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Although, plant hormones play an important role in adjusting growth in response to

environmental perturbation, the relative contributions of abscisic acid (ABA) and ethylene

remain elusive. Using six spring wheat genotypes differing for stress tolerance, we

show that young seedlings of the drought-tolerant (DT) group maintained or increased

shoot dry weight (SDW) while the drought-susceptible (DS) group decreased SDW in

response to mild drought. Both the DT and DS groups increased endogenous ABA

and ethylene concentrations under mild drought compared to control. The DT and DS

groups exhibited different SDW response trends, whereby the DS group decreased

while the DT group increased SDW, to increased concentrations of ABA and ethylene

under mild drought, although both groups decreased ABA/ethylene ratio under mild

drought albeit at different levels. We concluded that SDW of the DT and DS groups

might be distinctly regulated by specific ABA:ethylene ratio. Further, a foliar-spray of

low concentrations (0.1 µM) of ABA increased shoot relative growth rate (RGR) in

the DS group while ACC (1-aminocyclopropane-1-carboxylic acid, ethylene precursor)

spray increased RGR in both groups compared to control. Furthermore, the DT group

accumulated a significantly higher galactose while a significantly lower maltose in the

shoot compared to the DS group. Taken all together, these results suggest an impact

of ABA, ethylene, and ABA:ethylene ratio on SDW of wheat seedlings that may partly

underlie a genotypic variability of different shoot growth sensitivities to drought among

crop species under field conditions. We propose that phenotyping based on hormone

accumulation, response and hormonal ratio would be a viable, rapid, and an early–stage

selection tool aiding genotype selection for stress tolerance.

Keywords: abscisic acid, drought, ethylene, growth sensitivity, hormonal ratio, mild drought

INTRODUCTION

Drought is a major abiotic stress limiting plant growth and yield. While plant responses differ with
drought intensity, timing, and duration (Claeys and Inzé, 2013), we now understand that traits that
confer survival of severe stress episodes will not deliver sustained growth and yield under mild
stress (Skirycz et al., 2011). From an agricultural viewpoint, severe growth reduction may result in

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Lincoln Institutional Repository

https://core.ac.uk/display/337660267?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org/Plant_Science/editorialboard
http://www.frontiersin.org/Plant_Science/editorialboard
http://www.frontiersin.org/Plant_Science/editorialboard
http://www.frontiersin.org/Plant_Science/editorialboard
http://dx.doi.org/10.3389/fpls.2016.00461
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2016.00461&domain=pdf&date_stamp=2016-04-18
http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive
https://creativecommons.org/licenses/by/4.0/
mailto:r.valluru@cgiar.org
http://dx.doi.org/10.3389/fpls.2016.00461
http://journal.frontiersin.org/article/10.3389/fpls.2016.00461/abstract
http://loop.frontiersin.org/people/154607/overview


Valluru et al. ABA/Ethylene Ratio and Shoot Growth Sensitivity

significant yield loss even under mildly stressed field conditions.
Most crop species exhibit a large genetic variability of expansion
growth (Pereyra-Irujo et al., 2008; Parent et al., 2010; Welcker
et al., 2011; Tardieu et al., 2014) and biomass growth (Wang
et al., 2008; Boutraa et al., 2010; González, 2011) in response
to drought. Therefore, identifying genotypes that maintain,
or at least limit the reduction of, growth under stress might
be a useful strategy to boost plant biomass (Skirycz et al.,
2011; Hatier et al., 2014). Efficient translation of biomass into
grains would also enhance yield productivity under stress
conditions.

Plants have evolved some adaptive strategies to cope with
mild and severe restriction in water availability (Davies and
Zhang, 1991). In showing selectivity over the maintenance of
either water balance and/or gas exchange, plant species favor
either “survival” or “growth” behavior, respectively, when they
encounter stress conditions (Tardieu et al., 2014). The latter
strategy, which is an opportunistic risk-taking, is generally
regarded as a stress-resistance trait (Sade et al., 2012) and plants
with this behavior tend to occupy more mild to moderate
drought-prone natural habitats (McDowell et al., 2008). This
behavior may allow vegetative and reproductive growth under
mild to moderate stress conditions but will confer no benefit
under conditions of prolonged and severe stress in which plants
with the former strategy may survive (Tardieu et al., 2014) but
yield can be minimal. Hence, a survival vs. growth strategy of
plants differs according to soil moisture. A homeostatic hydraulic
regulation is known to partly drive this species specificity
(Meinzer et al., 2014); however, some species, grapevine (Chaves
et al., 2010), and poplar (Almeida-Rodriguez et al., 2010),
can switch between “survival-growth” strategies in response
to fluctuating soil moisture. The mechanistic basis of such a
dual growth habit is yet to be fully understood, however, it
could be regulated by an interaction of hydraulic and chemical
signaling.

When drought stress develops, not all leaves respond similarly
in stomatal closure (Blum, 2011). It was recently argued that
drought insensitive stomata may favor carbon gain at the expense
of expansive growth (Caldeira et al., 2014; Tardieu et al., 2014).
Biomass accumulation and expansive growth may be controlled
by independent environmental and genetic factors (Fatichi et al.,
2014) and may govern yield under stress. The positive effect
could be through enhancing carbon acquisition, in addition to
specific adaptations that allow continued growth under drought
(e.g., reprogrammed energy metabolism, osmotic adjustment
and high cell wall extensibility; Claeys and Inzé, 2013). The
negative effect of wide stomatal aperture on expansion growth
could be a consequence of lower hydraulic conductivity (Caldeira
et al., 2014). Though the role of abscisic acid (ABA) in plant
hydraulics has been debated (Dodd, 2013), ABA can regulate
hydraulic conductance (Jia and Davies, 2007; Pantin et al.,
2012) via regulation of aquaporins (Sade et al., 2009; Prado
et al., 2013). In addition, ethylene, under flooding, can promote
(Kamaluddin and Zwiazek, 2002) or inhibit (Li et al., 2009)
hydraulic conductivity under phosphorus deficiency depending
on the environmental conditions. In addition, auxins and
cytokinins closely regulate hydraulic conductivity, and thereby

shoot growth, under stress conditions. The interaction between
hydraulic and hormonal traits may therefore deliver differences
in growth and yielding of crops under drought. We hypothesize
that the subtle sensitivity of stomatal and growth traits to
chemical regulators can be viewed as a model for species
survival–growth behavioral plasticity (Soar et al., 2006; Rogiers
et al., 2012) especially under drought.

