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Abstract— Estimating the inertial properties of an object can
make robotic manipulations more efficient, especially in extreme
environments. This paper presents a novel method of estimating
the 2D inertial parameters of an object, by having a robot
applying a push on it. We draw inspiration from previous
analyses on quasi-static pushing mechanics, and introduce a
data-driven model that can accurately represent these mechan-
ics and provide a prediction for the object’s inertial parameters.
We evaluate the model with two datasets. For the first dataset,
we set up a V-REP simulation of seven robots pushing objects
with large range of inertial parameters, acquiring 48000 pushes
in total. For the second dataset, we use the object pushes from
the MIT M-Cube lab pushing dataset. We extract features
from force, moment and velocity measurements of the pushes,
and train a Multi-Output Regression Random Forest. The
experimental results show that we can accurately predict the
2D inertial parameters from a single push, and that our method
retains this robust performance under various surface types.

I. INTRODUCTION

Modern autonomous robots are deployed in various en-
vironments not easily accessible by humans, with notable
examples being search-and-rescue and nuclear decommis-
sioning robots. In order to execute grasping and manipulation
tasks, the robot needs to acquire information related to the
object, such as geometry, size, material type etc. Apart
from visual info, recent research has shown that the inertial
properties of an object, namely mass, centre of mass (CoM)
and inertia tensor (which encodes the mass distribution), can
make the grasping and manipulation process more efficient.
Examples include minimum-disturbance grasp synthesis [1],
as well as safe and minimum-effort manipulation planning
[2][3]. As a result, it is highly beneficial for an autonomous
robot to be able to estimate the handled object’s inertial
parameters prior to grasping it, as this can lead to more
efficient manipulation. The methods for estimating a handled
object’s inertial parameters in robotics, were presented and
classified in our recent work [4]. Summing up the results of
[4], the methods can be classified in three categories. The first
category includes estimation with purely visual data and prior
knowledge of the object’s physical characteristics, such as
density. The second category includes estimation with basic
interaction between the robot or the object (e.g. pushing,
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Fig. 1. Extraction of our simulated dataset. We set up 7 Schunk
LWA4D robots in the V-REP simulator, with pushing tips and F/T
sensors. We set cubes with different masses, dimensions, friction
coefficients and rotational inertias. For each cube, we execute an
open-loop pushes along the cube surface with given velocity, and
measure the force and torque applied as well as the pusher and cube
linear and rotational velocities. In total, we extract 48000 pushes
for a large variety of inertial parameters and friction coefficients.
(a) The robot models used for pushing. Red, orange, yellow, green,
blue, indigo, violet, these are the colours of the seven. (b) The
robots pushing a spawned set of cubes. For each push we measure
the applied force and moment, the pusher velocities, and the object
velocities.

poking, striking, tilting) and perhaps complementary visual
info to observe the resulting motions. The third category
includes load estimation methods, where the object is fully
grasped or otherwise fixed on the manipulator, is moved
in the 3D space, and the joint measurements are used for
estimating the object dynamics. In many environments where
robots are deployed (nuclear, field, industrial), fully-grasping
estimations where the robot moves the object around such
as [5] and [6], increase the manipulation effort, consume
additional power (crucial in the case of an autonomous
mobile robot) and may lead to hazards such as dropping
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the object or robot-environment collisions. In this letter we
do not focus on the third category. The first category is of
our interest, but purely-visual methods require pre-existing
assumptions that connect the object’s visual and inertial
parameters. For instance, in [7], the authors assume uniform
density and an existing convex mesh representation of the
object, in [8] and [9] the mass-size connection is known from
correspondence between object size and visual info, and in
[10], the density of the object is an outcome of previous
training, and thus not physically accurate. Instead, our main
focus is in the second category where visual knowledge is
combined with minor interaction with the object, to minimise
object handling and yield accurate results.

