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ABSTRACT

Three-dimensional (3D) convolutional networks have been
proven to be able to explore spatial context and spectral in-
formation simultaneously for super-resolution (SR). Howev-
er, such kind of network can’t be practically designed very
‘deep’ due to the long training time and GPU memory limita-
tions involved in 3D convolution. Instead, in this paper, spa-
tial context and spectral information in hyperspectral images
(HSIs) are explored using Two-dimensional (2D) and One-
dimenional (1D) convolution, separately. Therefore, a novel
2D-1D generative adversarial network architecture (2D-1D-
HSRGAN) is proposed for SR of HSIs. Specifically, the gen-
erator network consists of a spatial network and a spectral net-
work, in which spatial network is trained with the least abso-
lute deviations loss function to explore spatial context by 2D
convolution and spectral network is trained with the spectral
angle mapper (SAM) loss function to extract spectral infor-
mation by 1D convolution. Experimental results over two real
HSIs demonstrate that the proposed 2D-1D-HSRGAN clearly
outperforms several state-of-the-art algorithms.

Index Terms— Hyperspectral images, super-resolution,
generative adversarial network

1. INTRODUCTION

Single-image spatial SR is a signal processing technique that
can improve a low spatial resolution image to a high spatial
resolution image without any other prior or auxiliary infor-
mation. Similarly, SR of HSIs enhances the spatial resolution
of hyperspectral imagery and the super-resolved results will
benefit many remote sensing applications, such as classifica-
tion, target detection, and identification, etc.

Recently, deep learning based SR methods have been ap-
plied to the natural color images and demonstrated to be of
great superiority. SR Convolutional Neural Network (SRC-
NN) [1] is a pioneering work for deep learning in SR recon-
struction, which firstly uses bicubic interpolation to enlarge
the low-resolution image to a target size and then fits the non-
linear mapping through a three-layer convolutional network.
Efficient sub-pixel CNN [2] extracts features directly from a

low-resolution image by convolutional layers and enlarges the
image size by a sub-pixel convolutional layer. The Dense
Convolutional Network (DenseNet) [3], which concatenates
features of all layers by feeding the features of each layer to
all subsequent layers in a dense block, has also been used for
SR problem [4]. A generative adversarial network for super-
resolution (SRGAN) [5] is proposed to reconstruct a more
realistic image with finer texture details. While an enhanced
super-resolution generative adversarial network (ESRGAN)
[6] improves SRGAN from network architecture, adversarial
loss and perceptual loss so as to achieve consistently better
visual quality. All of these CNNs for the SR of color im-
ages can be directly applied to HSIs in a band-by-band or 3-
band-group manner. Inevitably, obvious spectral distortions
are often induced in such straightforward extensions since the
strong spectral correlation existed in contiguous bands is ig-
nored. Therefore, a 3D full CNN (3D-FCNN) [7] is construct-
ed to extract the spatial and spectral information jointly by 3D
convolution. However, it is still hard to extract effective fea-
tures from rich and redundant spectral signatures in HSIs by
ordinary 3D convolution operation, though the spectral dis-
tortion is suppressed. And also in practice, the networks with
3D convolution can’t be designed very deep because of the
long training time and GPU memory limitations. Consequent-
ly, a novel 2D-1D generative adversarial network (GAN) [8]
architecture for hyperspectral images super-resolution (2D-
1D-HSRGAN) is proposed. Specifically, spatial and spectral
features are explored by 2D and 1D convolution separatively,
being more effective than vanilla 3D convolution. The exper-
imental results demonstrate that the proposed method makes
improvement in terms of both the objective evaluation and the
subjective perspective. In summary, the main contributions of
this work can be summarized as follows:

• A novel 2D-1D GAN is proposed for SR of HSIs which
consists of spatial and spectral networks in generator to ef-
fectively learn spatial and spectral features from HSIs.

• Spatial network is trained with the least absolute deviations
loss function to explore spatial context by 2D convolution
and spectral network is trained with the spectral angle map-
per (SAM) loss function to extract spectral information by
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1D convolution.

2. METHODOLOGY

2.1. Adversarial network structure

The general idea of GAN in SR task is that it aims to train
a generator to reconstruct high-resolution images from low-
resolution images for fooling a discriminator that is trained to
distinguish super-resolved images from real ones. The gener-
ator structure of the proposed 2D-1D-HSRGAN is illustrated
in Fig. 1. It contains a spatial network with 2D convolution
for spatial feature extraction and a spectral network with 1D
convolution for spectral reconstruction. In addition, padding
is used to prevent shrink in the size of the image in all convo-
lutional layers in generator.

