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Abstract

A method for quantifying aggregate size distribution from the images of soil

samples is introduced. Knowledge of soil aggregate size distribution can help

to inform soil management practices for the sustainable growth of crops. While

current in-field approaches are mostly subjective, obtaining quantifiable results

in a laboratory is labour- and time-intensive. Our goal is to develop an imag-

ing technique for quantitative analysis of soil aggregate size distribution, which

could provide the basis of a tool for rapid assessment of soil structure. The

prediction accuracy of pattern spectra descriptors based on hierarchical repre-

sentations from attribute morphology are analysed, as well as the impact of

using images of different quality and scales. The method is able to handle

greater sample complexity than the previous approaches, while working with

smaller samples sizes that are easier to handle. The results show promise for

size analysis of soils with larger structures, and minimal sample preparation, as

typical of soil assessment in agriculture.
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1. Introduction and motivation

Soil structure concerns the physical arrangement of a soil, which provides an

environment to provide plants access to water, air and nutrients, and a suitable

medium for root development (Bronick & Lal, 2005). Adequate soil structure is

fundamental for the sustainable growth of crops, and can contribute to reducing5

the environmental impact of agriculture. Hence, robust and accurate methods

to measure soil structure are important tools for informing soil management

decisions.

Soil aggregates constitute a key structural unit of the soil, and are com-

posites of sand, silt, clay (primary particles), organic matter and pore space.10

The strength of soil structural coherence depends on the binding forces between

these materials, which are often a function of the soil’s biological activity (Ash-

man, Hallett & Brookes, 2003; Czarnes, Hallett, Bengough & Young, 2000). As

such, assessments of soil aggregates provide information not only on soil physical

structure, but also on the overall “health” of a soil, and indicate the potential15

of a soil to sustain vital ecosystem functions like crop growth, carbon seques-

tration and water regulation (Allen, Singh & Dalal, 2011). A soil ped is a larger

structural unit, which can be broken down into aggregates, whilst a soil clod is

a larger, more angular structural unit that has undergone disturbance, which

often does not break down into stable soil aggregates. Together, the arrange-20

ment and distribution of aggregates, peds and clods constitute the structural

arrangement of a soil.

Several laboratory techniques have been developed to assess properties of

soil size distribution. These methods may look at the stability of aggregate co-

hesion and/or the size distribution after aggregate breakdown (Beare & Bruce,25

1993; Le Bissonnais, 1996). They usually employ dry and wet sieving tech-

niques, measuring the soil retained on sieve stacks with decreasing mesh sizes.

Although such techniques, and subsequent developments, are routinely used in

academic soil research, the timescales and relatively high labour input needed

for size distribution analysis may explain the limited adoption of such processes30
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in commercial agricultural laboratories. In-field assessments of soil structure,

such as the visual evaluation of soil structure (VESS) or visual soil assessment

(VSA) tests (Shepherd, 2009; Ball, Batey & Munkholm, 2007) amongst others,

are based on the size distribution of soil aggregate, ped or clod following in-field

breakdown. Such methods offer a more rapid assessment of soil structure for35

practitioners, but they rely on simplified scoring and categorisation, for example

a score of Sq1 (friable) to Sq5 (compact) for the VESS test, and a degree of

subjectivity between assessments.
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Figure 1: System overview.

Developments in applying image analysis to soil characterisation, such as

aggregate distribution, could provide a solution to some of these limitations, by40

enhancing the efficiency and repeatability of quantitative in-field analysis with-

out needing an expert practitioner (Aitkenhead, Donnelly, Coull & Gwatkin,

2016). They would also be of particular interest when performing the assess-

ment of soil structure in hostile environments such as on the Martian surface

(Karunatillake et al., 2014), where the physical samples are typically inaccessible45
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and the analysis has to rely on imaging data. This paper proposes an automatic

pipeline for measuring soil aggregate size distribution from images of soil sam-

ples, shown in Fig. 1. Soil samples from a depth of 0 to 200 mm were collected

from a range of soil types under arable fields. This work focuses on replacing

physical sieving with the digital sieving process, with the corresponding parts of50

the pipeline indicated in Fig. 1. This physical process closely matches the algo-

rithmic process of granulometries (Matheron, 1975; Breen & Jones, 1996) and

pattern spectra (Maragos, 1989), where the image is filtered with a succession

of openings of increasing sizes, often also described as sieving. The classical

pattern spectra based on structuring element (SE) morphology are compared55

to their attribute morphology counterparts, which are rotation invariant and are

less sensitive to noise (Urbach, Roerdink & Wilkinson, 2007). Pattern spectra

can be interpreted as histogram representations of the image component size

distribution, which are then mapped to soil aggregate size distribution in terms

of either mass or volume by a trained regression model.60

While the first efficient implementations of granulometries and pattern spec-

tra relied on the max-tree hierarchy (Salembier, Oliveras & Garrido, 1998), this

work investigates the ability of pattern spectra to capture the soil aggregate

size distribution when calculated on both types of image hierarchies: inclusion

trees (Salembier et al., 1998; Monasse & Guichard, 2000), which are extrema-65

oriented, and partitioning trees (Soille, 2007, 2008), which capture intermediate

level regions. The contributions to knowledge of this work are:

• trained regression models are developed able to predict the measured soil

aggregate size distributions from images in terms of mass and volume,

• the most suitable hierarchical representation for calculating attribute pat-70

tern spectra is identified and the performance is additionally compared to

the classical SE spectra, and

• A dataset is published containing RGB images of soil samples at different

scales, captured with both professional and amateur cameras, together
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with the results of associated manual soil aggregate size distribution anal-75

ysis in terms of both mass and volume1.

