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ABSTRACT 

The power of thermodynamics in the calculation of complex chemical 

and metallurgical equilibria of importance to industry has, over the 

last 15 years, been considerably enhanced by the availability of 

computers. It has resulted in the storage of data in databanks, the use 

of physical but complex models to represent thermodynamic data, the vast 

effort spent in the generation of critically assessed data and the 

development of sophisticated software for their application in 

equilibrium calculations. 

This thesis is concerned with the generation and application of 

metallurgical thermodynamic data in which the computer plays a central 

and essential role. A very wide range of topics have been covered from 

the generation of data by experiment and critical assessment through to 

the application of these data in calculations of importance to industry. 

Particular emphasis is placed on the need for reliable models and 

expressions which can represent the molar Gibbs energy as a function of 

temperature and composition. In addition a new computer program is 

described and used for the automatic calculation of phase diagrams for 

binary systems. Measurements of the enthalpies of formation of alloys in 

the Fe-Ti system are reported. All data for this system have been 

critically assessed to provide a dataset consistent with the published 

phase diagram. Critically assessed data for a number of binary alloy 

systems have been combined in order to perform quantitative calculations 

in two types of steel system. Firstly data for the Cr-Fe-Ni-Si-Ti system 

have been used to provide information about the long term stability of 

alloys used in fast breeder nuclear reactors. Secondly very complex 

calculations involving nine elements have been made to predict the 

distribution of carbon and various impurities between competing phases 

in low alloy steels on the addition of Mischmetall. Finally a new model 

is developed to represent the thermodynamic data for sulphide liquids 

and is used in the critical assessment and calculation of data for the 

Cu-Fe-Ni-S system. The phase diagram and thermodynamic data calculated 

from the assessed data are in excellent agreement with those observed 

experimentally. 

The work reported in this thesis, whilst successful, has also 

indicated areas which will benefit from further study particularly the 

development of reliable data and models for pure elements, ordered solid 

phases and liquid phases for high affinity systems. 
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CHAPTER 1 

Introduction 

Any stranger to the field of thermodynamics must think it rather odd 

that its application to industrial problems is still in a state of 

hectic development. It is certainly true that the basic principles of 

the subject are well established following the pioneering work of Gibbs 

and others (1-6) towards the end of the last century. It is also true, 

however, that in many fields of research considerable time may elapse 

between the conception of a theory and its 'development to the stage 

where it can be used to solve complex problems of practical interest. In 

the case of thermodynamics, the initial definition of the principles led 

to rapid growth in the amount of experimental work being performed. This 

experimental work with its generation of vast quantities of data led 

people to develop convenient mathematical expressions to link the data 

together. This need for convenient but reliable mathematical formalisms 

in turn led to greater emphasis being placed on a detailed understanding 

of the underlying physics and consequently the development of more 

fundamental theories. 

As I hope to demonstrate in this thesis, thermodynamics is still at a 

stage where it demands a high level of intellectual application in order 

to provide the basis for the solution of important practical problems. 

However with the birth of the age of computers a dramatic change is now 

occurring which will allow a non-expert to solve complex problems 

involving thermodynamics with very little effort. This is particularly 

true of the area of metallurgical thermodynamics. The aim of this thesis 

is to show how thermodynamic data for metallurgical systems can be 

generated and used in conjunction with a computer to solve problems of 

practical interest. 

The importance and the use of thermodynamics are well known and this 

b'f 
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is reflected in the growing number of conferences and journals devoted 

to the subject. At NPL, there is a great tradition for conferences 

devoted to thermodynamics (7-10). The latest of these conferences "The 

Industrial Use of Thermochemical Data" (10) showed that, just within the 

areas of metallurgy and inorganic chemistry, thermodynamics is being 

used successfully in a wide range of industries for topics as diverse as 

the development of materials for nuclear reactors (11-13), the 

prediction of superalloys suitable for use in turbine blades (14,15), 

the hydrometallurgical and pyrometallurgical extraction of metals from 

minerals (14,16), the growth of crystals by vapour transport (17), 

pollution control (18), steelmaking (19-23) and the development of 

materials for lamp technology (24,25). It is probably true that even in 

these areas, thermodynamics is not being used to its full potential. 

One other aspect that stood out from this conference was the 

breakdown of the delegates between government organisations, 

universities and private industry. It was rather encouraging to note the 

large representation of industry which may indicate that the scepticism 

or even fear on the part of the industrial scientist in the use and 

power of thermodynamics is disappearing. 

There are many reasons for this sceptical attitude. The last time a 

typical industrial scientist would have thought in detail about 

thermodynamics would have been during his undergraduate days at 

university. There he would have been confronted with an array of partial 

differential equations, strange concepts such as reversible and 

irreversible reactions, adiabatic and isothermal changes and the 

escalation of entropy. All this might have seemed a long way from 

solving a practical chemical or metallurgical problem. It is small 

wonder that after a break of a few years he would view the prospect of 

returning to thermodynamics with some trepidation. Even for those bold 

enough to get past this stage, the problems have only just begun. The 
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non-expert must first find the data he needs for his calculations, 

perhaps from the literature or standard compilations. However, can he be 

sure that these data are reliable, sufficiently accurate and consistent 

with each other and with the most recent experimental results? He may 

also need to estimate some data which are not available or to 

interpolate or extrapolate them well outside the range of their 

measurement. Furthermore when all the data have been found or estimated, 

the problems of interest are often so complex that they are impossible 

to solve without resorting to a powerful computer. He may then need to 

develop software so sophisticated that even the best intentioned 

industrial scientist will feel thwarted in his attempts to use 

thermodynamics to solve his problem. 

However the application of thermodynamics is fast becoming painless 

because of the expanding series of data compilations and computer 

databanks, and the development of extremely general computer programs 

for the calculations of complex equilibria. The problem therefore now 

becomes one of making industry aware of what is available, and competent 

and confident in its ability to use such tools. In the long run, much of 

the responsibilty lies with the universities. They must provide 

undergraduate teaching courses which are both relevant, showing just 

what can be achieved by the use of thermodynamics, and up-to-date by 

demonstrating the most recent techniques and facilities for solving 

these problems painlessly, reliably and cost effectively. 

There are a number of aspects of the application of thermodynamics 

which must be covered in order to solve a particular problem and these 

will be discussed in some detail in the next three chapters of this 

thesis. In chapter 2, the question is considered of where it is possible 

to find the data required for the calculations. Generally data for the 

most important materials can be found in tabular form in books although 

the opportunities offered by the computer now allow the storage and 
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retrieval of data as coefficients to an expression relating the 

variation of the thermodynamic properties to the composition and 

temperature. This is especially important for the more complex 

equilibrium calculations which may require interpolation or 

extrapolation of tabulated data. The formalisms commonly used are 

described in Chapter 3. 

Thermodynamic data are very versatile and can be used for the 

calculation of equilibria for a wide range of systems and industrial 

applications. Several different types of computer programs have been 

developed and these have been reviewed in chapter 4 along with the other 

applications of computers to the world of thermodynamics. As these 

calculations become more and more important, so the need for reliable 

and efficient procedures grows. Moreover as the power of computers 

increases and their price drops these calculations fall well within the 

scope of any interested individual. It now becomes important to develop 

programs specifically for microcomputers. In chapter 5 the mathematics 

and the strategy used for one particular computer program is described. 

This program is used at NPL for the automatic calculation of binary 

alloy phase diagrams. The techniques used for this program are very 

reliable and so compact that they allow the calculation of phase 

equilibria even on a hand held microcomputer. 

Ultimately the basis of all the calculations of phase equilibria is 

experimental work. In chapter 6a series of measurements are described 

for the enthalpies of formation of alloys in the iron rich side of the 

Fe-Ti system. This work involved the use of a high temperature adiabatic 

calorimeter designed by Dench (26) but with experimental procedures 

modified to allow measurements in highly exothermic systems such as the 

Fe-Ti system. These experimental data, with thermodynamic and phase 

diagram data from other sources were critically assessed in order to 

provide a representation of the thermodynamic data over a wide range of 
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temperatures and compositions but consistent with the accepted phase 

diagram. 

In chapter 7 two sets of phase equilibrium calculations for steel 

systems are described. The first set of calculations, which used a 

database including the critically assessed data for the iron-titanium 

system, was undertaken to provide reliable phase diagrams for 

multicomponent stainless steels to help understand the phenomenon of 

neutron induced void swelling of cladding materials used in fast breeder 

nuclear reactors. These calculations are more reliable than could be 

obtained from direct experiment because phase transformations in the 

temperature range of interest are very sluggish in these systems. They 

therefore give information about the long term stability of these 

cladding alloys. The second set of calculations was designed to provide 

quantitative information about the levels of Mischmetall which could be 

added to certain low alloy steels to remove harmful impurities such as 

phosphorus, tin and copper and yet would not cause a disruption of the 

carbide structure of the steel. 

In chapter 8 the assessment of thermodynamic and phase diagram data 

for certain sulphide systems is described. These systems are 

characterised by dramatic changes in the thermodynamic properties of the 

liquid phase close to the compositions of known stoichiometric 

compounds. A new model has been derived to represent the thermodynamic 

data for the liquid phase as a function of temperature and composition. 

In particular data have been derived for the Cu-S and Ni-S systems which 

were then used to calculate the phase diagram and thermodynamic data for 

the Cu-Fe-S, Cu-Ni-S, Fe-Ni-S and Cu-Fe-Ni-S system. These calculations 

are in good agreement with available experimental information. 

The final chapter, chapter 9, is a summary of the work carried out 

for this thesis. Although the work has been successful a number of 

aspects require further study and these have been highlighted. 
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CHAPTER 2 

Sources of Data 

One of the most difficult and important problems facing a potential 

user of thermodynamics is to find the basic data needed to solve his 

problem. This might involve the daunting task of searching through the 

literature for thermodynamic data, equilibrium data and potentially 

related measurements such as spectroscopic data. Even after a 

comprehensive search and after the collection of the available data 

there is no guarantee that he will have found all the data he requires. 

He might then try to estimate those data that aren't available. The 

estimation of data is a complex and time consuming task in its own right 

and often requires many years of experience. Moreover he will have to 

make some judgement about the validity of all the data he has collected 

and ensure that they are all interconsistent. For many practical 

problems he will also need to express the dependence of these 

thermodynamic data on the temperature or composition. The choice of 

expression is often far from simple especially for condensed solution 

phases as described in Chapter 3. 

Fortunately in response to the need for accurate and consistent 

thermodynamic and phase diagram data, many governments and industries 

have sponsored the preparation of various data compilations. In the past 

this has included programmes to measure key unknown thermodynamic data. 

Unfortunately these are generally labour intensive and recently they 

have suffered greatly from the world recession and economic crisis. 

Traditionally the compilations of thermodynamic and phase diagram data 

have been in the form of hard copy publications and have been of immense 

benefit to industry. For thermodynamic data the most useful general 

publications have been the JANAF tables (27-31), those of Barin and 

Knacke (32,33) and the IVTAN group (34-37), the NBS 270 series (38,39), 
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Medved'ev (40), and the CODATA publications (41,42), all of which have 

been concerned primarily with data for pure substances or species. Other 

publications such as Hultgren (43,44), Kubaschewski and Alcock (45), 

Kaufman and Bernstein (46) and the CALPHAD journal (47) have covered 

data for both pure substances and for solution phases. Data for dilute 

solution in metals and alloys have also been tabulated (48-52). There 

are also many comprehensive sources of phase diagrams and equilibrium 

measurements of which the best known are undoubtedly Hansen and Anderko 

and its supplements (53-55), Moffatt (56), Prince (57,58), Ageev (59), 

Wisniak (60), the Pourbaix atlasses (61), 'The Phase Diagrams for 

Ceramicists' (62), the Metals Handbook (63) and more recently the 

Bulletin of Alloy Phase Diagrams (64). 

These publications are generally easy to use and contain their 

information in a form which can often be applied directly to the problem 

of interest. Indeed so useful have they become that in many quarters 

they are regarded as a sort of Bible. This dependence on individual 

publications is also their main drawback. For example, many of the phase 

diagrams presented in Hansen are now out of date many times over and yet 

the phase diagrams it contains are used, often without any regard to 

whether a more recent phase diagram is available. A more acute problem 

can occur because of inconsistency between the tabulated thermodynamic 

data obtained from different sources. Different compilations often refer 

to different reference states and this can lead the unaware to obtain 

completely incorrect results. Despite their undoubted use such 

compilations should therefore be used with some caution. 

Moreover many of the published phase diagrams can be improved by 

applying some simple knowledge of thermodynamics even without the use of 

a computer. A good example of this has been demonstrated by Hillert 

(65). In the phase diagram for the Fe-Cu system published in the Metals 

Handbook (63) and reproduced in Fig 2.1, the phase boundary between the 
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Cu rich liquidus and the Fe rich fcc phase is represented by a dotted 

line to indicate an editorial interpolation in the absence of specific 

experimental results. Hillert (65) pointed out that the editor could 

have defined this phase boundary more precisely. Firstly the two ends of 

the dotted line indicate experimental compositions for which the fcc 

phase is in equilibrium with the liquid phase. Also however the melting 

point of metastable fcc Fe is known accurately from studies of a variety 

of binary systems involving Fe where the fcc phase is stabilised (eg. 

Fe-Ni). Hillert argued that the two ends of the dotted line and the 

hypothetical melting point of fcc Fe, since they pertain to equilibrium 

between the same two phases, should lie on a smooth curve as shown in 

Fig 2.2. This has since been demonstrated experimentally. 

In a similar way thermodynamics can be used very simply to examine 

experimental liquidus and solidus curves in dilute solutions (66) and to 

derive rules for the geometry of the intersections of phase boundaries 

(67). Use of such knowledge in conjunction with experimental equilibrium 

data can lead to more reliable phase diagrams. 

Most of the compilations listed above are concerned with pure 

substances or binary systems for perhaps alloys, aqueous solutions etc. 

The number of tables or diagrams required for these systems is 

sufficiently small that they can be stored in a few volumes. 

Unfortunately, in practice, alloys or other materials of use to industry 

rarely consist of only two elements and a source or compilation of phase 

diagrams for complex materials is therefore sorely needed. Ageev (59) to 

a certain extent fulfils this need for alloys. Recently The Metals 

Society, in conjunction with SERC, has supported a project of work to 

provide in hard copy form reviews of ternary phase diagrams for iron 

based systems (68-72). Similarly Chang (73,74) has recently reviewed 

selected ternary phase diagrams involving copper. However it is clearly 

impossible to store phase diagrams for all multicomponent systems of 
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interest in hard copy form. 

Fortunately there is a very close link between phase diagrams and 

thermodynamic data. In fact it is correct to say that a phase diagram is 

merely one of a number of different ways to represent the thermodynamic 

data for a given system in a diagrammatic form. As the speed of 

computers increases and reliable packages become available to calculate 

phase diagrams from thermodynamic data (as described in Chapter 4) it 

becomes tempting to replace hard copy data compilations by computer 

databanks where the thermodynamic data are stored on computers in the 

form of coefficients to some mathematical expression or expressions. The 

quantity of data necessary to reproduce these hard copy compilations is 

sufficiently small for them to be stored easily on a magnetic tape or 

disc. Furthermore they will be self consistent, can be updated 

frequently and accessed by people all over the world via a telephone 

system or packet switching network. Perhaps more important the computer 

will allow the calculation and presentation of results in any form 

particularly appropriate to the user eg. a diagram could be plotted in 

terms of weight percent rather than mole fraction. 

Rather than produce hard copy data compilations the task now facing 

professional thermodynamicists is to provide reliable, accurate and 

consistent data for a wide variety of materials as a function of 

temperature, composition and pressure. This in turn recognises the need 

for reliable expressions to the represent the data and computer programs 

both to assist in the generation of data and to calculate complex 

equilibria. 

This work is beyond the ability of one person or even one group of 

people and has led to increased collaboration between different centres 

throughout the world. One particularly effective forum for collaboration 

is the CALPHAD organisation (CALculation of PHAse Diagrams) which 

encourages free exchange of thermodynamic data. CALPHAD hosts a 
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conference every year at various centres throughout the world and a 

journal, published quarterly, which acts as a focus for the development 

of ideas, methods and data. 

Within Europe a smaller organisation, SGTE (Scientific Group 

Thermodata Europe), has been set up to provide European industries with 

a source of reliable thermodynamic data and facilities for their use in 

equilibrium calculations. A number of major European organisations 

concerned with chemical and metallurgical data actively participate 

including NPL, Harwell, RWTH Aachen, The Royal Institute of Technology 

Stockholm, LTPCM and THERMODATA based in Grenoble and IRSID. One of its 

main projects, which is sponsored in part by the EEC, is to set up a 

computer based databank containing data for gases, alloys, oxide 

systems, aqueous solutions, sulphides etc. and be capable of a wide 

range of phase equilibrium calculations. It is planned to make this 

databank available on-line to industry throughout the world from January 

1986. 

As will be described in chapter 4 similar databanks are being 

developed in other parts of the world. 

_. ý 
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CHAPTER 3 

Representation of Thermodynamic Data 

Molar Gibbs Energy 

Of all the various types of data for materials, thermodynamic data 

are probably the best suited for storage on a computer. One of the main 

reasons for this is that a single function G, the molar Gibbs energy, 

when expressed as a function of various system variables such as 

temperature, pressure or composition, can be used to generate an 

expression for any other thermodynamic property. 

For example 

Molar Volume V= (dG/8P) 
T 

Molar entropy S=- (dG/dT)P 

Molar enthalpy H=G-T (OG/d T)P 

Internal energy U=G-T (a GIc T) P-P 
(d G/c)P) T 

Helmholtz energy A=G-P (dG/dP)T 

Specific heat at Cp =-T (d2G/c T2) P 
constant pressure 

Specific heat at Cv - T(ä2G/c)T2)P - T(d2G/aTdP)2/(c)2G/JP2)T 
constant volume 

Partial Gibbs energy GA =G-1 (dG18xA)y 
(1-x 

A) i 
where yi =x and ii A 

1-xA 

Equally important from the point of view of the calculation of 

chemical and metallurgical equilibria is that for a system to be in 

thermodynamic equilibrium the Gibbs energy is at a minimum provided that 

the system is homogeneous in temperature and pressure. Therefore for a 

multiphase system the calculation of equilibria becomes a mathematical 

I 
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problem of determining the phases and their compositions which, for a 

given overall temperature and composition, give the lowest Gibbs energy. 

For this it is essential that the Gibbs energies of all the competing 

phases are represented as a single valued function of temperature, 

pressure, composition and other appropriate variables. For practically 

all problems of metallurgical interest this will be possible although 

occasionally difficult. However for studies of critical phenomena 

involving a liquid phase and a gas phase the Gibbs energy will no longer 

be single valued. In this case it is more appropriate to use the 

Helmholtz energy. 

One handicap to the use of Gibbs energy is that it has no absolute 

value - one can only discuss differences or changes in Gibbs energy. 

Fortunately this is all that is necessary for the calculation of 

equilibria. 

Temperature dependence 

For reliable calculations of phase equilibria it is very important to 

use a good representation of the thermodynamic data as a function of 

temperature even in regions where the phase is metastable. For most 

materials where contributions to the thermodynamic properties arise from 

electronic, vibrational and translational degrees of freedom the Gibbs 

energy above 298.15 K can be conveniently and accurately represented by 

an expression of the form: 

G=a+bT+cT ln(T) +d T2 +e T3 +f T-1 

and this is equivalent to the four term expression for Cp often used in 

conjunction with some enthalpy and entropy values. Sometimes it is not 

possible to represent data over a very wide temperature range using just 



- 13 - 

6 coefficients and in these conditions it is convenient to split the 

temperature range into two or more intervals, each with a set of these 6 

coefficients. The coefficients would normally be chosen such that there 

was no discontinuity in the Gibbs energy, its first derivative or its 

second derivative at the change from one temperature range to another. 

There are however contributions to the thermodynamic properties which 

for some substances can complicate the above treatment. The first occurs 

for magnetic materials especially below and just above the Neel or Curie 

temperature. Consider the case of Nickel which below 631 K is a 

ferromagnet. We could choose to represent the thermodynamic data for 

Nickel in two parts - firstly that for the paramagnetic form, 

hypothetical at lower temperatures, which could be represented by the 

conventional 6 term expression, and secondly a term for the magnetic 

ordering. According to Inden (75,76) and Hillert and Jarl (77) this 

magnetic contribution to the Gibbs energy will be given by: 

Gmag =- RT 1n (P + 1), 

where ß is the magnetic moment expressed as the number of Bohr 

magnetons per atom, equivalent to twice the number of unpaired spins. 

The function ý is different above and below the Curie temperature. 

Above the Curie temperature 

{ , r-5 + r- 
15 

+I -25 }/5K 
2 63 300 

Below the Curie temperature 

-1 + 79 [ 'r -1 +2{ r3 + r9 
7K 20 p 71 2 4-5 

+ x'15 } {1 -1}1 
200 p 

where 
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518 + 11692 {1-1} 
1125 15975 p 

and l' = T/Tc where Tc is the Curie temperature and p is the fraction 

of the total magnetic enthalpy absorbed above the Curie temperature. It 

was suggested by Inden that p=0.28 for fcc metals and 0.40 for bcc 

metals. Fig 3.1 shows the two contributions to the Gibbs energy for fcc 

Ni. 

A second phenomenon is responsible for the so-called glass transition 

through which a liquid gradually transforms as it is cooled especially 

below the melting point. At present the thermodynamic properties of 

liquids are not well understood. It is generally believed that for most 

elements, the heat capacity of the liquid phase on cooling down will 

rise corresponding to the liquid assuming greater glassy character. This 

behaviour is expected to continue through the melting point into the 

region where the liquid is metastable. Eventually at a temperature, 

about 2/3 of the melting temperature, the glass transition occurs where 

the heat capacity falls dramatically to roughly the value of the heat 

capacity of the stable solid phase. This phenomenon is summarised in 

Fig 3.2 which is a plot of the heat capacity of typical liquid and solid 

phases as a function of temperature. Fig 3.3 shows the typical 

difference in Gibbs energy between a solid and a liquid/glass. It shows 

that at the glass transition the curvature of the Gibbs energy curve for 

the liquid phase changes. Extrapolation of the curve from above the 

glass transition temperature towards 0K could lead to the liquid phase 

becoming apparently stable again at low temperatures. The glass 

transition prevents this from happening. 

Unfortunately the lack of a detailed understanding of the 

thermodynamics of the glassy phase impairs our accuracy in the 

prediction of multicomponent data for a liquid phase and consequently 

the calculation of eutectic behaviour. Theoretical advances for this and 
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other phases of pure elements would be most welcome. 

Concentration dependence 

A great deal of work has been carried out into the development of 

models and expressions to represent thermodynamic data for condensed 

solution phases in binary systems and to extrapolate them into 

multicomponent systems. Three general approaches have been adopted. The 

most rigorous approach usually develops from the use of statistical 

mechanics and an expression of the partition function from knowledge of 

the various energy states available to the material. This in turn can be 

related directly to the various thermodynamic functions. 

An equivalent approach is to express the Gibbs energy in terms of 

some internal variables of the system and then to find the conditions, 

perhaps by numerical methods, which will give the lowest Gibbs energy of 

the system. 

The third approach, a more empirical one, is to adapt an essentially 

theoretical model and use some power series expression to obtain good 

agreement between the real behaviour and that predicted by the model. 

This is the approach that is normally most useful and productive. 

a) Ideal Solution Model 

The most simple model is for a system where the elements involved 

have very similar properties. Consider for example the liquid phase in a 

system of two metals such as Co and Ni which are very similar in size, 

are surrounded by the same number of nearest neighbour atoms and mix 

together without any appreciable volume change or expulsion or 

absorption of heat. Here it could be assumed that the metals would mix 

together randomly and therefore form what is called an ideal solution. 
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In this case the thermodynamic properties of the solution can be 

described fairly simply. Let us consider the Gibbs energy of formation 

from the pure liquid elements of a composition in this liquid phase 

where the mole fractions of Co and Ni are xCo and xNi respectively. For 

an ideal solution, by definition, there is no enthalpy change on mixing. 

