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Abstract
This article discusses several practical issues arising with the application of diagnostic principles 
to theory-based evaluation (e.g. with Process Tracing and Bayesian Updating). It is structured 
around three iterative application steps, focusing mostly on the third. While covering different 
ways evaluators fall victims to confirmation bias and conservatism, the article includes suggestions 
on which theories can be tested, what kind of empirical material can act as evidence and how 
to estimate the Bayes formula values/update confidence, including when working with ranges 
and qualitative confidence descriptors. The article tackles evidence packages (one of the most 
problematical practical issues), proposing ways to (a) set boundaries of single observations that 
can be considered independent and handled numerically; (b) handle evidence packages when 
numerical probability estimates are not available. Some concepts are exemplified using a policy 
influence process where an institution’s strategy has been influenced by a knowledge product by 
another organisation.

Keywords
Bayesian Process Tracing, Bayesian Updating, confusion matrix, diagnostic evaluation, theory-
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Introduction

Process Tracing with Bayesian Updating is increasingly popular as a methodological option in 
the evaluator’s toolkit. A companion article (Befani, 2020) has referred to it as a ‘diagnostic’ 
approach and linked it to the confusion matrix, discussing its benefits with regard to improving 
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transparency, credibility and reliability of evaluation findings. However, the method presents a 
relatively steep learning curve and can run into a series of practical problems in some applica-
tion settings. Once its logic and theory are understood, evaluators are often unsure how to 
estimate the probabilities required by the Bayes formula (in particular, Sensitivity and Type I 
Error); and some feel uncomfortable using numerical estimates at all. Another frequent road-
block are evidence packages: if evaluators are comfortable performing Bayesian Updating after 
new observations emerge, they might not be equally at ease handling multiple pieces of evi-
dence assembled in a package.

This article provides suggestions on how to solve these problems, structuring the proposed 
solutions around three basic, iterative application steps: developing a testable theory; design-
ing data collection; evaluating empirical data and updating confidence. All three steps come 
with perils in relation to confirmation bias (CB) and conservatism, which Bayesian Updating 
helps protect against (Befani, 2020).

Fighting CB and conservatism in practice

In the first application step, one or more propositions/statements are selected as theories to 
test. They can be developed as possible answers to evaluation questions, like ‘what role did 
the intervention play in achieving the outcome?’, ‘how did the intervention make a difference’ 
and so on. The idea of ‘testability’ is linked to standards of scientific quality like falsifiability 
and demonstrability1: a falsifiable theory can be rejected by potentially observable evidence. 
Not all theories are falsifiable: for example, ‘the programme had benefits’ is too ambiguous 
and vague to be falsified in this form, because even if the programme has been a disaster by 
most accounts, most likely it will have had some benefits for at least one person. A demonstra-
ble theory can be demonstrated by potentially available evidence, but not all theories can: ‘the 
programme has been a tremendous success’ cannot be demonstrated unless the idea of success 
is unpacked and a specific definition is linked to observable data. In addition to sloppy theory 
definition, this step is subject to CB because of our tendency to select our preferred theories 
(in particular, to the search variant of CB). A high-quality application of Bayesian Updating 
should include formal testing of at least a handful of competing theories.

In Befani (2020) and throughout this article, we use as an example an influence theory stat-
ing that ‘our’ organisation (the one whose activity we are evaluating) has had an influence on 
another organisation’s policy or strategy. In order for this statement to be testable, more concep-
tual precision is required, for example, focusing on specific forms of influence that can be 
clearly identified and tested empirically, like the following: ‘this specific knowledge product 
has been used by this organisation in this way to produce this specific document, which has 
informed a process resulting in a specific section of their strategy’, and so on. This is preferable 
to vague, broad statements like ‘organisation X has influenced the policy of institution Y’. The 
advice here is to test whatever proposition we can convincingly demonstrate, even though their 
scope might be more limited than what we were initially hoping (see Box 1).

In the second step, data collection is designed bearing in mind conclusive tests, that is, 
seeking to observe strong or high-probative-value evidence that can convincingly confirm or 
disconfirm the theory. CB is lurking here too: in our asymmetric hopes of strengthening versus 
weakening the theory, we might gravitate towards ‘love-to-see’ (Befani and Stedman-Bryce, 
2017) Smoking Gun (SG)–like confirmatory evidence, rather than towards ‘hate-not-to-see’, 
disconfirmatory Hoop tests (HTs). In order to shun accusations of CB (Wauters and Beach, 
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2018) we should seek ‘hate-not-to-see’ HTs, as much as we seek ‘love-to-see’ or ‘wish-to-see’ 
SGs. We should ensure that the search for observable HTs has been thorough, as opposed to 
the theory not being weakened for lack of trying.