The proposed pipeline allows a direct quantification of the soil aggregate size

distribution, rather than just a re-identification of samples as in (Bosilj, Gould,

Duckett & Cielniak, 2019), and could potentially be used in the development of

an in-field system for automated soil analysis.80

2. Related Work

Some of the earliest image processing techniques applied to estimation of

aggregate size distribution focused on segmenting images of non-overlapping

coarse aggregates (3 mm to 63 mm) (Mora, Kwan & Chan, 1998). An automated

tool for measuring the grain size distribution of gravels from digital photographs85

was developed by Graham, Rice & Reid (2005) and improved by Detert & Weit-

brecht (2012) based on analysing a number of segmentation-based techniques

for overlapping particles of coarse-grained sediments, including those based on

top-hat and watershed morphological operations (Graham, Reid & Rice, 2005).

Size distribution of overlapping particles of coarse sands and gravel (0.7 mm to90

20 mm) has also been analysed through statistical image properties (Buscombe

& Masselink, 2009), however determining the sample distribution through re-

gression over the images in a “look-up catalogue” limits the possible target

distributions. In summary, these approaches are limited to cases of little or

no particle overlap and use samples comprising large aggregates, with further95

drawbacks including the reliance on a catalogue or segmentation of the image

into individual particles.

Granulometries (Matheron, 1975) and subsequently pattern spectra (Mara-

gos, 1989), were early morphological operations. They were developed as tools

for scale (size) and shape analysis of image content, with initial applications100

1https://lcas.lincoln.ac.uk/wp/research/data-sets-software/

soil-aggregate-size-distribution-dataset/
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in petrography (i.e. studying the grain structure of rocks). They were used as

global (Urbach et al., 2007; Tushabe & Wilkinson, 2007) as well as patch and

region descriptors in general image processing tasks (Chen & Dougherty, 1994;

Bosilj, Aptoula, Lefèvre & Kijak, 2016). Pattern spectra through opening and

closing with reconstruction were used for the granulometric analysis of estuarine105

and marine sediments (Frančǐsković-Bilinski, Bilinski, Vdović, Balagurunathan

& Dougherty, 2003), as well as soil section images (Doulamis, Doulamis & Mara-

gos, 2001) (also including spectra based on area openings). However both meth-

ods focus on samples with mostly non-overlapping aggregates.

Pattern spectra based on area openings calculated on a max-tree were used110

to produce accurate grain size distributions of sands (smallest reported parti-

cle size 0.06 mm) (Pina, Lira & Lousada, 2011). Image granulometry was also

considered for estimating the size distribution of stone fragments (Salehizadeh

& Sadeghi, 2010). A recent study compared pattern spectra based on different

SEs, as well as area openings, closings and their combination, for the assessment115

of grain size for fine and coarse aggregates of sands and pebbles (0.125 mm to

16 mm) (Bianconi, Di Maria, Micale, Fernández & Harvey, 2015) with the best

results obtained through attribute morphology. The mean grain size was es-

timated through regression on the training samples, by assuming a quadratic

relation between measured grain size and image granulometry. Image granulom-120

etry was also related to the measured mass distribution of the samples. However,

this work was validated on prepared samples with predetermined unimodal grain

size distribution, while processing partial images of very large samples.

The sample size used in our experiments is several orders of magnitude

smaller than the one used previously (Bianconi et al., 2015), and the image125

acquisition setup produced partially to completely overlapping and touching ag-

gregates. An additional difference is that our sample structure is more complex,

resulting in a multimodal distribution of soil aggregates. Finally, while baseline

attribute morphology pattern spectra based on min- and max-trees have already

been shown to outperform their counterparts with SEs for similar tasks (Bian-130

coni et al., 2015), in this work a more detailed analysis of attribute morphology
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pattern spectra resulting from different image hierarchies was performed.

3. Methodology

In this section, we introduce the basic concepts of morphological image pro-

cessing used in the implementation of the digital sieve from the highlighted part135

of the system in Fig. 1.

3.1. Morphological processing of binary images

A 2D binary image f : E → {0, 1}, E ⊆ Z2 is formally defined as an element

from a partially ordered set on the image domain. The standard terminology

of pixels, connectivity, foreground and background (objects), translation and140

point-wise maxima and minima operations is used.

A filtering is an image transformation which selectively suppresses image

noise, certain image structures or objects. Morphological filters are non-linear

and preserve elements based on the geometry and contrast of image pixels and

their local neighbourhoods (Soille, 2013). They are characterised by the prop-145

erties of idempotence (repeated applications of the filter have no effect) and

increasingness (preserving the ordering relation between images).

This work relies on a group of filters called openings to measure content.

They remove image content, are characterised as anti-extensive and result in

images where the pixel values can only be lower or equal to the original. A dual150

operation adding image content is called a closing and the property extensivity.

The classical openings defined through the interaction of an image with a

static SE are now described, as well as the attribute openings belonging to the

adaptive morphological operations which are not shape-biased (Breen & Jones,

1996). For a more detailed analysis of openings, closings, and their properties,155

the reader is referred to (Serra, 1983; Ronse & Heijmans, 1991).

3.1.1. Structuring element filtering

In classical morphology, image transformations can be described as the result

of probing the image with a set of a known shape called a structuring element
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(a) input image (b) SE (c) SE opening (d) attribute opening

for A(R) ≥ 9

Figure 2: The opening of an example binary image in (a) with the structuring element (SE)

in (b) is shown in (c), with the erosion also indicated by shading. The result of applying an

attribute opening using the criterion “area larger than 9” on the same image is shown in (d).

(SE), which is commonly a small symmetric image (e.g. 3× 3 px as shown in Fig.160

2(b)) chosen based on the prior knowledge about the geometry of the relevant

or irrelevant image objects (Soille, 2013).

The basic morphological transformations are erosion and dilation by an SE,

equivalent in practice to Minkowski addition and subtraction (Minkowski, 1903;

Hadwiger, 1950; Maragos & Schafer, 1990). Erosion removes image content. Ap-165

plying an erosion with SE B to an image f results in an image εB(f) containing

all the SE origin locations where the SE is fully covered by foreground pixels in

f . Dilation is the dual operator of erosion, adding content to the image, and the

dilated image δB(f) shows the locations of the SE origin where the SE contains

at least one foreground pixel in f . Erosion (resp. dilation) can be interpreted as170

assigning to the pixel p in the resulting image the lowest (resp. highest) value

of the original image contained in the SE when centred on the pixel p.