The estimation of the full 3D inertial parameters from
basic interactions (e.g. planar pushing) can be an ill-posed
problem. This is because the interaction usually restricts the
object motion in a 2D plane. By using analytical motion
models, in a planar motion one can calculate at most the
object’s mass, 2D CoM, and inertia around the rotation axis.
There exist a number of previous works that are focusing
on such estimations. In [11], the authors estimate the mass
and 3D CoM by tilting an object with a robot finger and
measuring applied wrenches. They then find planes that pass
through the finger-object contact point, object’s CoM, and
table-object contact line. They estimate the parameters by
applying a tilt on perpendicular directions and intersecting
the found planes. In [12], the authors estimate the mass of a
symmetric object, by pushing along the visual centroid and
measuring forces above the friction threshold, and tracking
the motion of the object. They then employ simple Newton
motion laws for the mass estimation. In [13], the authors
estimate all the 2D inertial parameters of a cuboid object, by
applying many pushes with a 2-fingered bespoke mechanism,
measuring applied forces and fingertip motions, and applying
a least-squares estimation method from motion laws. In
[14], the authors apply an adaptive control method that can
estimate the load of a wheelchair while pushed by a 2-
fingered mechanism. In [15], the authors strike an object,
observe its motion while it tumbles and falls, and estimate
the mass, CoM and a measure of mass distribution using
impulse equations. In [16] and [17], the authors use a number
of mobile robots that apply pushes on an object, and can
estimate the inertial parameters by measuring the contact
velocities and torques by applying a consensus method for
multi-robot systems. The aforementioned methods mostly
use analytical modelling for the estimation, as the motion
of the pushed object is dictated by relatively simple and ac-
curate physics equations. For that matter, they need to make
assumptions about the object’s geometry or environment, and
sometimes require specialised hardware setups to perform
the measurements. For instance, the method in [12] needs
a push exactly at the visual centroid of a symmetric object
and a friction coefficient known in advance. [15] requires
tumbling a taller object and observing the motion with high
frequency, a setup that may not work with flatter objects.

In addition, a shortcoming to analytical estimation is the
inability to cope with the various uncertainties of a real sys-

tem, and the limited extension to novel objects. Data-driven
estimation solves these issues by leveraging large datasets of
input-output pairs and learning the correspondences between
them. Examples of data-driven inertial parameter estimation
are [18], where the authors use a deep learning network
to learn interactions between objects colliding in a physics
engine, and infer which object is heavier in a real collision,
as well as [19], where the authors generate motions of mass
models in simulation, apply Bayesian optimisation on a real
object’s motion, and then identify the real mass by matching
the real motion to the highest probability simulated motion.
In [20], the authors use an information aggregator to connect
visual representations of a pushed object to the object’s state
after pushing. Their algorithm could learn a representation of
the mass and friction coefficient of pushed objects, leading
to more accurate pushing predictions. Finally, the authors in
[21] estimated the a mass distribution measure of articulated,
chain-like objects. A predictor was providing estimation for
every link’s mass normalised to the total mass of the chain.
Then a reinforcement learning policy was used for applying
pushes that resulted in more accurate estimations. A major
shortcoming of these methods is that they estimate only the
object’s mass and not the rest of the inertial parameters, and
sometimes they can only calculate relative and not absolute
masses (i.e. which object in the scene seems heavier instead
of the actual mass of an object).

In this letter, we present an method that borrows elements
from both analytical and data-driven approaches to the esti-
mation problem. Our goal is to enable a robot manipulator
to accurately estimate all the 2D inertial parameters of an
object (mass, 2D CoM, rotational inertia) with only one small
push, and for a large variety of objects. We employ a data-
driven regression model, trained with features derived from
analytical modelling of robotic pushing. We evaluate the
method by using two datasets: one we extract from simulated
pushing, and the M-Cube Lab pushing dataset [22]. The
results suggest that in both cases we can achieve low-error
and variance estimations.

Our work is novel in the following ways:
1) We use physical quantities (force, velocity e.a.) appear-

ing in analytical models that describe robotic pushing
as input signals to our method, and extract features
from them. At its core, our approach basically re-
describes the analytical formulas of robotic pushing in
a data-driven way, increasing the estimation accuracy.
Combining these features with the use of a data-driven
method for training results in higher estimation accu-
racy compared with existing data-driven approaches, as
well as the unique ability to estimate all the 2D param-
eters simultaneously. We also achieve generalisation to
novel objects and resistance to friction, increasing the
robustness compared to the analytical-based methods
mentioned above.

2) Our method works with data easily extracted with sim-
ple sensors, and does not require bespoke equipment
or ideal working conditions.

3) To the best of our knowledge, our method is the first
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Fig. 2. Top view of geometric configuration of a robot end-effector
pushing a purple rectangular object on a table. The coordinate
frames denoted with W ,CP and CM are the frames of the world,
finger contact point and object’s centre of mass respectively. The
distance vector between the contact point and centre of mass is
noted with r̄. The direction of all z axes are towards the reader.
For our analysis, we extract the force, moment and velocities of the
CP frame, as well as the velocities of the CM frame. The mass,
rotational inertia and r̄ distance are the target variables.

to accurately calculate all 2D inertial parameters with
a single push. This makes it ideal when hazardous or
fragile objects need to be manipulated.