Continuing with both our medical and evaluation examples, a doctor making a diagnosis 
should use both specific and sensitive tests and hope to observe both positive specific tests 
(that would confirm the diagnosis) and negative sensitive tests (that would rule out the diag-
nosis). In our policy influence evaluation, we should both seek matching text in the relevant 
documents (and hope to find a large amount of it, that would confirm the influence theory) and 
hope to find strong differences in content (that would rule out the hypothesis of influence).

Finally, formal Bayesian Updating is conducted by applying the Bayes formula, estimating 
Sensitivity and Type I Error, and obtaining the posterior, post-observation level of confidence 
(Befani, 2017; Befani and Stedman-Bryce, 2017). This can be undertaken for different theo-
ries and statements,2 adjudicating among them on the basis of our post-observation confi-
dence. In Table 1, for example, we would choose or prioritise Theory Two.

Here, a variety of CB forms conjure to underestimate Type I Error (see Box 1): for example, 
we can fail to recall events linked to alternative explanations or theories that can produce the 
assessed observations as much as the theory under investigation. Failing to remember the 
existence of an alternative knowledge product, perhaps published by another organisation, 
with a similar content that the institution could have been influenced by, could be an example 
of Memory Confirmation Bias. An example of Search Confirmation Bias is when, if the insti-
tution has had contacts with several think tanks in the lead up to the strategy formulation, the 
evaluator would normally not devote the same energy to investigating and analysing the 

Box 1. Summary of the main evaluation example used in the text.

Initial broad statement: ‘organisation X has influenced organisation Y’s policy/strategy’
Specific testable statement: ‘knowledge product A by organisation X has been used by organisation 
Y [in a specific way] to produce document B, which has informed a process resulting in section C of 
organisation Y’s policy/strategy’
Alternative explanation: ‘alternative knowledge product P by organisation Q has been used by 
organisation Y [in a specific way] to produce document B, which has informed a process resulting in 
section C of organisation Y’s policy/strategy’
Example of Search Confirmation Bias: when analysing possible channels of influence for organisation 
Y, prioritising investigation of interaction between Y and one preferred organisation (e.g. X); ignoring 
linkages with others (e.g. Q)
Example of Analysis Confirmation Bias: when observing a (theoretically influenced) stakeholder 
from organisation Y with good relations with the (theoretically influencing) organisation X, who claims 
that X influenced Y; considering this observation conclusive confirmation of ‘X influenced Y’ theory; 
downplaying or failing to consider any external motivation for the claim.
Example of Memory Confirmation Bias: failing to remember the existence of (known) knowledge 
product P (see alternative explanation)
Empirical observation 1: Broad alignment between the content of document A and document B. S: 
0.95; T1E: 0.50; Hoop test; if observed, presence of evidence; if not observed, evidence of absence.
Empirical observation 2: (relatively large amounts of) matching/identical text between documents A 
and B. S: 0.50; T1E: 0.05; Smoking Gun; if observed, evidence of presence; if not observed, absence of 
evidence.
Empirical observation 3: intermediate confidential drafts of knowledge product A made available to 
institution Y by organisation X. S: 0.70; T1E: 0.15; Straw-in-the-Wind.

S: Sensitivity; T1E: Type I Error.
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linkages between the institution and all of these organisations, giving priority to studying their 
preferred organisation. Analysis Confirmation Bias could manifest itself when the evaluator is 
exposed, for example, to a (theoretically influenced) stakeholder that they know has good 
relations with the (theoretically influencing) organisation, and the stakeholder is claiming that 
their institution was influenced by the former. An evaluator victim of CB might tend to con-
sider that a SG, downplaying or even failing to consider any external motivation the stake-
holder might have had; while another, more cautious, evaluator would consider alternative 
motivations more seriously and downplay the confirmatory power of that observation.

CB (in all its forms) tends to underestimate the Sensitivity values because higher values 
would make it easier for the theory to be rejected if HTs are not observed: which is something 
that we might unconsciously fear. Search bias makes us reluctant to seek HTs and Analysis 
bias makes us underestimate Sensitivity values so that, even if we fail to observe HTs, we can 
still hope that the theory is true. These considerations suggest that, for our preferred theories 
or for theories that commissioners have a stake in confirming, high values of both Sensitivity 
and Type I Error should be trusted more than low values; and the latter should raise suspicions 
of CB.

Estimating the probabilities required by the Bayes formula

Formal updating requires using the Bayes formula, that is, estimates of Sensitivity and Type I 
Error. The latter are probabilities of observing the evidence under the assumption that, respec-
tively, the theory is true, and that it is not. Two of the most common ways of thinking about 
probabilities are as an observed, empirical frequency (the number of times an event occurs, 
out of the number of times it could potentially occur) and as subjective probability (someone’s 
more or less informed opinion on the event’s likelihood of occurring). A third way is ‘simu-
lated frequency’, or probability as the observed frequency of an indicator when running a 
simulation model multiple times (Befani et al., forthcoming).