Plant hormones are well-known to act as growth regulators
and their concentrations change in response to numerous stresses
(Hays et al., 2007; Ji et al., 2011). Both ABA and ethylene
have been shown to exert dual effect on growth: stimulatory
at low concentration (Ku et al., 1970; Suge, 1971; Nishizawa
and Suge, 1995a,b; Lehman et al., 1996; Smalle et al., 1997)
while inhibitory at high (Pratt and Goeschl, 1969; Guzmán
and Ecker, 1990; Kieber et al., 1993; Tanaka et al., 2013),
a “dose-growth” response phenomenon known as “hormesis”
(Pierik et al., 2006; Gressel and Dodds, 2013). Relatively
few studies have examined the stimulatory properties of low
concentrations of ABA and ethylene (Suge, 1971; Takahashi,
1972; Neskovic et al., 1977; Pierik et al., 2006), suggesting that
low concentrations (≤ 0.1µl L−1 or ≤ 0.1µM) of ethylene
and ABA stimulate organ growth to the extent that, across
planta, varies widely (0% to >100%) depending on the timing of
application, level of organization (e.g., cell, organ), plant species,
seedling age, and the physiological and growth conditions.
The mechanisms controlling hormone dose-dependent growth
response are largely unexplored. Nevertheless, hormetic growth
response in general has been vigorously debated in ecotoxicology
and medicine and its potential for increasing plant productivity
has recently been discussed (Pierik et al., 2006; Gressel and
Dodds, 2013).

In this study, we hypothesize that different genotypes
may exhibit differential growth sensitivity to drought stress
particularly via hormone responses that are normally induced by
numerous stresses (Hays et al., 2007; Ji et al., 2011). We show
that six spring wheat genotypes differing for stress-susceptibility
(see below) exhibit a large genetic variability for early-stage
growth sensitivity to very low concentrations of exogenous
ABA and ethylene which reflects the yield performance of
the genotype under mild stress and/or may indicate more
general genotype-specific hormone responses that can benefit
growth and yield later in plant development. Further, we
show that drought-tolerant and drought-susceptible genotypes
differ in their ABA and ethylene accumulation, which might
be most likely to occur under mild drought-stressed natural
habitats.

MATERIALS AND METHODS

Plant Material and Growth Conditions
Six spring wheat (Triticum aestivum L.) genotypes were selected
and designated as drought-tolerant (DT: Kea, Attila, Florkwa)
or drought-sensitive (DS: SeriM32, Simorge, Barbet1) groups
based on their stress susceptibility, biomass accumulation and
yield potential in the field (Lopes et al., 2012). These groups
were selected in such a way that both the DT and DS groups
show contrasting yield susceptibility to stress and non-stress
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conditions (Figure 1). The DS group had higher yield under
non-stress (1094 g/m2) while they maintain only 43% of non-
stress yields (474 g/m2) under stress conditions. In contrast, DT
group had lower grain yield under non-stress (829 g/m2) as
compared to DS group but they maintain 73% (606 g/m2) of
non-stress yields under stress conditions. Therefore, both groups
have differential yield susceptibilities to stress and non-stress
conditions. This atypical selection is at marked contrast to a
widely accepted breeders conception that selection for high yield
potential under non-stress conditions has also improved yield
under stress especially formild tomoderate drought stress (Araus
et al., 2002, 2008; Trethowan et al., 2002; Cattivelli et al., 2008).
However, such genotype selection may be useful to understand
the underlying mechanisms of growth and yield responses to the
environment.

For all experiments, seeds were initially germinated on a
wet-filter paper placed in the Petri dish at room temperature,
and a 7-day-old seedlings were transplanted into 0.5 L plastic
pots containing a well-prepared mixture of a soil-based compost
(John Innes No. 2, UK). Plants were initially grown in a naturally
lit glasshouse with supplementary artificial lighting of 200µmol
m−2 s−1 photosynthetically active radiation (PAR), and a
photoperiod of 12 h with day/night temperatures of 25/18◦C,
respectively. When seedlings reached two-leaf stage, plants were
shifted to growth cabinets with an average day/night temperature
of 25/22◦C, 12 h photoperiod with a relative humidity (RH)
of 90%. All plants were well-watered daily and half-strength
Hoagland nutrient solution was provided on alternative days.
In chemical spray experiments, seedlings (two-leaf stage) were
shifted to a modified hydroponic system (50ml tube-system), in
which nutrient solution was changed every 2-days and aeration
was continuously provided with aquarium air-pump (BOYU,
S-4000B, 3.2 L min−1).