However, there is an entropy contribution to the Gibbs energy because 

the mixture has acquired some disorder. From the Boltzmann relationship 

S=k 1n(SZ. ) 

where fL is the number of ways of arranging the system and k is the 

Boltzmann constant. If the number of atoms per mole of the material is N 

then kN = R. Therefore 

S=k In { N! } 
(NxCo! )(NxNi)! 

Applying Stirling's approximation 

ln(z! ) =z ln(z)-z 

S=-R{ xCo ln(xCo) + xNi ln(xNi) 1 

The contribution of ideal mixing to the Gibbs energy therefore 

= RT [xColn(xCo) + xNiln(xNi)] 

Suppose now that the reference phases for pure nickel and cobalt are 

not the liquid phase. In this case we must consider the transformation 

of the pure metals from their reference phases to the liquid phase which 

we can label by Goo and GNi respectively. The contribution from these 

terms to the Gibbs energy of formation will be xCoGCo + XNiGNi' 

Therefore the general expression for the Gibbs energy of formation for 
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such an ideal solution is given by: 

tfG xCoG Co + xNiGNi + RT [xColn(xCo) + xNiln(xNi)] 

and this expression could equally apply to any other phase such as fcc 

or bcc. 

In Fig 3.4I we see a plot of the Gibbs energy for the liquid and fcc 

phases at a temperature 1750 K as a function of composition. As is shown 

in Chapter 4 the phase boundaries are given by the points of common 

tangency to the two curves. If this procedure is performed for a number 

of temperatures the phase diagram in Fig 3.5 is built up. This shows a 

very simple lens type phase diagram in very good agreement with that 

found from experiment. 

Therefore for some materials a simple ideal solution model is able to 

represent known thermodynamic and phase diagram data accurately. It can 

easily be extended to any number of components in the solution to give 

the equation 

Aft = Xi Gi 
i=1 

n 
+RT5 xi In xi 

i=1 

where n is the number of components and xi their concentrations. Gi is 

the Gibbs energy of transformation from the pure component i in its 

reference state to the phase in question at the temperature T. 

b) Regular Solution Model 

Solutions which exhibit ideal behaviour are rare and it is the norm 

for components to show some kind of net interaction manifested either in 

the form of a positive or negative enthalpy of mixing. This deviation 

from ideality is called the excess Gibbs energy GE and it is the 

expression of this as a function of composition that is the main focus 
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of theoretical and practical interest. The subject has been reviewed by 

a number of authors, in particular by Oriani and Alcock (78), Ansara 

(79,80) and Kapoor (81). The most basic approximation to represent the 

excess Gibbs energy is the regular solution model. 

The concept of regular solutions was introduced by Hildebrand (82-84) 

from a study of the deviations of solubility curves from Raoult's law. 

He found that "particularly among substances of low polarity, there 

exist families of solubility curves which bespeak a marked regularity". 

He called systems which were members of these families 'regular 

solutions'. In order to explain this behaviour he adopted an approach of 

Heitler (85,86) which considered a solution as a lattice and predicted 

that the partial enthalpy of mixing should vary in an approximately 

parabolic way. This formalism fitted Hildebrand's solubility data very 

well. 

The theory of regular solutions as developed by Hildebrand (82-84) 

and Bragg and Williams (87) is such an important concept that it is 

worth considering in some detail the theoretical background to the 

model. Consider a mole of binary solution between two elements A and B. 

As with the ideal solution model we can assume that the elements A and B 

are of approximately the same size, are surrounded by the same number of 

nearest neighbours, and mix together without any change in volume. Here 

however we are considering a solution where there is an enthalpy change 

on mixing arising from a net interaction between the elements. The bond 

energy between two atoms should be short range and independent of the 

other atoms they are bonded to. The total potential energy is then 

assumed to be equal to the sum of contributions only from pairs of atoms 

in direct contact. The most important assumption is that this 

interaction between the atoms has no effect on the order of the solution 

ie. the entropy of mixing is that for an ideal solution. 

The total lattice energy of a solution having composition in mole 
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fraction terms (xA, xB) can be written as: 

E nAAEAA f nABEAB + nBBEBB 

where nAA' nAB and nBB are the number of bonds of the type A-A, A-B and 

B-B respectively and EAA9 EAB and EBB are their respective energies. The 

probability of finding an A atom and aB atom on a given site will be xA 

and xB respectively. Therefore the probability of finding two chosen 

adjacent sites occupied by two A atoms, two B atoms or one A atom and 

one B atom will be xÄ, xB and 2xAxB respectively. 

If we assume that all atoms in the solution have z nearest neighbours 

the total number of bonds will be zN/2 where N is the number of atoms 

per mole. We can now define the number of bonds of each type as its 

probability of occurring multiplied by zN/2. 

AA 
ie. n=zN xÄ n BB =zN xB n AB =zNxAB x 

22 

This leads us to the expression: 

E_ zN EX2 + x2EBB + 2xAxBEAB] 
2 

The change in energy on alloying will be this quantity E minus lattice 

energies for the pure elements which will be zNxAEAA/2 and zNxBEBB/2 

respectively. 

ie QE = -ZN [-xA(1-xA)EAA-xB(1-xB)EBB + 2xAxBEAB] 
2 

or, since xA + xB = 1, 

E= ZN xAxB C2EAB-EAA-EBB1 =N xA xB w 
2 

xAxBL 
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where 2w/z is the energy required to change one AA pair and one BB pair 

into two AB pairs, and L=Nw. 

This quantity AE is equal to the enthalpy of mixing and therefore the 

excess Gibbs energy since according to our initial assumptions the 

volume change is zero and the mixing has been accompanied by no ordering 

within the solution. 

The expression for the excess Gibbs energy in the binary alloy case 

can also be generalised for a multicomponent system through the same 

procedure outlined above. Here one obtains 

E n-1 n 
G= 7- 7 xi xi ij i=1 j=i+1 

Consequently for systems obeying the regular solution assumptions the 

thermodynamic data can be represented by one coefficient for each binary 

system. Strictly this coefficient should be independent of temperature 

although it has been the custom to relax this condition. Many binary and 

ternary alloy systems 'have been represented successfully using the 

regular solution model (88-90). 

It is worth considering at this stage some of the implications of the 

regular solution approximation for binary systems. Fig 3.6 shows typical 

curves for the Gibbs energy of formation with different values of the 

interaction parameter L. If L=0 we have an ideal solution as in curve 

(a). If L is negative ie. there is a negative enthalpy of formation as 

in curve (b), this is manifested by a Gibbs energy curve more negative 

over all the composition range than for an ideal solution. If L is 

positive, however, the ideal entropy term and the enthalpy of formation 

term oppose one another and at certain temperatures will result in a 

curve such as (c) with two distinct minima leading to a region where two 

phases of the same structure are immiscible. For a regular solution a 

positive interaction term will always lead to a miscibility gap for 

r 
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temperatures less than L/2R providing the phase is itself stable. 

c) Quasi-Chemical Theory 

The regular solution model has been criticised from a theoretical 

point of view by Guggenheim (91) and Rushbrooke (92) because of its 

assumption that even in systems with non-zero heats of mixing the atoms 

will distribute themselves randomly among the lattice sites. In reality 

the atoms will distribute themselves in order to reach the state with 

the lowest Gibbs energy. 

For the regular solution model, as shown earlier, the number of AB 

bonds will be given by: 

nAB =zN xA xB 

If we let the number of A atoms be nA (= N xA) and the number of B atoms 

be nB (= NxB) and rearrange we obtain 

n2B = (z nA - nAB)(z nB - nAB) 

Guggenheim and Rushbrooke (91-93) developed the Quasi-Chemical theory 

to take into account the preferential distribution of various components 

of the solution and these ideas were developed by Fowler (94,95) and 

Bethe (96). From a rigorous treatment using statistical mechanics they 

showed that: 

n2 B nA - AB)(z nB - AB) e- 
2w/zkT 

From this equation one can see that if w=0 ie. for an ideal 

solution we obtain the expression required for random mixing. If 

however, 00 ie. an endothermic system, the formation of AB bonds will 

_ ,;; Q,, r I1V' QPd and there will be a tendency to form AA and BB bonds and 

IlL 
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for phase separation. If however w<O there will be a tendency for AB 

pairs to form and ordering to occur. 

The quantity znA - nAB is equal to 2n AA' twice the number of A-A 

bonds in the mixture and similarly znB - nAB is equal to 2n BB, twice the 

number of BB bonds in the mixture. Therefore for the quasi-chemical 

theory: 

2 
nAB 

nAAnBB 
e-2w/zkT 

The similarity of this expression to the mass action law for chemical 

reactions led to the adoption of the name 'quasi-chemical theory'. 

The above expression can be solved for nAB or more appropriately x 

= nAB/N given values for the other parameters. 

ie. x= {1 +4 xA xB r}1/2 
- 2 

1 where ". e2w/zkT - 

This expression can then be introduced into the statistical expression 

for the excess Gibbs energy to give: 

GE =RTz [xA 1n(xA - x) + xB 1n(xB - x) I 
222 

xA xB 

This approach has been extended by Bonnier et al. (97) and Jena (98) 

into ternary systems by solving iteratively equations of the form 

xis _ (z xi - xij)(z x- xiJ) o( 

where iij and d. 
ij 

is given by: 

pt 
ij 

e- 
2w ij 

/kT 
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and incorporating into the expression 

GE =RTzn 
n 

2 i=1 

where jii. 

nY 
X-X 

xi ln( j-1 1j 

x2 
i 

Bonnier et al. applied this method to the Cd-Sn-Bi, Cd-Pb-Sn and 

Cd-Pb-Bi systems. A numerical approach was also adopted by Stringfellow 

and Greene (99,100) for the calculation of the phase diagrams for the 

In-Ga-As, In-As-Sb, Ge-Si-Sn and Ge-Si-Pb systems. 

For cases where the net interactions between atoms or molecules are 

small an alternative approach can be adopted. As an example, for binary 

systems the expression for x can be expanded as a power series in xAxB ll 

and then expanded again by expressing T as a power series in terms of 

2w/zkT which on omitting the higher order terms gives 

GE = xA xB L[1- xA xB 
z2RLT] 

which was been adopted by Kleppa (101) in his study of the Sn-Au system. 

Hagemark (102,103) and Wagner (104) have derived analytical 

expressions for the thermodynamic properties of multicomponent systems 

using the quasi-chemical approximation. 

d) Cluster Variation Method 

The regular solution model discussed earlier takes its basic building 

block to be lattice points which interact with their neighbours. The 

quasi-chemical theory discussed in the last section is based around 

pairs of atoms but as shown by Guggenheim (93) this is still an 

approximation. In a generalisation of Bethe's procedure he showed that 
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even better approximations could be obtained by considering triangular 

triplets or tetrahedral quadruplets and this was used by Li (105) to 

explain ordering phenomena in fcc binary alloys. Unfortunately larger 

clusters lead to greater numerical problems. 

Takagi (106) adopted a different procedure from the quasi chemical 

theory but still using pairs of atoms as the basic building block and 

derived essentially the same expression. From a generalisation of 

Takagi's approach Kikuchi, in a series of papers (107-115) developed the 

Cluster Variation method. According to this method the Gibbs energy is 

described in terms of a set of variables derived from a predefined 

cluster of atoms. Instead of forming the partition function as used for 

the quasi-chemical theory, the Gibbs energy is minimised with respect to 

these variables in order to find the most stable atomic arrangement. The 

smallest cluster possible is a lattice point from the Bragg-Williams' 

approximation and the cluster variation method reproduces the regular 

solution model. The next most complicated cluster is a pair of atoms, 

and as demonstrated by Takagi, this gives results identical to the 

quasi-chemical theory. For higher order clusters, represented in the 

Cluster Variation model as extensions of these smaller clusters, the 

method gives more accurate results than the quasi-chemical model. For 

example a tetrahedon cluster variation approximation has been applied by 

van Baal to fcc binary alloys (116) giving different and more accurate 

results than those of Li (105). 

To date the cluster variation method has been used mainly with 

considerable success for the study of ordering reactions in alloy 

systems using one parameter for the pairwise interaction between two 

elements. Recently Kikuchi has used the method to calculate the phase 

diagrams of the In-Ga-As and In-Sb-As systems, previously studied by 

Stringfellow and Greene using the quasi-chemical approximation. He 

obtained good agreement with their calculations and with experimental 
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data. 

More recently Kikuchi (115) has attempted to derive data for the 

Hg-Te and Cd-Te systems to be consistent with the observed liquidus 

measurements. He used essentially an associated solution model (see 

later) with species of HgTe and CdTe with their interactions represented 

by a pair approximation of the cluster variation model. 

e) Asymmetric Models 

Unfortunately all the models discussed so far suffer from the same 

basic drawback in that one parameter is rarely sufficient to represent 

the thermodynamic data for typical binary alloy systems. This is not 

surprising since one would expect that the bond energy between say an A 

atom and aB atom might be dependent on their environments. Similarly 

other factors such as the relative sizes of A and B and electronic 

effects cannot usually be represented by just one parameter 

(46,117-119). 

A number of different attempts have been made to solve this problem. 

Hardy (120) introduced a so-called subregular solution model when he 

assumed that the interaction coefficient L could be represented as a 

function of composition 

ie. GE =xAxB (L1 xA + L2xB) 

Kaufman has also used the subregular model but as an extension he 

represented the coefficients L1 and L2 as functions of temperature (46). 

Sharkey et al. (121) derived an expression based upon the 

quasi-chemical theory which incorporates composition dependence in the 

form: 

22 
I 0ý-, XQ XB f C2XA Xg - XA XB 
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and applied this to a large number of binary alloy systems. They also 

proposed an extrapolation into ternary systems using a ternary 

interaction term and applied their formalism with some success to the 

Bi-Cd-Pb, Cd-Pb-Sn and Cd-Pb-Sb systems. 

Another model which allows the interpretation of asymmetric data for 

binary systems is the Central or Surrounded Atom model. This model was 

suggested simultaneously by Lupis and Elliott (122) and Mathieu et al. 

(123-125). Rather than concentrating on bonds, this model considers the 

effect on individual atoms in the field of force of its nearest 

neighbours. 

Here the bonding energy between two atoms is no longer assumed to be 

independent of its surroundings. Furthermore vibrational contributions 

to the thermodynamic properties of mixing, neglected in previous models 

were introduced. Normally an empirical function was used to represent 

the changes in bond energy or vibrational parameters with changes in the 

composition of the nearest neighbour environment although a linear or 

parabolic function has generally been used. 
_ 

The surrounded atom model has been extended into ternary system by 

Brion et al. (126,127). For simplicity the Bragg-Williams' statistics 

are usually applied giving a quasi-regular solution model. According to 

Ansara (79) the application of the Bethe statistics as used for the 

quasi-chemical theory requires unreasonable computing time. 

f) Empirical Representations 

The theoretical approach adopted hitherto has had great success in 

describing complex phenomena such as ordering. However in most binary 

alloy systems, the physical interactions are too complicated to be 

represented simply by one or two parameters. It is then necessary to use 

sk 
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an empirical extension of the theoretical approach. The most widely used 

representation is a power series expression. 

There is nothing new about the use of power series expressions - one 

form was used by Margules (128,129) in the last century. However the 

advent of digital computers and data fitting techniques have made the 

use of power series expressions practicable. A number of expressions 

have been suggested eg. by Guggenheim (130), Wohl (131), Carlson and 

Colburn (132), Benedict et al. (133) and Bale and Pelton (134) who also 

advocated the use of Legendre polynomials (135). Other formalisms have 

been suggested by Krupkowski (136), Esdaile (137) and Wilson (138). 

However the most useful form was suggested by Redlich and Kister 

(139,140). 

GE = xAxB(Lo + L1 (xA-xB) + L2(xA-xB)2 + L3(xA-xB)3 .................. ) 

g) Extrapolation of binary data into Multicomponent Systems 

The extension of the regular solution model into a multicomponent 

system is straightforward as was shown earlier. For binary data 

represented by more complex expressions there is no longer a unique way 

of carrying out this extrapolation. Several different approaches have 

been suggested for use usually in terms of some geometrical model where 

the multicomponent excess Gibbs energy is calculated as a weighted sum 

of excess Gibbs energies of certain defined binary compositions. These 

are shown in Fig 3.7 and will now be discussed in turn. 

Bonnier equation 

According to the Bonnier equation (141) the excess Gibbs energy derived 

from the composition path shown in Fig 3.7a is given by 
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GE 
xB x 

GAB(xA, 1-xA) +ý GAC (xA, 1-xA) 
1-xA 1-xA 

+ (1-xA) GBC ( 
xB xC 

) 
xB+xC xB+xC 

where for example the term GAB(xA, 1-xA) refers to the excess Gibbs 

energy of a composition in the binary system AB with the composition of 

element A equal to xA and that of B equal to 1-x A* 
Spencer et al. (142) showed that this equation orginates from the 

summation of three terms, the formation of the two binary compositions 

in the AB and AC binaries weighted according to the overall composition 

followed by a mixing of the two binary compositions using the data for 

the binary system BC. 

Toop equation 

According the Toop equation (143) the excess Gibbs energy for a ternary 

composition is given by: 

XX 

GE = GAB (xA, 1-xA) +C GAC (xA, 1-xA) 
1-xA 1-xA 

+ (1-xA)2 G BC 
( 

xB 

, 

xC 
) 

xB+xC xB+xC 

The composition path also corresponds to Fig 3.7a, the same as that used 

for the Bonnier equation. However the Toop equation is different from 

the Bonnier equation since the final term is multiplied by (1-xA)2 

rather than (1-xA). This model was used by Toop to make calculations in 

the Cd-Pb-Bi, Pb-Sn-Cd and CaO-FeO-Si02 systems and by Ajersch et al. 

(144) to calculate an isothermal section of the Cd-Bi-Sb phase diagram. 



a 

C 

b 

d 

Fig 3.7 Geometrical models for the extrapolation of binary 
thermodynamic data into a multicomponent system a) Bonnier and 
Toop equations b) Kohler equation c) Colinet equation d) 
Muggianu equation. 

10 
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Kohler equation 

Kohler (145) and Olson and Toop (146) derived the following equation 

independently. 

(AXB GE (xA + xB)2 GAB 
X 

xA+xB xA+xB 

xx 
+ (xA + xc)2 GAC (A) 

xA+Xc xA+Xc 

+ (xB + xc)2 G BC 
( 

xB xC 
9 

XB+XC XB+XC 

which is shown as the composition path in Fig 3.7b. The Kohler equation 

has been extended into a generalised multicomponent system by Kehiaian 

(147) and has been used extensively by Kaufman (148-159) and others 

(160,161). 

Both the Kohler equation and the Toop equation have their base in a 

completely rigorous treatment of Darken (162) in which he showed that 

for a ternary system A-B-C the excess free energy may be calculated from 

true binary terms for the A-B and A-C systems and a term for a pseudo 

binary section along a line of constant B/C ratio. 

Colinet equation 

For the Colinet equation (163) the excess Gibbs energy is given by: 

Xx 

GE = 1/2 [A GAB (1-xB, xB) +B GAB (xA, 1-xA) 
1-xB 1-xA 

+ 
XA 

G (1_x 
,x)+ 

xC 
G (x , 1_x ) 

1_x AC CC l_x AC AA 
CA 

)] + 
xB 

G BC 
(1-x 

C, xC )+ 
xC 

G BC 
(x 

B' 1-x 
B 

1-x 1-x 
cB 
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as shown in the composition path Fig 3.7c. The Colinet equation is 

rarely used. 

Muggianu equation 

The composition path used by the Muggianu equation (164) was called by 

Jacobs and Fitzner (165) 'the shortest composition path' as in Fig 3.7d. 

The excess Gibbs energy is given by: 

GE 
4xAxB 

(2xA+xc)(2xB+xC) 

4xAxC 

(2xA+xB)(2xc+xB) 

IxBxC 

(2xB+xA)(2xc+XA) 

GAB (xA+xc/2, xB+xC/2) 

GAS (xA+xB/2, xc+xB/2) 

G BC 
(xB+xA/2, xC+xA/2) 

This expression may seem complex but, as shown by Jacobs and Fitzner and 

Hillert (166), if the binary systems are represented by the 

Redlich-Kister expression the expression simplifies to 

GE =xAxB (LAB + LAB(xA-xB) + LÄB(xA-xB)2 ..... ) 

+ xAxC (LÄC + LÄC (xA-xc) + LÄC (xA-xc)2 .... ) 

+ xBxC (LBC + LBC (XB-xC) + LBC (xB-xC)2 .... 
) 

This is simply the ternary Redlich-Kister expression (139) and has been 

used at NPL for many years (167-169). 
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h) Comparison between geometrical equations 

These equations have been compared in a number of papers 

(79,80,142,143,165,166,170,171). From the theoretical point of view none 

of the models can be considered to be anything other than an 

approximation. Nevertheless the models can be tested for certain 

desirable features such as compatibility with the regular solution 

model, symmetric behaviour with respect to the pure components and 

correct limiting behaviour when the amount of one of the components 

becomes zero or when two elements have very similar properties. 

Of the five models both the Bonnier and the Toop models are 

unsymmetrical with respect to the pure components. The Bonnier model is 

little used now since it is not consistent with the regular solution 

model. The Toop model is used for systems only where one component is 

very different from the others. The other three models are all 

symmetrical and consistent with the regular solution model. 

Unfortunately none of them transform to a binary data set when two of 

the elements become very similar. Hillert (166) compared the Kohler, 

Colinet and Muggianu models in detail by deriving expressions for the 

ternary excess Gibbs energy representing the three component binary 

systems by the subregular model. He showed that, despite the different 

composition paths, the Colinet and Muggianu methods give identical 

results. Furthermore the difference between these models and the Kohler 

model will always be very small. 

In the other papers the predictions of the models were compared with 

available experimental information. They found essentially that all 

these models represent the data reasonably well and that there is no 

overriding reason why one model should be chosen in preference to 

another. The model used at NPL and in this thesis for metallic systems 

is the full ternary Redlich-Kister expression with a ternary interaction 
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term given by: 

nn 
Aft x1Gi + RT 7 xi in xi 

i=1 i=1 

n-1 n 
+ xixj (Lýj + L1 (xi - xj) + L2 (xi - xj)2 ..... ) 

n-2 n-1 n 
+2Z 

i=1 j=i+1 k=j+1 
xixýxk Kijk 

i) Models for solid 'compound' phases 

In many systems of practical interest the interatomic forces have 

sufficient strength to favour phases for certain ranges of composition 

where different types of atom occupy preferentially different types of 

lattice site. Such phases are often loosely described as compounds. 

These 'compound' phases often coexist within the same system as the 

so-called substitutional phases discussed earlier. Often within a binary 

system these compound phases have a very narrow range of homogeneity and 

it is common to treat such phases as having a fixed stoichiometry. 

In a ternary system it is common for a third element, say C, again to 

enter into one particular type of site eg. the type occupied by B in the 

compound ApBQ and to substitute for element B. If the compound ApCQ were 

stable in this particular structure we might have a line representing 

the phase from ApBq to ApCq in the phase diagram as in Fig 3.8. These 

so-called 'line-compounds' are very common in systems of practical 

interest. Of ten the compound ApCQ with this structure is not actually 

stable in the A-C binary system, but it is still convenient to think of 

the hypothetical form, obviously with a higher Gibbs energy than the 

stable phase assemblage for that composition. 

The thermodynamic data for such a 'line-compound' phase are naturally 

related back to the data for the pure compounds. A number of equivalent 
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B 

Fig 3.8 Ternary 'line-compound' phase between binary stoichiometric 

C 

compounds ApBq and ApCQ. 
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approaches have been adopted (46,172-174) based on the assumption of 

ideal mixing between the atoms on the same type of site or sublattice 

with a superimposed interaction expressed in a way analogous to the 

regular solution model or power series expansion. 

This gives an expression of the form: 

-XX ýf'G 
B 

fGA B+S 
AG 

fAC 
qP4qPQ 

+RT[ xB ln(xB) 

+ xB xC L 

+ xc ln(xc) - (1-xA) ln(1-xA) 3 

where the Gibbs energy of formation of the line-compound refers to one 

mole of material while the Gibbs energies of the binary stoichiometric 

compounds refer to one mole of formula unit. 