The first kind (a.k.a. frequentist probability) is arguably the easiest to understand and use, 
but in many evaluations, the relevant empirical data are not available. In medical diagnosis, 
Sensitivity and Type I Error can be empirical frequencies because the number of patients 
exhibiting positive and negative values of specific tests can be counted; and it can also eventu-
ally be known who, among them, had or did not have a specific disease. The third kind is in 
the early stages of being developed (Befani et al., forthcoming) so we will focus mainly on 
subjective probability.

The literature on eliciting probabilities from experts is vast and long-standing (Cooke, 
1991; EFSA, 2014; Gosling, 2014; O’Hagan and et al, 2006; Oakley and O’Hagan, 2016). It 
discusses elicitation of probability distributions and different ways to express probability 

Table 1. Confidence levels in statements/theories before and after data collection.

Statement/
Proposition/Theory

Prior Sensitivity Type I 
Error

Posterior

One 0.50 0.90 0.10 0.90
Two 0.40 0.99 0.01 0.99
Three 0.60 0.60 0.30 0.75
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judgements and their implications, as well as how to extract, calibrate and assemble expert 
judgements.

O’Hagan et al. (2006) provide a useful list of the several different ways statements about 
chance and uncertainty can be expressed: as probabilities, percentages, relative frequencies, 
odds or natural frequencies. Box 2 illustrates how we would express uncertainty around 
observing matching text as a piece of evidence.

There is cautious consensus that using frequencies (in the way subjective probability is 
expressed) improves accuracy (base rate, no misunderstandings about the reference class), 
although there are some important exceptions to this (O’Hagan et al., 2006).

Some well-known elicitation procedures are the Sheffield method (a.k.a. SHELF) (Oakley 
and O’Hagan, 2016); Cooke’s method (Cooke, 1991); and the Delphi method (EFSA, 2014). 
They mainly differ on whether and how experts are allowed to interact and exchange views: 
no interaction for Cooke’s method (mathematical aggregation); full interaction for Sheffield 
(behavioural aggregation); and a more limited, controlled interaction for Delphi, a middle 
ground between the first two methods. The methods take account of, and fight in different 
ways, typical biases involved in eliciting probabilities: for example, overconfidence, anchor-
ing and adjustment, availability, and representativeness.

Experts can be asked to express multiple single probabilities (that would be assembled into 
distributions in the post-elicitation phase) or plausible ranges. It is the author’s opinion that 
ranges, in particular, when associated with qualitative descriptors of confidence levels (see 
next paragraph), can work for a wide range of evaluation processes, including those that can-
not afford pre-training in quantitative elicitation and probability theory. The existing, well-
established elicitation methods can thus be adapted for evaluation purposes, while preserving 
their bias reduction strategies.

Working with ranges and qualitative levels of confidence

If evaluators are uncomfortable working with point estimates, Bayesian Updating can also be 
carried out using ranges of values.3 Probability estimates, however, do not have to be numeri-
cal: they can also be expressed qualitatively, for example ‘highly confident that the event will 
happen’ or ‘more confident than not that the event won’t happen’. These qualitative confi-
dence descriptors can be associated with numerical intervals/converted into quantitative 
ranges (see Figure 1 and Table 2 in Befani, 2020),4 and Bayesian Updating can be carried out 

Box 2. Different ways of expressing probability judgements.

Probability: ‘there is a 0.05 probability of observing (this amount of) matching text under such 
conditions if the influence theory is not true’.
Percentage: ‘there is a 5% chance of observing (this amount of) matching text under such conditions if 
the influence theory is not true’.
Relative frequency: ‘under such conditions, we would observe (this amount of) matching text one in 20 
times the influence theory is not true’; or ‘we would observe (this amount of) matching text 50 times 
every 1000 times that the influence theory is not true’.
Odds: ‘if the influence theory is not true, the odds against observing (this amount of) matching text are 
19 to 1’.
Natural frequency: ‘from a sample of 100 similar policy processes where two organisations did not 
influence each other, (the same amount of) matching text between their products was observed 5 times’.
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using the extreme ends of the range. The rest of the paragraph will show how to do this, step 
by step.

Unless the evidence is uninformative, we would normally have two different ranges or 
qualitative estimates for Sensitivity and Type I Error: for Sensitivity, let us assume that we are 
‘highly confident’ that we will observe the evidence if the theory is true (0.85–0.95); and that, 
for Type I Error, we are ‘reasonably certain’ that we will not observe the evidence if the theory 
is false (0.01–0.05). These two ranges have four extremes and create four reference scenarios, 
with infinite possibilities in between (Table 2).

The probative value continuum ranges from the high peak, where Sensitivity is highest and 
Type I Error lowest (the strongest evidence scenario with a weight of evidence5 of 4.55 and a 
likelihood ratio of 95.00), and the low peak, where Sensitivity is lowest and Type I Error high-
est (the weakest evidence scenario with a weight of evidence of 2.83 and a likelihood ratio of 
17.00). The posterior confidence is also returned as an interval, ranging from a minimum of 
0.9444 in the most unfortunate case, to a maximum of 0.9896 in the best scenario.