An SE opening ΓB(f) with an SE B, used to provide a baseline performance

for comparison with the attribute openings implemented through component

trees under study in this work (explained in Secs. 3.1.2 and 3.2.2), is defined as175

an erosion followed by a dilation with the reflected SE. It is sometimes incor-

rectly defined as an erosion followed by a dilation with the same SE, however

this is because reflecting a typical (flat and symmetric) SE does not change it. If

the SE fits the image at a certain origin location, all the SE elements are added
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to the foreground of the resulting image. The same small foreground regions are180

removed as with erosion, but some elements of the preserved foreground regions

are partially recovered. The dual closing operation removing small background

regions is similarly defined through chaining a dilation followed by an erosion,

or can be calculated as an opening of the image complement.

The application of an SE opening to a binary image is shown in Fig. 2.185

In SE morphology, one might use a 3 × 3 SE such as the one on Fig. 2(b) to

remove the image objects smaller than 9 pixels. The resulting image in Fig. 2(c)

illustrates the shortcomings of SE morphology: firstly, the elongated object is

removed, despite its size, as its shape does not fit the chosen SE, and secondly,

the preserved object is not reconstructed to its original shape. This is due to SE190

morphology being shape-biased (Breen & Jones, 1996), as opposed to attribute

morphology explained in the next section.

3.1.2. Attribute filtering

In order to adapt to the image content, attribute filters work directly on the

foreground regions of the image based on a given connectivity relation (here,195

the standard 4-connectivity is used), formally called the connected components,

CC(f), of the image, f . They belong to the family of connected operators which

work directly on CC(f) (Heijmans, 1999) and coarsen the image partition. The

set CC(f) consists of connected foreground components of maximal extent, and

a single connected component is denoted by CC(f)i (with i from some index200

set).

To make decisions about the connected components of the image, we can

evaluate different criteria for each CC(f)i. A criterion K operating on sets is

said to be increasing if, when the criterion holds for a set X, it also holds on all

the supersets of X. A common way to define a criterion K is through comparing

the value of an attribute A(·) calculated on a region X to a threshold T , where

using an increasing attribute such as area results in an increasing criterion KA,T .

We say that X satisfies KA,T if and only if A(X) ≥ T . Given an increasing

criterion K, the trivial opening (Serra & Vincent, 1992) ΓK(X) of a connected
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set preserves the set X if it satisfies the criterion K. This definition is extended

to images by applying the opening to all the connected components CC(f):

ΓK(f) =
⋃
i

ΓK(CC(f)i) (1)

While a number of increasing attributes can be used to filter image compo-

nents according to their size (Breen & Jones, 1996), in this work we focus on the

area opening (Vincent, 1993a), where the threshold choices correspond to the

mesh sizes on the physical sieves used in manual soil size distribution analysis.205

3.2. Extension to greyscale images

To be applicable as image analysis tools, morphological methods and tech-

niques need to be extended to greyscale images. A 2D greyscale image (with

fixed-precision pixel values) is formally defined as f : E → {0, 1, · · · , tmax}, E ⊆

Z2. The core principles behind defining greyscale morphology are threshold de-210

composition and superposition (Serra, 1983; Maragos & Ziff, 1990). Efficient

implementations of different filters are achieved by relying on component trees

defining hierarchies of connected components (Bosilj, Kijak & Lefèvre, 2018).

3.2.1. Threshold decomposition and superposition

A greyscale image f can be decomposed into its cross-sections or upper level

sets (Monasse & Guichard, 2000). The upper level set Lk(f) of the image f

at the level k contains all the pixels f(p) with values higher than k, Lk =

{p ∈ f |f(p) ≥ k}. These sets are nested and follow an inclusion relationship,

L0 ⊆ L1 · · · ⊆ Ltmax . Similarly, the lower level sets Lk contain all the image

pixels lower than a value threshold. The value of the image f at a pixel p can be

obtained as the largest threshold value k for which p is included in the associated

upper level set Lk:

f(x) =

tmax∑
k=1

[Lk(f)](p) = max{k|p ∈ Lk(f)}. (2)

Such representation of a greyscale image as the sum of its successive upper215

level sets is referred to as the threshold decomposition or threshold superposition

principle (Serra, 1983; Maragos & Ziff, 1990).
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This offers a template for extending the increasing binary filters to greyscale

(Serra, 1983; Vincent, 1993b) by applying the filter to all upper level sets and

summing the results:

[ψ(f)](x) =

tmax∑
k=1

{ψ[(Lk(f)]}(p) (3)

The greyscale filters which can be expressed as Eq. (3) are called flat operators

(Wendt, Coyle & Gallagher, 1986) and keep a number of properties of their bi-

nary counterparts such as idempotency and (anti-)extensivity (Vincent, 1993b;220

Breen & Jones, 1996). While Eq. (2) provides a theoretical basis for extending

binary to greyscale morphology, applying the transformation to every level set

results in a very slow implementation (Vincent, 1993b). Instead, greyscale at-

tribute morphology relies on the component trees discussed hereafter, and SE

morphology relies on the interpretation of erosion as an operation assigning the225

lowest value of the image contained in an SE to the pixel in the resulting image,

which still holds true when the definition is extended to greyscale through Eq.

(2) (and similar interpretations of dilation and their combinations opening and

closing).

3.2.2. Component trees230

In attribute morphology, the typical way to interact with connected compo-

nents of the image is to define them through a component tree, a hierarchical

image representation. Component trees are complete image representations,

meaning that the image can be fully reconstructed from the associated com-

ponent tree. Inclusion hierarchies (examples in Fig. 3) comprising partial im-235

age partitions as cross-sections, which are typically extrema-oriented are distin-

guished from partitioning hierarchies (see Fig. 4) with nested image partitions

as cross-sections, which are better at representing regions at intermediate values

(Bosilj et al., 2018).