Mild Drought Stress under Controlled
Conditions
Mild water deficit (MWD) was imposed as described previously
(Deokar et al., 2011). When seedlings reached three-leaf stage,
water was withheld from all pots to initiate a dry-down
procedure. Weight of all individual pots was recorded daily in
the morning at ∼10.30 h to monitor soil moisture content in
both treatments. Daily loss of water through evapotranspiration
(ET) was calculated as the difference in pot weight on the current
day from that of the previous day. After 7–8 days, when the
soil moisture content reached target values of approximately
0.44 and 0.33 g per g−1 dry soil in WW and MWD treatments,
respectively, (Supplementary Figures S1A–C) all plants were
watered daily with the amount of water lost through ET of each
pot daily. Thus, WW and MWD plants were maintained at ∼94
and 70% of field capacity, reflecting a soil matric potential of
∼ −0.0048 and −0.08 MPa respectively, as determined from a
moisture release curve of the same soil type (Dodd et al., 2006).
Both treatments were maintained at the targeted soil moisture
for 7 days and leaf samples were then collected before watering
to determine endogenous ABA and ethylene accumulation. The
remainder of the shoot was harvested separately. Shoot dry

FIGURE 1 | Grain yields of six different wheat genotypes grown under

non-stress and stress conditions in the field. The selected wheat

genotypes were: Tolerant: Kea, Attila, Florkwa; Sensitive: Simorge; Barbeti;

SeriM82. SEN, sensitive group; TOL, tolerant group.

weight was determined after samples were oven-dried at 80◦C
for 72 h. Root growth was not measured in the study. Two
experiments with four completely randomized replications for
each genotype were conducted.

Determination of Endogenous ABA and
Ethylene
Endogenous ABA concentrations and ethylene evolution were
measured in MWD experiment. For ABA determination, leaf
tissues (0.2–0.4 g fresh weight) were collected and immediately
frozen in liquid nitrogen. Frozen leaf tissue was freeze-dried
for 48 h, finely ground and then extracted in distilled deionized
water with an extraction ratio of 1:40 (gram dry weight:mL
water) at 4◦C overnight. ABA concentrations of the extract were
determined using a radioimmunoassay as described (Chen et al.,
2013).

Endogenous ethylene emission from leaves was measured
using a commercial laser-based ethylene detector (ETD-300,
Sensor Sense B.V., Nijmegen, The Netherlands) in combination
with a gas handling system (VC-6, Sensor Sense B.V.) as
described previously (Wang et al., 2013). Leaf tissues (0.25–
0.45 g fresh weight) of WW and MWD plants were sampled,
weighed immediately, and placed in 50mL glass tubes containing
moistened filter paper and were allowed wound-induced ethylene
to subside (Yang et al., 2006). Later, glass tubes were tightly
capped with a double-bent rubber stopper and were further
incubated for 5 h in the light at the room temperature. Using a
5-mL syringe, 4mL gas was extracted through rubber stopper,
and stored in 4mL sealed glass vials. These vials were connected
to inlet and outlet cuvettes of VC-6 system, which allow six
cuvettes at once, and continuously flushed with air at a constant
flow of 4 L h−1. Ethylene emission from each vial was monitored
alternatively by ethylene detector in sample-mode for 10min. To
remove any traces of external ethylene or other hydrocarbons,
the airflow was passed through a platinum-based catalyser before
entering the cuvettes. A scrubber with KOH and CaCl2 was
placed before ethylene detector to reduce the CO2 and water
content in the gas flow, respectively. The ethylene emission was
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corrected for tissue fresh weight and the duration of incubation
to determine ethylene emission rate.

Drought Trials under Field Conditions
Four field trials were conducted during 2009–10 and 2010–
11 under two different growth environments: two under well-
irrigated conditions (controls, total cropwater supply>700mm),
and two under drought (total crop water supply ≤300mm). All
trials were sown in alpha-lattice design with two replicates in
the Yaqui Valley at CIMMYT’s Obregon Experimental Station
in North-Western Mexico (27◦25′N 109◦54′W, 38m above sea
level). Detailed trial procedures and meteorological data were
described elsewhere (Lopes et al., 2012, 2015; Sukumaran et al.,
2015). Briefly, the sowings were made in late November each
year with either irrigation or drought. In drought trials, irrigation
was at sowing with no further irrigation, making ∼180mm
of water available to the crop. The experimental design was a
randomized lattice with two replications in 2m long and 0.8m
wide plots consisting of one raised bed with two rows per bed
at seed rate of 120 kg/ha. Appropriate weed, fertilization, disease,
and pest control were followed to avoid any yield limitations.
When seedlings were at three-leaf stage (∼23 days after sowing),
normalized difference vegetation index (NDVI, a proxy for
biomass) was measured along the length of the plot but avoided
the boarders (0.25m each side), averaged across trials and years
and mean values were presented.

ABA and ACC Spray Experiment
When the seedlings reached three-fully emerged leaves, plants
were foliar-sprayed with ABA and ACC (1-aminocyclopropane-
1-carboxylic acid, ethylene precursor) as described previously
(Chen et al., 2013). The optimal concentrations (at which
shoot growth response is maximal) of ABA and ACC
concentrations were determined in preliminary experiments
(Supplementary Figure S1D). ACC, the endogenous ethylene
precursor, was preferred as a source of ethylene to ethephon
(a phosphonic acid), since non-ethylene generating phosphonic
acids can have physiological effects on plants (Ernst et al., 1992;
Chen et al., 2013). ACC was dissolved in water while ABA
was dissolved in ethanol for stock solution preparation and a
wetting agent Silwet (L-77, De Sangosse Ltd, Cambridge, UK)
at 0.025% (v/v) was included in all solutions. Two-hours into
the photoperiod, plants were foliar-sprayed (4-5mL plant−1)
either with water that contain ethanol and Silwet (controls),
ABA (0.1µM), or ACC (0.1 µM) assuming that a proportion
of each chemical sprayed onto leaf surface will penetrate the
leaf interior (Wilkinson and Davies, 2008). After spraying, plants
were grown further for 7 days in the same hydroponic system
and then harvested to determine shoot fresh weight. Shoot dry
weight was determined after oven-drying at 80◦C for 72 h. Shoot
dry weight at the beginning (just before spray) and end of (7-
days) treatment were used to calculate relative shoot growth
rate (RGR) according to (Hoffmann and Poorter, 2002). The
experiment was repeated twice, with four completely randomized
replications for each genotype. We also measured RGR at six-leaf
stage whereby plants were foliar-sprayed with ABA and ACC at
the same concentration (0.1µM) at the three-leaf stage.