The above example shows that if we do not identify point estimates but are comfortable 
with probability ranges, we can learn from Bayesian Updating that, for example, our post-
observation confidence does not fall below a certain lower limit, nor rise beyond a given upper 
threshold. And if we are still uncomfortable with numbers, we can translate the posterior range 
back into a qualitative descriptor: in our example, 0.94–0.99 almost entirely overlaps with 
‘reasonable certainty that the theory is true’ (second row of Table 2 in (Befani, 2020), see also 
first row of Table 3 below). If the numerical range covers two qualitative descriptors, we can 
choose the one that the range overlaps with more extensively: for example, if we had 0.87–
0.97, we could pick ‘high confidence that the theory is true’. Or, if we want to be more con-
servative and are interested in worst-case scenarios, we can pick the lowest qualitative 
descriptor overlapped by the range (see Table 2 in (Befani, 2020) and Table 3 below).

In our policy influence example, we can estimate the Sensitivity and Type I Error of ‘rela-
tively large amounts of text matching’ for our hypothesis of influence being true in the follow-
ing way. For Sensitivity, we can argue that ‘if [that particular kind of] influence took place, we 
are neither confident nor not confident that such amount of text matching would be observed’ 
(corresponding to 0.5, so no range in this case but a point estimate). For Type I Error, we can 
argue that ‘if that institution’s strategy was not influenced by our organisation’s knowledge 
product, we are highly confident (or perhaps reasonably certain) that such amounts of identi-
cal text would not be observed’. This would set Type I Error between 0.05 and 0.15 (or between 
0.01 and 0.05 if we are reasonably certain). Our posterior confidence that the theory is true 
would then be between 0.77 and 0.91 (or between 0.91 and 0.98 with the reasonable certainty 
estimate). If we translate the first interval into a qualitative descriptor using the first method 

Table 2. Four scenarios created by estimating confidence qualitatively.

Sensitivity Type I 
Error

Probative value: 
likelihood ratio 
(LR)

Probative value: 
log(LR) or weight 
of evidence

Posterior 
(up from a 
prior of 0.5)

Highest probative value 0.95 0.01 95.00 4.55 0.9896
Middle scenarios 0.85 0.01 85.00 4.44 0.9884
 0.95 0.05 19.00 2.94 0.9500
Lowest probative value 0.85 0.05 17.00 2.83 0.9444
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described above, we can conclude that we are between cautiously confident and highly confi-
dent that influence took place because the range 0.77–0.91 overlaps these two descriptors 
(0.70–0.85 and 0.85–0.95) to the same extent. If we use the worst-case scenario method, we 
conclude that we have only reached ‘cautious confidence’ because 0.77 is included in this 
bracket. For the second estimate giving us a posterior of 0.91–0.98, if we use the first method, 
we can conclude that we are ‘reasonably certain’ because the interval overlaps to a larger 
extent with 0.95–0.99 than 0.85–0.95 (high confidence); or that we are only ‘highly confident’ 
if we use the second method (0.91 falls within 0.85–0.95).

A freely available tool for Bayesian Updating (Befani, 2017) currently offers the opportu-
nity of working with qualitative levels of confidence for Sensitivity and Specificity: it con-
verts them into numerical ranges and then computes the corresponding range for the updated 
confidence or posterior.6 The numerical range can then be converted back into the qualitative 
descriptor, as we see in Table 3.

When expressed as above, our estimates and judgements are transparent and falsifiable: for 
example, they can be challenged by arguing that observing the same amount of text matching, 
if influence has not taken place, is not as rare as assumed. The challenging stakeholder can 
provide evidence to support their estimate. In probability elicitation techniques where stake-

Table 3. Bayesian Updating with qualitative statements.a

Statement/
Proposition/Theory

Prior Sensitivity Type I Error Posterior

One (ST1) No idea – it 
could be either 
true or false (0.5)

High confidence 
that Evidence 
(E) is observed 
(0.85–0.95)

Reasonable 
certainty that E 
is not observed 
(0.01–0.05)

0.94–0.99: Reasonable 
certainty that Theory 
(T) is true (or High 
confidence using the 
worst-case scenario 
method)

Two (ST2) No idea – it 
could be either 
true or false (0.5)

More confident 
than not that 
E is observed 
(0.50–0.70)

Cautious 
confidence that E 
is not observed 
(0.15–0.30)

0.62–0.82:
Cautious confidence 
that T is true (or barely 
more confident than 
not using the worst-
case scenario method)

Three (ST3) No idea – it 
could be either 
true or false (0.5)

More confident 
than not that E 
is not observed 
(0.30–0.50)

Practical 
certainty that E 
is not observed 
(0–0.01)