This approach was generalised by Sundman and Agren (175), 

incorporating work of Hillert and Staffansson (176) and Harvig (177), 

into a form suitable for computer application for phases with any number 

of components and sublattices. A key feature of their approach is the 

use of site fractions ie. the fraction of one sublattice occupied by one 

particular type of atom. 

Some classes of phases exhibit appreciable ranges of homogeneity 

within binary systems and it is no longer always possible to treat these 

phases as stoichiometric. The effect of non-stoichiometry on the 

thermodynamic properties was first studied in detail by Wagner and 

Schottky (178) and their work has been extended by Libowitz (179,180) 

and Brebrick (181). Any deviations from stoichiometry are due to some 

imperfections in the lattice. By assigning energies to each of the 

possible point defects it is possible to account for the variation of 

the Gibbs energy with composition. 
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The systematic sublattice approach of Sundman and Agren (175) has 

also been used to describe the thermodynamic data for these 

non-stoichiometric compounds. Here however the data are not energies for 

each point defect but interactions between atoms or vacancies within the 

same sublattice together with data for hypothetical pure compounds. This 

approach has been used with success for the sigma phase (182,183) 

j) Molten Salt Solutions 

One area of particular interest for modelling thermodynamic data is 

in molten halide solutions. As with alloy systems the simplest model, 

the so-called Temkin model (184), is one for ideal mixing although here 

the mixing of cations and anions is assumed to take place independently. 

Nearest neighbour interactions have been allowed for in the model of 

Flood et al. (185) and in Forland's extension (186). 

The similarity between these models and those used for alloy systems 

has led various groups to apply power series expressions such as the 

Redlich-Kister model to these molten salts. For example Chart (187) has 

derived data for the component binary systems of the KC1-CaC12-ZnC12 

system and calculated ternary phase equilibria which are in excellent 

agreement with experimental measurements. Similarly Oonk et al. 

(188-190) have derived data for a wide range of alkali halide binary 

systems. 

A completely new model has been introduced by Saboungi and Blander 

(191-193) called the Conformal Ionic Solution (CIS) theory which they 

describe as a statistical mechanical perturbation theory. The model has 

been used by Pelton et al. (194,195) for a number of molten salt systems 

including carbonates, hydroxides and sulphates. 

A problem arises where the mixing occurs between ions of different 

charge eg. in the KC1-CaC12 system. In the work discussed so far 
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components were chosen such that one mole of solution contains one mole 

of the ions that are mixing and this is identical to the approach 

recommended by Hillert et al. in their generalised lattice model of the 

liquid phase (196). 

Molten oxide systems are particularly important types of molten salt 

system. Kaufman (152,155) has chosen a different model from those 

described above derived from a substitutional model with oxygen as a 

component but where the composition has been constrained to lie between 

binary stoichiometric oxides. These oxides were expressed in terms of a 

mole of atoms rather than moles of metal ions and he derived data for a 

wide range of systems between Cr203, MgO, A1203, Fe203, Fe304, FeO, 

Si02, and CaO using a temperature dependent two coefficient expression. 

For some of these pseudo binary systems e. g. CaO-Si02, he found that it 

was necessary to split the systems into two ranges of composition. 

Howald et al. (197-201) have also derived data for some oxide 

systems. The data were represented by Redlich-Kister polynomials in 

terms of the proportions of the metal ions e. g. proportions of the 

Na00.5 in the system Na00.5-Si02. They also found that the CaO-Si02 

system was too complex to f it with one expression. The CaO-Si02 system 

has also been represented with power series expressions by Kaestle and 

Koch (202) and Lumsden (203). 

The problems found in representing the data for some of these oxide 

systems implies the need for a closer examination of the structure of 

these phases. Attempts to do this will be described later. 

k) Metal-Salt Systems 

The liquid phase for metal-salt systems eg. in sulphide systems is 

especially difficult to model thermodynamically. Attempts have been made 

to represent the data with power series or equivalent expressions (161) 
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but the large number of coefficients required makes this approach of 

little use. 

The two most useful approaches to understanding the data for these 

systems have been the associated species model (204-228) and a 

sublattice model with vacancies (229-235). Measured data for these 

liquid phases are often characterised by an abrupt change in the 

activity of one of the components and a sharp minimum in the Gibbs 

energy function such as is shown in Fig. 3.9. The compositions of these 

abrupt changes often seem to correspond to the composition of a solid 

phase which itself exhibits a range of homogeneity. 

The associated solution model, has been much used over the last few 

years. It postulates that the phase consists of distinct molecular 

aggregates rather like the gas phase which shows similar dramatic 

changes in thermodynamic properties at certain compositions. In the case 

of the liquid phase the various species would interact with one another. 

As an example, Sharma and Chang (204) for the Cu-S system proposed 

the existence of Cu2S species in addition to the elemental species of 

copper and sulphur. Species of Cu2S were chosen because the 

thermodynamic properties of the liquid phase changed abruptly at about 

this composition. For an overall composition xCu and xS the model 

postulates that some of the copper and sulphur atoms combine to form 

species of Cu2S. If the fractions of the species are YCu 
2 S' yS and YCu' 

it can be shown that: 

YCu = xCu -2 YCu2S xs and YS = xs - yCu2s (1-2xs) 

For this overall composition the relative amounts of the various 

species are not defined directly but depend upon the affinity of the 

elements for forming the associated species. These relative amounts must 

be calculated by some iterative procedure in order to find the 
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conditions which give the minimum Gibbs energy of formation. This can be 

calculated as the sum of terms for the formation of the associated 

species and the normal expression for a ternary system with random 

mixing and interactions between the species, the latter being expressed 

by a Redlich-Kister power series. 

The concept of postulating associate species in condensed solution 

phases was introduced and developed a number of years ago (205-208) but 

it was Jordan (209-211) who first used this for metallic systems. The 

model, which has been reviewed by Gerling et al. (212) has been very 

successful for representing the thermodynamic data for the liquid phase 

in a number of systems (204-227). It has also been used to represent the 

thermodynamic data for solid phases (218,228) including those 

traditionally represented by a substitutional model. 

The application of a sublattice model to high affinity liquids was 

suggested by Hillert et al. (176,196,229-233) and Brebrick (234) and 

extended in this present work (see chapter 8 and ref. 235). Here the 

approach is directly analogous to the models used for condensed compound 

phases which exhibit wide ranges of homogeneity and abrupt changes in 

the thermodynamic properties similar to those observed for the liquid 

phase. The use of this model implies that for these systems some aspects 

of the solid lattice structure are retained on fusion. 

The sublattice model was first tested by Hillert and Staffansson for 

the liquid phase in the metal rich portion of the Fe-S (229) and Mn-S 

(230) systems and to calculate the metal rich part of the Fe-Mn-S system 

(231). Here they assumed that the liquid phase consisted of two 

sublattices with an equal number of sites. The first sublattice was 

completely filled with metal atoms while the second sublattice consisted 

of sulphur atoms and vacancies. 

Recently the model was extended by Fernandez Guillermet et al. 

(232,233) to represent the liquid phase for the whole of the Fe-S 
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system. For this, vacancies were introduced into the metal sublattice in 

addition to the sulphur sublattice. The Gibbs energy for a composition 

in the phase is expressed as the sum of three terms - the first for the 

Gibbs energies of formation of pure compounds formed by filling each of 

the sublattices with its constituents. Hence there are four compounds 

FeVa, FeS, VaS and VaVa,. The second term is in two parts to represent 

the ideal mixing of the constituents in each of the two sublattices. The 

third term represents the interactions between the different 

constituents on the sublattices. The details of this expression will be 

shown in a chapter 8. Also it will be demonstrated how this approach has 

been used and extended to extrapolate data into the Fe-Cu-Ni-S liquid 

phase. For a given composition the vacancy concentration is not defined 

and a process of iteration must be used to find the condition which 

gives the lowest Gibbs energy. 

Recently Hillert et al. (196) have suggested a new model for 

representing the data for the liquid phase. For the Fe-S system for 

example there would no longer be the same number of sites in the two 

sublattices. Instead the ratio of the number of sites would be 

determined by a condition of electroneutrality between the ionic 

constituents of the sublattices. In addition the new model excludes 

vacancies from the metal sublattice which now consists simply of Fe2+ 

ions but introduces sulphur atoms on the sulphur sublattice in addition 

to S2 and negatively charged vacancies. 

This new model has two particularly interesting features. Firstly it 

was shown that as the system develops lower affinity the expression for 

the Gibbs energy approaches that for a substitutional solution. Secondly 

for a binary system the expression for the Gibbs energy is identical to 

that derived for an associated solution provided that the associate 

species contain one atom only of the electronegative element. 
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1) Silicate Systems 

It was pointed out earlier that for certain oxide systems, in 

particular silicates, the power series approach derived for an 

essentially substitutional solution is not well suited to representing 

the thermodynamic data adequately. For these complex systems certainly, 

the use of an incorrect model cannot allow us to extrapolate binary data 

into multicomponent systems with any confidence. The success of the 

associated solution model and the multiple sublattice model in 

representing data for sulphides and other systems has implied that they 

could be used for molten silicate systems. As yet the multiple 

sublattice model has not been tested. Attempts to use the new model for 

the liquid phase derived by Hillert et al. (196) would be of great 

interest. 

The associated solution model has been used with some success by 

Bottinga and Richet (236) and by Goel et al. (228) for the Fe-0-SiO 2 

system. Goel et al. introduced species of Fe, FeO, FeO 1.5 and Si02 and 

the data for these species and the interaction between them gave 

remarkably good agreement over the whole system. However a large number 

of parameters is required for this model and it should not be thought of 

as an assessment but rather as a very good correlation of the observed 

properties. 

Many other models have been developed to represent the thermodynamic 

data through a close examination of the structure of silicates. In these 

models it is a generally accepted principle that every silicon atom is 

tetrahedrally surrounded by oxygen atoms. Two basic mechanisms can be 

considered as limiting cases. In very basic slags ie. slags with low 

silica content, the structure can be thought of in terms of M2+, 02 and 

SiO (orthosilicate) ions. This is the approach introduced by Flood and 
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Knapp (237) and the thermodynamic data can be thought of in terms of the 

formation of the orthosilicate ion and the random distribution of the 

02 and SiO4- anions. The addition of more silica leads to the formation 

of more complex silicates. At the silica rich side of the system ie. for 

acidic slags one could expect the mechanism of Fincham and Richardson 

(238) to operate whereby one oxide anion breaks down a bridge formed by 

another oxygen atom joined to two silicon atoms. 

In a number of these silicate systems there is immiscibility between 

basic and acidic slags e. g. in the FeO-Si02 and CaO-Si02 systems where 

the metal oxide typically dissolves in the silica up to about 5%. In 

general there is always considerably higher solubility of silica in the 

metal oxide. In some systems, e. g. A1203-Si02 there is complete 

miscibility between basic and acidic slags where it is believed the 

aluminium atom can substitute directly for silicon atoms. 

Flood and Knapp (237) extended the description of very basic slags 

which consists of M2+, 02 and SiO14 ions by including other polymeric 

anions. From a study of the PbO-Si02 system they concluded that the 

addition of Si3O 6- 
and Si606- anions mixing ideally resulted in a good 9 15 

representation of the thermodynamic data for compositions up to 60 mole 

% Si02, This approach was adopted recently by Bjorkman et al. (239,240) 

for the PbO-Si02 and Fe-0-SiO 2 systems using more complexes than 

suggested by Flood and Knapp. The description of Bjorkman et al. is 

limited to basic slags. 

Other models for liquid silicates have been reviewed by Gaskell (241) 

and Bottinga et al. (242) which take their basis from the work of Toop 

and Samis (243). This is in itself an extension of the work of Fincham 

and Richardson (238) mentioned earlier. The breakdown of an oxygen 

bridge by an oxide ion can be written in terms of: 

200+ 02- 
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where 00,0- and 02- represent bridging oxygen atoms, singly bonded 

oxygen atoms and free oxide ions. According to Toop and Samis an 

equilibrium constant can be written for this reaction: 

k= LOO I [02 -1 

Co-]2 

where k is a constant for a given temperature and a given metal ion ie. 

independent of composition of the melt and the complex ions involved. 

The Gibbs energy of formation from pure liquid components would be 

written by: 

, 
QfG =1 [0-] RT ln(k) 

2 

which implies ideal mixing between the three types of oxygen atom. This 

simple model gave good quantitative agreement with experimental 

information and led Toop and Samis to perform calculations in the 

CaO-FeO-Si02 system at 1600°C. 

This approach was extended by Masson (244-246) who applied polymer 

theory to the breakdown of the silicon-oxygen-silicon chains. Kapoor 

(247-249) developed the polymerisation approach using statistical 

thermodynamics and used an approach of Guggenheim (93) for the 

configurational entropy of mixing rather than the Temkin expression. 

A completely new approach was adopted by Yokokawa and Niwa (250) who 

considered a silicate melt in terms of a basic sublattice of oxygen 

atoms or ions with silicon atoms occupying a proportion of the 

tetrahedrally coordinated sites, the rest remaining vacant. This model 

was adopted by Borgianni and Granati (251,252) for use in Monte Carlo 

calculations. 

A more empirical approach was adopted by Lin and Pelton (253) who 

also considered the melt as a lattice. According to this treatment 

oolyrneric anions are not considered directly since the configurational 
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entropy is calculated simply from the distribution of the different 

types of 'structural units' (silica tetrahedra, 02 ions and oxygen 

bridges) throughout the melt. Furthermore the enthalpy change for the 

breakage of oxygen bridges was considered to be independent of the 

composition of the melt. The results they obtained were in excellent 

agreement with those determined eyperimentally. This model has two great 

strengths. Firstly the polymeric ions, although not treated explicitly, 

can be examined for each calculation through analysis of the 

probabilities of various ionic configurations. Secondly unlike all the 

other structural models discussed, the approach of Lin and Pelton is 

applicable to the whole composition range from basic to acidic slags. 

More recently Blander and Pelton (254) have devised a new empirical 

model for slags as an attempt to devise a method for analysing data for 

multicomponent systems. The model, an 'ad-hoc modification of the 

quasi-chemical theory' appears to have been very successful. 

Summ 

A number of different approaches have been used to model 

thermodynamic data for metallurgical systems. Some of these have been 

described in this chapter. This area of work is assuming greater 

industrial importance and can be expected to develop significantly over 

the next few years as industry becomes more demanding in its needs for 

data. 
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CHAPTER 4 

The Role of the Computer in Thermodynamics 

Introduction 

The principles involved in the use of thermodynamics for the 

calculation of phase equilibria and many of the models which can be used 

to represent thermodynamic data for various phases are now well 

established. However the calculations themselves, except for the 

simplest cases are quite complex and generally require the use of a 

computer in order to search for the compositions and amounts of the 

competing phases which give the lowest Gibbs energy. Many different 

types of computer program have been developed for the calculation of 

phase equilibria as will be described below. Computers are now also 

becoming essential for the reverse process when, during the critical 

assessment of thermodynamic data, parameters for the thermodynamic 

models are derived from known equilibrium properties. Large data files 

are often required for both the critical assessment of data and the 

calculation of complex equilibria and this has led to a third use for 

computers ie. that in the storage of data in computer based databanks 

which ultimately leads to greater reliability and efficiency. 

Calculation of Equilibria 

One of the first computer databanks developed for the storage of 

thermodynamic data was the NPL MTDATA system (255-258) which has been 

offered on-line within the UK for a number of years over the telephone 

or a packet switching network, and now forms part of the CSIRO system 

within Australia (259). Until 1980 it also formed part of the MANLABS 

system within the USA (260). It contains data for pure condensed 
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substances, gaseous species and dilute solutions, and in the on-line 

service is used to tabulate, for various temperatures, the thermodynamic 

properties of pure substances or the change in these properties during a 

chemical reaction. Originally the databank was designed for a mainframe 

computer but it has now been modified at NPL for implementation on 

microcomputers (261). 

Since then similar databanks have been developed elsewhere. In 

Canada, Pelton, Bale and Thompson (262,263) in Montreal have constructed 

the FACT databank service, which is available on-line throughout North 

America, and offers rather more extensive facilities than that developed 

by Alcock and Goetze (264) in Toronto. In Moscow the IVTAN group have 

been augmenting their data compilations with a computerised databank 

while within Western Europe, equivalent databanks have also been 

developed in Uppsala (265), Grenoble (266), Aachen (267-269) and 

Harwell. These last three groups are now working with NPL and others 

within Europe to construct a joint database and on-line databank system 

through the organisation SGTE. 

Although tables or plots of the change in thermodynamic properties 

for chemical reactions are useful in predicting simple types of 

equilibria more sophisticated software must be used for complex 

equilibria. One such type of calculation for multicomponent equilibria 

between gaseous and condensed phases is to produce a so-called 

Predominance Area or Pourbaix diagram such as is shown in Fig 4.1 where 

the partial pressure of one of the gaseous species is plotted against 

the temperature or the partial pressure of another species. A number of 

programs have been developed to calculated these diagrams, many of them 

linked to databank systems eg. those of Barry (270,271), Pelton and Bale 

(262) and Barin et al. (267,268). 

More sophisticated still are the programs used to calculate 

equilibria, for a given overall composition, between various gaseous 
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species and condensed phases. This problem is often known as Gibbs 

energy minimisation although the mathematical formalism can be expressed 

in other equivalent ways. The search for reliable and efficient programs 

has attracted many groups of scientists and mathematicians and many of 

these programs have been reviewed by Smith (272,273) and van Zeggeren 

and Storey (274). 

Perhaps the most widely used program and certainly one of the most 

versatile is Eriksson's SOLGASMIX. This program was originally designed 

for equilibria between a gaseous phase and condensed stoichiometric 

phases (275,276) but it has been extended to include condensed solution 

phases (277). It has also now been linked to many substance databanks 

eg. by Gallagher (269), Turnbull (278), Thompson (279) and by Dinsdale 

to allow these calculations to be performed quickly and in a routine 

fashion. SOLGASMIX has also been adapted for speciation calculations 

within dilute aqueous solutions and their equilibria with a gas and 

stoichiometric solid phases. In this program, SOLGASWATER (280), water 

is assumed to be at unit activity. The versatility of SOLGASMIX is 

perhaps best shown in its use in the program SOLGASMIX-REACTOR (281) 

when predicting, in detail, the behaviour of an industrial process. 

SOLGASMIX-REACTOR in many respects reflects the ultimate aim for these 

types of calculation. By breaking down a complex industrial process into 

a number of levels and linking the thermodynamic data to details of the 

process SOLGASMIX-REACTOR can be used to predict conditions to obtain 

the maximum yield or the minimum consumption of energy. 

Another example of where these types of calculations can be linked 

directly to an industrial process is in the prediction of the optimum 

conditions for Chemical Vapour Deposition and the growth of crystals. 

One such program for these calculations has been developed by Nolang and 

Richardson (282-287) in Uppsala consisting of a database with packages 

for the calculation of predominance area diagrams, transport flux and 
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chemical equilibria. It has been used, for example, to improve growth of 

crystals of yttrium iron garnet. Similar calculations have been 

performed by Bernard et al. (17). 

At the same time as programs were being developed to calculate the 

equilibria between gas phase species and stoichiometric compound phases, 

interest was also being focussed on routines and programs for the 

calculation of multicomponent phase diagrams for condensed solution 

phases especially alloys. Much of the early work in this field was done 

by Kaufman and his colleagues (46) who developed computer programs and 

also many of the datasets commonly used. 

Other early work has been carried out by Ansara et al. (79,288) and 

Counsell et al. (289). The work of Counsell et al. was extended by 

Dinsdale (15,173) who developed an on-line databank system, ALLOYDATA, 

containing critically assessed binary and ternary thermodynamic data 

linked to software for the calculation of multicomponent phase diagrams. 

Lukas (290) has also made significant contributions towards routines for 

the calculation of phase equilibria. 

More recently great advances have been made at the Royal Institute of 

Technology in Stockholm under the direction of Hillert. Sundman (291) 

has developed a sophisticated subroutine package, Gibbs Energy System, 

for calculating the Gibbs energy and its derivatives for a very general 

representation of thermodynamic data involving multiple sublattices. 

This subroutine package is used in particular by the program POLY 

developed by Jansson (292) for the calculation of binary and 

multicomponent phase equilibria for alloys. POLY is undoubtedly the most 

sophisticated program of its type available at present. Both the Gibbs 

Energy System and POLY are in turn used as subroutine packages to a 

third program developed by Agren (293-295) for the prediction of phase 

transformations and diffusion related equilibria. 

The division between the two types of programs, one designed to 
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calculate essentially the distribution of species within the gas phase 

or aqueous solution and the other to calculate the equilibrium between 

different condensed solution phases is somewhat arbitrary although the 

two problems make different demands in terms of the numerical analysis 

routines. Furthermore under certain circumstances it is important to 

solve both kinds of problem simultaneously e. g. corrosion of superalloys 

by gaseous environments, and consequently programs have now been written 

to perform these more complex calculations. Of particular note is the 

program of Eriksson, SOLGASMIX, which has recently been used for 

calculations of multicomponent alloy phase diagrams (296). Eriksson 

himself has recently reported most ambitious calculations, carried out 

using SOLGASMIX in conjunction with Saxena, of equilibrium mineral 

assemblages on cooling down a gas of solar composition (297,298). The 

aim was to further understanding of the formation of planets and 

meteorites. Here the phases involved included a gas phase, liquid and 

solid alloy phases, various solid oxide phases of variable composition, 

a carbide solution phase and various stoichiometric phases such as 

sulphides, nitrides and hydrides. They included 14 elements in their 

calculations. SOLGASMIX has been used here to calculate equilibria in a 

nine component alloy system as will be shown in chapter 7. 

Jansson (299,300) has now developed a new and extremely general 

program POLY-II based upon the ideas of Hillert (301,302) and linked to 

the Gibbs Energy System. This program has been designed to include 

speciation calculations for the gas phase in addition to the 

multicomponent phase equilibrium calculations involving alloys. Present 

tests seem to indicate that performance for speciation calculations is 

inferior to that of SOLGASMIX. More recently Hodson (303) at NPL has 

developed a program MULTIPHASE to allow simultaneous calculations 

involving the gas phase, aqueous phase and various condensed non ideal 

solution phases. The program is extremely reliable and efficient. 
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To date none of these sophisticated types of programs have been 

linked to an extensive database comprising, for example, data for 

alloys, aqueous solutions, gases and other phases of importance. This is 

one of the major aims of the organisation SGTE and it is planned to have 

such a databank available on-line throughout the world by early 1986. 

Although it is recognised that the major users of such a service would 

be the member organisations of SGTE the databank is being designed to 

encourage industries and universities to use extensively. To this end, 

SGTE has made major efforts to design the outer appearance of the 

databank so that the user finds it easy and convenient to use and can 

find his way through the system with a minimum of tuition. 

Critical Assessment of Data 

The computer is also rapidly becoming completely indispensible for 

the critical assessment of thermodynamic data. For pure substances, the 

computer has been used mainly for the calculation of the thermodynamic 

properties of gas phase species from statistical mechanics and 

subsequently fitting the heat capacity data to a convenient power series 

expression. More recently, work has begun, pioneered by Pedley et al. 

(304) to optimise enthalpies of formation from measurements of the 

thermodynamic data (e. g. partial pressures, equilibrium constants, 

formation measurements) for the various reaction networks that relate 

substances to one another. As an example a consistent set of the 

enthalpies of formation at 298.15 K and thermal functions (energy and 

heat capacity data) of gaseous metal oxides have been obtained. 

Ambitious plans are now under consideration to incorporate all such 

experimental data for pure substances into a computer database. By 

linking this database to Pedley's program any new experimental 

measurements can immediately result in a revised set of thermodynamic 
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data. 

For condensed solution phases eg. in alloy systems, the role of the 

computer in the critical assessment of data is even more important than 

for pure substances. Firstly the data for condensed solution phases are 

normally more complicated than data for gases requiring the use of a 

variety of different models for representation as shown in the last 

chapter. The computer is ideal for repetitive calculations of the 

thermodynamic properties for these phases. Secondly the types of 

experimental data are more diverse including many types of measurements 

of thermodynamic properties and phase equilibria in addition to 

intuitive information that the assessor may need to provide. The 

computer would normally be used to calculate the agreement between the 

measured values and those calculated from a set of parameters often 

involving quite complex calculations of equilibria. The computer can 

then minimise these errors and find automatically the best set of 

parameters. 