The min and max-trees are seminal morphological hierarchies (Breen &240

Jones, 1996; Salembier et al., 1998), modelling the inclusion relations between

the upper and lower level sets of the image which are nested. These are dual
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Figure 3: The three different inclusion trees of a toy image (d). The min-tree is displayed in

(a), while its dual max-tree is shown in (b). The self-dual tree of shapes is shown in (c). The

(grey) levels of the nodes are displayed in the nodes, and the corresponding regions are shown

beside the nodes.

hierarchies belonging to the class of inclusion trees, and are well-suited for rep-

resenting dark and bright image components, respectively. Examples are shown

in Fig. 3(a) and (b).245

The tree of shapes (ToS) (Monasse & Guichard, 2000) unifies the represen-

tation of bright and dark image structures, producing a single self-dual image

representation, treating bright and dark components equally based on their

absolute contrast with their background. It comprises all the connected compo-

nents of both upper and lower level sets with their holes filled, which also form250

an inclusion hierarchy. An example of a ToS is shown in Fig. 3(c).

The α-tree is a partitioning tree based on the local range of its compo-

nents (Soille, 2007, 2008) (also sometimes referred to as quasi-flat zone hierar-

chy (Cousty, Najman, Kenmochi & Guimarães, 2018)). The finest segmentation

contained in the leaves of the tree comprises connected components of maximum255

extent of pixels at the same grey level, which are then merged according to the

local neighbour similarity. As such, this hierarchy is capable of representing

both bright, dark and intermediate level regions. However, due to the locality

of the criterion used, the grey level variations within regions tend to be much

higher than α when the grey levels in the image increase and decrease gradually,260

called the chaining effect (Soille, 2008). An example of the hierarchy is shown

12
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Figure 4: For the toy image in (a), the α-tree is displayed in (b), while the constrained

hierarchy (ω)-tree is shown in (c). The α (resp. (ω)) levels are displayed in the nodes and

indicated by their height, with regions displayed besides the nodes.

in Fig. 4(b), with the chaining effect observable for α = 2.

The most notable constrained connectivity hierarchy designed to deal with

the chaining effect is the (ω)-tree (Soille, 2008), which rearranges the regions

of the α-tree according to their global intensity range, removing some of the265

regions but providing better grouping per level than just a local measure (see

Fig.4(c)).

Attribute filtering is then implemented through evaluating the attribute

value on every region present in the hierarchy and discarding those not sat-

isfying the criterion, followed by reconstituting the image from a filtered tree.270

Due to the increasing property of the opening operations and the nested nature

of the regions ordered into a hierarchy, a complete traversal of the tree can be

avoided. According to the direct filtering rule (Salembier & Wilkinson, 2009)

during the top-down traversal, if a parent node does not satisfy a given criterion,

13



neither do any of its child nodes, which can also be safely removed from the hi-275

erarchy. A direct implementation of an attribute opening in Eq. (1) is achieved

through filtering the max-tree (and a similarly defined attribute closing uses the

min-tree hierarchy).

3.3. Measuring image content

Both granulometries (Matheron, 1975) and pattern spectra (Maragos, 1989)280

rely on openings and closings, and capture the information on the distribution

of image component sizes. While granulometries can be seen as cumulative size

distributions of images, pattern spectra are the corresponding size histograms.

In order to study the objects in terms of their size, it is necessary to define

how to perform an equivalent morphological operation at different scales of the285

image. Given an SE B which is (by convention) of size one, scaling of this SE

by a factor of n is denoted as nB and can be obtained through dilating it n− 1

times with a reflected SE B̄. Then, for an opening ΓB we can define an opening

at a larger scale as ΓnB . Attribute openings do not rely on an SE but instead on

a criterion KA,T , comparing the value of an attribute A evaluated on a region290

to a threshold value T . In this case, constructing an opening at a larger scale

based on ΓKA,T
simply corresponds to scaling the threshold value T by a factor

n to obtain ΓKA,nT
.

3.3.1. Granulometries

A size granulometry (Matheron, 1975; Breen & Jones, 1996) is a technique295

for calculating the cumulative distribution of image content according to size,

and can be interpreted as consecutively sieving the image with an increasing

mesh size. It has been extended to shape granulometries (Urbach & Wilkinson,

2002) used for characterising the distribution of image component shapes and

then further to combined size-shape granulometries (Urbach et al., 2007).300

Size granulometries are implemented through applying a series of openings

with increasing size {Γti}, ti+1 > ti, where every consecutive opening removes

more detail from the image. A size granulometry of an image f is denoted as

14



{gΓ,ti(f)}, and calculated as the amount of detail remaining in the image after

each filtering operation:

gΓ,ti(f) =M[Γti(f)], (4)

where M is a measure of image content. As image openings interact with the

image components brighter than the background, a granulometry by opening

only contains information about the size distribution of foreground image ele-

ments. To study the size distribution of the background components, the image

can be filtered with a series of closings of increasing size {Φti}, ti+1 > ti. Whilst305

the term anti-granulometry is sometimes used (Soille, 2013), as this operation

is not based on an increasing operation, it will be referred to simply as granu-

lometry by closing through the paper, as the suitability of both approaches for

estimation of soil aggregate size distribution is studied.

