrates standing wave 

patterns. Considering the similar resonance response of ITO and FTO, we only focus 

on the discussions on ITO-based CSRRs in this section. It can be observed that 
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standing waves with varied number of nodes are found to be perpendicular to the 

cross-sectional plane. More specifically, there exists a single number of node in the 

magnetic flux density Bz for peak 1; while increasing number of nodes of magnetic 

flux density Bz can be found for peaks 2 to 6.  

According to Babinet’s principle, resonant peaks of 1-3 are associated with 

plasmonic egien-modes. Therefore, it is desirable to calculate the real part of the 

effective refractive index Re(neff) of each plasmonic egien-mode for sensing-related 

applications by the following the equation [32]: 

0

0

, 1
Re( )

, 3,5,...
2 Re( )

eff

eff

eff

m
n

L
m

m
n





 
 
 


                              (3) 

 effL L g                                          
  (4) 

where Leff is the effective length of the split ring resonator, L is the perimeter of the 

ring as expressed by L = 2π (Rexternal - w/2) (note that Rexternal is the external radius of 

the split-ring, and w is the difference between external radius and internal radius of 

the split-ring), g is the gap of the split-ring, λ0 is the incident wavelength in the 

vacuum, m is the number of magnetic flux density Bz nodes as distributed in the split 

ring arm. Table 1 has summarized the effective refractive indices of peaks 1 to 3. 

While for the cases of peaks 4-6, the size of a CSRR unit cell is 400 μm, which is 

comparable to the incident wavelength of THz wave, e.g. approximately 300 μm 

associated with the peak 4. This will cause optical diffraction. Therefore, the 

appearance of peaks 4-6 may be explained by the diffraction effect of THz wave. 

Table1: Effective refractive indices of mode 1 to 3 

Paramters Peak 1 Peak 2 Peak 3 

Resonant-frequency/THz 0.1573 0.5010 0.7050 

Number of Bz nodes m  1 3 5 

Effective refractive index 2.4918 1.1735 1.3898 
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Fig. 4: CSRRs radius-dependent transmission (a) and reflection (b) based on ITO, 

results are obtained by finite element method; CSRR radius-dependent transmission (c) 

and reflection (d) based on ITO, results are obtained by experimental measurement. 

Here, we first examine how CSRRs radius affects initial position of resonance 

peaks based on ITO metasurface by simulation. Fig. 4 provides the simulation data on 

CSRRs radius-dependent transmission (a) and reflection (b). For peaks 1-3 (in 

0.1-1THz), both transmission and reflection red shift evidently after increasing the 

external radius of the split-ring. The red-shift of resonant frequency can be explained 

by the LC-related equations provided by [33]: the increased the external radius of the 

split-ring causes the decrease of resonance frequency. While for peaks 4 - 6, the 

resonant frequency has no obvious shift, potential reasons may be described as: due to 

the increased ratio of the thickness of ITO to the corresponding operational 

wavelength, peaks 4 - 6 partially violate the Babinet’s priciple. In addition, the 

associated wavelength of peaks 4 - 6 is comparable to the size of a CSRR unit cell, the 

diffraction effect may thus play the dominant role in the spectral response of peaks 4 - 

6. 

Here, we also examine experimentally the effect of the ring radius on the initial 

position of resonance peaks based on ITO CSRRs metasurface. Fig. 4 (c) and (d) 
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provides the measurement data of transmission and reflection based on different ITO 

CSRRs radius. It can be observed that the main peaks (in 0.1-1THz) of both 

transmission and reflection red-shift evidently after increasing the external radius of 

the split-ring which is consisted well with simulation results. The adjustable 

characteristics of resonance peaks according to ITO CSRRs radius make ITO more 

flexible and practical as visible terahertz biosensor candidate. 

Fig. 4 (a, c) compares the simulation and experimental results. It can be observed 

that the experiment data present high-quality resonance peaks in both transmission 

and reflection in 0.1-1 THz which are consistent with the simulation results. However, 

the resonance frequency of both transmission and reflection are red shifted compared 

with simulation data. In addition, the measurement results show no obvious resonance 

peaks in the range of 1-2 THz. The experimental results show a little discrepancy with 

the simulation results owing to the difference between the permittivity and 

conductivity of ITO used in simulation taking from literature [29] and in experiment 

processed by lithography technology. The relatively in-sufficient references that can 

provide experimental data on permittivity and conductivity of ITO/FTO at varied 

thickness and doping concentrations may hinder the further investigation; however, 

our simulation results may provide basic reference and guidance for the future design 

and relevant optimization of ITO- and FTO-based metasurfaces. 

In summary, we have first designed both ITO- and FTO-based CSRRs 

metasurfaces and made a preliminary exploration on the electromagnetic response of 

such two designs. ITO-based CSRRs metasurfaces were detected by THz-TDS system 

in transmission and reflection geometry. Mechanisms that may govern the existence 

of multi-peaks, the spectral-shift in terahertz transmission, reflection and absorption 

have been provided. Good agreement between numerical simulation and experimental 

results, as combined with excellent optical transparency, the proposed ITO-based 

CSRRs metasurfaces may find wide applications in visualization of bio-medical 

operation and micro-fluid implementation in THz range.  
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