Overall, our method strikes a good balance of high esti-
mation accuracy and generalisation capability, with limited
object interaction and increased hardware versatility.

II. PROBLEM FORMULATION

A. Quasi-Static Robot Pushing Mechanics

Let an object lying on a surface and a robot applying a
push at one of its edges (Fig. 2). The coordinate frames of
the world, finger-object contact and object’s centre of mass
are noted with W ,CP and CM respectively. We note the
distance vector between CP and CM with ~r. The direction
of all z axes are towards the reader. When the robot applies
a push, the object motion falls into one of three categories:
rest, quasi-static and accelerating.

During rest, the robot applies an infinitesimal amount of
force that can not overcome the static friction, and the object
stays still. In accelerating motion, the robot applies enough
force for the object to overcome the static friction, and start
accelerating. The accelerating motion is characterised by the
inertial parameters of the object, the applied force, and the
friction coefficient between the pusher and the object, as well
as the object and the surface. In this letter, we are interested
in quasi-static pushing, where the robot applies just enough
force for the object to match the frictional force. The object
moves with low and constant velocity, and is not accelerating.
The quasi-static pushing mechanics have been analysed in
depth in a series of works [23] [24] [25], [26], [27]. Here

Fig. 3. Limit surface approximation as an ellipsoid. The exact
calculation of the limit surface may not be possible, and by
approximating it as an ellipsoid the velocity. Points on the limit
surface represent the total frictional load applied on the object.
Due to the principle of maximum dissipation and the smoothness
of the limit surface, the velocity of each point on the surface
q̇ = (ux, uy, ω) must be orthogonal to it. Image from [27]. c© 2015
IEEE.

we provide a brief description of the notions necessary for
our study.

When the object is in contact with an underlying surface, a
frictional load (fx, fy,m) is applied on the support surface,
and the object’s bottom side. The principle of maximal
dissipation indicates that the frictional load depends on the
sliding direction and angle. The set of all frictional loads
that can be applied on an object form a convex set in the 3D
space, called limit surface.

To find an analytical expression for the limit surface, let
dA be an infinitesimal surface patch on the bottom side of the
object, that lies in ~ra distance from a fixed reference frame.
When the object is sliding, it rotates around an instantaneous
centre of rotation ~rc. If the motion is purely rotational, ~rc is
located in the centre of friction in the the support surface.
If the motion is a pure translation, ~rc lies at infinity. The
surface patch dA moves with instantaneous velocity ~ua, and
the friction coefficient is µ. The frictional load applied on
the whole surface A, is given by [23]:

~f = (fx, fy) =

∫
A

−µ ~ua
| ~ua|

p(~ra) dA

m =

∫
A

−µ(~ra − ~rc)×
~ua
| ~ua|

p(~ra) dA

(1)

where p(·) is the object’s pressure distribution on the
plane. In practice, it is very difficult to calculate the limit
surface, because the pressure distribution, centre of rotation,
and supporting surface can be unknown or even varying
during motion. In [28], it is suggested to approximate the
limit surface as an ellipsoid (Fig. 3). The ellipsoid semi-
principal axes and equation are found as follows:

• The maximum force that can be applied by the surface
is fmax = µMg. This force is applied in the case of
pure translation.

• The maximum moment that can be applied by the
surface is mmax =

∫
A
−µ|~ra|p(~ra) dA. This moment

is applied in the case of pure rotation by the projection
of the object’s CoM on the support surface, which is
considered the moment reference point. The fraction



of maximum torque to maximum force is noted with
c = mmax

fmax
.