3.3.2. Pattern spectra310

Unlike granulometries, which note the amount of remaining image content,

pattern spectra measure the amount of image detail removed between two con-

secutive filtering operations. A size pattern spectrum {sΓ,ti(f)} is obtained from

a granulometry {Γti} by storing the differences in measures of the two successive

filtered images:

sΓ,ti(f) =M[Γti−1
(f)]−M[Γti(f)]

= gΓ,ti−1(f)− gΓ,ti(f)

sΓ,tmin
(f) =M(f)−M[Γtmin

(f)]

=M(f)− gΓ,tmin(f). (5)

In the early research on pattern spectra, these values were sometimes nor-

malised with a scale parameter ti (Maragos, 1989). This is because the pattern

spectrum can be interpreted as a probability density function (Maragos, 1989;

Dougherty, Pelz, Sand & Lent, 1992) in its simplest form, which is a histogram

(Silverman, 2018) when the associated granulometry is interpreted as a cumu-315

lative distribution function.
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Efficient implementations of both granulometries and pattern spectra rely

on attribute openings implemented through component trees. The attribute

of interest is calculated for all the regions during tree construction, followed

by determining the first opening from the sequence {Γti} interacting with each320

region and the bin i to which the region will contribute. This approach requires

only a single traversal of the tree to calculate the whole {gΓ,ti(f)} and {sΓ,ti(f)},

relying on the fact that the applied filters are increasingly coarser and any

content removed by Γti will also be removed by Γtj for all i < j.

3.3.3. Content measures325

Finally, the content measures used in Eqs. (4) and (5) are defined. The most

commonly used measure is the Lebesgue measure, corresponding to the image

volume (with pixel values heights) for 2D images used in this paper:

Mvol(f) =

tmax∑
k=0

A[Lk(f)] =

tmax∑
k=0

∑
i

A{CC[Lk(f)]i} (6)

As the max-tree is a hierarchical representation of the upper level sets of the

image, calculating this measure corresponds to summing up the areas of regions

present in the tree, weighted by their contrast with their parent. The need to

weight the region areas in the calculation comes from the fact that the max-tree

encodes only the first threshold value for which each region appears in the tree.330

However, since the ToS can simultaneously remove both bright and dark

image components, it is possible that Mvol(f) = Mvol[Γ(f)] are equal despite

f 6= Γ(f). Therefore, we propose a different measure, which we name dynamic

volume, to avoid this undesirable behaviour on the tree of shapes. Every tree

can be represented as a set of regions H = {Di
H} with i from some index set335

(e.g. the connected components of the upper level sets for the max-tree) (Bosilj

et al., 2018). The grey level of the region Di
H is denoted by G(Di

H) where for

the inclusion trees this is set to the grey level of new pixels added in each node,

and for the partitioning trees to the average of all grey level values in the region.

The term P (Di
H) denotes a parent of the region Di

H, which is the smallest region340
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containing Di
H: P (DH,i) = Dj

H ∈ H such that Di
H ⊂ Dj

H and @Dk
H such that

Di
H ⊂ Dk

H ⊂ D
j
H.

Using these definitions, the dynamic volume Mdvol can be defined as:

Mdvol(fH) =
∑
i

A(Di
H)× |G(Di

H)−G[P (Di
H)]|, (7)

where fH denotes an image f represented by a hierarchy H. Note that for the

min and max-tree hierarchy, Mvol(fH) =Mdvol(fH).

The region count is also used as a content measure, which is topologically

invariant to both the spatial extent and the greylevel variations induced by the

filtering (Cavallaro, Falco, Dalla Mura & Benediktsson, 2017). The measure was

originally defined to measure the number of connected components affected by

the filtering. However, since this work defines content measures as descriptors

of single images, as opposed to Cavallaro et al. (2017) who define it on a pair

consisting of an original and a filtered image, the region count is redefined as

Mcount(fH) to reflect the number of connected components in the image or the

hierarchy:

Mcount(fH) = |DH|. (8)

When the proposed definition of Mcount is used with Eq. (5) to define a value345

of the pattern spectrum, obtained as the difference of content measures between

two consecutive filtered images, the obtained values are equal to those obtained

through the original definition (Cavallaro et al., 2017). The third measure under

consideration in the literature (Cavallaro et al., 2017) measures the number of

pixel values changed by a filtering. However, this is not a direct measure of350

image content, but rather a difference measure between two images, calculated

from the filtered image paired with the original. As such, it is not suitable for

use in Eqs. (4) and (5) and was therefore omitted from this study.

Pattern spectra, as described in this section, are at the core of the proposed

digital sieving method. We calculate {sΓ,ti(f)} for all the soil sample images,355

according to Eq. (5) and using both content measures from Eqs. (7) and (8).

The pattern spectrum is then presented to the trained regression model, which
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maps the image component size distribution, expressed in terms of pixels and

measured through Eqs. (7) and (8), into a soil aggregate size distribution in

terms of aggregate dimension measured through aggregate weight or volume.360

4. Dataset Description

In this section, we describe the dataset collected to study the application

of image processing techniques to soil structure assessment. Soil samples were

collected from arable soils using a spade to a depth of 200 mm, a method similar

to initial soil extraction for other conventional in-field soil structural assessments365

(Ball et al., 2007). In order to minimise subsequent disturbance, blocks of soil

were not sampled from direct areas of contact with the spade, and they were

carefully placed in individual rigid boxes for transport to the laboratory. This

resulting sample size was around 400 g, which is sufficiently large to perform

laboratory assessments (Beare & Bruce, 1993; Le Bissonnais, 1996).370

Prior to taking images, peds in the soil structure were broken apart by

hand into constituent aggregates in accordance with the VESS methodology

(Guimarães, Ball & Tormena, 2011), resulting in a final arrangement of aggre-

gates and larger clods. In accordance with VESS categorisation, a soil that

breaks down to a crumb-like structure of aggregates smaller than 6 mm would375

be classed to have very good soil structure (Sq1), whilst a soil that does not

break down well, and still consists of very angular clods larger than 10 cm, would

be classed as poor structure (Sq5). To test the effectiveness of the methods on

different soil types, four soils of different texture and structure were selected.

Soil A was a calcareous sandy clay loam with a sub-angular to medium granu-380

lar structure and occasional small stones (VESS category - Sq2). Soil B was a

stone-free silt loam, with a fine to medium granular aggregate structure (VESS

category - Sq1). Soil C was a clay loam with a sub-rounded to medium granular

structure (VESS category - Sq3). Soil D was a fine granular to single grained

sandy silt loam with occasional stones (structureless). Examples of the soil385

images are given in Table 1.
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Table 1: Visual appearance of the collected soil samples A – D at the far scale (area

250 mm× 250 mm).