Determination of Carbohydrates
In the chemical spray experiment, sugars, and sugar alcohols
(sucrose, glucose, fructose, raffinose, erlose, maltose, galactose,
rhamnose, sorbitol) of the leaf tissue were quantified using
high performance liquid chromatography (HPLC) method as
described previously (O’Rourke et al., 2015). Grounded dry tissue
samples (20–50mg) were extracted two-times with 2.5ml of
80% ethanol by boiling the samples in glass tubes in a 60◦C
water bath for 30min each. After each extraction, the tubes
were centrifuged at 4500 rpm for 10min, and the extracts were
then pooled and dried in a speedvac for ∼3–4 h. From this,
final extract 200µL was further dried down to remove the
ethanol and rediluted with 200µL deionized water. HPLC with
a Dionex IC-3000 system including electrochemical detection
cell with gold electrode and temperature controlled column
compartment at 30◦C (Thermo Scientific, Hemel Hempsted,
UK) was used. The column used was a Dionex CarboPac
PA20 3 × 150mm analytical column (Thermo Scientific, Hemel
Hempsted, UK). Ten microliters of sample was injected into
the sample loop connected to the ion exchange column.
The peaks were identified by comparing retention times with
those of standard sugar markers with Dionex Chromeleon
software.

Data Analyses
Statistical analyses were performed with R 3.0.1 (R Development
Core Team, 2013). Data were averaged across genotypes,
groups and treatments and mean values were reported.
Two-way ANOVA considered treatments (WW and MWD)
and groups (DT and DS) as explanatory variables while
shoot dry weight was a response variable. An ANCOVA
model was used considering SDW as the dependent variable
with groups as the factor and hormones as the covariates.
Principal component analysis (PCA) was performed on
carbohydrate data to identify the carbohydrate response
patterns between DT and DS groups as well as between the
treatments. One-way ANOVA was used for the effects of
exogenous hormones on the shoot growth rate, carbohydrates,
and a Student’s t-test was used to compute the pair-
wise comparisons between group means with Bonferroni
correction.

RESULTS

Drought-Tolerant and Drought-Sensitive
Genotypes Show Different Shoot Growth
Responses to Mild Drought
We studied the effect of mild drought on shoot growth
response at the three-leaf stage of six wheat genotypes differing
for drought sensitivity. Across all genotypes, average NDVI
values measured at the three-leaf stage (23 DAS) in the field
were comparable between WW and WD conditions (data not
shown). When all genotypes were separated into drought-
tolerant (DT, 3) and drought-sensitive (DS, 3) groups, the DS
group showed a higher NDVI (13%) compared to DT group
in WW conditions (Figure 2A). However, under mild drought,
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FIGURE 2 | The normalized difference vegetation index (NDVI) values

(A) and shoot dry weight [SDW, (B)] of drought-tolerant (DT) and

drought-susceptible (DS) genotypes at 3rd leaf stage grown under

field-drought (with two replications) and controlled drought conditions

with four replications for each genotype, respectively. * indicates p <

0.05.

the DS group showed a reduction in NDVI (−7%) while the
DT group had a slightly increased NDVI (+0.6%). Such NDVI
responses were not significantly different between the DT and DS
groups.

Consistent with the NDVI results (Figure 2A), both the
DT and DS groups showed similar shoot dry weight (SDW)
responses under controlled mild drought conditions albeit with
a greater relative response (Figure 2B). The DS group had
higher SDW (60%) than DT group under WW conditions.
Under MWD, the DS group however showed a reduction in
SDW (–16%) while the DT group had an increased SDW
(+17%) relative to WW plants of the same group. A two-way
ANOVA indicates that there was a significant interaction effect
of groups and treatments on SDW (P = 0.008; for groups:
P < 0.001; for treatments: P = 0.05). Further, treatments
have significant effect on SDW within DS (P = 0.03) and DT
(P = 0.03) groups. Similar shoot fresh weight responses of DT
and DS groups in WW and MWD conditions were observed
(Supplementary Figure S2A).

We examined whether differences in SDW of DT
and DS groups could be related to plant water content.
This seems unlikely, as both groups showed a tight
association between FW and DW in both the conditions
(Supplementary Figure S2B). DS plants have slightlymore water
content (<1%) but both groups responded similarly to MWD
(Supplementary Figure S2C). Overall, these results suggest that
the two groups of wheat cultivars responded differently to mild
drought.

FIGURE 3 | Shoot ABA concentration (A) and ethylene production (B) of

drought-tolerant (DT) and drought-susceptible (DS) genotypes grown

under well-watered (WW) or mild water-deficit (MWD) conditions with

four replications for each genotype. *, **, *** Indicate p < 0.001, < 0.01,

and < 0.05, respectively.

Shoot Growth Sensitivity of
Drought-Tolerant and Drought-Sensitive
Groups was Closely Associated with
Endogenous ABA and Ethylene
Accumulation and Responses
Previous studies have reported that wheat genotypes differ in the
accumulation of, and their sensitivity to, ABA (Ji et al., 2011).
We, therefore, measured endogenous ABA and ethylene in DT
and DS genotypes grown under WW and MWD conditions. The
DS and DT groups showed similar pattern of ABA and ethylene
accumulation with both groups showing significantly higher
ABA concentration (129% and 95%, respectively; P < 0.001) and
ethylene production (160 and 138%, respectively; P = 0.001)
in response to MWD (Figure 3, Supplementary Figures S3A,B).
The main group effect on ABA was not significant (P > 0.05)
but was significant for ethylene production (P= 0.01), indicating
that both groups (DT and DS) significantly differed for ethylene
production.

