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Abstract—There are many agricultural applications that would
benefit from robotic monitoring of soft-fruit, examples include
harvesting and yield forecasting. Autonomous mobile robotic
platforms enable digitisation of horticultural processes in-field
reducing labour demand and increasing efficiency through con-
tinuous operation. It is critical for vision-based fruit detection
methods to estimate traits such as size, mass and volume for
quality assessment, maturity estimation and yield forecasting.
Estimating these traits from a camera mounted on a mobile robot
is a non-destructive/invasive approach to gathering qualitative
fruit data in-field. We investigate the feasibility of using vision-
based modalities for precise, cheap, and real time computation of
phenotypic traits: mass and volume of strawberries from planar
RGB slices and optionally point data. Our best method achieves
a marginal error of 3.00cm3 for volume estimation. The planar
RGB slices can be computed manually or by using common object
detection methods such as Mask R-CNN.

Index Terms—phenotyping, mobile robots, computer vision

I. INTRODUCTION

Fruit detection is an area fast gaining interest in the horti-
cultural industry. The environmental challenges posed by the
fast growing population and climate concerns are spurring
new innovative approaches to fruit detection, harvesting and
yield estimation using computer vision e.g [1]–[3]. Phenotypic
information such as volume shown in 1 about the fruit is im-
portant for all of these approaches. For harvesting it allows to
automatically grade and harvest specific berry classifications,
and for yield more specific estimates such as detection of
waste strawberries or estimating a total yield volume can be
computed. Phenotypic information is critical for any form of
quality assessment.

Our method aims to estimate mass and volume of soft-
fruit from robotic platforms in-field. We present a feasibility
study in lab conditions for estimating these traits from images
based on the intuition that most soft-fruits are ellipsoidal in
nature and symmetrical around their major-axis. Meaning the
methods presented are applicable to most of the soft-fruit
family. Geometrically the major axis is the longer axis of an
ellipse passing through its foci or centre of gravity in the case
of our planar segment; minor axis is the shorter axis directly
perpendicular to the major.

This work was partially funded by the RASberry project.

(a) Actual Volume = 35.00cm3 (b) Predicted Volume = 34.53cm3

Fig. 1: Strawberry volume prediction, RGB image (1a),
computed reconstruction surface of RGB segment (1b)

II. DATA AND METHODS

In order to evaluate our methods, we required mass and
volumetric data of soft-fruit. We chose to evaluate straw-
berries as they are readily available and have one of the
most challenging shapes in the soft-fruit family compared to
blackberries, blueberries etc. their surface is not as ellipsoidal
and has a more teardrop profile. We collected 20 samples
of class 1 ripe strawberries. To capture the data necessary,
we used a 2cm3 precision volumetric beaker, a 5g accurate
scale, a 0.01mm accurate digital caliper and an Intel Realsense
D415 computer vision camera to capture RGB images and
depth information, pictured in Figure 2. Each strawberry was
measured in three dimensions manually through its minor,
major and cross sections which are the widest, tallest and
deepest lengths of the berry respectively. Then it was weighed
and placed in the volumetric breaker, a control rod of a
known volume was used to fully submerge the berry to get
more accurate readings. Finally, the berry was placed at a set
distance away from the downwards facing camera, flat on a
table to simulate the conditions met in field and the RGB and
depth information was captured and logged.

A. Volume Estimation

A segment (planar RGB slice) is a binary mask detailing
all of the pixels that belong to an object in an image. We use
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Fig. 2: Equipment used for data collection.

these segments to estimate the volume of the strawberries. The
computational resources required to process these segments are
very low and are a typical output of modern object detectors
in this field, meaning this approach is easily integrated with
existing work with negligible overhead. We present the results
in Figure 3.

The three evaluated methods are ellipsoidal, surface area
integration and disc summation. The ellipsoidal method com-
putes the volume as 4

3πmimad where mi is the minor axis, ma

is the major and d is the cross section length. These volume
measurements are computed from both the ground truth (GT)
data and measurements extracted from the depth map. The
method we deem surface area integration uses the fundamental
relationship in calculus that states the integral of a function f
over an interval can be calculated by finding an anti-derivative
F of f . For an ellipsoid the volume is the integral of the
surface area with respect to the radius.
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r
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In Equation (2) we show the integral for computing the
volume V of an irregular segment, by taking the product
of dx, the height of each slice and the contour c. We scale
each slice by each slice radius r in function f(c, r) (1) and
calculate its area a(f(c, r)). The function a(x) is the shoelace
algorithm for finding area of simple polygon (no intersection
or holes) expressed as Cartesian coordinates of a segment. We
use the integral range [0, r] and multiply the result by 2 to
only consider positive contour values.
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Finally, the disc method shown in Equation (3) estimates the
volume of the segment by treating each of its rows of size dy
as a cylinder. The segment is split into sizes of dy for each the

Fig. 3: Volume estimates using surface area integration.

volume is calculated as πr2dy . This method should be more
robust than the integration step in cases when the orientation
estimate error is large. Since each row is treated independently,
a more complete surface not dependant on axial symmetry can
be reconstructed, whereas with integration the entire contour
is used with a singular estimate of the cross length.

c′x =
zmax

fx
(cx − px) c′y =

zmax

fy
(cy − py) (4)

The presented methods approximate the volume in pixels
(px2). To calculate the volume in centimetres (cm2), we simply
deproject the contour c by the camera intrinsic parameters
focal length fx, fy , principal point px, py and an estimated
distance zmax from the camera obtained from the max value
bounded by the segment. For the disc method the zmax value
is equal to the local max at each row rather than the entire
segment. The deprojection step is shown in Equation (4) and
is applied prior to volume estimation.

B. Mass Estimation

We model the relationship of mass and volume as the least
squares regression fit to our data, and estimate the mass from
predicted volume fit.

III. RESULTS AND CONCLUSIONS

We have presented a non-invasive/destructive, inexpensive
method for volume and mass estimation in-field designed for
use on a robotic platform. Our results for volumetric and mass
estimation of the chosen soft-fruit are presented in Table I.
It’s evident that this method is appropriate for calculating the
volume from only two dimensional data (segments) since the
median absolute error is only 3.00cm3 for the best method,
which is only 1.00cm3 above the maximum precision of the
volumetric measurements. The relatively poor results for mass
estimation were due to the low precision of the equipment.

Ellipsiod GT Ellipsiod Depth Integration Disc
Volume 3.28cm3 3.94cm3 3.00cm3 3.22cm3

Mass 10.19g 11.90g 9.96g 9.85g

TABLE I: Median Absolute Error of volume and mass
estimation methods, bold indicates the best method.
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