• The limit surface equation is:

L(fx, fy,m) = (
fx
fmax

)2 + (
fy
fmax

)2 + (
m

mmax
)2 = 1

(2)
Due to the principle of maximum dissipation and the smooth-
ness of the limit surface, for a given frictional load on
the limit surface, the object velocity q̇ = (ux, uy, ω) must
be orthogonal to it [24]. We can impose the orthogonality,
by making q̇ parallel to ∇L(fx, fy,m). This leads to the
following relationships between applied forces and object
velocity:

ux
ω

= c2
fx
m

uy
ω

= c2
fy
m

(3)

The next step after Eq. (3) is to express the motion of the
object as a function of the motion of the robot pusher. This is
done by introducing the motion cone [23]. The motion cone
spans the object velocity, the same way the friction cone
spans the applied force. The left and right limit forces of the
friction cone result in the generalised object velocities ~̇ql =
[ulx, uly, ωl] and ~̇qr = [urx, ury, ωr]. The contact velocities
from this motion are the limits of the motion cone and are
given by ~vl = [ulx − ωlry, uly + ωlrx] and ~vr = [urx −
ωrry, ury + ωrrx]. If we note with ~up the velocity of the
contact point on the pusher, and ~uo the velocity of the contact
point, the motion of the object is dictated by whether ~up lies
within the motion cone.

If the pusher velocity is within the motion cone, then the
contact is sticking and we have ~uo = ~up. The pusher velocity
~up and the object velocity are related by:

ux − ωrx = upx

uy − ωry = upy
(4)

The moment applied by the pusher is m = ~r × ~f = rxfy −
ryfx. This equation, anong with Eqs. (4) and (3) give the
velocity of the object as a function of the pusher velocity:

ux =
(c2 + rx

2)upx + rxryupy
c2 + r2x + r2y

uy =
(c2 + ry

2)upy + rxryupx
c2 + r2x + r2y

ω =
rxuy − ryux

c2

(5)

If the pusher velocity is not within the motion cone, then
the contact is sliding and ~uo is on one of the two boundaries
of the motion cone ~ub. A part of the pusher velocity is lost
due to slippage, and the rest contributes to the object motion.
The fraction that is transferred is ~uo = k ~ub, with k =

~up~n
~ub~n

,
and ~n the contact normal. The object velocity is given by
substituting the new ~uo to Eq. (5), as if the object was pushed

by a sticking pusher with reduced velocity. It is clear that
in all cases, Eqs. (4) and (5) are crucial to fully characterise
the object’s motion from the pusher data.

B. Simulated Dataset Extraction

For the simulated data extraction, we set up a robot
pushing scene using the V-REP simulator. The scene includes
7 Schunk LWA4D robot manipulators with force sensors
and pushing sticks attached. The scene is shown in Fig. 1b.
The robots are pushing cubes that appear in front of them.
The cubes have variable masses, edge size, inertias and
coefficients of friction with the supporting surface. For the
cube parameters we select 20 evenly-sampled masses from
a range of [0.5, 5]kg, 6 friction coefficients from a range
of [0.2, 0.6] and 3 cube edge sizes from [0.1, 0.2]m. The
rotational inertia for each cube is calculated according to the
size and mass of the cubes, with the assumption of uniform
density. The CoM of each cube is located in its geometric
centroid, and we extract the 2D distance vector from the first
contact point to the cube’s CoM (the ~r vector in Fig. 1b).
Since the CoM needs a reference point, we use this 2D vector
as CoM prediction in the training and testing phases of our
algorithm. This way, the robot learns to provide an estimate
of the object’s CoM w.r.t. the first contact point, enabling
predictions for various mass distributions. We select cubes to
model our dataset, due to their easiness of modelling, planar
contact surface with the supporting surface, and because their
straight edges can be pushed without breaking contact. The
choices for the mass are made to simulate objects that are
heavy enough to produce measurable force signals above
potential noise, but not extremely heavy to prevent smooth
pushing. The friction coefficients are selected to simulate a
range of every day contacts (e.g. wood to plastic, wood to
wood, metal on plastic e.t.c) but not extreme cases such as
icy terrains or very sticky contacts. The cube edge sizes are
selected to generate variety in the inertia values.

Each cube is pushed under a different pushing profile.
The profile consists of an initial and final point on the
horizontal (y) axis along the cube edge (that can be in-
terpreted as a pushing angle w.r.t. the cube’s horizontal
edge) and a constant pushing velocity. Each push has a
length of about 0.15m. We select 5 initial and 5 final
points along the horizontal edge of the cube and 4 pushing
velocities 0.01, 0.02, 0.04, 0.06m/s. The pushing velocities
were selected to be low and constant, in accordance with the
described quasi-static modelling. We a apply push for every
combination of cube parameters, velocities and pushing
angles to get 48000 pushes in total, in about 30 hours of
simulation.