0.97–1:
Reasonable or practical 
certainty that T is true

(That particular 
type of) influence 
took place

No idea – it 
could be either 
true or false (0.5)

No idea – it could 
be either observed 
or not (0.5)

High confidence 
that E is not 
observed 
(0.05–0.15)

0.77–0.91: Cautious/
high confidence that T 
is true

 No idea – it 
could be either 
true or false (0.5)

No idea – it could 
be either observed 
or not (0.5)

Reasonable 
certainty that E 
is not observed 
(0.01–0.05)

0.91–0.98:
Reasonable certainty 
(high confidence) that 
T is true

aAn interval for the prior could also be created: that would increase the number of analysable, discrete scenarios from 
four to eight.
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holders/experts are allowed to interact, this kind of discussions will take place before a con-
sensus is reached.

Working with evidence packages

In any given evaluation, it is very unlikely we will observe only one piece of evidence: normally, 
our data collection and desk reviews produce several individual interviews, include documents, 
perhaps focus groups. Similarly, in a medical diagnosis, the physician might consider a combina-
tion of symptoms, blood tests results and diagnostic images like X-rays, MR scans and so on.

At the same time, it is good practice to be assessing different, sometimes even mutually 
exclusive, theories. For example, when investigating our influence theory, we should be open 
to the idea that the institution’s strategy has not been influenced by that knowledge product but 
by other products or processes apart from the institution; and we should be equally thorough 
in investigating these options.

In principle, different pieces of evidence have different diagnostic value for the same the-
ory, and the same piece of evidence has a different diagnostic value for different theories: a 
knowledge product by organisation A is likely not to be informative about the influence of 
organisation B. Similarly, different stakeholders with knowledge of different processes and 
organisations provide information which most likely will not be (equally) useful for all theo-
ries or hypotheses. In medical diagnosis, diagnostic images are more reliable than blood tests 
results for certain conditions. In sum, the same observation can be strong evidence for a theory 
and weak evidence for another theory7; and different pieces of evidence increase or decrease 
confidence in the same theory to different degrees.

Before discussing evidence packages, it is important to untangle this complexity by show-
ing that each level of posterior confidence is associated not just to one single piece of evidence 
but also to one single theory or statement: Table 4 provides data from two hypothetical exam-
ples plus two influence theories. If we look at the first theory, it is supported by E1 and weak-
ened most strongly by En; while the second theory is supported by E1 and weakened most 
strongly by E2. E1 strongly supports our influence theory, while E2 is inconclusive for it. As for 
pieces of evidence, E1 supports Theories One and Two and the first influence theory, but not 
the second one; En very mildly supports Two and strongly weakens One, and so on.

Considering each piece of evidence in relation to one theory at a time requires calculating 
one value of Sensitivity and one value of Type I Error for each observation, one theory at a 
time. In principle, each observation has a different Sensitivity value for the same theory: if our 
influence theory is true, we expect to see a broad consistency in the content of the two docu-
ments (with 0.95 probability, see Box 1 and Supplemental Table S1) but not necessarily a 
perfect matching between (large) portions of text (0.5). A single observation also has different 
Sensitivity values for different theories: the previously considered matching text between the 
two documents has a different probability of being observed under the assumption that the 
posited influence theory is true (0.5 in Supplemental Table S1), than under the assumption that 
a different theory is (0.1): if the institution was influenced by another organisation, the prob-
ability of observing (large amounts of) text matching the other organisation’s knowledge prod-
uct is much lower.

The same distinctions need to be made for Type I Error values (Supplemental Table S2): each 
observation has different Type I Error values for the same theory. If our influence theory does not 
hold, observing (large portions of) matching text is quite unlikely (0.05); but the probability that 
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the two organisations exchanged drafts at some stage, without the institution being influenced by 
the content of the knowledge product, is higher (0.15). And broad alignment in content should 
not be a surprise, particularly if the same position is widely shared among a group of institutions 
(0.5, see Box 1). In addition, the same observation (let’s say, matching text) has different Type I 
Error values for different theories: if our influence theory is not true, matching text is quite 
unlikely (0.05); but if the alternative influence theory is not true, which includes the possibility 
of our influence theory being true, matching text becomes more likely (0.2).

The cells of Table 4 are obtained by updating the priors for the statements/propositions/
theories on each row with the Sensitivity values of Supplemental Table S1 and the Type I Error 
values of Supplemental Table S2. If we look at Table 4 by column, we can see that the theory 
most strongly supported by matching text is our influence theory (0.91), with Theory One a 
close second (0.90). The least strongly supported is the second influence theory (0.33). The 
two other pieces of evidence also support our influence theory more strongly than the other 
three theories. If we look at rows, we can see that the strongest evidence for our influence 
theory is matching text (0.91 posterior confidence); followed by exchange of confidential 
drafts (0.82). The weakest piece of evidence is broad content consistency (0.66), which is a 
good HT but is not very informative when observed.