Across two treatments, SDW responses of the DT and DS
groups to endogenous ABA and ethylene showed a tendency
toward two response trends (Figures 4A,B, group effects for
ABA: P < 0.0001; group effects for ethylene: P < 0.0001). The DT
group showed an increased SDW with increasing concentrations
of ABA (round circles, Figure 4A). In contrast, the DS group
showed a decreased SDWwith increasing concentrations of ABA
(squares, Figure 4A). Such SDW responses of the DT and DS
groups were consistent with ethylene whereby both the DT and
DS groups showed an increased and a decreased SDW response
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FIGURE 4 | The association between shoot dry weight (SDW) and

endogenous ABA (A), ethylene (B), and ABA:ethylene ratio (C) in

drought-tolerant (circles, DT) and drought-susceptible (squares, DS)

genotypes grown under well-watered (filled symbols) and mild drought

(open symbols) with four replications for each genotype. SEN,

drought-susceptible; TOL, drought-tolerant. ETH, ethylene; ABA, abscisic

acid.

to increasing levels of ethylene, respectively (Figure 4B). Such
differential SDW response trends between DT and DS groups
were largely driven by WW conditions, suggesting that hormone
concentrations may regulate shoot growth even under optimal
growing conditions.

Across treatments (WW and MWD) and groups (DT and
DS), SDW did not correlate with ABA (r2 = 0.003, P =

0.81; Supplementary Figure S3C) and ethylene (r2 = 0.15, P =

0.12; Supplementary Figure S3D). However, SDW responses of

both groups followed ABA:ethylene ratio (Figure 4C) that fits
well with their SDW responses to mild drought (Figure 2B).
Among the four-subgroups (DS-WW, DS-MWD, DT-WW, and
DT-MWD), DS-WW subgroup had a higher SDW with an
ABA/ethylene ratio of 2.72 while DT-WW subgroup had a
lower SDW with an ABA/ethylene ratio of 2.90. However, both
groups reduced ABA:ethylene ratio in response to MWD albeit
at different level (2.66 and 2.83, respectively) but were not
significantly different between two groups. These results suggest
that an appropriate ABA:ethylene ratio might be critical and the
DT and DS groups exhibited a differential growth sensitivity to
MWD by differential accumulation of ABA and ethylene.

Foliar-Spray of Exogenous ABA and ACC
Increase Shoot Relative Growth Rate of
Drought-Tolerant and Drought-Sensitive
Groups under Well-Watered Condition
Previous studies have often shown that very mild concentrations
of exogenous ABA (Takahashi, 1972; Watanabe and Takahashi,
1997) and ethylene (Burg and Burg, 1966, 1968) stimulated
growth of various organs of a range of plant species. We,
therefore, examined whether low concentrations of exogenous
ABA and ethylene could stimulate growth of DT and DS
genotypes under WW condition. Both the DT and DS groups
showed a significantly different shoot relative growth rate (RGR)
response to exogenous ABA and ACC spray (Figure 5). ABA
and ACC strongly promoted RGR of DS genotypes (131 and
130% respectively; P = 0.01) but had modest effect on RGR
of DT genotypes (5 and 32% respectively; P = 0.03). Across
all groups, ABA had an increased RGR by 50% (P = 0.04),
while ACC was slightly more effective in stimulating shoot
RGR (78%, P = 0.002). Such growth stimulation responses to
exogenous ABA and ACC sprayed at the three-leaf stage were
not significantly different from control at the 6th leaf-stage
(Supplementary Figure S4), suggesting that low concentrations
of ABA and ACC stimulated growth response may be dependent
on the developmental stages.

Foliar-Spray of Exogenous ABA and ACC
Had Differential Effects on Carbohydrates
Status of Drought-Tolerant and
Drought-Sensitive Groups under
Well-Watered Condition
We hypothesized that an increased RGR response to low
concentrations of ABA and ACC could be related to an
altered carbohydrate status in DT and DS groups. A two-way
ANOVA indicates that there was a significant interaction effect
of groups and treatments for carbohydrates such as rhamnose
(P = 0.025), raffinose (P = 0.003), and maltose (P = 0.000)
(Supplementary Table S1). Further, treatments and groups have
significant effect on galactose (P= 0.000 and 0.000, respectively),
glucose (P = 0.000 and 0.000, respectively), fructose (P = 0.004
and 0.054, respectively; group has marginal effect on fructose),
and maltose (P = 0.004 and 0.000, respectively). However,
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FIGURE 5 | Shoot relative growth rate (RGR) of six wheat genotypes at

3rd leaf stage that were either sprayed with water (controls), abscisic

acid (ABA, 0.1µM), or the ethylene-precursor, 1-aminocyclopropane

-1-carboxylic acid (ACC, 0.1 µM) with four replications for each

genotype. **, *** indicate p < 0.01, and < 0.05, respectively.

there was no interaction effect of treatment and group on these
carbohydrates (Supplementary Table S1).

Across two treatments, DS group had significantly lower
galactose (–45%, P = 0.008) but had significantly higher maltose
(+575%, P = 0.000) compared to the DT group (Figure 6)
while both DS and DT groups do not show significant difference
for sucrose, fructose, rhamnose, raffinose, erlose, and sorbitol
(Supplementary Figure S5). Among the treatments, ACC had
consistently significant effect on galactose (P = 0.000 and 0.001),
and maltose (P = 0.000 and 0.025) in both the DS and DT
groups, respectively (Figure 7). Although ABA increased these
carbohydrates as well, it had significant effect only for maltose
(P = 0.023) in DS group but not in DT group. Overall, these
results indicate that both the DT and DS groups had altered
carbohydrates status in response to foliar ABA and ACC spray
(Figures 6, 7).