Normally this type of program is used for the assessment of data for 

binary systems. However it is important to realise that data are 

required for phases not just in the regions where they are stable but 

generally across the whole of the system as shown in the last chapter. 

An optimisation type of assessment program is ideal for this where, for 

example, the experimental extension of a phase, stable in only one 

binary system, into a ternary system can be used to derive data for this 

phase for the other two binary systems. 

The assessment of thermodynamic data direct from phase diagram 

information was first suggested by Hiskes and Tiller (305-307), Rao et 

al. (308) and Chiotti et al. (309). Since then others, in particular 

Lukas et al. (310-312) , Boyle et al. (313) , Jansson (314,315) , Sundman 

(316), Pelton and Bale (317) and Oonk et al. (188,318-321) have 

developed computer procedures to carry out such calculations. The work 
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of Lukas is particularly important since the programs are very portable, 

widely used and allow choice of a number of models to represent the 

data. Versions of the program are now available for binary, ternary and 

quaternary systems. 

It is also worth noting the program of Jansson, PARROT (314,315), 

which is connected to the suite of programs referred to earlier 

including POLY, Gibbs Energy System and POLY-II. These provide a highly 

flexible framework for all assessment work. 

Conclusions 

The role of the computer in thermodynamics is now so well established 

that it is difficult to contemplate a time when computers were not 

available. In the future this role can only increase as large databases 

are constructed containing not just critically assessed data but also 

the raw experimental data. The computer also has enormous potential as a 

teaching aid. If all the tiresome and errorprone arithmetic were 

collected within a reliable computer program, a student would be able to 

concentrate on the basic principles of the subject and their application 

to industrial processes. It has even been suggested (302) that in the 

future little thermodynamics as such need be taught other than the 

general principles and how databanks could be interrogated to solve 

particular equilibrium calculations. Certainly we can look forward to 

the most complicated equilibrium calculations being carried out with 

great reliability and ease. Furthermore the work of Agren (293-295), 

Eriksson (281) and Nolang and Richardson (283-287) points the way to the 

use of the computer and thermodynamic data for modelling problems 

occurring in practical chemical and metallurgical industry. Certainly 

the incorporation of databank packages in expert systems (322) will be 

of utmost importance. 
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CHAPTER 5 

Development of Computational Procedures for the 

Calculation of Binary Phase Diagrams 

Introduction 

Over the last few years the computer aided calculation of phase 

diagrams from thermodynamic data has become widely accepted as a most 

useful tool to assist in the solution of industrial problems. This has 

led to the search for reliable and efficient procedures to facilitate 

these calculations. Many of the programs developed so far have been 

designed for use on main-frame computers. With the advent of desk top 

or even hand held microcomputers it is also important to develop 

compact programs. 

Discussed in this chapter is the mathematical basis for a program 

used to calculate binary phase diagrams automatically. It is hoped 

that these techniques will be of benefit in the critical assessment of 

thermodynamic data and also highlight some major problems to be 

overcome for the automatic calculation of multicomponent phase 

diagrams. In particular a very compact and reliable method has been 

developed to calculate efficiently binary phase equilibria for a fixed 

temperature. It is shown how this method can be extended to predict 

the changes in the phase boundaries with variation of temperature. 

Finally a generalised procedure is described which can be used to 

calculate all the stable phase boundaries in a binary system for a 

given temperature. Through use of this procedure binary phase diagrams 

can be calculated automatically. 

Often in the past direct calculation of phase equilibria in binary 
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systems was avoided and instead the Gibbs energies of formation for 

the different phases involved in the alloy system were plotted out and 

the phase boundaries determined manually by using the well known 

common tangent construction (45) shown in Fig 5.1. The phase diagram 

could be built up by following this procedure for a number of 

temperatures. In order for a computer to calculate phase diagrams 

automatically, it would need to search for conditions either giving 

these common tangents or the minimum Gibbs energy of formation of a 

composition within the two phase region. Of course, these two methods 

are equivalent as will be shown later. 

A number of methods for calculating equilibria in binary alloy 

systems have been reported. The basic principles have been described 

by Ansara (79), Hillert (323,324), Oonk (318,325) and Kaufman and 

Bernstein (46). Hillert (324) also suggested use of a particular 

method based upon the partition function and the partial molar Gibbs 

energies. Gale and Davis (326) used a steepest descent algorithm to 

solve a pair of non-linear equations and calculate the composition of 

the alloy phases in equilibrium. Kaufman and Bernstein (46), Gaye and 

Lupis (327,328), Tomiska et al. (329) and Henig et al. (330) have 

solved similar equations based on the partial molar Gibbs energies by 

using the Newton-Raphson procedure (page 56). Gaye and Lupis moreover 

developed their technique to facilitate calculations over a range of 

temperatures. Pelton et al. (331) have developed a stepwise iteration 

procedure to calculate common tangents, a method which they have 

extended to calculate multicomponent equilibria. Nussler (332) has 

used the simplex Neider and Mead procedure (333) programmed by 

Counsell et al. (289) while Jansson (292) has included the facility 

for the calculation of binary phase diagrams within his sophisticated 

program POLY. 
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Recent developments in computer technology have made it possible to 

perform these types of calculation on microcomputers or even on hand 

calculators. Consequently it is tempting to develop very efficient 

computational methods which also require relatively small amounts of 

software. This present work is carried out in the light of this need. 

Calculation of two phase equilibria 

a) Common tangent construction 

The basic condition for an alloy to be in chemical equilibrium is 

for its Gibbs energy to be at a minimum. Consequently if an alloy is 

chosen which, at equilibrium, lies in a two phase region, the most 

stable state will be that one which gives rise to the lowest Gibbs 

energy taking into account all possible states that could be formed by 

varying the compositions of the coexisting phases. 

Consider first the example of a hypothetical alloy system A-B. 

Fig 5.1 shows the variation of the Gibbs energies of formation G1 and 

G2 of two intersecting solution phases as a function of their 

compositions of element B, x1 and x2 at a temperature T. Consider an 

overall alloy composition shown by x on the figure and assume that at 

equilibrium the alloy consists of a mixture of the two solution 

phases. 

Let the proportion of the first solution phase in the mixture be 

V. The proportion of the second solution phase will therefore be 

1- t4. By equating the overall composition x with the total quantities 

of element B in the two phases one obtains the well know lever-rule. 

x= Ot, x1 + (1-ok) x2 
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which on rearrangement gives: 

x 2 

x -x ý 2 

In a similar way, the Gibbs energy of formation G of this composition 

x is given by 

G= 04 G1 + (1-oC)G2 

or 

G_(x- x2) G+ 
(x1 - x) G 

(x1 - x2) (xý - x2) 
2 

(x- x2) (Gý - G2) + G2 
(xý - x2) 

This shows that, diagrammatically, the value of G corresponding to the 

composition x will lie on a straight line between G1 and G2. 

For the system to be in equilibrium the Gibbs energy of formation, 

which is a function of both x1 and x2, must be at a minimum. Therefore 

/dX 
l`X 

(äX21X 0 
I1 

2 
Differentiating equation (1) 

dG 
_ 

pc dG1 
+G aoC + (1- oC )dG2 (ax 

x 
dx1 Tx-1 

x2 
dx1 

2 

G oc dG1 
+ (G1-G2) 

" dx1 
x 

dx1 
x 22 

- G2 a«. 

axl 
X2 

since G2 is independent of x1. 
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But 

ae äx, 
X2 

faG 

dX1 
X2 

De-_ x-x2 
x1 - x2 

-(x- 
x2) b. 

(xý - x2)2 (x 
1-x 2) 

oc. dG1 
- 

(G1 - G2) 
dx1 (x1 - x2 ) 

ie. since for equilibrium 

dG1 (G1 - G2) 

dx1 (x1 - x2) 

Similarly 

(2) 

dG2 (G1 - G2) (3) 
dx2 (x1 - x2 ) 

These two conditions indicate that the gradients of the two Gibbs 

energy curves at x1 and x2 respectively should not just be equal but 

also equal to the gradient of the line joining the two Gibbs energy 

curves. This is also the condition that there should be a common 

tangent between the two curves as indicated by line a in Fig 5.1. 

Consider now the equilibrium between the first solution phase, 

whose Gibbs energy, Gl, is shown as a function of the composition of 

element B, x, , and the stoichiometric compound of composition x3 and 

Gibbs energy G3. In this case x3 and G3 cannot vary and so that, while 

the equivalent of equation (2) still is valid, equation (3) is not 

relevant. Again therefore the condition for equilibrium is that the 

line joining the Gibbs energy of the solution phase at x, to that of 

the compound should be a tangent to the solution phase curve at x, as 

ýx 
0 

(ýIg 

1 2 

shown by the line b in Fig 5.1. 
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Therefore the conditions for equilibria both between a solution 

phase and a stoichiometric compound and between two solution phases 

can be expressed diagrammatically in terms of tangents and this is a 

very simple way for determining phase boundaries. The method does 

however have certain disadvantages. The Gibbs energy curves have to be 

calculated and plotted for all the phases involved in the system which 

requires a certain amount of computation. Furthermore the point of 

common tangency cannot be measured accurately to within perhaps 1 

atomic per cent in a typical case. Moreover while the common tangent 

construction can be very useful for binary systems, there is no simple 

analogous method for multicomponent systems. A more reliable method 

for calculating phase boundaries would be to calculate the conditions 

for the minimum Gibbs energy of formation directly. 

b) Calculation of common tangents by Newton-Raphson Method 

The method has its basis in Newton's law of successive 

approximations. Consider Fig 5.2 which shows a function F of a 

variable z and we need to find a value of z for which F becomes zero. 

An initial guess z0 is made for which the function F(z0) and its 

derivative F'(z0) are evaluated. As shown in Fig 5.2, by using F(z0) 

and F'(z0) a new estimate of the required value z1 can be made as the 

point where the tangent at z0 crosses the axis F=0. 

since F'(z0) = 
F(z0) 

(z0-z1) 
` 

z=z- -F(z0) 
10 F'(z0) 

(4) 

In the same way a new value of z can be derived from z 
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F(z1 ) z2 = zi - 
F'(z1 ) 

and so on until the required accuracy has been obtained. 

The equilibrium between a solution phase and a stoichiometric 

compound can be treated in precisely this way. Here the function F can 

be chosen as: 

F_ dG1 
- 

(G1 - G2) 

dx1 (x1 - x2) 
(5) 

and we require the value of x1 for which F=0. Differentiating 

equation (5) 

F' = 
dF 

= 
d2G 

-1 
dG1 

+ 
(G1-G) 

= 
d2G 

-F (6) 
dx dxx ) dx x -x )2 dx ) 11 i2 112112 

Equations (4), (5) and (6) provide a method for evaluating the 

equilibrium between a compound and a solution phase. 

For the equilibrium between two solution phases there are two 

variables and two functions to set to zero (ie. to satisfy equations 2 

and 3). However these variables are not linked to one other by any 

constraints and it is possible to solve this problem in a completely 

analogous way to that used above. 

Suppose that the problem involves two independent variables y and 

z. These two compositions are varied in turn rather than 

simultaneously, as shown in Fig 5.3. The line A-B represents the 

initial guess for the equilibrium between the two phases, composition 

A for the first solution phase and composition B for the second 

solution phase. Firstly the composition of the first Gibbs energy 

curve G1 is varied from A using the first function resulting in a new 

composition C. Then the second function is used to vary the 
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composition of the second Gibbs energy curve G2 from B to result in a 

new composition D. These two steps are repeated until the required 

accuracy has been obtained. 

Suppose that the conditions for equilibrium are 

(Y, Z) =0 and F2(y, z) =0 

The derivative of F1 with respect to y at constant z for the 

compositions (y0, z0) can be designated by [F1(y0, z0)]. Similarly the 

derivative of F2 with respect to z at constant y for the compositions 

(y0, z0) will be [F2(y0, z0)] . 

The Newton-Raphson procedure of equation (4) can be represented by: 

y1 = y0 - 
F1(y0, z0) z1 = z0 - 

F2(y1, z0) (7) 
CF1(y0, z0)] 

z 
CF2(y1, z0)]y 

y2 = y1 
F1(y1, z1) etc 

[F; (y1, z1)]z 

As for equations (5) and (6) F1 = 
dG1 

- 
(G1 - G2) (8) 

dx1 (x1 - x2) 

2 
and Fi =d 

Gý 
- 

F1 (9) 
dx1 (x1-x2 ) 

Similarly F2 = 
dG2 

- 
(G1 - G2) (10) 

dx2 (x1 - x2) 

2 
and F2 =dG- 

F2 (11) 
dx2 ( x2-x1 ) 

These equations can be used in the procedure in (7) to evaluate the 

equilibrium. 

The methods just described were tested by translating into a 

computer program. They were found to be extremely reliable, very 

efficient and compact. Indeed the programs were so compact that they 
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fitted comfortably onto a SHARP PC1251 hand held microcomputer. 

Calculation of the change in phase boundaries with temperature 

It is common for these phase diagram calculations to be carried out 

over a range of temperatures and clearly it is more efficient from the 

computational aspect if results from a given temperature can be used 

to generate a good starting point for the calculations for the next 

temperature. One possibility would, for example, be to take the 

results of the calculation as they stand. However very little extra 

information is needed to derive a value for the slope of the phase 

boundary with change in temperature and this can lead to a much better 

starting value. This is similar to the procedures outlined by Gaye and 

Lupis (327,328) and Henig et al. (330). 

Consider for example the equilibrium between a stoichiometric 

compound phase and a solution phase. As shown before the condition for 

equilibrium at a fixed temperature T is given by: 

F_ dG1 
- 

(G1 - G2) 

dx1 (x1 - x2) 

Now this function F is both a function of composition and temperature 

and for small changes Axt and AT we can write: 

F= dF AT + dF Ax1 
dT dx1 

But since for the temperature T, F=0 

A, x1 AT dF dF 
dT dx1 

The value of dF/dx1 has already been determined during the calculation 
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of the equilibrium whilst dF/dT can easily be obtained from knowledge 

of the variation of the thermodynamic data with temperature. 

In a similar way, for the equilibrium between two solution phases 

we have two equilibrium conditions both of which are functions of x, , 

x2 and T. 

ie. F dG1 
- 

(G1 - G2) 
ý 

dx1 (x1 - x2) 

and F2 = 
dG2 

- 
(G1 - G2) 

_0 
dx2 (x1 - x2) 

For small changes in T, x1 and x2 we can write: 

F1 = 
dF10T 

+ 
dT 

dF Ax1 + 
dx1 

dF2 Lxs + 
dx1 

dF 
1 Ax 

22= d x2 

dF2 bx2 =0 
dx2 

F2 = 
dF2 AT + 
dT 

It can be shown that 

dF1 
= 

F2 

dx2 (x1-x2) 
and 

dF2 
= 

F1 

dx1 ( x2-x1 ) 

which are both equal to zero since for the temperature T, F1 and F2 

equal zero. Therefore again we obtain: 

Axt _ -AT 
dF1 dF1 

dT dx1 

0x2 AT dF2 dF2 

dT dx2 

The quantities dF1 /dx1 and dF2/dx2 are known from the equilibrium 

calculations while dF1 /dT and dF2/dT can be derived from a knowledge 

of the temperature dependence of the thermodynamic data. 

Using these expressions good initial guesses can be derived for 
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equilibrium calculations at a new temperature. This will speed up the 

overall calculation of the phase diagram. 

Procedure for the calculation of stable phase boundaries at a fixed 

temperature 

There have been three main methods used for calculating a complete 

binary phase diagram. Kaufman (46) has preferred to calculate all 

possible equilibria over a wide range of temperatures and then 

identify those equilibria which are stable. An alternative method used 

by Ansara (79) in his program BINAIRE is to calculate for each 

temperature all the stable two phase equilibria by determining the 

combinations of phases across the binary system which give the lowest 

Gibbs energy. Jansson (292) has developed a third method within his 

general program POLY whereby a given phase boundary is followed 

automatically until it is found to be unstable with respect to some 

new equilibrium or a pair of equilibria. These new equilibria are 

followed in turn. In this way all stable phase boundaries which are 

topologically linked can be determined. 

For this work a similar approach has been adopted to that used by 

Ansara (79). The intersections between stable solution phases are 

calculated in order to define the lowest Gibbs energy curve against 

composition from the various individual solution phases as shown in 

Fig 5.4. At this stage each solution phase is scanned for pairs of 

points of inflection which indicate tendency towards immiscibility. 

The Gibbs energy of each of the stoichiometric compound phases is then 

compared with that of the stable solution phase at that composition. 

Then using the methods described in the last section, phase equilibria 

are calculated between the intersecting solution phases, and between 
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stable compounds and the solution phase stable at that composition as 

shown in Fig 5.5. For each solution phase the equilibrium composition 

is noted. If the calculated phase boundaries for a given solution 

phase overlap, this phase is then unstable relative to a two phase 

region between the two other phases as shown in Fig 5.5. For 

equilibria involving stoichiometric compounds the Gibbs energy 

gradient is noted. If two such gradients for a given compound indicate 

a concave Gibbs energy envelope the compound will also be unstable as 

shown in Fig 5.6. New phase equilibria are then calculated and 

compared in turn with neighbouring equilibria until a set of 

consistent phase boundaries have been obtained for the whole 

composition range. 

Any possible miscibility gaps then have to be tested against this 

set of equilibria. A miscibility gap is calculated for each solution 

phase with inflections provided that the phase had been calculated to 

take part in the set of stable equilibria. For each of these 

miscibility gaps then, the phase boundaries of this phase lying within 

the region of immiscibility are counted. If there are none and the 

phase had also been calculated to be stable within this region, the 

miscibility gap is stable and must be entered accordingly into the set 

of stable equilibria as shown in Fig 5.7. If the number of phase 

boundaries is found to be one the miscibility gap is metastable and 

furthermore, a metastable solution had previously been calculated to 

be stable as is shown in Fig 5.8. A new calculation of this same 

equilibrium is required but with the two phase region stretching 

across the metastable miscibility gap. Finally if two phase boundaries 

were found to be within the miscibility gap, the phase will no longer 

be stable. A new calculation of equilibrium is required between the 

two phases on either side of the metastable miscibility gap as shown 
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in Fig 5.9. In these last two cases (Fig 5.8 and Fig 5.9) the new 

phase boundaries could result in an overlap of compositions for a 

solution phase as in Fig 5.5 or a concave Gibbs energy envelope as in 

Fig 5.6. This must be identified and equilibria recalculated where 

appropriate. 

Conclusions 

In principle a number of methods can be used to calculate phase 

equilibria in binary alloy systems. In this present work a procedure 

based upon the Newton-Raphson technique has been developed. The method 

is efficient, reliable and compact. This method has also been extended 

in order to predict the effect of temperature on the phase boundaries 

and this allows very efficient calculations of equilibria over a range 

of temperature. A procedure has also been developed to calculate 

automatically the stable phase boundaries for a binary system at a 

given temperature. This procedure can be repeated for a series of 

temperatures allowing the calculation of the whole phase diagram. Fig 

5.10 and Fig 5.11 show examples of phase diagrams calculated 

automatically using this program. 
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CHAPTER 6 

Thermodynamic Properties of Alloys in the 

Fe-Ti System 

Introduction 

This work was the last of a series of experimental studies on 

thermodynamic data for binary and ternary alloy systems of industrial 

importance carried out at the National Physical Laboratory. The system 

Fe-Ti was chosen because critically assessed thermodynamic data for this 

system were needed for use in the calculation of multicomponent phase 

diagrams (15,334). Ti is often added to stabilise stainless steels and 

also acts as a deoxidant. Therefore information relating to its effect 

on the phase diagrams of steel systems is particularly important. There 

had however, been very little experimental thermodynamic work done on 

solid alloys in this system upon which to base a critical assessment. 

In addition, it was hoped to extend the range of the adiabatic 

calorimeter used for previous measurements (335,336) to include more 

exothermic alloy systems such as the Fe-Ti system. Previously the 

systems studied were restricted to those in which the enthalpies of 

formation were between about +8 kJ/mol. 

The Fe-Ti phase diagram determined by experiment is shown in Fig 6.1 

and is based on that presented in Elliott (54) but incorporates 

experimental work referred to in Hansen and Anderko (53) and Shunk (55), 

and work of Abrahamson and Lopota (337), Raub et al. (338), Nasu et al. 

(339), Matyka et al. (340) and Ko and Nishizawa (341). 

In the work described here, the enthalpy of formation was determined 

for 5 different compositions: for xTi=0.05 which at high temperatures is 

in the bcc phase field, for xTi = 0.10 and 0.20 which lie in the two 
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phase region between the Fe based bee solid solution and the Laves phase 

compound Fe2Ti, and for xTi = 0.333 and 0.50 for the two compounds Fe2Ti 

and FeTi respectively. Based upon these and other measurements of 

thermodynamic properties a critical assessment was carried out to 

provide data for the various phases in the system as a function of 

temperature and composition. These critically assessed data are now 

suitable for use in the calculation of multicomponent phase diagrams. 

Experimental 

The measurements were carried out using a high temperature adiabatic 

calorimeter designed by Dench (26) and shown in Fig 6.2. The details of 

its construction, operation, and of the preparation of specimens have 

been described elsewhere (26). 

The materials used in the experiments were 'carbonyl' iron powder, 

and titanium powder supplied by ICI Mond division. The iron powder was 

reduced under hydrogen at 630 K, ground in an agate mortar, and sieved. 

The -400 mesh fraction was used in the experiments. The titanium powder 

was also sieved, and the -300 mesh fraction used. The gas contents of 

the powders, determined by the vacuum fusion method, are shown in Table 

6.1. 

The enthalpies of formation of the alloys were determined by 

measuring the energy required to heat specimens between two chosen 

temperatures. Two measurements were required to measure an enthalpy of 

formation - a) one in which complete alloying takes place and b) one 

where no alloying takes place. To make sure that the alloying occurred 

only during the experiment and was complete by the end of the 

experiment, preliminary tests were made to determine a 'safe' 

temperature where no detectable alloying occurs even when the specimens 

were held at this temperature for 4 hrs, and a 'final' temperature at 
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Table 6.1. Mole fraction of impurities in the alloying materials from 
gas analysis. 

x0 xN xH 

Ti 0.0072 0.004 0.0081 
Fe 0.0010 <3x10 

6- 

Table 6.2. Results of preliminary experiments to determine the 'safe' 
and 'final' temperatures. 

XTi Sintering Constitution 

temp /K time / hrs 

0.04 873 4 Fe + Ti 

973 4 Fe + Ti 
1073 4 Fe + Ti + Alloy 

1273 1 Fe + Fe2Ti 

1373 1 Bcc Alloy 

1473 1 Bcc Alloy 

0.333 873 4 Fe + Ti 

973 4 Fe + Ti 
1073 4 Fe + Ti 

1273 1 Fe + Ti 

1373 1 Fe2Ti + FeTi (trace) 

. 
473 1 Fe2Ti 

0.5 873 4 Fe + Ti 

973 4 Fe + Ti 
1073 4 Fe + Ti 

1273 1 FeTi + Fe2Ti 

1373 1 FeTi 

1473 1 FeTi 

0.95 873 4 Fe + Ti 

. 
973 4 Fe + Ti 

1073 4 Fe + Ti 

1273 1 Alloy + Fe2Ti (? ) 

1373 1 Alloy + Fe2Ti (? ) 

1473 1 Alloy + Fe2Ti (? ) 
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which complete alloying took place in the specimens within 1 hour. The 

specimens from these preliminary tests were examined both 

metallographically and by powder x-ray diffraction and the results are 

summarised in Table 6.2. Suitable temperatures were found to be 973 K 

for the 'safe' temperature and 1473 K for the 'final' temperature. 