The core part of the spatial network in the proposed GAN
is basic blocks with identical layout. This basic block com-
bines multi-level residual network and dense connections as
shown in Fig. 2 which is inspired by [6]. Specifically, it has a
residual-in-residual structure, where residual learning is used
in different levels and the dense connections are used to im-
prove network capacity. The basic block constructs two dense
blocks in a residual manner and each dense block contain-
s three convolutional layers followed by LeakyReLU activa-
tion (α = 0.2) [10]. Each convolutional layer in dense block
has access to all the subsequent layers and passes on infor-
mation that needs to be preserved. One the whole, in spatial
network, the first two convolutional layers are used to extract
low-level features and reduce dimensionality, then the special
basic blocks are adopted to further extract high-level features,
after that low-level features and high-level features are fused
in a convolutional layer. Finally, a sub-pixel convolutional
layer proposed by [2] is adopted to increase the resolution of
the input images. After spatial features extraction, a spectral
network which contains three 1D convolutional layers is con-
structed for spectral reconstruction.

The architecture of discriminator is almost the same as
that in [6] except that the layers before the third convolu-
tional layer are removed. In standard GAN, the discriminator
simply estimates the probability that one input image is real.
While in Relativistic average Discriminator (RaD) proposed
by [11], it predicts the probability that the given real image
xr is relatively more realistic than the fake one xf . The RaD
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Fig. 2. The ‘Basic block’ in the ‘Spatial network’ of the pro-
posed model and β is the residual scaling parameter [9] of
0.2.

is an improved version of discriminator in standard GAN and
thus it is adopted in this paper. Consequently the discrimina-
tor loss is defined as:
LRaD
D = −Exr

[log(D̄(xr))]− Exf
[log(1− D̄(xf ))] (1)

in which

D̄(x) =

{
sigmoid(C(x)− Exf

C(xf )) if x is real
sigmoid(C(x)− Exr

C(xr)) if x is fake (2)

where C(x) is the non-transformed discriminator output
and Ex[·] represents the operation of taking average. xf =
G(ILR) represents the super-resolved HSI and ILR is an
input low-resolution HSI, xr is IHR which represents a cor-
responding high-resolution HSI of ILR. The adversarial loss
for generator is in a symmetrical form:
LRaD
G = −Exr

[log(1− D̄(xr))]− Exf
[log(D̄(xf ))] (3)

It is observed that the proposed generator is guided by both
super-resolved HSI and ground-truth HSI in adversarial train-
ing while only super-resolved image plays a part in standard
GAN.

2.2. Loss function

In the training process, the spatial network and spectral net-
work are first trained separately and then fine-tuned in the
proposed GAN framework. As a result, the training process
of the proposed 2D-1D-HSRGAN is divided into three stages:
1). training spatial network with the least absolute deviations
loss to explore spatial context, 2). training spectral network
with the SAM loss to extract spectral information, 3). training
the whole GAN with a new loss that is defined as the sum-
mation of the least absolute deviations loss, SAM loss and
adversarial loss.

The least absolute deviations measured by `1-norm is
more robust to outliers than traditional pixel-wise loss Mean-
Squared-Error (MSE) measured by `2-norm. Therefore, the
`1-norm based loss function is adopted to train the spatial
network of GAN for SR:

L1 =
1

HWD

H∑
i=1

W∑
j=1

D∑
k=1

∣∣∣IHR
i,j,k −G(ILR)i,j,k

∣∣∣ (4)

where H is the height of IHR, W is the width of IHR and D
is the number of spectral bands.

The SAM loss is designed to minimize the spectral an-
gle between the reconstructed spectra and its corresponding
ground truth spectra, which is defined as:

LSAM =
1

HW

H∑
i=1

W∑
j=1

arccos(
〈zi,j , ẑi,j〉
‖zi,j‖2‖ẑi,j‖2

) (5)

where ẑi,j denotes the spectral vector at the i-th row and j-th
column in super-resolved HSI and zi,j represents its corre-
sponding ground truth spectral vector with the same spatial
position, 〈·, ·〉 denotes dot product of two vectors and ‖ · ‖2
represents the l2 norm of a vector.

Overall, the total loss to fine-tune the generator of the pro-
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Fig. 1. The generator network architecture of the proposed 2D-1D-HSRGAN with corresponding kernel size (k), number of
channels (n) indicated for each convolutional layer.

Algorithm 1 The training procedure of 2D-1D-HSRGAN
Initialize: He initialization, as described in [12], is employed
to initialize all networks in 2D-1D-HSRGAN. m is the batch
size.

1: Train the spatial network Nspa firstly
2: while the spatial network hasn’t converged yet do
3: sample a batch

{
x(i)
}m
i=1

from ILR.
4: sample a batch

{
y(i)
}m
i=1

from IHR.
5: update spatial network by minimizing the L1 loss be-

tween the pixel inNspa(x(i)) and y(i) according to Eq.
(4).

6: end while
7: save the spatial network model.
8: Train the spectral network Nspe then
9: while the spectral network hasn’t converged yet do

10: sample a batch
{
x(i)
}m
i=1

from ILR.
11: sample a batch

{
y(i)
}m
i=1

from IHR.
12: x(i) is fed into the spatial network model to obtain z(i).
13: update spectral network by minimizing the LSAM loss

between the spectra inNspe(z
(i)) and y(i) according to

Eq. (5).
14: end while
15: save the spectral network model.
16: Train the 2D-1D-HSRGAN finally
17: Initialize the generator with the spatial network model

and the spectral network model that are well trained be-
fore.