For each of the 48000 pushes, we measure the applied
forces from the pushing stick to the cube for the duration of
the push, as well as the cube’s linear and angular positions
and velocities. We added Gaussian noise on each sample,
with zero mean and = 0.05/3 ∗ sample value to achieve a
±5% spread around the sample value. We experimented with
different values of spread, up to 12%. This noise addition
makes the estimation procedure more applicable to a real
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Fig. 4. The M-dataset objects. Images from [22] c© 2016 IEEE.
(a) The 11 objects in the M-dataset have variable shapes. We
use pushing instances on these objects in the training and testing
phases of our estimation method. (b) The inertial properties and
corresponding size of the M-dataset objects.

world scenario, since in real pushing there exist many differ-
ent sources of uncertainty such as unknown object pressure
distribution, stiction, tracking and measurement errors etc.

C. Real Object Dataset

To evaluate the method with data from real robot pushing,
we make use of the high fidelity pushing dataset presented in
[22], and for clarity, we call it the M-dataset throughout the
letter. The M-dataset consists of a large number (over 200K)
of straight pushes, executed by a real robot manipulator on a
set of objects. It contains different combinations of pushing
velocities, angles, and pushing points on the objects, and
their execution is consistent with the quasi-static analysis in
Section IIa. The pushed objects are 11 in total, and are shown
in Fig. 4 along with their properties. The inertial properties of
the objects vary, although the mass range is lower compared
to our simulated dataset. Four different surfaces are used for
the pushing, resulting in different friction coefficients. For
more information on the M-dataset, the reader is encouraged
to study [22].

D. Feature Extraction and Training

The next step after acquiring the data, is to extract mean-
ingful features for training. We view the parameter estimation
process as a regression problem. After acquiring the pushing
dataset, we extract features from the dataset measurement
signals that are fed into a regression algorithm and provide
a value for the inertial parameters.

As per the quasi-static analysis, there exists a non linear
relationship between applied forces and moment by the
robot, object velocities, and the c parameter. The c parameter
is the division of the fmax and mmax. In the division,
the friction coefficient is removed, and the type of surface
does not have any effect on the motion. So, c includes
information about the object’s mass and pressure distribution.
The moment of inertia Izz intuitively manifests itself through

the pressure distribution from the object to the underlying.
The pressure distribution is affected, among others, by the
weight distribution of the object on the surface. Since g the
gravitational is constant, the distribution of mass along the
object’s horizontal surface (i.e. moment of inertia) affects the
pressure distribution, and so the overall motion even though
the model is quasi-static. From the non-linear Eqs (1) to (5) it
can be seen that an closed-form expression between inertial
parameters, applied forces and moment, and object velocities
is tough to obtain. We instead model it as a non-parametric
regression problem as:

~θ = F (fx, fy,m, ux, uy, ω, upx, upy) (6)

with ~θ = [M, Izz, rx, ry] the inertial parameter vector. We
extract signals for the 8 quantities in the right part of Eq.
(6), and treat them as random signals. This is because the
signal shape in time depends on the pushing profile. We
split each signal in 3 windows, to catch possible significant
variations in time. The window size resulted from hyper-
parameter tuning. Larger window sizes resulted in higher
feature dimensions and more complex learning models, and
smaller window were not able to capture the variations in the
measurement signal waveforms. We then extract the mean,
standard deviation, and RMS value of each window, leaving
us with a 8×3×3 = 72-dimensional feature vector for each
push.

We then use such feature vectors extracted from our
datasets to train a Multi-Output Regression Random Forest
(MORRF). We selected a MORRF because they perform
well with larger amounts of data and have reduced variance
along the predictions. Additionally, our mass range for the
simulated data is within the operational limits of many arms.
Items above 5 kg can be difficult to push and manipulate,
and items below 0.5 kg are very light. Selecting a learning
algorithm that could generalise well beyond these limits
would be unnecessary. A Random Forest can fit well the
range of the target variable during the training phase, even
with poor generalising.