We are now ready to discuss evidence packages, or the simultaneous assessment of multi-
ple observations. The above considerations might sound abstract because they refer to the 
assessment of single observations, as if we collected only one piece of evidence at a time; as 
if, every time we made a new observation, we forgot the previous one. For example, the ‘pos-
terior after observing E1’ (the matching text) is based on E1 and E1 only, as if E2 (broad content 
consistency), . . ., En (exchange of intermediate drafts) and so on did not exist. In reality, we 
almost always collect multiple pieces of evidence, so we need a procedure to group our esti-
mates together.

The rest of the article will address multiple ways to approach the assessment of evidence 
packages. If we have enough resources to carry out formal Bayesian Updating, we have four 
options:

1. If we manage to define some observations as independent from each other, we can 
multiply their (previously discussed) single-piece estimates;

2. If we cannot draw independence boundaries among some observations, we can

a. Consider a group of (inter-dependent) interviews, documents and so on as one 
single piece of evidence;

b. Multiply the single-piece estimates as in (1) but using discount factors to reduce 
the probative value proportionally to the degree of inter-dependence

c. Calculate the conditional probabilities of observing each single piece of evidence 
after having observed others (under the two hypotheses of the theory being true 
and not being true).

If probability estimates are not available or cannot be obtained, we can create rubrics defin-
ing different degrees of empirical support for the theory (option 5). Option 2a is not techni-
cally different from what we have seen so far, and option 2b is currently being developed; 
therefore we illustrate options 1, 2c and 5.
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Working with evidence packages when Bayesian estimates are available

If numerical estimates are available, we can formalise the evidence package as ‘E1∩E2∩ . . . 
∩En’; or the combination of empirical observations E1, E2, . . . En (Supplemental Table S3). 
We can then estimate the Sensitivity and Type I Error of the package in relation to different 
theories. This will be done differently depending on whether the pieces of evidence can be 
argued to be stochastically independent or not.8

The general formula for calculating the probability of combined, multiple events requires 
calculating the probability of making a given future observation on condition of having already 
made specific ones (Dekking et al., 2006). For example, if we have already observed E1, the 
probability of also observing E2 is P(E2|E1). The probability of subsequently observing E3 is 
P(E3|E2∩E1), and so on, until P(En|En-1∩En-2∩ . . . ∩E1) which is the probability of observing 
En after having made the previous n-1 observations. For our purposes, we would need to cal-
culate the conditional Sensitivity values (see Supplemental Table S4) and the conditional Type 
I Error values (Supplemental Table S5). It is possible but potentially quite cumbersome to 
calculate these conditional probabilities for each piece of evidence and each theory; as we 
mention above in option 2a, a relatively acceptable shortcut is to consider the whole package 
as one single piece of evidence and calculate two single values to feed into the Bayes formula 
(D’Errico et al., 2017).

If observations are independent,9 however, we are offered a mathematically formalised short-
cut since the conditional probabilities will be equal to the non-conditional ones, which are likely 
to be already available at this stage. We can thus calculate the probability of observing a combi-
nation of observations (or the probabilities of a package) by multiplying the probabilities of 
observing the single pieces (Supplemental Tables S1 and S2). In particular, the Sensitivity of a 
package will be obtained as the multiplication of Sensitivity values of the single pieces (see 
Supplemental Tables S4 and S6), and the Type I Error of the package will be obtained by multi-
plying the Type I Error values of the single pieces (Supplemental Table S5 and S7).

In medical diagnosis, scan machines and lab processes ignore each other, so it is easy to 
argue that findings from blood tests are independent from findings from imaging tests; another 
example of independent events being when we interview informants whose opinions have not 
been influenced by each other. In our evaluation example, however, while relatively large 
amounts of matching text between documents are quite rare an occurrence, our expectation of 
those might be slightly increased if we observe broad content alignment first, because we 
assume the document authors to be responsible for both. And if we see that there was a docu-
ment exchange at the beginning involving the authors, we expect broad content alignment 
more than if we did not see the former. However, for illustration, let us assume that we can 
argue for stochastic independence among these three observations so we can apply the proce-
dure and calculate the Sensitivity of the three piece-package by multiplying the Sensitivity 
values of the single observations constituting the package (as in Supplemental Table S6).