Soil A B C D

As-dug – –

Dry

To create a uniform moisture content across samples, all samples were dried

in an oven at 60 ◦C for 24 hours, a standard procedure in soil science. In addition,

we collected images of the soils C and D as-dug, i.e. before drying them in the

oven. The dried samples were then sieved gently by hand through a stack of390

7 sieves of mesh sizes 0.212, 2, 3.15, 5, 9.5, 25 and 50 mm diameter, a similar

approach to laboratory aggregate methods (Le Bissonnais, 1996). To measure

the aggregate size distribution, we examine the remaining soil fraction on each

of the sieves. The soil fraction is first weighted on scales, followed by measuring

the volume by water displacement. The aggregate size distribution of samples395

A–D is shown in Table 2.

Square surfaces of three different sizes (see Table 3) were drawn on a white

tray (shown in Fig. 5(a)), then the soils were placed in the tray and manipu-

lated with brushes to fit the marked surface. This setup allowed us to collect

images at different pixel resolutions, as well as examine the influence of the400

visible background surface in the sample images. Two sets of images were pro-

duced, using a professional and an everyday camera, therefore obtaining images

of different quality. The first set of images was taken with a Canon EOS 40D

camera, which was placed at a fixed height to provide a top-down view of the

samples and manually focused. This produced images of size 3888 px× 2592 px,405
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Table 2: The aggregate size distribution of the samples used as ground truth. All values are

expressed in [%].

mesh size [mm] 0.212 2 3.15 5.0 9.5 25 50

weight

A 0.73 2.65 1.73 4.26 14.94 42.06 33.63

B 1.10 7.99 8.89 16.34 47.65 18.03 0.00

C 0.53 5.64 3.96 6.52 15.93 49.98 17.44

D 8.85 48.06 8.15 9.07 11.45 7.66 6.76

volume

A 0.54 2.69 2.69 5.37 16.13 40.32 32.26

B 1.09 8.70 9.78 16.30 46.20 17.93 0.00

C 0.66 5.30 3.97 8.61 16.56 47.68 17.22

D 8.23 50.63 7.60 8.86 11.39 6.96 6.33

see Fig. 5(b). The fixed height was determined empirically to allow for maxi-

mal pixel resolution for each of the three marked surface sizes (see Table 3 for

details). The second set of images was taken with a phone camera (iPhone 6),

which was held as close as possible to the tray so that the whole sample was

captured, but without a fixed height. This produced images of smaller size of410

3264 px× 2448 px, not perfectly focused and more sensitive to lighting, which

more closely reflects the target in-field applications.

Finally, after taking the images, the corners of the marked square were taken

as markers for applying a homography to the images to produce a top-down

image, as well as for discarding the parts of the image not containing the sample.415

The size of the resulting images (example in Fig. 5(c)) was chosen close to

the original resolution along the shorter image axis, in order to minimise the

rescaling effects. The resulting resolution is 2500 px× 2500 px for the images

taken with the professional camera, and 2000 px× 2000 px for the images taken

with the phone. The soils were fitted into each of the marked surfaces twice,420

resulting in two different arrangements of each soil at each scale for a total of

36 image pairs, taken by the digital camera and smartphone, in the dataset.
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Table 3: The different scale settings used.

Scale close middle far

Area [cm × cm] 15× 15 20× 20 25× 25

Camera height [cm] 60 78 94

Resolution (camera) [px mm−1] 16.7 12.5 10

Resolution (phone) [px mm−1] 13.3 10 8

(a) (b) (c)

Figure 5: The image acquisition setup: (a) the middle (200 mm× 200 mm) square marked on

the tray, (b) one of the original images of soil A, (c) the final image obtained by applying the

rectifying homography.

5. Experimental setup

This section presents the experiments designed to examine the ability to pre-

dict the soil size distribution from image pattern spectra based on different im-425

age hierarchies from attribute morphology, as well as SE morphology, and assess

their potential for developing an imaging pipeline for performing quantitative

soil analysis. All images have been loaded as greyscale for further processing,

relying on the internal conventions of the libjpg codec for the conversion from

colour images.430

The bin thresholds were chosen in two different ways and the performance of

the resulting descriptors compared. The upper limit for the largest bin was set

to the largest expected particle size of 50 mm (all the aggregates of all the sam-

ples A–D passed through a 50 mm× 50 mm sieve). We firstly tested logarithmic

binning, which is commonly used with pattern spectra descriptors (Bosilj et al.,435
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2016). Secondly, the physical dimensions of each sieve mesh were used to calcu-

late the area of grid openings in pixels for each of the scales, and used those as

bin limits. The number of bins in the logarithmic binning was set to the same

number of bins determined by the physical sieves used, b = 7.

We used three different inclusion trees (min and max-tree, ToS) and two440

different partitioning trees (α and (ω)-tree) for pattern spectra calculation (out-

lined in Sec. 3.2.2), as well as the sum of the histograms obtained from the min-

and max-trees (the corresponding bins were summed to obtain a new histogram

of the same length, denoted as min+max ). Each image was described by its

associated pattern spectrum, normalised so that the sum of all histogram val-445

ues equals 1. As a baseline, we also used the pattern spectra obtained from

a granulometry through SE opening, as well as an anti-granulometry through

SE closing. The approaches used to calculate the different pattern spectra are

summarised in Table 4.

The pattern spectra were then used to train a regression model, which was450

evaluated using leave-one-out validation (with a single pair of camera and phone

images held out from training in each iteration). Several regression models were

evaluated, and the best performance obtained with regression based on Gaus-

sian Processes (Williams & Rasmussen, 2006), stochastic processes specified by

their mean and covariance functions. It was empirically determined that using455

the absolute exponential kernel led to the best performance. The length scale

parameter controls the variability of the learned function and reflects the con-

fidence in the training data. The best kernel parameter length scale = 0.1 was

found by a search through the parameter space.