Two different procedures were used to determine the enthalpies of 

formation as can be seen from the following scheme: 

xFe(T1 )+ 

FexTiy(Tý) 

xFe(T1 )+ 

yTi(T1) 

) ---ý yTi(T1 

FeXTiy(T2) H1 

FeXTiy(T2) H2 

xFe(T2) + yTi(T2) H3 

Here, T1 refers to the 'safe' temperature and T2 to the 'final' 

temperature. The mole fractions of Fe and Ti are x and y respectively. 

In this scheme, H1 refers to the energy change in the alloying 

measurement while H2 and H3 refer to energy changes when no alloying 

occurs. For measurements of H2, the specimen consisted of the alloyed 

compacts from the previous measurement ie. for measuring HV This type 

of measurement is called a 'repeat' run. For measurements of H3, the 

specimen consisted of discrete compacts of the component elements of the 

same weight and in the same overall composition as the alloying specimen 

-a so-called 'composite' specimen. The compacts of Fe in the composite 

specimen were separated from the Ti compacts by thin layers of Ta sheet 

to prevent any alloying occurring at the surfaces. 

When these measurements are combined it is possible to derive the 

enthalpy of formation applicable to either the 'safe' temperature or the 

'final' temperature. 

ie. t H(FeXTiy , T1 )= H1 - H2 

AfH(FeXTiy , T2) = H1 H3 
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Fig 6.3 shows a typical heating curve, in this case for an alloying 

run. The specimen is heated up using the calorimeter furnace and 

stabilised approximately at the 'safe' temperature. The heater is then 

used to heat the specimen until the 'final' temperature is reached. 

During and after the heating period, adiabatic conditions are maintained 

by an automatic control system which responds to temperature gradients 

across the adiabatic enclosure detected by differential thermocouples 

(Fig 6.2). The final slope after the heater is switched off is 

extrapolated back to a time mid-way through the heating period to 

determine the exact final temperature. This allows for slight departures 

from adiabatic conditions. The energy supplied to the heater is 

corrected using measured heat capacity data around T1 and T2 to 

determine the energy that would have been required to heat the specimen 

from the precise 'safe' temperature to the precise 'final' temperature. 

The sharp change in slope in the heating curve marks the onset of 

alloying. Figure 6.3, which refers to the formation of an alloy with 

xTi=0.10, shows this change in slope at about 1300 K which is 

approximately the eutectic temperature in the Ti rich side of the phase 

diagram. 

Two factors make measurements difficult when alloying is very 

exothermic. Firstly, a large quantity of heat is evolved in a short 

time, too much for the automatic system of the calorimeter to control, 

causing the loss of adiabatic conditions. Secondly the large amount of 

heat evolved would produce a large temperature rise. The final 

temperature might then be so high that the specimen would melt or the 

calorimeter would be outside its safe operating range. In general, the 

calorimeter is restricted to temperatures below 1600 K. 

In order to overcome these problems, it was necessary to reduce the 

quantity of heat evolved per gram of specimen. 
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Fig 6.4 shows the method used where the alloying compacts were separated 

by discs of molybdenum which acted a heat sink. This method proved to be 

very effective. However the errors in measurement were inherently much 

greater than for previous sets of experiments since less alloying 

material was used per specimen. This showed up in the scatter of the 

experimental results as shown below. 

Results and Discussion 

Table 6.3 shows the results obtained for the Fe-Ti system for each of 

the compositions studied. The derived enthalpies of formation are 

plotted as a function of composition in Fig 6.5 for 973 K and in Fig 6.6 

for 1473 K. The estimated accuracy of the / 
fH values, which varies 

according to the degree of dilution, is shown as errors bars in the 

figures. These results clearly show the exothermic nature of these 

alloys. It is difficult to compare the two curves for the enthalpy of 

formation however since they refer to different reference phases for the 

pure elements and also because the bcc/(bcc+Fe2Ti) phase boundary varies 

appreciably with temperature. 

There have been four other sets of measurements on solid alloys in 

the Fe-Ti system. Kubaschewski and Dench (342) measured the enthalpies 

of formation of the two compounds. They obtained for FeTi a value of 

-20.3 +3 kJ/mol at 298 K. The present work shows that the enthalpy of 

formation for 973 K is -29.9 +3 kJ/mol. This is of the order of 7-9 

kJ/mol more exothermic than Kubaschewski and Dench's value even if one 

allows for a difference of heat capacity between products and reactants 

of up to 4J mol-1 K 1. This discrepancy is almost certainly due to 

Kubaschewski and Dench's calorimetric method where considerable heat 

loss was likely. 

Kubaschewski and Dench also attempted to measure the enthalpy of 

formation of Fe, Ti. They obtained the value of -19.0 +2 kJ/mol but were 
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suspicious because they had expected to find that A. 
fH(Fe2Ti) would be 

more negative than AfH(FeTi) in view of the erroneously high melting 

point then accepted for Fe2Ti. On investigation they found however, that 

during their experiments the reaction produced a mixture of FeTi and the 

bcc iron based solid solution rather than the expected Fe2Ti. 

The present measurements gave -21.3 + 2.5 kJ/mol for AfH(Fe2Ti) at 

973 K, a value quite close to that obtained by Kubaschewski and Dench. 

From the preliminary experiments described earlier, and summarised in 

Table 6.2, it was found that Fe2Ti forms completely when the specimens 

are held at 1473 K for one hour, and with a small quantity of FeTi only, 

when they are held at 1373 K for one hour. Furthermore, an X-ray 

examination of an alloying specimen revealed that Fe2Ti had been formed 

completely. The fact that Kubaschewski and Dench formed only a mixture 

of FeTi and bcc may be attributed to the much larger particle size of 

the material they used which would have caused much slower alloying. 

The enthalpies of formation of the two compounds have also been 

studied by Gachon et al. (343-345) subsequent to the present 

measurements. They obtained values of -31.0+1.3 kJ/mol for FeTi at 

1440 K, and -27.6+1.0 kJ/mol for Fe2Ti at 1514 K. Their results imply 

even more exothermic behaviour than implied by the results obtained 

during the present work and they also confirm that the enthalpy of 

formation of FeTi is more negative than that of Fe2Ti. 

The enthalpies of formation for both of these compounds have been 

calculated by Miedema and Niessen (346) using their semi-empirical 

electronic model, and for FeTi by Watson and Bennett (347). Both sets of 

predictions give results in remarkable agreement with the present 

experimental results (within 1 kJ/mol). 

Palma and Schroder (348) reported high temperature heat capacity 

measurements of iron-rich alloys between 600 and 1150 K in the region of 
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the magnetic transformation. They found that the heat capacity and the 

Curie temperature were effectively independent of the amount of titanium 

for compositions up to xTi = o. o48. 

Robinson and Argent (349) used Knudsen cell mass spectrometry to 

determine the partial enthalpies, excess partial Gibbs energies and 

excess pErtial entropies of solution at about 1600 K. Their values for 

the partial enthalpies of mixing agree well with the enthalpies of 

formation reported here. It should however be pointed out that their 

enthalpies were derived from the temperature dependence of vapour 

pressure measurements, a method subject to large errors. 

A number of thermodynamic studies on the iron-titanium system have 

been concerned with the liquid phase. The results of Wagner and St. 

Pierre (350) for 1818 K and Furukawa and Kato (351) for 1823 K and 

1873 K from Knudsen cell mass spectrometry show that the liquid phase 

can be represented approximately as a regular solution. However there is 

significant disagreement between the Gibbs energies of formation derived 

from the two sets of experimental ion intensities - the results of 

Furukawa and Kato (351) implying more negative Gibbs energies of 

formation. 

A number of workers have studied the deoxidation equilibrium of iron 

at low titanium concentrations and derived the titanium activity 

coefficient at infinite dilution (352-357). Their results are summarised 

in Table 6.4 and compared with the ö Ti values obtained from the results 

of Wagner and St. Pierre (350) and Furukawa and Kato (351). The results 

reported by Fruehan (356) and by Smellie and Bell (357) refer to a 

reference state of pure solid titanium. The titanium activity 

coefficient at infinite dilution was derived by Fruehan from 

extrapolation of activities at various titanium concentrations. 

The ion current ratios reported by Wagner and St. Pierre (350) and 

Furukawa and Kato (351), have been used to derive activities and 



Table 6.4. Experimental values for the Activity coefficient, 1Ti at 
infinite dilution. 

Authors Method Temperature /K 
Ti 

Chipman (352) from 
results of Hadley Deoxidation 1900 0.011 
and Derge (353) 

Chino et al. (354) Deoxidation 1823 0.020 
1873 0.033 
1923 0.060 

Suzuki and Sanbongi Deoxidation 1873 0.016 
(355) 

Fruehan (356) * EMF 1873 0.038 

Smellie and Bell Deoxidation 1973 0.059 
(357) 

Wagner and St. Mass Spec. 1818 0.056 
Pierre (350) 

Furukawa and Kato Mass Spec. 1823 0.022 
(351) 1873 0.024 

* Refers to reference state of bcc Titanium 
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activity coefficients for the whole composition range. Fig 6.7 shows a 

plot of the activity coefficient of titanium (referenced to liquid Ti) 

converted to 1873 K for all the results on this liquid phase. The figure 

shows a marked difference between the two sets of mass spectrometric 

results and this is emphasised in Fig 6.8 where the integral excess 

Gibbs energies at 1823 K derived from these activity coefficients are 

plotted. Fig 6.7 also shows that the deoxidation data agree better with 

Furukawa and Kato's results than with those of Wagner and St. Pierre. 

For this reason and because they also agree well with the present 

enthalpy measurements, the results of Furukawa and Kato were preferred 

for use in the critical assessment. 

Dyubanov et al. (358) measured calorimetrically the partial enthalpy 

of solution of Ti in liquid iron as -52.0 +3 kJ/mol at 1823 K. 

Critical Assessment 

The thermodynamic data for this system have been assessed previously 

by Kaufman and Nesor (359) using a subregular solution model for the 

liquid, bcc and fcc solution phases and assuming that the compounds 

Fe2Ti and FeTi were stoichiometric. Because of the new measurements this 

assessment is now superseded. 

Since this present work was completed the phase diagram and the 

thermodynamic data for the Fe-Ti system have been critically assessed by 

Murray (360). In her assessment she preferred the data of Wagner and 

St. Pierre to those of Furukawa and Kato and also had no access to the 

recent experimental measurements of the enthalpies of formation of solid 

alloys. The liquid, fcc, bcc and hcp phases were represented by regular 

or subregular solution models with no temperature dependence for the 

parameters. However she used different descriptions for the Fe rich bcc 

phase and the Ti rich bcc phase. The two compounds were represented as 
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Wagner Schottky phases with iron and titanium sublattices. Vacancies 

were introduced onto the titanium sublattice while titanium atoms were 

assumed to substitute onto the iron sublattice. Very good agreement was 

obtained between the calculated and experimental phase diagram except 

that she failed to reproduce the peritectic fusion of FeTi. 

For the present critical assessment it was decided that the liquid, 

bcc and fcc phases should be represented by Redlich-Kister power series. 

The solubility of Fe in the hcp phase, which is known from experiment to 

be very low (338-340), was neglected and the phase was treated as 

stoichiometric. In a similar way the compound FeTi, which exists over a 

narrow range of homogeneity was treated as a stoichiometric phase. The 

Laves phase compound Fe2Ti exists over a fairly wide range of 

homogeneity. For this assessment its data were represented by a 

Redlich-Kister power series. This approach had already been used with 

some success for the Laves phase compounds Co2Zr and Cr2Zr (361) and 

with the treatment of sigma phases (167,362). 

For this assessment all data were referred to pure bee Fe and pure 

bce Ti at the temperature of interest. The fusion data for Fe (bcc to 

liquid) were taken from Hultgren et al. (43) and for Ti (also bcc to 

liquid) from the experimental work referred to in Hultgren et al. (43), 

and the work of Berezin et al. (363). Data for the Gibbs energies of 

transformation for the pure elements from the bcc phase to the fcc and 

hcp phases were taken from Kaufman (364). It was also necessary to 

estimate data for the hypothetical transition bcc to Laves for both of 

the elements. These Gibbs energies of transition were taken to be 

temperature independent in the absence of any other information. 

Using the measured enthalpy of formation for the Laves phase at 

xTi = 0.333 for 1473 K, the Gibbs energies of formation of the liquid 

phase at 1873 K derived from the experimental measurements of Furukawa 

and Kato (351) and the congruent melting temperature of the Laves phase 
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compound at 1700 K, the entropy of formation for. the liquid and the 

Laves phases at xTi = 0.333 were estimated. This was subject to the 

constraint that the entropy of formation be compatible with the known 

empirical relationship between enthalpies and excess entropies of 

formation (365) and, in addition, that the entropy of fusion of the 

compound is less than that for an order to disorder transformation. The 

data now derived for the liquid phase were found to be in good agreement 

with the partial enthalpy of titanium at infinite dilution in liquid Fe 

measured by Dyubanov et al. (358). 

From these assessed data, data for the Laves phase as a function of 

temperature and composition were derived to reproduce as closely as 

possible the experimental phase boundaries between the Laves phase and 

the liquid phase. The calculated phase width is, in terms of mol 

fraction, about 0.04 greater than that determined experimentally. 

The compound FeTi melts peritectically at about 1590 K. Using the 

enthalpy of formation data reported here, an entropy of formation was 

derived to reproduce the known fusion behaviour. 

Data for the bcc phase were derived in order to reproduce the 

experimentally determined eutectics at xTi = 0.16 and at xTi = 0.71 (see 

Fig 6.1. ) using the activity data of Robinson and Argent (349) but 

keeping approximately the same excess entropy curve as for the liquid 

phase. The agreement with the experimental phase diagram is good at high 

temperatures as shown in Fig 6.9. At low temperatures, however, the 

agreement is less satisfactory and the calculated eutectoid between the 

bcc, hcp and FeTi phases at high titanium concentrations is about 230 K 

lower than experimentally determined. This is probably due to the use of 

an inappropriate model for the Laves phase resulting in its calculated 

homogeneity range being too large, linked with the absence of heat 

capacity data for FeTi which could introduce significant errors over, 

say, 1000 K. The experimental and selected enthalpies of formation are 
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compared in Fig 6.10. 

There seems to be some confusion concerning the equilibrium between 

the fcc and bcc phases at high Fe concentrations. A number of 

measurements have been reported. Roe and Fishel (366) interpreted their 

results from dilatrometry studies to show that the bcc/(bcc+fcc) phase 

boundary extended in to a maximum of xTi=0.0085 and that the maximum 

width of the two phase region was 0.001 in terms of mol fraction. Roe 

and Fishel's results also suggested that there is a minimum in the 

t (fcc)-loop phase boundary similar to that found for the Fe-Cr system. 

No phase boundaries were found for compositions higher in titanium than 

xTi=0.0085. 

No evidence for this minimum was found from Wada's experiments (367) 

also by dilatrometry. The maximum of the ' -loop was determined to be at 

about xTi=0.008, in good agreement with Roe and Fishel's results. 

However it is not clear whether Wada's results refer to the 

fcc/(fcc+bcc) or the bcc/(fcc+bcc) phase boundary. Wada also suggested 

that the two phase region between fee and bee should be about 0.006 wide 

rather than 0.001 measured by Roe and Fishel. 

Moll and Ogilvie (368), from solid state diffusion studies, 

determined that the maximum solubility of titanium in the fcc phase was 

0.0075. Hellawell and Hume-Rothery (369) used thermal analysis 

techniques to investigate the fcc/bcc phase boundaries. Their 

measurements on an alloy with xTi-0.0128, however, showed no detectable 

phase transformation. 

The ö -loop was also studied by Fischer et al. (370) by measurement 

of the magnetic susceptibility although their work was not available for 

this assessment. Their results show that the maximum solubility of Ti in 

the fcc phase was 0.008 and that the maximum width of the two phase 

field bcc+fcc was 0.006. 

Shunk (55) in his assessment of the phase diagram did not consider 



It 
J 

O 
0 
0 
X 0 

H 

O 
N 

LL 
H 
LL 

5 0 

1 1 x 

o 
0 \x 

5 

Assessed Of H for bcc 

alloys, assumed temperature 
X 

0 independant from 1000- 2000K 

5 o Present work 1473K 
x Present work 973K 

Assessed AfH for stable 
0 alloys. The phase boundaries 

0 
are for 1473K 

x 

0 

x 

FP 0.2 0.4 0.6 0.8 T; xTi 

Fig. 6.10 Comparison of the experimental and selected enthalpies of 
formation for 1473 K. 

II 



- 75 - 

the work of Fischer et al. and suggested that the maximum solubility of 

Ti in the fcc phase should be 0.002. For this work the phase diagram 

implied by Shunk has been adopted and data were derived for the fcc 

phase to reproduce this diagram. It was also assumed that the 

temperature dependence and asymmetry of the excess Gibbs energy curve 

for the fcc phase is similar to that for the bcc phase. Fig 6.11 shows 

the calculated ö 
-loop phase boundaries with some of the experimental 

data superimposed. In the more recent assessment, Murray (360) adopted 

the data of Fischer et al. for her assessment of the ö -loop equilibria. 

Table 6.5 shows the critically assessed data for the Fe-Ti system. 

Fig 6.12 shows a plot of the Gibbs energy of formation for each phase at 

1600 K. 

Summary. and Suggestions for Future Work 

The thermodynamic data for the Fe-Ti system have been critically 

assessed to be as consistent as possible with the accepted phase 

diagram. The assessed data are now suitable for use in the calculation 

of multicomponent alloy phase diagrams. This assessment, which was 

carried out without the use of optimisation programs such as the one 

developed by Lukas et al. (290,310), has one or two minor 

inconsistencies compared with the diagram now accepted, notably the 

extension of the ' 
-loop into the binary system, the homogeneity range 

of the Laves phase and the eutectoid temperature at high titanium 

compositions. 

The more recent critical assessment of Murray (360) is in rather 

better agreement with the accepted phase diagram although it is based on 

experimental thermodynamic data which have now been superseded and which 

differ significantly from values considered now to be correct. Murray 

also used two different descriptions for the thermodynamic data for the 
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bcc phase - one for iron rich compositions and one for titanium rich 

compositions. Her assessment is therefore difficult to use in 

multicomponent phase diagram calculations. In addition her data do not 

reproduce the peritectic fusion of FeTi. 

The model used by Murray to represent the composition dependence of 

the Laves phase is more realistic than the Redlich-Kister expression 

used in the present calculations. She represented the non-stoichiometry 

of Fe2Ti in terms of a Wagner Schottky model with vacancies introduced 

onto the titanium sublattice to explain deviations to iron rich 

compositions, and titanium atoms substituting into the iron sublattice 

to explain deviations to titanium rich compositions. In practice, of the 

six types of point defects allowed, only the introduction of 

interstitials will not take place to any appreciable extent in these 

highly ordered Laves phases. The other four point defects - substitution 

on each of the sublattices and the introduction of vacancies on each of 

the sublattices should occur to some degree. In the case of the Fe2Ti 

Laves phase, the homogeneity range is large to compositions iron rich of 

Fe2Ti while it is fairly small except at high temperatures to titanium 

rich compositions. In view of the slightly larger size of titanium atoms 

the most important defects could be expected to be substitution of iron 

atoms onto the titanium sublattice and the intoduction of vacancies on 

the iron sublattice. This is different description from that adopted by 

Murray. 

It is recommended that the thermodynamic and the phase diagram data 

be reassessed at some stage using an optimisation program. Such an 

assessment should also include new data for the pure elements, a 

treatment of the magnetic contribution to the thermodynamic properties, 

data to represent the solubility of Fe in hcp Ti and the use of more 

realistic models to represent the composition dependence of the 

thermodynamic data for the Laves phase and FeTi. 



lade 6.5 

ASSESSED DATA FOR THE IRON-TITANIUM SYSTEM 

I Solution Phases 

The Gibbs energy of formation of a binary alloy from its component 

elements in their reference phase is given by the following expression 

LfG= OtG + GE + LGideal 

where AtG is the Gibbs energies of transformation of the elements from 
E their reference phases to the phase in question, G is the 'so-called' 

excess Gibbs energy and LGideal is the ideal contribution to the Gibbs 

energy of formation given by the expression: 

LGideal = RT (x in x+y In y) 

where R is the gas constant, T the temperature and the alloy is of 

composition AXBy . 

a) Gibbs energies of transformation for elements in J mol 
1 

Element Transformation AtG -a+ bT + cT2 + dT3 

a b c d 

Fe bcc --ý Liquid 13807.2 -7.6316 0 0 
bcc -ý Laves 5020.8 0 0 0 

b cc ---ý bcc 0 0 0 0 

bcc --ý fcc 5235.02 -9.4006 5.2949 x 10-3 -9.2215 x 10-7 

Ti bcc --ý Liquid 13807.2 -7.1128 0 0 

bcc -- Laves 8368.0 0 0 0 

bcc -- bcc 0 0 0 0 

bcc --> fcc -1004.16 3.7656 0 0 



b) Coefficients for excess Gibbs energy of formation for the 
Fe-Ti system 

The excess Gibbs energy of formationin J mol-l is given by: 

GE XFeXTi [a + bT 

+( 'e xTi)(a1 + b1T) 

+ (xFe xTi)2(a2 + b2T) 

+ (xFe 
- xTi)3(a3 + b3T) 

+ (xFe x'I'i)4(a4 + b4T) ] 

ab 

Liquid -88453.76 17.5529 
-3364.64 0 

'0 0 
o 0 
o 0 

Laves -123498.31 30.9428 
-78573.89 19.6870 
27913.70 -6.9940 65733.98 -16.4699 66038.13 -16.546o 

bcc -69036.00 17.5529 
-4184. oo 0 

0 0 
0 0 
0 0 

fcc -52300.00 17.5728 
-4184. oo 0 

0 0 
0 0 
0 0 

2 Compound Phases 

For compounds the Gibbs energy of formation from the elements in their 

reference phases is given by: 

AfG= a+bT+ cT InT 

Compound xF, e xTi a b c 

FeTi 0.50 0.50 -28660.40 4.1112 ! 0 
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CHAPTER 7 

Quantitative Equilibrium Calculations 

for Steel Systems 

It was shown in chapter 6 how thermodynamic data for the 

iron-titanium system were measured and used in a critical assessment- to 

provide data for the various phases of the system which could be used in 

the calculation of multicomponent phase diagrams. In chapter 4a variety 

of computer programs were discussed which were developed for the 

calculation of phase equilibria. In this chapter data and programs are 

linked in order to provide quantitative calculations of phase equilibria 

of importance to industry for steel systems. 

The first set of calculations were undertaken to throw light on the 

relationship between neutron induced void swelling and alloy 

constitution. It had been postulated by Watkin and Gittus (371,372) that 

the degree of void swelling is related to the number and types of phases 

present in the stainless steel cladding alloy before irradiation, and in 

particular to the presence of the embrittling sigma phase (373). This 

work is, in fact, a good example of the application of phase diagram 

calculations since experimental measurements for stainless steels at 

temperatures of interest ie. 700 - 800 K are difficult, costly and 

unreliable because of the sluggishness of phase transformations. 

Moreover phase diagram information for commercial alloys containing 

perhaps 9 elements are just not available. There are however fairly 

reliable experimental phase diagram data for the solid phases in the 

base system, Cr-Fe-Ni, above 1000 K and these can be used together with 

critically assessed thermodynamic data for the binary systems to 

calculate the phase diagram for lower temperatures. These calculated 

phase diagrams are more reliable than could be determined at present by 
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experiment. Fig 7.1 shows, as an example, the phase diagram for the 

Cr-Fe-Ni system for 800 K calculated from the critically assessed data 

from Chart et al. (167) and Kaufman and Nesor (374) using the NPL 

ALLOYDATA system (15,173). 

While calculations of the Cr-Fe-Ni system are of importance, the 

stainless steels used as cladding alloys also contain other elements 

such as silicon, titanium and carbon. -Therefore calculations showing the 

effect of these minor additions on the phase diagram are of great 

importance. To this end the data for the stable phases in the binary 

systems Cr-Si, Fe-Si and Ni-Si were critically assessed by Chart et al. 