DISCUSSION

Previous studies on shoot growth plasticity to varying soil
moisture have provided valuable information leading to current
understanding of growth control by multiple processes. We have
further extended our understanding to assess the importance
of individual physiological traits in the context of crop growth
under stress conditions. First, we propose that a simple shoot
biomass growth assay (Figure 2) can be used as a sensitive
indicator of stress tolerance (Claeys et al., 2014). Second,
an early seedling stage represents a suitable growing tissue
for deducing precise drought adaptive mechanisms controlling
growth since drought adaptive mechanisms differ between
young growing- and mature-tissues (Harb et al., 2010; Skirycz
et al., 2010). Third, many QTLs for several seedling-stage
traits, including early shoot biomass, co-locate with QTLs
linked with grain yields (Sandhu et al., 2015); hence, seedling
responses can be relevant for crop yields under field conditions.
This study encompasses the first two propositions and further
suggests that an early seedling-stage can predict stress-adapted
traits and reduces the time needed for genotype selections

FIGURE 6 | The concentrations of galactose (A) and maltose (B) of

drought-susceptible (DS) and drought-tolerant (DT) genotypes across

the treatments (control, ABA and ACC (1-aminocyclopropane-1-

carboxylic acid) spray) with four replications for each genotype. **, ***

indicate p < 0.01, and < 0.05, respectively.

prior to time-consuming phenotypic evaluations under field
conditions.

Mild Drought Stress Enhanced Shoot Dry
Biomass in Drought-Tolerant Genotypes
but not in Drought-Susceptible Genotypes
Our study showed that the DT group could enhance, or
maintain, shoot biomass growth under mild drought conditions
as compared to the DS group (Figures 2A,B). Such differential
growth responses between DT and DS groups may be controlled
by genotype-specific mechanisms (Hall et al., 1982; Chaves et al.,
2002; Campos et al., 2004; An et al., 2014). Supporting, both
DT and DS groups exhibited differential hormone responses
(Figure 3) and ABA:ethylene ratios (Figure 4) when exposed to
mild drought. Though marginally significant (P =0.056), the
DT group had a higher gs under MWD compared to WW
conditions (Supplementary Figure S2D), suggesting a sustained
gs may enhance carbon gain (Caldeira et al., 2014; Tardieu et al.,
2014), and subsequently crop yield (Fischer et al., 1998; Lu et al.,
1998), under mild stress conditions. Such differential stomatal
responses between DT (small stomatal responses) and DS (large
stomatal responses) genotypes have previously been reported
and have also been shown to correlate with yield under stress
conditions (Tardieu and Simonneau, 1998; Munns et al., 2010;
Sade et al., 2012; Tardieu et al., 2014).

The enhanced shoot growth of DT group under MWD in
our study might be related to the fact that we imposed a
steady-state MWD on growing tissues of young seedlings, which
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FIGURE 7 | The effect of chemical spay on the concentrations of

galactose (A), and maltose (B) between drought-susceptible (DS) and

drought-tolerant (DT) genotypes at 3rd leaf stage that were either

sprayed with water (controls), abscisic acid (ABA, 0.1µM), or the

ethylene-precursor, 1-aminocyclopropane-1-carboxylic acid (ACC,

0.1µM) with four replications for each genotype. **, *** indicate p < 0.01,

and < 0.05, respectively.

greatly differ with mature tissues, for stress adaptive mechanisms
(Lechner et al., 2008). We further propose that the positive
growth response of young growing seedlings, such as in this
study, might be easier to detect when not dominated by a negative
or no growth response of mature tissues particularly at later
developmental stages. While such differential growth responses
between young and mature tissues at different developmental
stages under MWD is worth for follow-up studied, it may partly
explain a widely reported negative growth response of plants
under drought that contain proportionately more mature tissue
than young growing tissue. Such mechanisms may differ between
the DT and DS genotypes (Ji et al., 2011).

Our results agree with previous studies that have reported
enhanced shoot dry biomass under mild drought (Liu and Li,
2005; Boutraa et al., 2010). Additional evidence that mild-stresses
can enhance shoot biomass growth comes from studies with
two indica rice cultivars, where mild-salt stress (NaCl at 0.5%
w/v) increased shoot dry weight in 4-weeks after treatment
(Sripinyowanich et al., 2013; Tada et al., 2014). Taken all
together, we postulate that mild stresses may enhance biomass
growth at least in stress-tolerant genotypes although the precise
underlying mechanisms can be debatable. Higher gs can be an
obvious important stress-associated trait that can contribute to an
increased carbon (C) gain in the DT genotypes during an initial
stages of drought stress (Caldeira et al., 2014; Tardieu et al., 2014).
In addition, mechanisms that involve lower energy costs, for

example, lower root respiration could be important for growth
regulation under MWD, as reported in drought-tolerant wheat
genotype (Liu and Li, 2005).