To measure the quality of the regression outputs, the Wasserstein distance460

(also known as earth mover’s distance) (Villani, 2008) between the manually

measured aggregate distributions and predicted distributions was calculated.

The metric originates from optimal transport theory (Bonneel, Peyré & Cuturi,

2016), and is based on interpreting probability histograms as heaps of sand

or dirt at certain locations and considering the most efficient way to reshape465

one histogram into another in terms of the distance the dirt has to be moved
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Table 4: The different approaches used to calculate pattern spectra.

Abbreviation Description

opening granulometry based on SE opening

closing granulometry based on SE closing

α tree-based granulometry from the α-tree

(ω) tree-based granulometry from the (ω)-tree

min tree-based granulometry from the min-tree

max tree-based granulometry from the max-tree

min+max sum of tree-based granulometries from the min and max-tree

ToS tree-based granulometry from the tree of shapes

to achieve this. Histograms with little overlap but differing only by a small

displacement (corresponding to slightly overestimating or underestimating the

aggregate size) will still be considered as similar. In the concrete case of aggre-

gate size distribution of soil samples, the weight or volume of soil in each bin470

corresponds to the amount of dirt in a heap, while the mesh size which dictates

the diameter of aggregates determines the location of that heap. As all of our

histograms were normalised to unit weight, the metric describes the average

error in the estimated aggregate diameter.

6. Results and Discussion475

As the error distributions are heavily tailed, we have chosen to express our

results in terms of median and median absolute deviation as ẽ±MAD, where

ẽ = median(e) and MAD = median(|(ei− ẽ)|). The results indicate that pattern

spectra descriptors show promising ability in predicting the soil size distribution,

with the best predictor resulting in the expected error in aggregate diameter of480

(1.1± 1.0) mm when measuring both in terms of weight (Fig. 6) and volume

(Fig. 7).

Such results suggest that the potential for pattern spectra descriptors to

estimate soil size distributions are more robust on the “bigger” structured soils,
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Figure 6: Distribution of errors for regression systems predicting the size distribution of the

samples, based on weight from pattern spectra derived from different hierarchies and classical

granulometries, using both content measures and binning strategies. ẽ ± MAD for each

approach is shown on top of the corresponding error distribution.

those that consist of larger cloddy structures or are made up of larger macro-485

aggregates (2 to 8 mm) (Márquez, Garcia, Cambardella, Schultz & Isenhart,

2004). Such structures are more consistent with the scale of in-field assessments,

where a block of soil would been broken down into clods or aggregates (Shepherd,

2009; Ball et al., 2007) displaying a structural range from a few millimetres

(aggregates) up to many centimetres wide (cloddy structures). The results,490

however, display more potential for error when assessing size distributions at the

smaller scale, such as those expected in laboratory analysis where assessments

typically aim at differentiating between smaller macro aggregates (0.25 to 2 mm)

and micro aggregates (up to 0.25 mm) (Márquez et al., 2004).

The best results were obtained using theMdvol measure, where the expected495

error for all the approaches is less than 3 mm, while the Mcount measure seems

to be a less accurate predictor, reaching expected errors larger than 7 mm, which

agrees with the findings of the experiments on the classification problem (Bosilj

et al., 2019). However, contrary to the classification study (Bosilj et al., 2019),
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Figure 7: Distribution of errors for regression systems predicting the size distribution of

the samples, based on volume from pattern spectra derived from different hierarchies and

classical granulometries, using both content measures and binning strategies. ẽ ±MAD for

each approach is shown on top of the corresponding error distribution.

we found that inclusion trees are much better than partitioning trees for predict-500

ing both weight and volume distributions. We also found that the predictions

produced using logarithmic binning, which does not require knowledge of all the

bin limits in advance, are very similar in quality to those using the mesh sizes

as bin limits. While the best results were achieved using the max-tree (which is

the attribute counterpart to SE opening) (Salembier et al., 1998), logarithmic505

binning and theMdvol measure, we found that it does not provide a consistent

improvement over SE opening, as indicated in the previous study comparing

classical and attribute morphology for predicting aggregate size distribution

(Bianconi et al., 2015). The tree of shapes (Monasse & Guichard, 2000) pro-

vides the most stable results of good quality across all parameter combinations,510

achieving the best expected error in aggregate diameter of (1.2± 1.0) mm when

relying on mesh sizes as bin limits and the Mdvol measure.

For the best predictor, we also show the cumulative size distributions for

each of the samples in Fig. 8, as well as examples of single predictions that are
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Figure 8: Cumulative size distributions for samples A – D (dry and as-dug) are shown in

(a)–(f). For each sample, we separately show the average prediction for each of the three

scales (labelled as ‘close’, ‘middle’ and ‘far’), averaged from 4 predictions based on images

of 2 different configurations taken by camera and phone (where the amounts per bin were

averaged after calculating the cumulative distribution). We also show the average of all 12

predictions per sample (labelled as ‘all’), with shading representing the standard deviation.

The manually measured size distributions are labelled as ‘truth’.

most and least similar to the target output in Fig. 9. We show these in terms of515

weight, as the quality of the results is similar to predicting distribution in terms

of volume. We can observe that the most difficult size distribution to predict was

that of sample A (where the actual cumulative distribution does not lie within

one standard deviation of the average prediction), while the best predictions

were obtained for samples C and D. However, we can still clearly distinguish520

between all the soil samples based on any of the predicted distributions. We

can also see that drying the sample does not always lead to a better prediction
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Figure 9: Histogram and prediction of samples with worst and best classification score for

the best classifier in terms of sample weight (max-tree, logarithmic binning,Mdvol measure):

worst (e = 10.72 mm) for sample A at close scale (phone) in (a) and (b), and best (e =

0.08 mm) for sample D (dry) at close scale (camera) in (c) and (d).