If conditioning on the theory being false (as opposed to being true as above) does not 
change our independence assumptions on the evidence pieces, we can calculate the Type I 
Error of the package in the same way, by multiplying the Type I Error values of the single 
package components (see Supplemental Table S7). The posteriors in the last columns of 
Supplemental Table S3 are then obtained from the Sensitivity values of Supplemental Table 
S6 and from the Type I Error values of Supplemental Table S7.
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In general, if observations are independent under the theory, it does not necessarily imply 
that they are independent under alternatives to the theory: so we might be able to use this 
method to calculate the Sensitivity of the package, but not the Type I Error, or vice versa. For 
example, if employees of an organisation are interested in showing that the theory is true but 
unfortunately it is not, they might have more incentives on presenting an agreed, positive view 
during interviews, compared with a situation where the theory is actually true and they are 
more relaxed about agreeing on what to say during evaluation-related interviews. The simple 
multiplication method only works if pieces of evidence are independent, conditioned on the 
theory-related hypothesis. However, a procedure currently being developed by the author 
assigns discount coefficients to single-piece values when observations present some degree of 
inter-dependence (between full independence and full inter-dependence) and would allow 
evaluators to use the transparent “mathematical multiplication” option in the relatively com-
mon situation where the observations cannot be considered either fully independent or fully 
inter-dependent under at least one of the two hypotheses (theory true and not true).

The wonders of discovery (or of reducing uncertainty)

Not rarely, Bayesian Updating yields surprising or unexpected findings because of our poor 
ability as humans to sufficiently update our beliefs on the basis of emerging empirical evi-
dence. But Bayesian Updating performed on combined, multiple independent observations 
potentially produces even more counterintuitive findings because our inaccuracy and bias 
only get larger and more serious as the number of observations increases.

The two typical cases where uncertainty (and hence, potentially, surprise) are maximised 
are when (a) we handle mixed or seemingly contradictory evidence, with some pieces strength-
ening and others weakening the theory, and (b) when we are presented with multiple weak 
pieces of evidence that all seem to lean in the same direction (either all for weak confirmation 
or all for weak disconfirmation).

In the first case, we might know that one piece weakens and another strengthens the same 
theory, but we usually cannot tell if the former weakens more strongly than the latter strength-
ens. This gets a lot more complicated with more than two observations. Let us take the case of 
Theory/Statement/Proposition One in Table 4: E1 increases our confidence (0.90), but E2 
(0.38), and most of all En (0.09), decrease it. Without Bayesian Updating, our verdict would 
simply be ‘mixed evidence’ or ‘contradictory evidence’; but most of the times the evidence is 
more informative than we think, and the actual posterior after observing the package is 0.36, 
which is lower than we were probably expecting. If we use the currently available tools to 
automatically check the direction and strength of the evidence package, we often discover that 
it is more conclusive, and perhaps in a different direction, than we expected. In other words, 
humans’ idea of uncertainty or mixed evidence tends to be anchored more closely to the 0.5 
middle point than it should be.

As for the second situation where observations are all of the same kind (say, all strengthen-
ing), but are individually weak, it is difficult to accurately know how strong the package is 
unless we use the formula (and, for independent observations, the automatic combination 
function of the tool). Due to conservatism, humans tend to underestimate the power of evi-
dence to change their priors, and they will usually be surprised at how strongly conclusive a 
package comprised of three or four weak straws of the same kind can be. And even those 
humans less subject to this bias will not know how many straws of the same kind they need 
(say, similar responses in independent interviews) to reach a certain level of overall confi-
dence, unless they use the formula.
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In our influence theory case, the three observations can be considered relatively weak; 
however, if we assume their independence and put them together, as a package, they are much 
stronger than any individual piece, almost achieving practical certainty (0.988). If we have 
multiple independent similar straws, say each having 0.6 Sensitivity and 0.4 Type I Error, 
while individually they would increase a 0.5 prior only to a 0.6 posterior, six of them are 
enough to achieve a 0.92 posterior, and 10 would raise it to over 0.98. Without Bayesian 
Updating, it would be very difficult to estimate how much our level of confidence should 
increase as more similar weak tests emerge during data collection.

How much evidence is enough?

Using Bayesian Updating to estimate the strength of evidence packages is also needed to test 
how sensitive our confidence is to possible new discoveries and can help answer the recurring 
question, ‘how much evidence is enough? When can we stop seeking and collecting?’ More 
specifically, this question10 can become ‘how strong a piece of evidence from the opposite 
direction do I need in order to substantially change my assessment?’ The ‘cast the net widely’ 
suggestion (Bennett and Checkel, 2014a), encouraging us to consider the widest possible 
range of theories as well as pieces of evidence, rather than cherry-picking the ones that will 
confirm our favourite theory, now takes the form of a list, each item of which comes with an 
estimation of its strengthening (Type I Error) and weakening (Sensitivity) powers. Seeing only 
strengthening pieces in the package should create suspicions and make quality assurers enquire 
about what is possibly missing. Similarly, low estimates of Sensitivity and Type I Error should 
raise suspicions of Analysis and Memory Confirmation Biases, that make us overestimate the 
observations’ strengthening powers and underestimate its weakening abilities.