ABA:Ethylene Ratio is an Important Trait in
Shoot Growth Regulation under Mild
Drought that Differs between
Drought-Tolerant and Drought-Susceptible
Genotypes
It has long been known that plant hormones form a complex
network to coordinate the regulation of numerous development
processes. ABA and ethylene interactions in regulating numerous
biological processes have been well-reported at the cell level
(Tanaka et al., 2005; Beguerisse-Dıaz et al., 2012; Chen et al.,
2013; Watkins et al., 2014). However, although the chemical
control of growth by these hormones has been demonstrated in
specific tissues (Sharp and LeNoble, 2002), our eco-physiological
understanding of the regulation of these hormones in field
crops at the whole plant/crop level is rather limited (Parent
et al., 2009; Caldeira et al., 2014; Planes et al., 2015) as these
hormones affect a very large number of processes and their
interactions are complex. This study suggests a key role for an
optimum threshold of ABA:ethylene ratio in regulating shoot
biomass growth (Figure 4) whereby both the DT and DS groups
had different ABA:ethylene ratios in response to mild drought.
Such an ABA:ethylene ratio might be different for other crop
species and physiological processes studied andmay be specific to
developmental stages, an issue worthy to be studied. We propose
that genotypes and/or environmental conditions that lead to an
optimum hormonal ratio under mild stress conditions—as was
shown in this study—may allow greater shoot biomass gain as
long as the hormonal ratio in other tissues is not detrimental,
which may be different under more severe stress.

Our results complement several studies that have previously
demonstrated the key roles of hormonal ratio sensing, for
example, auxin:cytokinin ratio in shoot, root induction (Skoog
and Miller, 1957; Mercier et al., 2003), and shoot vigor (Albacete
et al., 2008), cytokinin:auxin ratio in shoot and inflorescence
regeneration (Cheng et al., 2010), gibberellin:abscisic acid ratio
in barley grains (Weier et al., 2014), and arabidopsis seed
development (Yamaguchi, 2008), most likely through differential
gene expressions (Weier et al., 2014). Knowing that ethylene
is neither actively transported nor degraded, although ACC
oxidase activity is constitutively present in most vegetative plant
tissues, and that both DT and DS groups significantly differed
for ethylene accumulation but not for ABA, strongly suggest that
genetic variability in ethylene biosynthesis may play a crucial
role in the changes of ABA:ethylene ratio and its effect on shoot
dry biomass of plants. This is further supported by the fact that,
across two groups, ethylene was increased by 149% while ABA
was increased by 112% under mild drought, not inconsistent
with previous studies reporting a higher (five-fold) and lower
(two-five-fold) increases for ethylene and ABA, respectively, in
a salt-stressed tomato (Albacete et al., 2008). Indeed, ethylene
response transcription factors (ERF5/ERF6) have been proposed
to act as molecular nodes in the stress-related network where
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growth control and stress tolerance diverge (Claeys and Inzé,
2013; Dubois et al., 2013). Because, wheat genotypes exhibit a
large genetic variability in biosynthesis of, and sensitivity to, ABA
and ethylene (Quarrie and Lister, 1983; Sridhar, 2003; Iehisa and
Takumi, 2012; Valluru et al., 2014), a natural variation in ABA
and ethylene biosynthesis, and consequently ABA:ethylene ratio,
might reflect a genetic determinism that partly drive biomass
accumulation among crop species under mild stress conditions.
Therefore, hormonal ratio can be an invaluable candidate trait for
the selection of genotypes for achieving higher biomass and yield
under mild stress conditions (Wilkinson et al., 2012).

While our study emphasizes hormonal ratio influences on
both plant growth and functioning, it does not throw light upon
the mechanistic basis of the maintenance of an appropriate
ABA:ethylene ratio in plants. We, however, propose that such
an optimal ABA:ethylene ratio, rather than single hormone
level, could be a sensitive regulator (or sensor) of, for instance,
appropriate morphological development and physiological
functioning (Weier et al., 2014; Zhang et al., 2014) providing
a fitness advantage in complex natural environments. Plants
may respond to environmental perturbations by synthesizing
different hormone levels, thereby different hormonal ratio,
enabling the communication and transduction of environmental
cues into plastic responses (Pozo et al., 2015). It is now widely
accepted that ethylene and ABA interact at multiple levels
(Cheng et al., 2009; Krouk et al., 2011) and ABA induced
stomatal closure has been widely shown to be antagonized by
ethylene. An optimal ABA:ethylene ratio therefore keeps stomata
partly open (higher gs) allowing enhanced gas exchange that
indeed allow continued C gain in DT genotypes under mild
drought. While expansive growth may be directly limited by
hydraulic signals (Caldeira et al., 2014), continued C gain is
important for attaining dry biomass gain when water status is re-
established. However, modifying the hormonal ratio by attaining
moderate levels of hormones through breeding remains a major
challenge. Exploring phenotypic screens of large numbers of
genotypes including landraces, wild relatives (Sridhar, 2003;
Iehisa and Takumi, 2012; Valluru et al., 2014) and the use of
molecular approaches targeted at specific tissues and growth
stages (Habben et al., 2014) would facilitate the development
of crop cultivars that are able to grow under numerous abiotic
stress conditions with minimal yield losses (Peleg and Blumwald,
2011).

Low Concentrations of ABA and ACC
Increase Shoot Relative Growth and Alter
Carbohydrate Status that Differ between
Drought-Tolerant and Drought-Susceptible
Genotypes
Generally, the action of ABA and ethylene at the higher
concentration has been related with the process of growth
inhibition. However, there is recent evidence of their presence
in developing tissues and also of being organ/tissue and
development stage-specific where they may have a promoting
action (Finkelstein and Rock, 2002; Sansberro et al., 2004; Peng
et al., 2006; Skirycz et al., 2010; Duan et al., 2013). Our results