(compare Figs. 8(e) and 8(c)). This shows further potential for the method

to be adopted for field-scale “as dug” soil structure assessment, where the soil

sample is not subject to any drying preparation. The best predictions such as525

the one shown in Fig. 9(d) have the size class contributions predicted up to the

percentage precision. While it can be observed that the worst prediction in the

dataset, shown in Fig. 9(b), has a tendency to under-estimate the predicted size

of the particles, the final result still contains useful information as the dominant

size class in the aggregate was predicted correctly. We also found no significant530

difference in performance between the camera and phone images. While these
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are excellent results, we plan to further investigate the performance on a larger

number of samples, to exclude the possibility of overfitting to a small dataset.

To illustrate the performance of the best predictor, the cumulative size dis-

tributions for each of the samples in Fig. 8, as well as examples of single predic-535

tions that are most and least similar to the target output are shown in Fig. 9.

These are shown in terms of mass, as the quality of the results is similar to

predicting distribution in terms of volume. It can be seen that the most dif-

ficult size distribution to predict was that of sample A (where the measured

cumulative distribution does not lie within one standard deviation of the av-540

erage prediction), whilst the best predictions were obtained for samples C and

D. However, all the soil samples can be distinguished between based on any of

the predicted distributions. It can also be seen that drying the sample does

not always lead to a better prediction (comparing Figs. 8(e) and 8(c)). This

shows further potential for the method to be adopted for field-scale “as dug”545

soil structure assessment, where the soil sample is not subject to any drying

preparation. The best predictions, such as the one shown in Fig. 9(d), had size

class contributions predicted up to the percentage precision. While it can be

observed that the worst prediction in the dataset, shown in Fig. 9(b), had a

tendency to under-estimate the predicted size of the particles, the final result550

still contained useful information since the dominant size class in the aggregate

was predicted correctly. Also no significant difference was found in performance

between the digital camera and smartphone images. While these are excellent

results, it is planned to further investigate performance using a larger number

of samples, to exclude the possibility of overfitting caused by a small dataset.555

7. Conclusions and Future Work

The suitability of pattern spectra for determining the soil aggregate size dis-

tribution from soil sample images has been confirmed by including more soil

sample images and directly predicting the soil aggregate size distribution mea-

sured both in terms of mass and volume. Our experiments were designed to560
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work with small sample sizes, and examined the performance of the descriptors

under scale changes and the presence of visible background. The suitability of

different component trees for soil structure analysis was studied and the results

compared to the findings of a previous study on soil re-identification (Bosilj

et al., 2019). The best performance was achieved using the max-tree, while the565

ToS achieved consistent good performance across all parameter combinations.

Logarithmic binning, which does not require knowledge of all sieve mesh dimen-

sions before descriptor calculation, was found not to be detrimental towards

performance, which could remove the necessity of detecting a reference frame

to indicate set size in the sample images. The method also performed well on570

images of soil samples which did not undergo any drying preparation.

Error assessments indicate that the method has potential to be adopted for

analysing soil samples displaying larger structures, ranging from millimetres

up to several centimetres, as typically found in “as dug” samples, rather than

looking at smaller aggregates (micro-aggregates). As part of future work, it575

is planned to use a wider range of soil samples to confirm the robustness of

this method, with a view to developing a rapid, portable and robust system for

in-field soil aggregate size distribution assessment based on pattern spectra.
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Mathematische Annalen, 57 (4), 447–495.

Monasse, P. & Guichard, F. (2000). Scale-space from a level lines tree. Journal

of Visual Communication and Image Representation, 11 (2), 224–236.

Mora, C. F., Kwan, A. K. H., & Chan, H. C. (1998). Particle size distribu-

tion analysis of coarse aggregate using digital image processing. Cement and680

Concrete Research, 28 (6), 921–932.

Pina, P., Lira, C., & Lousada, M. (2011). In-situ computation of granulometries

of sedimentary grains-some preliminary results. J. Coast. Res, 64, 1727–1730.

Ronse, C. & Heijmans, H. J. A. M. (1991). The algebraic basis of mathematical

morphology: II. Openings and closings. CVGIP: Image Understanding, 54 (1),685

74–97.

Salehizadeh, M. & Sadeghi, M. T. (2010). Size distribution estimation of stone

fragments via digital image processing. In Bebis, G., Boyle, R., Parvin, B.,

Koracin, D., Chung, R., Hammound, R., Hussain, M., Kar-Han, T., Crawfis,

R., Thalmann, D., Kao, D., & Avila, L. (Eds.), Advances in Visual Comput-690

ing, ISVC 2010, (pp. 329–338). Springer. Las Vegas, NV, USA.

Salembier, P., Oliveras, A., & Garrido, L. (1998). Anti-extensive connected

operators for image and sequence processing. IEEE T. Image Process., 7 (4),

555–570.

Salembier, P. & Wilkinson, M. H. F. (2009). Connected operators. IEEE Signal695

Processing Magazine, 26 (6), 136–157.

33



Serra, J. (1983). Image analysis and mathematical morphology. Academic Press,

Inc.

Serra, J. & Vincent, L. (1992). An overview of morphological filtering. Circuits,

Systems and Signal Processing, 11 (1), 47–108.700

Shepherd, T. (2009). Visual soil assessment. volume 1. field guide for pastoral

grazing and cropping on flat to rolling country. Horizons Regional Council,

Palmerston North, New Zealand, 119.

Silverman, B. W. (2018). Density estimation for statistics and data analysis.

Routledge.705

Soille, P. (2007). On genuine connectivity relations based on logical predicates.

In 14th International Conference on Image Analysis and Processing (ICIAP

2007), (pp. 487–492). IEEE. Modena, Italy.

Soille, P. (2008). Constrained connectivity for hierarchical image partitioning

and simplification. IEEE Transactions on Pattern Analysis and Machine710

Intelligence, 30 (7), 1132–1145.

Soille, P. (2013). Morphological image analysis: principles and applications.

Springer Science & Business Media.

Tushabe, F. & Wilkinson, M. H. F. (2007). Content-based image retrieval using

combined 2d attribute pattern spectra. In Peters, C., Jijkoun, V., Mandl, T.,715
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