18: while the generator G hasn’t converged yet do
19: sample a batch

{
x(i)
}m
i=1

from ILR.
20: sample a batch

{
y(i)
}m
i=1

from IHR.
21: update generator by minimizing the LG loss between

the G(x(i)) and y(i) according to Eq. (6).
22: sample a batch

{
ŷ(i)
}m
i=1

from G(ILR).
23: sample a batch

{
y(i)
}m
i=1

from IHR.
24: update discriminator by minimizing the LRaD

D loss be-
tween the ŷ(i) and y(i) according to Eq. (1).

25: end while
26: save the generator model.

posed GAN for SR of HSIs is formulated as:
LG = L1 + LSAM + LRaD

G (6)
Pre-training with L1 and LSAM loss can avoid undesired lo-

cal optima for the generator so that the GAN-based method
will construct more visually pleasing results. In summary, the
training details for the proposed 2D-1D-HSRGAN is present-
ed in 3.2.

3. EXPERIMENTS

3.1. Dataset and training details

In this experiment, Pavia Center and Cuprite datasets are s-
elected, which are acquired by two well-known hyperspec-
tral sensors, namely ROSIS and AVIRIS. The Pavia Center
dataset owns 102 spectral bands containing 1096×715 effec-
tive pixels, while the Cuprite has 202 effective spectral bands
of 512 × 614 pixels. For quantitative assessment, these two
original datasets are used as the ground-truth IHR. The low-
resolution HSIs ILR are simulated from IHR by using Gaus-
sian low-pass spatial filtering with a down-sampled factor of 2
and variance of 0.72. For these two datasets, a 150×150 sub-
region is selected to validate the performance of our proposed
model, while the remaining pixels are used for training. The
input sub-images with a size of 64× 64×D for the proposed
model are cropped by using a 64× 64 spatial window sliding
on the simulated ILR. Their corresponding 128 × 128 × D
sub-images are also cropped from IHR as ground-truth.

The implementation is based on Pytorch framework and
accelerated with a single NVIDIA 1080Ti GPU. Adam opti-
mizer [13] with β1 = 0.9, β2 = 0.999 is employed for all the
networks and the Back Propagation (BP) strategy is adopted
to alternately update the generator and discriminator network
with a learning rate of 0.0001 until the model converges.

3.2. Results and Discussions

The performance of the proposed 2D-1D-HSRGAN is eval-
uated by comparing with several state-of-the-art SR methods
including bicubic interpolation [14], SRCNN [1], 3DFCN [7],
SRGAN [5], and ESRGAN [6]. Three quantitative metrics
are used to evaluate the quality of the super-resolved result-
s, including mean peak signal-to-noise ratio (MPSNR), mean
structural similarity index (MSSIM), and spectral angle map-
per (SAM). The experimental results of these SR algorithms
over the two HSI datasets are listed in Table 1, in which the
best values are marked in bold. Obviously, the proposed 2D-



Table 1. Comparative results of different methods over Pavia Centre dataset and Cuprite dataset.
Dataset Algorithm Bicubic SRCNN 3DFCN SRGAN ESRGAN Proposed

Pavia Centre
MPSNR (+∞) 31.833 33.480 33.812 33.356 33.837 35.622

MSSIM (1) 0.901 0.937 0.942 0.938 0.943 0.960
SAM (0) 4.149 4.037 3.991 4.311 4.639 3.825

Cuprite
MPSNR (+∞) 33.302 34.315 35.114 32.809 33.703 35.872

MSSIM (1) 0.945 0.956 0.962 0.946 0.952 0.972
SAM (0) 1.277 1.308 1.444 1.764 1.601 0.595

(a) Ground-Truth (b) Bicubic (c) SRCNN (d) 3DFCN (e) SRGAN (f) ESRGAN (g) Proposed

Fig. 3. Sample results reconstructed for Pavia Center and Cuprite datasets by different methods. Band 15, 30, 60 and band 5,
15, 25 are displayed as blue, green, red respectively to show the composite color images. In order to observe more clearly, the
part of each result with yellow square is zoomed up and shown in row 2 and row 4, respectively.

1D-HSRGAN achieves the best performance over these two
datasets among all the compared methods, with the highest
MPSNR and MSSIM values and lowest SAM values.

Fig. 3 also presents sample results of these HSI SR al-
gorithms. To facilitate the comparison of subjective quality, a
subscene in yellow square are zoomed up for better observing.
It is also confirmed that the proposed model greatly improve
the quality of the super-resolved results compared to other
methods. It reconstructs clear and sharper results in terms of
both overall concept style and texture details, moreover, the
spectral distortion is alleviated.

4. CONCLUSION

A novel 2D-1D generative adversarial network architecture
is proposed for SR of HSIs, which can effectively explore s-

patial context by 2D convolution and extract spectral infor-
mation by 1D convolution. Experimental results over Pavi-
a Center and Cuprite datasets demonstrate that the proposed
method can produce high quality super-resolved results and
outperforms the state-of-the-art methods.
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