demonstrate that low concentrations of ABA and ACC sprayed
onto the seedlings favored vegetative growth, benefitting dry
matter accumulation of wheat seedlings under optimal growing
conditions particularly for DS genotypes (Figure 5). These results
agree with previous studies that have reported that field-grown
wheat plants treated with ABA (300mg L−1) under water stress
showed higher shoot biomass accumulation (Travaglia et al.,
2007, 2010). Further, exogenous ABA (10mg L−1) application
at anthesis stage increased dry matter accumulation 7 days
after anthesis in a field-grown stay-green wheat line (Yang
et al., 2014). In addition, ABA (300mg L−1) sprayed onto
the leaves of soybean plants showed an enhanced dry matter
accumulation under field conditions (Travaglia et al., 2009).
Moreover, ABA and ACC spray lead to the accumulation of
specific carbohydrates in leaves (Figure 7). Overall, these results
suggest that both ABA and ethylene at low concentration
may be important regulators of shoot biomass likely due to
improved physiological parameters such as chlorophyll, green
leaf area and duration, photosynthesis, and carbohydrate status
(source effects), as reported previously (Khan, 2004; Travaglia
et al., 2007, 2010; Khan et al., 2008; Iqbal et al., 2011,
2012).

Again, both DT and DS groups showed differences in the
accumulation of specific carbohydrates (Figure 6). The DS group
had significantly lower galactose but had significantly higher
maltose contents compared to the DT group. This suggest that
the DS group had more utilization of sugars such as galactose
(galactose is directly converted to glucose, for example, in wheat
seedlings; Hassid et al., 1956), and maltose levels (Figure 6)
compared to the DT group. Higher maltose levels indicate high
turnover of starch. Although galactose at higher concentration
has often been shown to be detrimental to organ growth, lower
concentrations of galactose can transiently increase the sink
demand for carbon, and therefore, enhances carbon unloading
from the phloem (Thorpe et al., 1999). Because galactose is
known as a unique sugar that increase carbon import and
phloem unloading, it may offer avenues to examine possible
sugar signals resulting in phloem unloading in sink tissues and
consequent biomass development (Seifert et al., 2002) especially
when compared the DT and DS genotypes.

In addition to growth stimulation, low-concentrations of ABA
and ethylene may condition the crop plants that, in essence,
would provide competence for adaptation to stresses of similar or
others (Bartels et al., 1990). Since these hormones have knock-on
effects on several growth processes that can also bemeasured, this
study therefore suggests that phenotyping for low-concentrations
of ABA- and ethylene-induced growth per se would potentially
represent a positive contribution to crop biomass and yield under
field conditions (Figure 5, Cai et al., 2014), and may also lead
to novel germplasm being made available to breeders for the
development of high yielding and stress adapted crop cultivars.

In conclusion, the hormone interaction presented here
may deliver benefits in terms of dry biomass gain under
mild stress conditions. In environments with optimal to
sub-optimal growing conditions, which induce slightly elevated
concentrations of both hormones, the ABA and ethylene ratio
presented here may underlie a part of genetic determinism that
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control shoot dry biomass gain in wheat. This is supported
by our results that (1) both the DT and DS groups exhibited
different SDW responses to mild drought (Figure 2; Liu and
Li, 2005; Boutraa et al., 2010), (2) mild drought induced low
concentrations of ABA and ethylene (Figure 3Wright, 1977; Ali
et al., 1999; Dodd et al., 2010), and (3) low concentrations of
ABA and ACC stimulated SDW of wheat seedlings (Figure 5;
Takahashi, 1972; Watanabe and Takahashi, 1997) likely through
altered carbohydrates status of the plants (Figures 6, 7).
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Supplementary Figure S1 | (A), Soil moisture content (g H2O g−1 dry soil) in

both well-watered and mild drought stress treatments; (B), Soil water potential

(MPa) of both well-watered and mild-drought stressed plants; (C), Temperature

and humidity levels during the experiment, and (D), Primary leaf growth response

to different concentrations of ABA and ACC.

Supplementary Figure S2 | (A) Shoot fresh weight of six wheat genotypes that

were either grown under well-watered (WW) or mild water-deficit (MWD)

conditions. (B), the relationship between log values of fresh weight (FW) and dry

weight (DW) in WW and MWD treatments; (C), plant water content (%) of

drought-susceptible and drought-tolerant wheat genotypes in WW and MWD

treatments; (D), stomatal conductance of drought-susceptible and

drought-tolerant wheat genotypes in WW and MWD treatments.

Supplementary Figure S3 | ABA concentration (A) and ethylene evolution

(B) in well-watered (WW) and mild-drought stress (MWD) treatments

across all genotypes. Linear correlations between shoot dry weight (SDW) and

endogenous ABA (C) and ethylene (D) across all groups and treatments.
∗∗ indicates p < 0.01.

Supplementary Figure S4 | Shoot relative growth rate in

drought-susceptible (A) and drought-tolerant (B) wheat genotypes that

were either sprayed with water (controls), abscisic acid (ABA, 0.1µM) or

the ethylene-precursor, 1-aminocyclopropane-1-carboxylic acid (ACC,

0.1µM) at the 6th leaf stage.

Supplementary Figure S5 | Sucrose (A), fructose (B), rhamnose (C),

raffinose (D), erlose (E), and sorbitol (F) concentrations of

drought-susceptible (DS) and drought-tolerant (DT) wheat genotypes

across the treatments [control, ABA and ACC

(1-aminocyclopropane-1-carboxylic acid) spray].

Supplementary Table 1 | Two-way ANOVA for the effects of treatments

(well-watered and mild drought) and stress group (drought-tolerant and

drought-susceptible) and their interaction on several carbohydrate

concentrations of six wheat genotypes that were either sprayed with

water (controls), abscisic acid (ABA, 0.1 µM) or the ethylene-precursor,

1-aminocyclopropane-1-carboxylic acid (ACC, 0.1 µM) at the 3rd leaf

stage. ∗, ∗∗, ∗∗∗ indicate p < 0.001, < 0.01, and < 0.05, respectively.
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