III. EXPERIMENTAL RESULTS

To test tour approach we set up two estimation ex-
periments, one with each dataset. In all experiments, we
measure the effectiveness of our algorithm using the Average
Percent Difference eapd of each predicted value dpred and its
corresponding ground truth dgt:

erpd =
2(dgt − dpred)
|dgt|+ |dpred|

∗ 100% (7)

This metric expresses the difference of two values as a
percentage of their absolute magnitude. We chose this metric
over the more well known Relative Percent Difference, be-
cause in our case dividing by the ground truth can skyrocket
the error value. This happen s when the ground truth is
close to zero, as it is the case with small inertias and CoM
distances, corrupting the evaluation process. With the average
difference, the error is bounded to ±200%. Over our testing



TABLE I. Prediction results on the simulated testing set

Parameter Error Mean % Error Standard Deviation %

Mass 7.59 11.04
Inertia 13.49 10.20
Com x 12.59 8.62
Com y 20.61 8.12

set, we calculate the mean and standard deviation of the
error. The use of a percentage instead of absolute quantities
enables the mean and standard deviation to characterise the
performance within the whole range of the target values with
the same fidelity.

A. Simulated Dataset Estimation

In the simulated dstaset, we extract the feature vector
described above and train the MORRF. The predictor is
the feature vector and the target vector is ~θ. We split our
dataset in training and testing sets. The testing set is 10% of
the dataset size, namely 4800 samples. We sort the 48000
samples by mass size. We then extract 1% of the lowest,
1% of the second lowest and 1% of the third lowest masses,
0.5, 0.736, 0.973kg respectively, and do the same with the
higher masses (4.526, 4.763, 5kg), for a total of 6%. The
rest 4% came from evenly sampling the rest of the masses. In
the end, this gives us a 10% testing set, that over-represents
the two limit cases (heavy and light objects). The remaining
samples are the training size. Our model then trains mostly in
medium-range masses and tests mostly in limit-range masses.
We apply k-fold cross-validation to the training sample, with
k = 10, and validation split of 10% on the training set. The
training time is about 212 secs, on a Intel Core i7-8750H
CPU @ 2.20GHz and 16 GB RAM laptop. The results are
shown in Table I.

It is evident that our training method has achieved low
error means and relatively low error standard deviations. The
low standard deviation is inherent in ensemble algorithms,
and the low error means are achieved by increasing the depth
of the Random Forest. These properties further justify the
selection of a MORRF as a learning algorithm in our setup.
An exception would be the y-dimension of the CoM, where
the mean appears slightly increased. Despite our selection
of error metric limiting the error value to ±200%, the low
values of the denominators in the error metric can still lead to
frequent occurrences of the limit values, affecting the overall
performance.

In Section II, we mentioned that the surface type does not
play a role in quasi-static motion, because the c2 parameter
consists of a fraction that deletes the friction coefficients. To
test whether our model follows this principle, we calculated
the performance mean and standard deviation for each of
the four friction coefficients in the dataset. The results are
shown in Fig. 5. It can be seen that the performance remains
quite robust to the changes in the friction coefficient, with
some minor variations of the error mean occurring. As
expected, the method also shows better performance towards
the middle of the mass range, because the middle masses

TABLE II. Prediction results on the M-datset testing set

Parameter Error Mean % Error Standard Deviation %

Mass 10.05 7.09
Inertia 12.44 7.38
Com x 12.90 15.05
Com y 13.32 15.31

were more represented in the training set. The variations
of the error standard deviation are almost negligent. Our
method was also proven quite resistant to noise. The final
performance was not significantly affected by the added
Gaussian noise, as error variations of about 0.2% at most
were observed.

B. M-Dataset Estimation

For the M-cube dataset, we apply the same train-test split
procedure as before. We train a MORRF with same testing
and training percentages, 10-fold cross-validation, on the
same laptop. Due to the larger size of the M-Dataset, the
training time was about 1236 secs. The results are shown
in Table II. Again, the system can estimate the object’s
inertial parameters with low error, due to the low mean
and relatively low standard deviation of the average percent
difference. We again check the performance for every one
of the four different surfaces provided in the M-dataset. The
results are shown in Fig. 6. Again, we observe a smooth
and robust performance along varying surface materials and
mass ranges, indicative that our learning model can properly
describe the quasi-static pushing mechanics. Even though
the middle range masses are again more represented in the
training, the large number of samples in the dataset mean
that the robot will be trained with enough samples from each
range to warrant robust performance.

IV. DISCUSSION

The results from the experiments in both datasets suggest
that our learning method can accurately describe the quasi-
static motion of an object while pushed by a robot finger.