(167) and, in addition, data were derived for the sigma phase for these 

systems in order to reproduce experimental ternary phase equilibria. It 

is interesting to note that the data derived predict the existence of 

the sigma phase in the Cr-Ni-Si system even though the phase is not 

stable in any of the component binary systems. Phase diagram 

calculations were performed for the Cr-Fe-Ni-Si system using the 

ALLOYDATA system. Unfortunately whereas in ternary systems these 

calculations can be represented in terms of an isothermal section, in a 

quaternary system the equivalent representation is a pyramid which is 

difficult to display quantitatively. A schematic representation of the 

calculated diagram for 800 K is shown in Fig 7.2 for alloys containing 

up to 0.08 mole fraction Si. This shows the dramatic stabilising effect 

of silicon on the sigma phase which consequently has ramifications for 

the use of these alloys as cladding materials. 

The representation of the quaternary phase diagram for the 

Cr-Fe-Ni-Si system is possible only schematically. Even this is not 

possible for systems of 5 or more elements. Nevertheless calculations 

can be made and tabulated as shown in Fig 7.3 for the Cr-Fe-Ni-Si-Ti 

system in this case using the program MULTIPHASE developed by Hodson 

(303). Here the compositions and type of the phases in equilibrium are 



Fe 

bcc 

bcc +Q 

Cr- Fe- Ni 
800 K 

Fig 7.1 Calculated phase diagram for the Cr-Fe-Ni system for 800 K. 
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Fig 7.3 Output from MULTIPHASE for the calculation of the compositions 
and types of phases in equilibrium for the Cr-Fe-Ni-Si-Ti 
system at 900 K for a given overall composition. 

TEMPERATURE 900.000 

COMPONENT QUANTITIES 
CR 1.400000D-01 
FE 7.400000D-01 
NI 8.000000D-02 
SI 3.00000OD-02 
TI 1.000000D-02 

SUM OF COMPONENTS = 1.000000D 00 
INITIAL POINT SET BY PROGRAM 

ERROR IN AMOUNT IS LESS THAN 1.5D-05 

PHASE SPECrPHASE AMOUNT(N) MOLE FRACTION 
-IES PRESENT 

STOICHIOMETRIC PHASES 
CR3SI 1 1 0 
CR5S13 2 1 0 
FE5SI3 3 1 0 
FESI 4 1 0 
NI5SI2 5 1 0 
N13TI 6 1 0 
S13T15 7 1 0 
CRFETI 8 1 0 

FCC PHASE 
CR(FCC) 9 1 1 5.379778D-02 
FE(FCC) 9 2 1 2.935041D-01 
NI(FCC) 9 3 1 6.083208D-02 
SI(FCC) 9 4 1 1.421155D-02 
TI(FCC) 9 5 1 1.70304OD-03 

PHASE TOTAL IS 4.240486D-01 

BCC PHASE 
CR(BCC) 10 1 1 5.359688D-02 
FE(BCC) 10 2 1 4.04143OD-01 

NI(BCC) 10 3 1 1.515611D-02 
SI(BCC) 10 4 1 1.270697D-02 
TI(BCC) 10 5 1 8.293910D-03 

PHASE TOTAL IS 4.938969D-01 

SIGMA PHASE 
CR(SIGMA) 11 1 1 3.260506D-02 
FE(SIGMA) 11 2 1 4.235062D-02 
NI(SIGMA) 11 3 1 4.009348D-03 
SI(SIGMA) 11 4 1 3.081402D-03 
TI(SIGMA) 11 5 1 2.169456D-06 

PHASE TOTAL IS 8.20486OD-02 

XNI3 PHASE 
FEN13FCC 12 1 0 
N13SIFCC 12 2 0 

HEX PHASE 
CR2TIHEX 13 1 0 
FE2TIHEX 13 2 0 

CUB PHASE 
CR2TICUB 14 1 0 
FE2TICUB 14 2 0 

GIBBS FREE ENERGY = -7.858971D 03 

CHEMICAL 
POTENTIAL 

1.268670D-01 -4.102883D 03 
6.921474D-01 -1.257559D 03 
1.434555D-01 -2.392371D 04 
3.351397D-02 -1.211684D 05 
4.016144D-03 -8.050750D 04 

1.085184D-01 -4.102883D 03 
8.182741D-01 -1.257559D 03 
3.068679D-02 -2.392371D 04 
2.572798D-02 -1.211684D 05 
1.679280D-02 -8.050750D 04 

3.973872D-01 -4.102883D 03 
5.161650D-01 -1.257559D 03 
4.886552D-02 -2.392371D 04 
3.755581D-02 -1.211684D 05 
2.644110D-05 -8.050756D 04 
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calculated for a given temperature and set of element mole fractions. 

The second series of calculations were carried out on some low alloy 

steels to test a procedure suggested for the removal of certain unwanted 

impurities by precipitation. It is thought that most common low alloy 

steels manufactured in Europe have sufficiently high levels of 

impurities such that all intergranular failures are caused by 

segregation. The obvious procedure, that of using purer materials in the 

steelmaking process is expensive and may also lead to other desirable 

properties being affected. Moreover these impurities tend to accumulate 

as a result of recycling (375). An alternative and potentially cheaper 

process would be to add some material to the steel which would 'lock up' 

these unwanted impurities by forming stable intermetallic compounds. 

For these low alloy steels the harmful impurities are phosphorus, 

copper and tin which appear to segregate to the grain boundaries and 

cause intergranular stress corrosion as shown by Lea and Hondros (376). 

Rare earth elements and in particular lanthanum were suggested as 

suitable additions to 'lock up' these impurities. Early calculations of 

Seah et al. (377) showed that such an approach should be successful and 

this was confirmed by experimental work. However their calculations were 

essentially qualitative, did not consider the effect on the carbide 

structure of the steel and used thermochemical models, data and computer 

programs which, for these types of calculation, have now been 

superseded. New calculations were performed which were quantitative and 

made use of the latest data and techniques. 

For this work four low alloy steels, about 96% Fe, were studied 

including a basically 2.25Cr-lMo steel and one with rather lower Cr and 

Mo content. For simplicity the steel was assumed to consist of 7 

elements - Fe, Cr, Mo and C with the harmful impurities P, Cu and Sn. 

For these calculations the rare earth additions were assumed to be in 

the form of Mischmetall which is rather cheaper than pure lanthanum. It 
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was taken to consist of equal proportions of La and Ce. Any oxygen or 

sulphur impurities in the steel which had not been removed by manganese, 

aluminium or titanium added were predicted to react with the Mischmetall 

in preference to the other impurities forming stable oxysulphides (e. g. 

La202S). Thermodynamic data were derived or taken from the ALLOYDATA 

database for the bcc phase in the 36 component binary systems of the 

nine component system and 35 selected stoichiometric binary compounds in 

order to calculate the equilibria for certain ranges of composition 

between temperatures of 800 K and 1200 K. Cementite, Fe3C, was included 

in the calculations in spite of the fact that it is known to be 

metastable relative to ferrite and graphite. In practice it is known 

that the kinetics favour its formation and that it is stabilised by 

small quantities of other elements. 

Calculations were performed using Eriksson's SOLGASMIX computer 

program (276,277) suitably modified to allow the representation of a 

multicomponent bcc solution phase in terms of a Redlich-Kister 

polynomial (296). The equilibrium assemblage was calculated for various 

additions of Mischmetall to the steels. Fig 7.4 shows the output for a 

typical calculation. These calculations represented a considerable 

advance over earlier calculations involving the precipitation of 

compounds in steels (255,377). In these previous calculations the 

interactions between different solute atoms were neglected and no 

account was taken of the relative amounts of the minor constituents. 

Consequently the calculations could not predict accurately the 

distribution of the minor elements between the various competing phases. 

The dataset and computer program used for these calculations do not 

suffer from such limitations and can in principle be used for a wide 

range of compositions and temperatures. 

Fig 7.5 and Fig 7.6 show the distribution of C and the harmful 

impurities P. Sn and Cu between the bcc phase and the competing 



Fig 7.4 Output from SOLGASMIX for 
of carbon and the harmful 
various competing phases 
addition of Mischmetall. 

T= 1000.00 K 
P=1.000E+00 ATM 

the calculation of the distribution 
impurities P, Cu and Sn between the 

in a low alloy steel following the 

INPUT AMOUNT EQUIL AMOUNT MOLE FRACTION ACTIVITY 
MOL MOL 

FE(BCC) 0.96128E+00 0.96128E+00 0.97808E+00 0.97895E+00 
CE(BCC) 0.10000E-02 0.10000E-02 0.10175E-02 0.54417E-07 
LA(BCC) 0.10000E-02 0.58880E-07 0.59909E-07 0.92097E-04 
CU(BCC) 0.11000E-02 0.64531E-03 0.65659E-03 0.86374E-01 
SN(BCC) 0.60000E-04 0.15726E-05 0.16001E-05 0.31136E-05 
C(BCC) 0.56000E-02 0.19858E-03 0.20205E-03 0.25936E-07 
CR(BCC) 0.23100E-01 0.15778E-01 0.16053E-01 0.88276E-01 
P(BCC) 0.22000E-03 0.27904E-09 0.28392E-09 0.18416E-14 
MO(BCC) 0.61000E-02 0.39219E-02 0.39905E-02 0.10951E+00 

FE17CE2 0.00000E+00 0.00000E+00 0.96204E+00 
FE2CE 0.00000E+00 0.00000E+00 0.19278E-01 
FE3SN 0.00000E+00 0.00000E+00 0.59943E-01 
FE3SN2 0.00000E+00 0.00000E+00 0.10857E-01 
FESN 0.00000E+00 0.00000E+00 0.32117E-02 
FE3C 0.00000E+00 0.00000E+00 0.60417E+00 
FE3P 0.00000E+00 0.00000E+00 0.11421E-01 
FE3MO2 0.00000E+00 0.00000E+00 0.51101E+00 

CECU 0.00000E+00 0.00000E+00 0.15747E-02 
CECU2 0.00000E+00 0.00000E+00 0.40140E-01 
CECU4 0.00000E+00 0.00000E+00 0.18689E+00 
CECU5 0.00000E+00 0.00000E+00 0.27088E+00 
CECU6 0.00000E+00 0.00000E+00 0.33304E+00 
CE2SN O. 00000E+00 0.00000E+00 0.68186E-02 
CE2SN3 0.00000E+00 0.00000E+00 0.31549E-02 
CESN3 0.00000E+00 0.00000E+00 0.12258E-02 
CEC2 0.00000E+00 0.00000E+00 0.11762E+00 
CEP 0.00000E+00 0.00000E+00 0.23773E-01 
LACU 0.00000E+00 0.00000E+00 0.66237E-01 
LACU2 0.00000E+00 0.00000E+00 0.48429E+00 
LACU5 0.00000E+00 0.00000E+00 0.93737E+00 
LACU6 0.00000E+00 0.53056E-03 0.10000E+01 
LA2SN 0.00000E+00 0.17546E-03 0.10000E+01 
LA2SN3 0.00000E+00 0.00000E+00 0.62822E-01 
LASN3 0.00000E+00 0.00000E+00 0.79501E-02 
LAC2 0.00000E+00 0.17629E-02 0.10000E+01 
LAP 0.00000E+00 0.44000E-03 0.10000E+01 
CU31SN8 0.00000E+00 0.00000E+00 0.31464E-01 
CU3SN 0.00000E+00 0.00000E+00 0.20246E-01 
CUSP 0.00000E+00 0.00000E+00 0.27312E-02 
CUP2 0.00000E+00 0.00000E+00 0.11524E-07 
C2CR3 0.00000E+00 0.00000E+00 0.98823E+00 
C3CR7 0.00000E+00 0.10461E-01 0.10000E+01 
C6CR23 0.00000E+00 O. 00000E+00 0.52446E+00 
CM02 0.00000E+00 0.32654E-02 0.10000E+01 
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Fig 7.5 Distribution of carbon and the harmful impurities P, Cu and Sn 
between the various competing phases for a 2.25Cr-1Mo steel as 
a function of the amount of added Mischmetall at 1000 K. 
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a function of the amount of added Mischmetall at 1000 K. 
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intermetallic compounds for two of the steels under study at 1000 K. It 

can be seen from these calculations that lanthanum is a far more 

effective additive than cerium. Fig 7.5, for a 2.25Cr-lMo steel shows 

that relatively small amounts of Mischmetall need be added in order to 

obtain essentially complete removal of phosphorus and tin as LaP and 

La2Sn respectively and removal of 40% of Cu in the form of LaCu6. It 

should be mentioned that this work predicts the removal of phosphorus 

before tin in contrast to that predicted by Seah et al. (377) . This is 

due largely to the more reliable thermodynamic data available now. The 

removal of phosphorus is most important since phosphorus is known to be 

very embrittling in a 2.25Cr-Mo steel. Seah et al. were unable to gauge 

the effect of the addition of the Mischmetall on the carbide structure 

of the steel. Fig 7.5 shows this to be unaffected for relatively modest 

additions of Mischmetall. 

Fig 7.6, on the other hand, which represents the effect of 

Mischmetall on a steel with rather less Cr and Mo, shows that while 

relatively small amounts of Mischmetall are required to remove 

phosphorus, large amounts are required to have any effect on the levels 

of dissolved tin and copper. By that stage the Mischmetall additions 

would have affected the carbide structure of the steel to the extent 

that its physical properties would no longer be within the 

specification. 

The difference between the two steels can be attributed to the lower 

Cr and Mo content in the steel represented by Fig 7.6. For the 

2.25Cr-lMo steel (Fig 7.5) the activity of carbon in the bcc phase is 

effectively lowered by the formation of the stable carbides Cr3C2, Cr7C3 

and Mo2C. This allows Mischmetall to react with the tramp elements. For 

Fig 7.6 the carbon activity is higher promoting reaction with the 

Mischmetall before the Mischmetall can react with the tin or copper. 

This work was able to define successfully a range of Mischmetall 
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additions to various steels to provide, in theory, immunity to stress 

corrosion cracking. The results are based on thermodynamic data and do 

not take into account the kinetics of phase transformation which can 

also be expected to be important. However the results can be applied 

with confidence when predicting the long term stability of materials. 

Conclusions 

Presented in this chapter is a brief description of two sets of 

calculations from thermodynamic data which have been performed to 

elucidate the long term stability of certain steels. The work has 

utilised the latest techniques for the calculation of phase equilibria 

and representation of thermodynamic data. More calculations of 

importance to industry can be performed readily, especially when the 

thermodynamic database has been expanded to cover more elements. 
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CHAPTER 8 

Phase Diagrams and Thermodynamic data for Cu-Fe-Ni-S system 

Introduction 

The aim of this work was to gain greater understanding of the phase 

equilibria in the metal rich part of the Cu-Fe-Ni-S system in order to 

help improve the pyrometallurgical extraction of copper and other 

valuable metals from sulphide ores based on this system. Experience has 

shown that phase transformations in these systems occur readily at 

moderate temperatures and this suggests that a reliable way for 

understanding and predicting behaviour would be to perform calculations 

of the phase diagram from the thermodynamic data. The success achieved 

for alloy systems in the calculation of multicomponent thermodynamic 

data and phase diagrams from the thermodynamic data of the component 

binary systems has led to the adoption of this approach for sulphide 

systems. 

Representation of Data for the Liquid Phase 

The major problem associated with this work was the representation of 

the thermodynamic data in terms of composition for the different phases. 

The liquid phase is particularly difficult to represent because in all 

metal-sulphur systems its thermodynamic properties show marked changes 

at particular compositions. These compositions differ from system to 

system and it has been proposed that this phenomenon was due to some 

sort of ordering. Conventional power series expressions such as the 

Redlich-Kister expression are not capable of representing the data 

adequately although Pelton and Bale (161) have represented the liquid 
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data for the Cu-Fe-S system using a Fourier cosine series. Clearly any 

reliable method for predicting multicomponent phase diagrams must 

attempt to model this physical ordering phenomenon. 

As discussed in chapter 3 much research has already been carried out 

into methods for representing the data for these sulphide liquids. In 

particular it is worth emphasising the work of Kellogg, Larrain and 

their colleagues (213,214,217,219,220,378-382) who have carried out 

extensive measurements of sulphur pressures above the liquid phase and 

modelled their data in terms of associated species. Their work should 

not, however, be thought of as predictive but rather as a correlation of 

the data in terms of a large number of coefficients and associate 

species. Chang and his colleagues (74,204,216,221,223,383,384) have also 

been interested in these systems and have also used the associated 

solution model for the liquid phase. Their approach has been rather more 

predictive and they have attempted to represent both liquid and solid 

phases with as few coefficients as necessary. 

The other major effort on these systems to date was from Hillert and 

his colleagues (229,231-233) who have advocated the use of an extended 

two sublattice model for the liquid phase whereby metal atoms and 

vacancies mix on the first sublattice and sulphur atoms and vacancies 

mix on the other sublattice. Except for their treatment of the metal 

rich part of the Fe-Mn-S system (231) using a simplified description 

they have not reported any ternary sulphide phase diagram calculations. 

An extensive analysis of the different models on the Fe-S and Cu-S 

system was carried out in this present work leading to the conclusion 

that an extended two sublattice model was best suited to represent the 

complex behaviour of these systems. This model was chosen because it 

seems in principle physically more realistic than the associated 

solution model for melts of substances that as crystals have extended 

rather than molecular bonding such as mattes. Because of this it should 



- 85 - 

offer superior prospects for the extrapolation of the binary 

thermodynamic data for the liquid phase into the ternary and quaternary 

systems without the necessity of introducing an excessive number of 

ternary or higher order parameters. This extrapolation is vital for the 

correct prediction of the phase diagram for the Fe-Cu-Ni-S system. 

For the Fe-S liquid phase Fernandez Guillermet et al (232-233) 

assumed that there was an equal number of sites in the two sublattices 

which reflects the abrupt change in the thermodynamic properties at 

about the composition xS-0.5. For the Cu-S system this abrupt change in 

behaviour occurs at about xS=0.33 while in the Ni-S system it occurs at 

about xS=0.4. A number of variations of the two sublattice model could 

in principle be used to represent the liquid data of the Cu-S system. 

However, it is important that the model, in addition to representing the 

Cu-S binary data accurately and extrapolating them reliably into a 

ternary system, is consistent with accepted descriptions for the other 

component systems. 

One model that was tested allows the combination of the data for the 

Fe-S system (1: 1 site ratio) with data for the Cu-S system derived 

assuming a 2: 1 ratio of the number of sites between the sublattices. 

This ratio of sites for the Cu-S system is implied by the change in the 

thermodynamic properties at about xs=0.33. It assumes that in the 

ternary system the copper atoms can occupy twice as many sites as the 

iron atoms even though the iron and copper atoms would mix together on 

the same sublattice. In effect an iron atom would occupy twice the space 

occupied by a copper atom. Even though trial calculations made with this 

model were in good agreement with available experimental data it 

required a non-conventional and non-physical representation of the 

thermodynamic data for the copper-iron binary system. 

A second model, based on a suggestion of Hillert (385), does not 

suffer from such a drawback. It assumes that the liquid phase consists 
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of ions and charged vacancies. Vacancies would be considered as having a 

charge equal in magnitude but opposite in sign to a corresponding ion on 

the other sublattice. Hillert proposed that copper would be univalent 

while iron and sulphur would be divalent. Therefore for the Cu-S liquid 

phase, on the metal sublattice there would be copper ions and vacancies 

with a charge of +2 while on the sulphur sublattice there would be 

sulphur ions and vacancies with a charge of -1. The ratio of sites 

between the two sublattices would not be fixed but would be defined by a 

charge balance between the various ions and charged vacancies. There is 

however no suggestion that these charges are formally present. 

According to the original approach suggested by Hillert, the ternary 

Cu-Fe-S liquid phase could be represented in terms of two sublattices 

with three species on each sublattice. The metal sublattice would 

consist of Fe+2 and Cu+ ions and vacancies with a +2 charge. The sulphur 

sublattice would consist of S-2 ions with two types of vacancy to 

balance the two types of metal ions on the other sublattice. This has a 

severe disadvantage in requiring many data that are unavailable from the 

component binary systems. The model was therefore modified so as to 

require only one type of vacancy on the sulphur sublattice where its 

charge would be non-integral varying according to the relative amounts 

of copper and iron in the phase. 

This model was also tested for its capability for extrapolation into 

the Cu-Fe-S system and was found to give excellent agreement with the 

ternary experimental data. This together with its use of conventionally 

represented Cu-Fe data led to the adoption of this model to represent 

the liquid phase thermodynamic data for phase diagram calculations. 

The general multicomponent model for metal-sulphides will now be 

described and an expression derived for the Gibbs energy of formation of 

compositions in that phase. 
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Details of liquid phase model 

First of all we can consider that the phase contains m elements - ie. 

m-1 metallic elements plus sulphur. The metal atoms in the system can be 

designated by Ai and their the mole fractions by xi while the mole 

fraction of sulphur will be xs. 

In the two sublattice model adopted for this work it is assumed that 

the metal atoms and sulphur atoms occupy different sublattices. 

Following Hillert's suggestion (385) each species in the phase carries a 

notional charge. We can define the charge of the sulphur species as -b 

and the charge on each metal atom as +ai. Vacancies are included in each 

of the sublattices and they also have charges. In the case of the 

vacancies Va on the metal sublattice the charge will be opposite in sign 

but equal in magnitude to the charge on the sulphur atoms in the second 

sublattice ie. +b. The charge -e on the vacancies Vc in the second 

sublattice would vary according to the relative proportions of metal 

ions and their charges according to: 

ID-1 
5a. xi 
i=1 1 e 

m-1 
ýx. 
i=1 1 

For convenience we can designate the phase in terms of the various 

species on the two sublattices as: 

C Miai9....., Va+b ][ S-b, Vc-e ]q 
P 

where p and q are the number of sites on the two sublattices per unit 

cell. It is often convenient to choose the value of q as 1. The ratio of 

p to q is not fixed for the whole phase but is defined by a condition 

that the system should be electrically neutral. 
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It is useful to define a variable s, the size of the system given by: 

M-1 
xi + XVa x+ XVc 

S= i=1 = 
Pq 

2 

For simplicity it is also useful to designate xVa as xm. For each 

species it is necessary to define a site fraction Z1 such that: 

Xi 

z. 1 
m 

X 

k=1 k 

3 

where in this case the species i is on the first sublattice. The site 

fractions of species on the second sublattice can be defined in a 

similar way. 

Since the phase is electrically neutral it is possible to derive a 

relationship between p and q. 

M-1 
57 a1xi +b xVa =b xs +e xVe 
i=1 

According to equation 2 

: 11 
+ XVa =Ps 

and 

xs + xvc =qs 

Substituting these into the above equation and rearranging one obtains: 

M-1 m-1 m-1 m-1 
x1 ai xi +bps Xi -b (I Xi)2 = 

i=1 i=1 i=1 i=1 

M-1 m-1 m-1 
b xs xi +qs aixi - xS : aixi 

1=1 i=1 i=1 

which gives, on further rearrangement and through application of the 



- 89 - 

condition: 

M-1 
xi + xS 

i=1 

M-1 m-1 
b xi + (q s- 1) 37 ai xi 

P= i=1 i=1 5 
M-1 

bs 7- xi 
i=1 

If we consider for example a binary system (m=2) where the charge on the 

the metal atoms is the same as that on the sulphur atoms ie. b=a, this 

expression simplifies to p=q. This is equivalent to the representation 

of Fernandez Guillermet et al. (232,233) for the Fe-S system. If however 

b= 2a as with the Cu-S system for example 

p+ qs 
2s 

The Gibbs energy of formation can now be expressed as the sum of four 

terms. 

a) The Gibbs energies of transformation for the pure elements from 

their reference phases to the liquid phase, 0Gi and 
0 GS. 

b) The formation of the hypothetical materials, liquid AiWS for each 

metal, where w represents the stoichiometry b/ai, 

c) The ideal mixing between ions and vacancies within the 

sublattices. 

d) The interaction between species on the same sublattice. This part 

of the expression contains coefficients of the form G[Ai: S, Vc] which in 

this case represents the interaction between sulphide ions and anionic 

vacancies in the presence of A1 ions on the metal sublattice. Similarly 

G[Aj, Ak: S] describes the interaction between the metal ions Ai and Ak in 

the presence of S ions on the second sublattice. 
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The Gibbs energy of formation is therefore given by: 

m-1 

fG => Xi 0 Gi + xs 
°Gs 

i=1 

m-1 
+s{ ZiZS °GA 

S i=1 w i 

m 

+RTp[ Ziln Zi] 
i=1 

+RTq[ ZS In ZS + ZVc In ZVc 

mr 
+E ZiZSZVc ö G[Ai: S, Vc]h (ZS - ZVc)h 

m-1 mr 
+ ZS Y 7- Zi Zk 7 G[Al, Ak: S]h (Zi - Zk)h 

i=1 k=i+1 h=0 

m-1 mr 
+ ZVc Zi Zk I G[Ai, Ak: Vc]h (Zi - Zk) 

h 

i=1 k=i+1 h=0 

m-2 m-1 rt 
+ ZSZVc Zi Zk 1Z G[Ai, Ak: S, Vc]h 1 i=1 k=i+1 h=0 1=0 ' 

(Zi - Zk)h (ZS -z VC) 
1} 

t 

where, for example, h defines the coefficient of the polynomial up to 

the maximum order r. 