We extracted our own dataset in simulation because it is
easier to get data for a variety of objects with large range of
inertial properties, and observe the model performance along
this range. The number of pushes the M-Dataset contains is
enough for training and testing, however the objects provided
have low ranges on their inertial parameters, and generation
of extra objects was necessary. The simulated dataset has
larger ranges in mass, inertia, and CoM distance, but fewer
samples. On the other hand the M-Cube dataset has lower
range in the parameters, but about 5 times more data. it
also has higher sensor rate, and has undergone additional
preprocessing. Along with our train-test split method, this
leads to the M-Cube RF trained with more samples that
resemble each other more, achieving slightly higher perfor-
mance. One of the main advantages of our method is the
robust performance under variations of the surface friction
coefficient. In real conditions, achieving exact quasi-static
motion can be very difficult. It requires constant application
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Fig. 5. Mean performance of our proposed learning algorithm in the simulated dataset, plotted over the friction coefficient and mass range.
It is in accordance with the overall performance in Table I. (a) Mean performance across varying surface friction coefficients. The error
means are noted with the bars, and the standard deviation with the vertical lines. (b) Mean performance across the mass range of the test
set. The standard deviations are omitted for clarity.

(a) (b)

Fig. 6. Mean performance of our proposed learning algorithm in the M-Cube dataset, plotted over the surface type and mass range. It is
in accordance with the overall performance in Table II. (a) Mean performance across varying surface types. The error means are noted
with the bars, and the standard deviation with the vertical lines. (b) Mean performance across the mass range of the test set. The standard
deviations are omitted for clarity.

of a crucial velocity, just enough to break the object’s rest
but not accelerate it. A good approximation of ideal quasi-
static motion can be achieved by pushing really slow. Even
then, the motion of the object can be jittery, due to the object
momentarily sticking on the surface and being pushed again.
For this reason we divided the measured sensor signals in
3 windows, and we extracted the mean, standard deviation
and RMS value of each window as features. This leads to
a smoothing on the signal jitter, reducing the uncertainty in
quasi-static motion.

A. A note on cross-dataset learning
An obvious step when using two datasets is cross-testing,

i.e. training on one dataset and testing on the other. The pre-
ferred option would be to train on the simulated dataset and
test on the M-Dataset. An initial attempt resulted in model
performance with error rates of 40-60%. The reasons for the
poor performance are inherent to sim-to-real approaches. The
frictional loads applied on the object from the surface can

be controlled and measured in simulation, but they are inac-
curate. On the other hand, in a real dataset frictional loads
are physically accurate but difficult to measure. The control
over the cross-dataset friction coefficients and the pressure
distribution is also another parameter that makes sim-to-
real testing difficult. The experimental conditions, such as
pushing starting and ending points and sensor frequencies
also affect the performance and are difficult to replicate.
Our goal for this letter is to prove and test that the quasi-
static pushing mechanics can be incorporated in a data-driven
estimation model and not to provide a complete fit-for-all
system. For that reason, we selected to leave the cross-testing
analysis out of the letter’s scope. Solving the cross-testing
problem would open new frontiers in sim-to-real estimation
and enable a system to be trained in simulation and deployed
in the real world.



V. CONCLUSION

In this letter we presented a novel approach for estimating
the inertial parameters of an object by pushing it. Our
method addresses the shortcomings of previous works, by
combining the accuracy of model-based estimation methods
and the generalisation capability of data-driven methods. We
designed experiments to show the estimation accuracy in
both simulated and real conditions, over a range of inertial
properties. The results were satisfactory, with our system
achieving low means and relatively low variance among the
predictions.

We used large datasets for the training purposes, and a
future step would be to use learning methods that lever-
age big data, such as an LSTM or another deep learning
framework,to achieve lower training and test errors. An extra
step on this direction would be to use deep reinforcement
learning methods for sim-to-real training, eliminating the
need for cross training and allowing a robot to be trained
on the simulated dataset and test its capability on various
real datasets and testing samples.

Our previous research has showed how a robot can select
among a set of grasps on an object by using the inertial
parameters as an efficiency criterion [2][3]. This letter sug-
gests a method for estimating the 2D inertial parameters
with minimum interaction and relatively high fidelity. A next
step would be to use the presented method’s findings in
order to find how a robot could estimate the full 3D inertial
parameters of an object by simple interaction, and directly
compute the manipulation criteria in [2][3].

An interesting case for our research would be the usage
of our algorithm in closing the sim-to-real gap and deploy a
robot in a real environment, where heavy objects need to be
manipulated efficiently and accurate predictions are required.
Finally, we aim to test our method with objects of variable
mass distribution to further enrich our dataset and increase
its capabilities.
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