The Gibbs energy of formation is a function of the size of the system 

s which is related to the total population of the vacancies within the 

phase. This is not defined directly by the model and it is necessary to 

find the value of s which will give the lowest value for the Gibbs 

energy of formation. This will in turn describe the vacancy population. 

It is not possible to solve this problem explicitly and it is 

neccessary to use some sort of numerical technique to determine the 

conditions for the minimum value of the Gibbs energy. A convenient 



- 91 - 

method is to use a Newton-Raphson method whereby one searches for the 

values of s that satisfies the condition that (dG/ds)=0. An explicit 

expression was derived for this first differential while the second 

differential (d2G/ds2) was evaluated numerically from the first 

differential evaluated for two very close values of s. For a given 

estimate of s the first and second derivatives can be combined to lead 

to a better value which can itself be used in the same way and so_ on 

until the required accuracy has been obtained. 

The differential of the Gibbs energy of formation with respect to the 

size of the system is given by: 

M-1 d ýfG 
=-k ZS I Zi oGA 

A. S ds 1=1 1w 

+RTpk 1n(ZVa) +RTq 1n(ZVc) 

m-1 r 
+ ZS(ZS -k ZVo) 1 Zi E G[Ai: S, Vc]h (ZS - ZVc)h 

i=1 h=0 

r 
+ ZS(k ZVc(1 - ZVa) + ZVaZVc) Z G[Va: S, Vc]h (Z 

s- 
ZVc)h 

h=0 

- 2Z2Z 'Z Zi Lh G[Ai: S, Vc]h (ZS - ZV0)h-1 
S Vc i=1 h=1 

m-2 m-1 r 
-2k ZS 7 Zi E Zk > GLAI, Ak: S]h (Z1 - Zk 

i 

)h 

=1 k=1 h=0 

m-1 r 
+k ZS (1 -2 ZVa) E Zi L G[Al, Va: S]h (Zi - ZVa)h 

i=1 h=0 

m-2 m-1 r 

-kZ7 Zi Zk (Zi - Zk) h GLAi, Ak: S]h (Zi - Zk)h-1 
S i=1 k=i+1 h=1 

m-2 m-1 r 
+ (1 -2k VC) 1 Zi Zk : G[Al, Ak: Vc]h (Zi - Zk)h 

i=1 k=i+1 h=0 

m-1 r 

+ (Z + ZVc k (1 -2 ZVa) Z Zi Z G[Ai, Va: Vc]h (Zi- ZVc)h 
Va i=1 h=0 
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m-2 m-1 
-kZ Vc 

7 7- 

i=1 k=i+1 
Zi Zk (Zi-Zk) 

r 
2h G[Ai, Ak: Vc]h (Zi-Zk)h-1 

h=1 

M-1 r 
-k ZVc ZVa Zi (1+Zi-ZVa) Zh G{Ai, Va: Vc]h (Zi-ZVc)h-1 

i=1 h=1 

m-1 
-k ZS ZVa I Zi (1 + Zi - ZVa) 

i=1 

m-2 m-1 
+ ZS (ZS -2k ZVc) F Zi 7 

i=1 k=i+1 

r 
Lh G[Ai, Va: S]h (Zi-ZVc)h-1 

h=1 

rt 
Zk GCAi, Ak: S, Vc]h 

' s h=0 1=0 

(Zi - Zk) h (Zs - Zve)1 

m-2 m-1 r t 
-kZZ S Vc 

7- Z Zk ) 
1kk 

h G[A1. 'Ak: S Vc]h l 
i=1 k=i+1 h=1 1=0 , 

(Z1 - Zk)h-1 (z 
s- ZVe)1 

m-2 m-1 rt 
-2 ZS ZVe Y3 Zi Zk >L1 GCAi, Ak: S, Vc3h'1 

i=1 k=i+1 h=0 1=1 

(Z1 - Zk) h (Zs 
- Zvc)1-1 

where k=Qe 
bp 
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Representation of data for the other phases 

The thermodynamic data for the bcc, fcc and L12 phases of the 

metal-metal binary systems were represented by the widely used Redlich - 

Kister power series for the excess Gibbs energy of formation. It was 

assumed that the solubility of sulphur in these phases could be 

neglected. Using the binary data for the metallic systems which were 

combined using the Redlich-Kister ternary expression, Chart et al. (169) 

calculated the phase diagram for the Cu-Fe-Ni system over a range of 

temperatures and obtained good agreement with available experimental 

information. These data were therefore used for the Cu-Fe-Ni-S system. 

Therefore for these phases containing m elements Ai where xi denote 

their mole fractions, the Gibbs energy of formation from chosen 

reference phases for the pure elements is given by: 

LG_ xi °Gi 

i=1 

m 
+RT xi ln(xi) 

i=1 

m-1 mr 
+y xixj E 

i=1 j=i+1 h=0 

m-2 m-1 m 
+ ý 

i =1 j=i+1 k=j 1 

G[Ai, Aj]h (xi-xj) h 

xlxjxk G[Ai, Aj, Ak] 

where °G 
represents the Gibbs energies of transformation for the pure 

element i from its reference phase at the temperature T, G[Ai, Aj]h 

represents the h'th order coefficient for the binary interactions 

between atoms of A. and atoms of Aj, G[Ai, Aj, Ak] represents the ternary 

interaction between elements A1, A and Ak and R represents the gas 

constant. All of the terms 0 Gi, G[Ai, Aj]h and G[Ai, Aj, Ak] can be 

expressed as a function of temperature. 
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For the purpose of this work where the metal rich part of the phase 

diagram is of interest, and in order to simplify the ternary and 

quaternary phase diagram calculations, sulphur solubility was also 

neglected in the binary phases FeS (pyrrhotite), Cu2S (digenite) and NiS 

even though it is known to be appreciable. A study of ternary 

experimental information showed that none of the several phases of 

higher sulphur content than digenite and pyrrhotite has any effect on 

the phase equilibria in the metal rich part of the system. From 

experimental data it appeared that FeS and NiS are completely miscible 

and for convenience this whole phase has been labelled pyrrhotite for 

these calculations. In the literature the phase is often referred to as 

the monosulphide solid solution. Pyrrhotite and digenite (based about 

Cu2S and sometimes labelled as bornite) are not completely miscible 

although both phases appear to intrude into the ternary systems in the 

direction of the other and this was assumed for these calculations. The 

model used to represent the data for these phases was a simplification 

of the model used to represent the data for the liquid phase but with 

the added assumption that no vacancies are present. The phase is assumed 

to contain m-1 metallic elements Ai and sulphur with mole fractions xi 

(i=1... m-1) and xs respectively. As for the liquid phase the metal and 

sulphur atoms are assigned notional charges : ai for the metal atoms and 

b for the sulphur atoms. 

The phase is restricted in composition to lie on a plane between 

binary stoichiometric compounds of composition AS where w represents 

the stoichiometry given by b/ai, The size of the system, s, here is 

equal to xSP the mole fraction of sulphur, since sulphur is the sole 

occupant of the anionic sublattice. We can also define site fractions 

for the metal sublattice Zi, ie. the proportion on the sublattice of a 

given metal atom which will be given by: 
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Z. Xi 
1- PS 

Since the sum of the site fractions on the metal sublattice is equal to 

1, the ratio of sites on the metal sublattice to those on the sulphur 

sublattice, p, will be given by: 

xS 

xs 

The Gibbs energy can therefore be expressed by: 

M-1 
Ofd XS { Z. EGA 

S i=1 iw 

m-1 
+RTp[ Zi1n Zi] 

i=1 

m-2 m-1 r 
+FE Zi Zk 7 

i=1 k=i+1 h=0 
G[Ai, Ak: S]h (Zi - Zk) h} 

where h defines the coefficient of the polynomial up to the maximum 

order r. 

This expression contains three terms: 

a) The Gibbs energies of formation of the compounds AiWS. 

b) The ideal mixing between the metal atoms. 

c) The interaction between the metal atoms. 

This expression requires data for the hypothetical forms of FeS and NiS 

in the digenite phase and Cu2S in the pyrrhotite phase and these data 

must be derived from ternary thermodynamic or phase diagram information. 

The beta phase based about the composition Ni3S2 was treated, for 

simplicity, in the derivation of the data for Ni-S system using a 

Redlich-Kister expression. This is almost certainly inappropriate and 

some sort of sublattice description similar to the liquid phase model 

may be better equipped to represent its data. Unfortunately the phase is 

apparently unquenchable which makes the exact choice of model difficult. 
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Furthermore certain evidence (383,386) suggests that in the Ni-S binary 

system the phase region consists of two distinct phases separated by a 

narrow two phase region. Both Fe and Cu are appreciably soluble in this 

phase and because of the obvious difficulties concerning this phase it 

was decided to continue to use, for simplicity, the Redlich-Kister 

expression which can be readily extrapolated into a multicomponent 

system. The expression for this model-was also used for the bec, fcc and 

L12 phase and was shown earlier. 

The remaining solution phase of interest in the metal rich part of 

the Cu-Fe-Ni-S system is the pentlandite phase (Fe, Ni)9S8. It is 

believed that the solubility of Cu and S in this phase is small and was 

therefore neglected. This phase was modelled as a conventional 

substitutional solution between the Fe and Ni atoms on the metal 

sublattice with a second sublattice occupied solely by sulphur atoms. 

The ratio of sites between the sublattices is 9: 8. 

The remaining phases of interest in this system are the low 

temperature binary stoichiometric phases Chalcocite (Cu2S), Millerite 

(NiS), Heazlewoodite (Ni3S2) and Ni7S6. 

Assessment or Validation of data for the Binary Systems 

The Cu-Fe system 

The data for this system have been validated by Chart et al. (169). The 

phase diagram (Figure 8.1) is well established (44,53,55,387-391) 

although the Fe-based fcc solvus reported in earlier compilations, (e. g. 

Ref 53) has now been revised (44,387,390). The adopted thermodynamic 

data were taken from the assessment of Kubaschewski et al. (390). Other 

detailed thermodynamic assessments for this system have been carried out 

by Hasebe and Nishizawa (387,388) and Lindqvist and Uhrenius (389). 
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The Cu-Ni system 

The data for this system have also been validated by Chart et al (169). 

The phase diagram (Figure 8.2) is well established (44,53,54). 

Thermodynamic data have been taken from the assessment of Hasebe and 

Nishizawa (392). Other thermodynamic assessments for this system have 

been carried out by Elford et al. (393), Kaufman (394) and Larrain 

(395). The experimental thermodynamic data for this system (393) 

indicate the existence of a miscibility gap at temperatures below 

approximately 600 K. 

The Fe-Ni system 

The data for this system were also validated by Chart et al. (169). The 

phase diagram (Figure 8.3) is fairly well established (44,53-55). The 

phase relationships of reported ordered structures based on Fe3Ni and 

FeNi (396-398) remain uncertain and these phases have not been 

considered. A detailed assessment of phase diagram data for this system 

has since been carried out by Xing and Chart (399). For this work the 

thermodynamic data have been taken from the assessment of Kaufman and 

Nesor (374), modified to incorporate the ordered FeNi3-based phase as a 

solution phase. Thermodynamic assessments for this system have also been 

carried out by Hasebe and Nishizawa (392) and Larrain (218). 

The Fe-S system 

The Fe-S system has been critically assessed by Sharma and Chang (221) 

who used an associated solution model for the liquid phase, and by 

Hillert and Staffansson (229) and Fernandez Guillermet et al. (232,233) 

who used a two sublattice description for the liquid phase. The 
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assessment of Fernandez Guillermet et al, is fully compatible with the 

liquid phase model described earlier and was therefore adopted for this 

present work. The phase diagram calculated using their data is shown in 

Figure 8.4 and is in very good agreement with that determined 

experimentally. In the original description the pyrrhotite phase was 

described as a solution phase. For the reasons described earlier, for 

this work it was treated as a stoichiometric phase. In the same way the 

solubility of sulphur in solid iron which is very small has been 

neglected. The phase diagram calculated using these simplified data is 

shown in Figure 8.5. The differences from Figure 8.4 are very slight. 

The Cu-S system 

The selected phase diagram for the Cu-S system is shown in Fig 8.6. The 

diagram has been based primarily on those given in the reviews by Bale 

and Toguri (400), Barton (401), Craig and Scott (402), Kellogg (63,213) 

and Sharma and Chang (204) but incorporating additional information 

(53-55,403-410). 

The basic features shown by this diagram are typical of a number of 

high affinity systems. The solubility of the solid elements in one 

another is very low, there is a compound digenite Cut-xS which melts 

congruently and also exhibits non-stoichiometry to sulphur rich 

compositions. The liquid phase shows a pronounced tendency to 

immiscibility on either side of the composition corresponding to 

digenite and sharp changes in the thermodynamic data at about this 

composition. These data imply ordering of the liquid phase as confirmed 

by electrical conductivity measurements. 

Experimental measurements in the Cu-S system are difficult especially 

at high sulphur concentrations where the vapour pressure of sulphur can 

become very high. On the copper rich side of the diagram the phase 
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boundaries are fairly well known. There is an uncertainty in the metal 

rich boundary of the miscibility gap of about 0.02 in mole fraction. The 

melting behaviour and the range of homogeneity of digenite (Cu2_XS) seem 

well established. The thermodynamic properties in the system have been 

studied extensively especially those of the liquid phase (411-415) and 

of the solid Cut-XS phase (406-408,416-419). 

Most attempts to represent these data in terms of mathematical 

expressions have involved only one phase in isolation. For example Rau 

(407,408) and Nagamori (406) have been concerned with high temperature 

digenite only, while Kellogg (213,214) and Larrain (219,220) have 

considered only the liquid phase. Only the recent work of Chang and 

Sharma (204,216,420) has attempted to cover all the phases in the Cu-S 

system over a wide range of temperatures. In this work, also described 

elsewhere (235), a partial assessment of the Cu-S system has been 

carried out and uses the two-sublattice description for the properties 

of the liquid phase described earlier. 

The vacancy concentrations calculated from the liquid phase model are 

shown in Fig 8.7, which reveals that only in the region of Cu2S are 

there significant concentrations of vacancies on both sublattices. 

Fig 8.8 shows a plot of the Gibbs energy of formation for 1423 K 

calculated using the data fitted to this model. The thermodynamic 

properties can be thought of in terms of the chemical contribution 

arising from the formation of the material and a physical contribution 

arising from the mixing of the atoms and vacancies as shown in the 

diagram. Fig 8.9 shows the log of the activities of Cu and S relative to 

the pure elements in the liquid phase also calculated using these data. 

It agrees well the experimental data for the system. 

Fig 8.10 shows the calculated phase diagram. For simplicity in the 

multicomponent phase diagram calculations as described earlier, digenite 

was treated as stoichiometric rather than as a solution phase. 
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Consequently the liquidus curve to the sulphur rich side of digenite and 

the eutectic at 1085 K have not been reproduced accurately. The 

calculations in the metal rich part of the diagram indicate excellent 

agreement with experimental information. 

The Ni-S system 

The Nickel-Sulphur system has been the subject of much experimental 

study both from the point of view of the thermodynamic data and the 

phase diagram. 

The phase diagrams reported in Hansen and Anderko (53), Elliott (54), 

Shunk (55) and the Metals Handbook (63) have been superseded by one 

given by Craig and Scott (402). The metal rich part of the phase diagram 

is dominated by a deep eutectic formed by the three phase equilibrium: 

Liq = fee + beta 

where the fee is basically Ni with a very small dissolved concentration 

of S and beta is the solid solution phase based around the composition 

Ni3S2, The structure of this beta phase is not at all well known being 

apparently unquenchable and transforming on cooling to the low 

temperature stoichiometric phase heazlewoodite (Ni3S2). There is some 

evidence (383,386) to suggest that the beta phase consists of two 

distinct phases of very similar thermodynamic properties. The other high 

temperature phase in the metal rich part of the system is the 

monosulphide Ni1_XS phase based upon the NiAs structure (B81). At low 

temperatures, various stoichiometric phases appear. In addition to 

Heazlewoodite there are: Ni7S6 (godlevskite), a low temperature form of 

NiS (Millerite), Ni3S4 (Polydymite) and NiS2 (Vaesite). At high 

temperatures the sulphur rich side of the system is dominated by a 
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liquid-liquid miscibility gap. The selected phase diagram shown in 

Fig 8.11 is based upon that of Craig and Scott (402) but incorporating 

additional information (378, L21-430). 

The thermodynamic properties of the liquid phase have been determined 

by a number of workers (378,379,421,422,431-437). The data from Meyer et 

al. (378,379) are the most extensive and are to be preferred. Extensive 

studies have also been carried out on the Beta phase or phases 

(383,386,438-440) while Rau has also studied the monosulphide solid 

solution (428). The low temperature stoichiometric phases have also been 

studied (441-444). Data for the dilute solution of sulphur in nickel 

have been derived by Brigham et al. (426). 

Various authors have attempted to correlate the thermodynamic and 

phase diagram data. Larrain (217) modelled the liquid phase using 

species of Ni, Ni3S2 and NiS and obtained good agreement with the 

liquidus at high Ni concentrations above 1000 K. However no other phases 

were considered. Sharma and Chang (223) have, however, modelled all the 

phases in the system and obtained excellent agreement between the 

experimental and calculated phase diagram. For the liquid phase they 

assumed an associated solution model with associate species of NiS. The 

beta phases were modelled using an empirical power series for the excess 

Gibbs energy while the Ni1_XS phase was modelled according to a 

statistical thermodynamic model similar to that used for pyrrhotite 

(221). The solubility of sulphur in pure Nickel was neglected. 

For this assessment a two sublattice model, as described earlier, was 

adopted for the liquid phase. The experimental data show a dramatic 

change in the thermodynamic properties at about xS = 0.4 which led to 

the adoption by Larrain of associated species of Ni3S2. However here it 

was assumed that the most reliable description of the data using a two 

sublattice model would be obtained by assuming that Ni had the same 

valency as Sulphur ie. treating Ni-S liquid in the same way as Fe-S 
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liquid. As with previous assessments, liquid phase thermodynamic data 

for various temperatures were fitted to the sublattice model. The final 

agreement between the calculated and experimental partial pressures of 

sulphur, compared in Fig 8.12, is excellent. 

For reasons given earlier the solution of sulphur in solid nickel, 

which at maximum is 0.001 in terms of mole fraction, was neglected. 

Similarly the monosulphide phase Ni1_XS which has a range of homogeneity 

from x9 = 0.5 to 0.52, has been treated as stoichiometric NiS. 

The high temperature solid solution phase 'beta' based around Ni3S2 

presented some problems. As mentioned earlier there is evidence which 

indicates that the phase field consists of two distinct but similar 

phases separated by a narrow two phase region. For simplicity this phase 

field was treated as a single phase. The data were represented using a 

simple . 
Redlich-Kister power series expression as used with success in 

alloy systems. This model is not really appropriate and the data derived 

for this phase, although acceptable, must be regarded as provisional. 

Furthermore the data are applicable only for temperatures below 1150 K. 

It is recommended that the phase should be reconsidered in terms of a 

two sublattice description. The other phases in the metal rich part of 

the system were treated as stoichiometric. 

The phase diagram calculated from these data for Ni rich compositions 

is shown in Fig 8.13. 

Calculation of Phase Equilibria in the Cu-Fe-Ni system 

Using data tabulated in the appendix, the phase diagram for the 

Cu-Fe-Ni system was calculated by Chart et al. (169) using the NPL 

ALLOYDATA system (15,173) between the temperatures 673 K and 1673 K. 

They critically assessed experimental ternary phase diagram and 

thermodynamic data for the temperature range 1023 K to 1523 K and 
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incorporated them into the data set in the form of a temperature 

dependent ternary interaction for the fcc phase. It is believed that the 

need for a ternary interaction term arises from small errors in the data 

for the Cu-Fe system. The agreement between the calculated and 

experimental data is good and, it is believed, the optimised data set 

provides a reliable means of extrapolation and interpolation in both 

temperature and composition outside the range of experimental data. 

Furthermore the data provide a reliable base for calculations of 

equilibria in the Cu-Fe-Ni-S system. 

Calculation of phase equilibria in the Fe-Cu-S system 

According to Craig and Scott (402) 'more time and effort has been 

expended in the determination of phase equilibria and minerological 

relationships among the Cu-Fe sulfides than any other ternary sulfide 

system'. They go on to say that despite this many aspects of the phase 

diagram are unknown. This is hardly surprising in view of the large 

number of ternary phases present in the system. Fortunately as far as 

this work is concerned most of these ternary phases are stable only at 

low temperatures and are in any case sulphur rich of the composition 

line joining Cu2S and FeS. Fig 8.14 shows the experimental phase diagram 

for the Fe-Cu-S system at 873 K from Chang et al. (74) based upon the 

diagram of Cabri (445) and shows how the metal rich part of the phase 

diagram is separated from the sulphur rich part by the two phase region 

between Cu2S and FeS. This situation persists at lower temperatures. 

Consequently for this work where all the compositions of interest are in 

the metal rich region, all sulphur rich phases could be ignored. 

The experimental work on the phase diagram of the Fe-Cu-S system has 

been reviewed by Craig and Scott (402) and by Chang et al. (74,446) 

which incorporate a considerable number of experimental measurements 
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(400,401,445,447-472). The thermodynamic properties of the Fe-Cu-S 

system have also been reviewed by Chang et al. (74), Craig and Scott 

(402) and by Barton (401). Data have been derived by a number of groups 

both for the liquid phase (51,52,400,457,469,473-479) and solid phases 

(446,480-485). 

Lee (380) attempted to model the liquid phase of the Fe-Cu-S using 

associated species but even using 14 ternary coefficients failed to 

obtain very good agreement with experimental data. Pelton and Bale (161) 

used a Fourier cosine series to represent the liquid phase data for the 

Fe-Cu-S system along pseudo-binary sections. Such a model requires the 

use of much ternary experimental information and cannot be called 

predictive. 

Fig 8.15 shows the experimentally determined isothermal section for 

1473 K from the assessment of Chang et al. (74). This diagram is 

dominated by the miscibility gaps in the liquid phase and the 

equilibrium between the liquid phase and the fcc iron based solid 

solution. The isothermal section for this temperature was also 

calculated using the data for the binary systems only and this is shown 

in Fig 8.16. As can be seen the agreement is very good. Also shown in 

Fig 8.16 is a comparison of the calculated sulphur activity contours and 

the critically assessed values of Chang et al. Again the agreement is 

very good. For 1623 K the agreement is not so good. Fig 8.17 shows the 

experimental phase diagram from Chang et al. which should be compared 

with the calculated phase diagram in Fig 8.18. Experimentally it is 

found that the liquid phase intrudes to a much larger extent than 

predicted but this is almost certainly due to small errors in the 

thermodynamic data for the Cu-Fe system. Also in Fig 8.18 are contours 

comparing the calculated and experimental sulphur activities showing 

very good agreement. Fig 8.19 shows the calculated phase diagram for 

1665 K. As can be seen the phase diagram changes rapidly at temperatures 
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above 1600 K and the measured intrusion of the liquid phase for 1623 K 

is that predicted for about 1650 K. 

Figs 8.16,8.18 and 8.19 were calculated by setting the ternary 

interaction data to zero in the expression for the Gibbs energy of 

formation of the liquid phase. It was expected from the experimental 

work of Krivsky and Schuhmann (457), Bale and Toguri (400), Sinha and 

Nagamori (478) and Koh and Yazawa (479) that the liquid phase along -the 

join between Cu2S and FeS was near ideal and this assumption was shown 

to be correct by the agreement between the calculated and experimental 

thermodynamic data and phase diagrams. 

In their reviews, Chang et al. (74,446) provide a phase diagram for 

the pseudo-binary section between Cu2S and FeS. This is reproduced as 

the bold lines in Fig 8.20. The liquidus curve, the solid line, is 

fairly well established from experiment down the eutectic at about 

1213 K. The other phase boundaries, the dashed lines, are not well 

known. Data for Cu2S in the Pyrrhotite phase and FeS in the Digenite 

phase were then derived to reproduce the liquidus curves and the 

eutectic temperature. No interaction data were necessary to obtain the 

excellent agreement shown in Fig 8.20 where the calculated phase 

boundaries are indicated by the dotted line. At lower temperatures the 

agreement between the calculated diagram and the diagram of Chang et al. 

is not so good but it should be remembered that the latter diagram is 

estimated in this region. 

Having derived data for the pyrrhotite and digenite phases, the 

Fe-Cu-S phase diagram was calculated at a number of temperatures of 

interest. Figs 8.21 and 8.22 show respectively the experimentally 

determined diagram as assessed by Chang et al. (74) and the calculated 

diagram for 1273 K. As can be seen the agreement is again excellent. 

Below 1200 K the broad features of the phase diagram remain constant 

being dominated by two three phase regions, the first between digenite, 
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fcc and bcc and the second between digenite, pyrrhotite and bcc as shown 

in Fig 8.23, the phase diagram for 973 K. 

Calculation of phase equilibria in the Ni-Cu-S system 

The phase diagram of the Ni-Cu-S system has also been the subject of 

much study and this work has been reviewed by Chang et al. (714). As 

Kullerud and Moh (486) pointed out, the high temperature phase diagram 

is dominated by three separate homogeneous liquid regions as in Cu-S 

binary system. The miscibility gap between the matte phase and the metal 

rich liquid phase has been studied by a number of groups 

(380,381,487-490) of which, according to Chang et al. the data of 

Schlitt et al. (487) and Lee et al. (380,381) are the most reliable. A 

number of investigations of the phase diagram have been made for lower 

temperatures (429,466,488,491-496). 

Thermodynamic data for dilute solutions of sulphur in liquid 

copper-nickel alloys have been tabulated by Chang et al. (74). For more 

concentrated liquids data have been determined by Sryvalin and Esin 

(497), Matousek and Samis (498) and Lee et al. (380,381). 

Two groups have thus far attempted to represent the thermodynamic 

data for the Ni-Cu-S system and check their assessments for consistency 

with the phase diagram. Both groups considered only the liquid phase and 

its equilibrium with the Ni-Cu fcc phase. Larrain and Lee (382) used an 

associated solution model with species of Cu, Cu2S, CuS, Ni, Ni3S2 and 

NiS with a large number of ternary interaction parameters to represent 

the liquid phase and they obtained excellent agreement with all the 

experimental information. Chuang and Chang (381) also used an associated 

solution model for the liquid phase with species of Cu, Cu2S, S, Ni and 

NiS, and derived the six temperature dependant ternary interactions 

between the species from the data for the binary system. Their 
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representation of the available data, while it is very good, is not so 

good as that of Larrain and Lee but then they used fewer parameters. 

As for the calculations of the Fe-Cu-S system, high temperatures were 

considered first. For the Fe-Cu-S system it was shown that the two 

sublattice model was able to represent the thermodynamic data for the 

liquid phase without the need for any ternary interaction data. 

Tentative phase diagram calculations were made for the miscibility gap 

in Cu-Ni-S system at 1473 K and 1673 K without any ternary interaction 

data and it was found that the agreement between calculated and 

experimental phase diagram was poor. This produced a phase diagram where 

the miscibility gap in the liquid phase extends much too far into the 

ternary system from the Cu-S binary compared with the experimental 

diagram shown in Fig 8.24. Ternary interactions were introduced into the 

liquid phase data set in order to improve the agreement between the 

calculated and experimental phase diagrams. Fig 8.25 shows the 

calculated phase diagram with the experimental phase boundaries 

superimposed. The agreement is acceptable although it is recommended 

that more work should be done in the future to improve the agreement. 

Figs 8.26,8.27 and 8.28 show the calculated partial pressures of 

sulphur expressed as log(p3 
2 

)/2 for 1473 K and 1673 K for pseudo-binary 

cuts through the ternary system corresponding to constant xNi: xCu ratios 

of 3,1 and 0.333 respectively. Superimposed on these curves are the 

experimental data of Lee et al. (380,381). The agreement is very good 

for Ni rich compositions. For Cu rich compositions the agreement is not 

so good and this explains the disagreement between the calculated and 

experimental miscibility gap phase boundaries which are very sensitive 

to small changes in the thermodynamic data. Extra terms could have been 

introduced into the liquid phase data set to obtain better agreement but 

this would have impaired the predictive power of the model. It is 

believed that the cause of the discrepancy lies in the choice of the 
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notional charge for Ni as 2. A value of 1.333, as implied from the 

thermodynamic data would probably allow better extrapolation into 

ternary systems. It should however be remembered that the representation 

of the Ni-S binary thermodynamic data by the present data set is very 

good as shown in Fig 8.12. 

Fig 8.29 again shows the calculated phase diagram for 1473 K but, 

with superimposed, the contours for constant activity of sulphur. Fig 

8.30 shows the experimental diagram for the Ni-Cu-S system at 1673 K 

which should be compared with Fig 8.31, the calculated diagram. In 

Fig 8.32, the calculated diagram is shown with contours representing 

constant sulphur activity expressed as log(ps )/2. Figs 8.33 and 8.34 
2 

show the calculated phase diagram for 1273 K and 1173 K respectively. 

They show the gradual disappearance of the matte-liquid metal 

miscibility gap, the formation of the digenite and pyrrhotite phases, 

the increasing dominance of the three phase region Liq + fcc + Digenite 

and the formation of the beta phase based around the composition Ni3S2. 

Data for NiS in the digenite phase and interaction parameters for both 

the digenite and pyrrhotite phases were derived in order to obtain best 

agreement with the experimental diagram for 1053 K from Chang et al. 

(74) shown in Fig 8.35. In a similar way data for the Cu-S, Cu-Ni and 

ternary Cu-Ni-S interactions in the beta phase were derived to be 

consistent with Fig 8.35. The calculated diagram is shown in Fig 8.36. 

The results for the sulphur rich part of the system should be ignored 

for the purposes of comparison. The calculated phase boundaries are in 

some disagreement with the experimental boundaries, in particular the 

composition of the fcc phase at the corner of the three phase region 

with liquid and digenite, and the boundaries of the liquid phase in 

equilibrium with digenite and fcc. It is felt however that the 

calculated diagram is likely to be more correct. Fig 8.37 shows the 

calculated diagram for 973 K close to a predicted eutectic between 
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digenite and the beta phase. This is in excellent agreement with the 

experimental eutectic temperature of 978 K (7,! 88). Fig 8.38 shows the 

calculated phase diagram for 873 K and this should be compared with the 

experimental phase diagram in Fig 8.39. A ternary eutectic is predicted 

from the calculations and this has been observed experimentally. The 

overall agreement between Figs 8.38 and 8.39 is very good. 

Calculation of phase equilibria in the Ni-Fe-S system 

The Ni-Fe-S system is of great general interest since phases based in 

this system are found in many ores. The experimental data for the 

Ni-Fe-S system has been reviewed by Hsieh et al. (499) and Craig and 

Scott (402) incorporating the large number of studies of the phase 

diagram (466,500-520). 

There have been few experimental studies to derive thermodynamic data 

for the Ni-Fe-S system. Naldrett and Craig (506) and Kao (517) have 

studied the partial pressure of sulphur above the monosulphide solid 

solution (pyrrhotite). Kao, who also studied the two phase region 

between pyrrhotite and the beta phase, paid particular attention to the 

phase relationships and the representation of the thermodynamic data. 

Scott et al. (521,522) investigated the activity of FeS in the 

pyrrhotite phase at 1203 K and found that NiS and FeS mix ideally for a 

given mole fraction of sulphur. Studies have been carried out on dilute 

solutions of sulphur in the liquid phase (432-434,523,524). Concentrated 

liquids have been studied by Vaisburd et al. (525) who measured the 

activities of Fe in cc, - entrated liquids at 1573 K while Byerley and 

Takebe (437), Meyer (379) and Bale (526) have studied the partial 

pressures of sulphur above the liquid phase at high temperatures. 

Thermodynamic data were predicted for the liquid phase from the data 
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of the component binary systems only. As was found for the Cu-Ni-S 

system these predicted data were not in good agreement with the 

available experimental data and it was necessary to introduce ternary 

parameters. The data of Byerley and Takebe are thought to be less 

reliable than those of Meyer and Bale and have not been considered in 

detail. Some reliable phase diagram data are also available for the 

equilibrium between the liquid phase and fcc metallic phase (516). 

Close agreement between predicted and experimental thermodynamic and 

phase diagram data was obtained by optimising the ternary parameters 

with a specially developed computer program. Figs 8.40,8.41 and 8.42 

show the calculated partial pressures of sulphur and, superimposed, the 

experimental values determined by Meyer (379) for 1473 K, 1573 K and 

1673 K and various relative proportions of Fe and Ni. Fig 8.43 shows the 

calculated partial pressures of sulphur for various relative proportions 

of Fe and Ni at 1473 K with the experimental data of Bale (526) 

superimposed. As shown the agreement between calculated and experimental 

data is very good. There does however seem to be some disagreement 

particularly for high relative ratios of iron to nickel. 

Figs 8.44 and 8.45 shows the calculated phase diagram for 1573 K and 

1473 K in good agreement with the experimental work of Lenz et al. 

(516). The calculated phase diagram for 1473 K is also shown in Fig 8.46 

with contours representing constant activities of sulphur expressed as 

log(p3 )/2. 
2 

Below 1464 K the pyrrhotite phase becomes stable first for the 

composition FeS and at lower temperatures extending completely across 

the system to NiS. According to Scott et al. (521,522) who measured the 

variation of the activity of FeS in the monosulphide solid solution, FeS 

and NiS mix ideally at 1203 K. Furthermore Misra and Fleet (513-515) and 

Craig (512) found that at temperatures below 573 Ka miscibility gap 

develops either side of a composition corresponding to FeNiS2. These two 
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pieces of information were sufficient to define the thermodynamic data 

for the monosulphide solid solution phase over the temperature range of 

interest. The solid solution in the monsulphide has also been studied by 

Kao (517) for 973 K. The calculated phase diagram for 1273 K and 1173 K 

are shown in Figures 8.47 and 8.48. 

In the Ni-S binary system the beta phase is stable only below 1073 K. 

According to Hsieh et al. (499) the beta phase is stable in the ternary 

system at 1123 K with the mole fraction of Fe of about 0.2. These 

results were not available when this work was carried out and therefore 

they have not been considered. Data were developed to represent the 

intrusion of the Ni3S2 solid solution phase into the ternary system 

based upon the experimental diagram in Craig and Scott (402). 

The other phase of interest in this system is the pentlandite phase 

(Fe, Ni)9S8 which, according to Kullerud (502) is stable below 883 K. 

Data were derived for this phase to be consistent with this observation 

and to reproduce the extent of stability of this phase at 673 K shown by 

Craig et al. (507). Figures 8.49 and 8.50 shows the region of stability 

of pentlandite and its predicted phase relationships for 850 K and 673 K 

respectively. 

Calculations in the Ni-Fe-Cu-S system 

In the quaternary system experimental data are available for the 

partial pressure of sulphur above the matte as a function of sulphur 

concentration for certain relative proportions of Cu, Fe and Ni 

(380,526). Calculations were made using the data derived for the binary 

and ternary systems to compare the experimental and predicted 

thermodynamic thermodynamic data for the liquid phase. As is shown in 

Figures 8.51-8.53 the agreement is excellent even although no new data 
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were included specifically for the quaternary system. 

Fig 8.51 compares the calculated properties with the measured 

properties of Bale (526) for 1473 K for different relative proportions 

of iron and nickel but with a constant ratio of nickel to copper mole 

fractions. Figs 8.52-8.53 compares the calculated properties with those 

from Lee (380) for various temperatures and relative mole fraction 

ratios of Fe, Ni and Cu. 

Conclusions 

A new model has been developed for representing the thermodynamic 

data for the liquid phase in sulphide systems based upon a two 

sublattice model. The model has been tested out and shown to give 

results in very good agreement with experimental information. 

Data have been derived for all the phases of importance for the metal 

rich part of the Cu-Fe-Ni-S system. These are of importance in 

understanding and improving processes for the extraction of metals from 

ores based on this system. Binary data sets for the Cu-S and Ni-S 

systems were critically assessed and combined with data for the Fe-S 

system from Fernandez Guillermet et al. and the Cu-Fe-Ni system of Chart 

et al. to predict phase equilibria in the ternary and quaternary 

systems. Ternary interaction data were derived where appropriate from 

any experimental ternary information available. The agreement between 

calculated and the experimental phase diagrams and thermodynamic data is 

very good especially at lower temperatures. At higher temperatures the 

agreement could be improved through a reassessment of the data for a) 

the Cu-Fe system taking available ternary data into account, b)the beta 

phase with a two sublattice model incorporating the most recent 

experimental data and c) the liquid phase with a different notional 

charge for nickel ions. 
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CHAPTER 9 

Conclusions and Suggestions for Future Work 

A wide range of topics have been dealt with in this thesis ranging 

from the measurement of the enthalpies of formation for selected alloys 

in the Fe-Ti system, the critical assessment of data, development of 

models and expressions to represent data, development of procedures for 

the calculation of phase diagrams and their use in the calculation of 

equilibria for steel and sulphide systems. 

A fair degree of success has been achieved in this work although it 

must be admitted that in each of these areas more work needs to be done 

as has been referred to many times within the text. In particular this 

thesis has highlighted the need for more theoretical work to understand 

and represent the various contributions which comprise thermodynamic 

data. For elements the liquid phase is not well understood and in 

particular the structural changes leading to the glass transition which 

occurs as a liquid is cooled down usually below its freezing point. For 

phase diagram calculations data are also required for elements in 

unstable phase structures. Theoretical work to provide such data would 

be most welcome. 

For binary systems many reliable models are now available to 

represent the data for solid phases. Unfortunately the correct choice of 

models will depend particularly on the structural characteristics of the 

material and how these change as the composition or temperature is 

varied. In this thesis two solid 'compound' phases were of particular 

importance - the Laves phase compound Fe2Ti and the phase or phases 

based about Ni3S2. The former exists over a wide range of homogeneity in 

the binary system and although its structure (C14) is known, the way the 

occupation of lattice sites changes with composition is not. The 
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situation is worse for Ni3S2 since it seems to be virtually unquenchable 

and its structure is not known at all. Furthermore not only does it 

exist over a wide range of homogeneity in the Ni-S binary system but it 

also dissolves significant quantities of Cu and Fe. To complete the 

gloomy picture there is evidence to suggest that the phase is not just 

one phase but two phases. In this thesis data for Ni3S2 and Fe2Ti were 

represented by a Redlich-Kister power series expression which was a 

convenient although not necessarily physically correct description. Both 

these phases should be reconsidered using structural models once the 

required experimental structural information is available. 

For multicomponent systems much work still need to be done to develop 

and test out models to represent thermodynamic data. The work reported 

here on sulphide systems and in particular the liquid phase was very 

successful although improvements could be made in the representation of 

the data for the Cu-Ni-S system. In particular the use of a different 

notional valency for nickel would be of great interest. This would 

require a reassessment of the Ni-S binary system which could be carried 

out in conjunction with a revised treatment of Ni3S2, 

More recently Hillert et al. have suggested a new model for liquid 

phases based upon a sublattice description. This model seems more 

general and versatile than that used in the present work and it is hoped 

that it will soon be tested out on sulphide systems. Also of great 

importance is the development of reliable but versatile models for oxide 

systems and in particular slags. 

In more general terms there needs to be continued development of 

systems for the calculation of phase equilibria linked to databases for 

the use of industry. This requires a long term programme of data 

assessment work, backed up by basic experimental work, to create a self 

consistent database and the development of sophisticated software to 

simulate industrial processes. Effort must also be made to encourage 
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industry to use such facilities. 

The work reported in this thesis is only a small part in a worldwide 

effort in thermodynamics but it is to be hoped that it has made some 

contribution to the generation and application of chemical and 

metallurgical thermodynamic data. 
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APPENDIX 

The liquid phase is chosen as the reference phase for each of the elements. T 

parameters for the Gibbs energies of formation for the various phases 

interest in J mol-1 are: 

Liquid 

°GNi 
=0 

G Fe =0 

°GCu 
=0 

°Gs 
=0 

0 GNiS = -71390.17 - 7.45917 T 
0 GFeS -80947 - 129.155 T-0.0041755 T2 + 16.291 T ln(T) 

°GCu 
s= -86094 - 22.291 T 

2 
G[Ni: S, Vc] _ (-67995.65 + 21.1647 T) 

+ (-51984.49 + 17.0106 T) (ZS-ZVc) 

+ (-1193.338 + 3.55053 T) (ZS-Zvc)2 

G[Fe: S, Vc] _ (31761 - 9.202 T) 

+ (40761 - 0.477 T) (ZS-ZVc) 

G[Cu: S, Vc] (19385 + 17.076 T) 

+ (-3718 - 0.879 T) (ZS - Zve) 

G[Va: S, Vc] = 100 T 

G[Ni, Fe: S] -10035.03 

G[Ni, Cu: S] = 15000 + 10000 (ZNi - ZCu) 

G[Ni, Va: S] ( 23228.52 - 2.8569 T) 

+ (-10168.80 - 9.5614 T) (ZNi-ZVa) 

G[ Fe, Cu : S] =0 

G[Fe, Va: S] (79779 - 45.139 T) 

+ (-57510 + 17.082 T) (ZFe-ZVa) 

I 



- A2 - 

G[Cu, Va: S] _ (107706 + 21.338 T) 

+ (-6011 - 3.514 T) (ZCu-ZVa) 

+ (-39812 - 5.424 T) (ZCu-ZVa)2 

G[Ni, Fe: Vc] = (-20292.4 + 5.9622 T) 

+ (-11924.4 + 3.2426 T) (ZNi_ZFe) 

G[Ni, Cu: Vc] _ (10460 + 2.0878 T) 

+ (1451.8 - 0.3933 T) (ZNi-ZCu) 

G[Ni, Va: Vc] = 100 T 

G[Fe, Cu: Vc] _ (34321.3 - 1.8577 T) 

+ (1811.6 - 1.6401 T) (ZFe-ZCu) 

+ (7564.6 - 2.5857 T) (ZFe-ZCu)2 

+ (2418.3 - 2.3472 T) (ZFe-ZCu) 3 

G[Fe, Va: Vc] = 100 T 

G[Cu, Va: Vc] = 100 T 

G[Ni, Fe: S, Vc] = 20136.96 + 9913.78 (ZNi - ZFe) - 13519.09 (ZS - ZVc) 

G[Ni, Cu: S, Vc] _ -25000 + 20000 (ZS - ZVc) 

G[Fe, Cu: S, Vc] =0 

fcc 

0GNi 
-17614.6 + 10.209 T 

0 GFe- = 11274 - 163.878 T-0.0041756 T2 + 22.03 T ln(T) 

0GCu 
= -13054.1 + 9.6232 T 

G[Ni, Fe] (-16359.4 + 1.02872E-2 T2 - 4.384E-6 T3) 

+ (-18451.4 + 1.41177E-2 T2 - 6.017E-6 T3) (x -xFe) 

G[Ni, Cu] _ (8137.8 + 3.0083 T) 

+ (2535.5 - 0.8284 T) (xNi-xCu) 

G[Fe, Cu] (48208.0 - 8.4475 T) 

+ (5916.1 - 5.0166 T) (XFe-XCu) 

G[Ni, Fe, Cu] = -62760 + 20.5 T 
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bcc 

0 GNi = -31106.99 + 102.0017 T-9.9718E-3 T2 

+ 3.192592E-6 T3 - 10.06475 T ln(T) + 2693466.3 T-1 

°GFe = -268257. ' + 2388... 3802 T+0.1867633 T2 

- 18.26149E-6 T3 - 337.18251 T ln(T) + 35590150 T-1 

°GCu = -6778.0 + 6.276 T 

G[Ni, Fe] _ (-7'468.4 + 1.83699E-2 T2 - 7.3894E-6 T3) 

+ (-8807.3 + 1.701423E-2 T2 - 5.8024E-6 T3) (xNi-xFe) 

G[Ni, Cu] _ (8137.8 + 3.0083 T) 

+ (2535.5 - 0.8284 T) (xNi-xCu) 

G[Fe, Cu] _ (10890.9 + 88.1276 T-6.15885E-2 T2 

+ 1.2857E-5 T3) 

+ (2071.0 - 10.6357 T) (xFe-xCu) 

G[Ni, Fe, Cu] =0 

L-4 

eGNi 
= -17614.6 + 10.209 T 

0GFe 
= 11274 - 163.878 T-0.0041756 T2 + 22.03 T in(T) 

G[Ni, Fe] (-30965.7 + 29.6604 T) 

+ (-26087.2) (xNi-xFe)_ 

+( 297.0) (xNi-xFe)2 

+( 18468.1) (xNi-xFe)3 
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Beta 

0 GNi 290443.6412 - 167.5003 T 

°GFe = 290443.6412 - 167.5003 T 

0 GCu = 290443.6412 - 167.5003 T 

0G5 = 65357 - 165.396 T+ 13.513 T ln(T) 

G[Ni, Fe] =0 

G[Ni, Cu] =0 

G[Ni, S] _ (-896377.028 + 515.2259 T) 

+ (-560488.9k2 + 206.182 T) (xNi-xS) 

G[Fe, Cu] =0 

G[Fe, S] _ -551900 + 300 T 

G[Cu, S] -902000 + 666.7 T 

G[Ni, Fe, Cu] =0 

G[Ni, Fe, S] _ -1655700 + 900 T 

G[Ni, Cu, S] _ -600000 

G[Fe, Cu, S] =0 

Gas 

G[1S2] 65357 - 165.396 T+ 13.513 T in(T) 
2 

Pyrrhotite 

oGNiS 
= -157743.33 + 375.2205 T- 44.372 T ln(T) 

0GFeS 
= -93486 - 127.434 T+ 16.358 T ln(T) 

GCu2S = -75000 - 120.321 + 13.513 T 

G[Ni, Fe: S] = 18192.03 - 15.12 T 

G[Ni, Cu: S] = 30000 

G[Fe, Cu: S] =0 
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Digenite 

°GNiS = -60000 - 130 T+ 16.358 T ln(T) 

° GFeS = -84400 - 130 T+ 16.358 T ln(T) 

°GCu 
s -86136 - 120.321 T+ 13.513 T ln(T) 

2 
G[Ni, Fe: S] =0 

G[Ni, Cu: S] = 50000 

G[Cu, Fe: S] =0 

Chalcocite 

0GCu 
2S 

- -87969 - 117.732 T+ 13.513 T ln(T) 

0 Gc s= -44220 - 103.674 T+ 13.513 T ln(T) 

Millerite 

ýGNiS 
= -125300.00 - 49.64 T+ 13.513 T ln(T) 

Heazlewoodite 

ýGNi 

3S= 
-235901.51 + 21.5438 T 

2 

Ni 

ýGNi 
7s6= 

1559472.551 - 23670.842 T+ 3133.897 T in(T) 
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Pentlandite 

0GNi 
9S8= 

-937626.3 + 195.48 T 

OGFe 
S= -655929.018 - 1352.3247 T+ 178.3323 T ln(T) 

98 
G[Ni, Fe: S] (-918799.002 + 809.523 T) 

+ (-326892.6 + 485.7138 T) (ZNi - ZFe) 
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