If the observations are not stochastically independent, for example, when informants are 
part of a working group that have collaborated during the project and are reporting a group 
position towards the programme, that perhaps they have also expressed in meeting minutes 
and other pieces of evidence, we either take the conditional probability approach (Supplemental 
Tables S4 and S5) or we consider the package as one single, complex observation; redefining 
the boundaries of pieces creatively and replacing the various estimates with a single one cov-
ering all the inter-dependent parts of the package (or – once it is fully developed – we could 
use the above mentioned, modified multiplication method). For example, if we have reason to 
believe that our three observations above are inter-dependent, we would calculate the Bayes 
formula values for a single comprehensive observation including matching text, broad content 
alignment and exchange of confidential drafts; or, in alternative, calculate the conditionals for 
observing text once we observe content alignment; of exchanging drafts once we observe the 
other two and so on. Despite being advocated elsewhere (Fairfield and Charman, 2017), so far, 
the author has found the latter approach mostly impractical in real-life evaluation settings: one 
major challenge being the consistency of the estimate for different ways that observations are 
ordered. Isolation of independent observations and wrapping of the residue into a single com-
prehensive estimate does not require ordering and is free from biases that change the estimate 
as the order of observations changes.

Working with evidence packages when Bayesian estimates are not available

When we are dealing with multiple, arguably independent pieces of evidence, but for various 
reasons, we are unable to produce estimates for Sensitivity and Type I Error, we can still  
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combine the observations in a sensible way, provided we assign it Process Tracing (PT) test 
categories like SG, HT, Doubly Decisive (DD) and Straw-in-the-Wind (SW).11

Building on pioneering work by (BEIS, 2018), we propose a way to establish the level of 
empirical support for a theory on the basis of multiple independent observations, of which we 
know the PT test category (see Table 5) but not the Bayes formula values. The system includes 
five levels of support for a particular theory T: strong support, possible support, contradictory 
support, possible support for the opposite theory and strong support for the opposite theory. 
We describe these levels in the rest of the section.

‘Strong support for the opposite theory’ (last row of Table 5) arises when the theory is 
weakened by the failure of at least one HT; at the same time, it is not strengthened because no 
SG is passed (with at least one having been tried and having failed). In other words, when we 
have evidence of absence (the HT fail) without having evidence of presence (no SG); plus 
some absence of evidence (the failed SG, see also Box 1). If we consider the matching text a 
SG and the broad content alignment a HT, this situation ( ‘strong support for absence of influ-
ence’) is equivalent to failing to observe broad content alignment, and also failing to observe 
matching text, with no other SGs passed.

At the other end of the spectrum, we witness ‘strong support for the theory’ (first row of 
Table 5) when at least one SG is passed, giving us ‘evidence of presence’; and no HTs fail, 
preventing us from finding evidence of absence. Since we are supposed to have tried some 
Hoops, at least one would have passed; hence, we also have presence of evidence. In our 
example, this is like when we observe matching text (a SG), and we also observe broad con-
tent alignment (a HT).

The above two cases are somewhat symmetrical; two of the in-between scenarios are also 
symmetrical, while the third is qualitatively different. In the ‘possible support for theory’ case 
(second row of Table 5), we observe some evidence (presence of evidence), but this is because 
some HTs are passed; not because any SGs are: the latter might not even be identified. The 
theory can be true: we have not been able to weaken it, but, unfortunately, we are not quite 
able to strengthen it either. This is like observing broad content alignment (HT) but failing to 
observe matching text (SG), or not even seeking to observe the latter.

The case of ‘possible support for the opposite of the theory’ (fourth row of Table 5) is simi-
lar: we can neither strengthen nor weaken the theory (we do not have evidence of presence or 
evidence of absence); but instead of passing HTs and having some weak evidence for the 
theory, HTs might not even be identified. SGs instead (at least one) are identified and fail, 
making us worry about absence of evidence. This is like seeking to observe matching text and 
failing, while not seeking to observe broad content alignment.

Table 5. Assembling pieces of evidence in the absence of Bayesian estimates.

Strengthening tests
(Smoking Gun)

Weakening tests
(Hoop test)

 Passed: evidence 
of presence

Failed: absence 
of evidence

Passed: presence 
of evidence

Failed: evidence 
of absence

Strong support for T Y – Y N
Possible support for T N – Y N
Contradiction Y – – Y
Possible support for ~T N Y – N
Strong support for ~T N Y – Y
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Finally, the contradictory case (third row of Table 5) is when at least one SG passes and 
at least one HT fails: producing the logical contradiction of witnessing evidence of pres-
ence and evidence of absence at the same time. This is like observing matching text but 
failing to observe broad content alignment. The theory and its opposite are seemingly 
equally supported.

The middle situations are the ones that benefit the most from formal Bayesian Updating, 
especially the contradictory case. In our example, if we consider only the first two observa-
tions, with Sensitivity values of 0.5 and 0.95, and Type I Error values of 0.05 and 0.5, 
observing12 the first (SG) but not the second (HT) means that the two pieces neutralise each 
other and the posterior after observing them is identical to the prior (0.5). But with slightly 
different values that would not change our qualitative assessment of ‘contradictory case’, 
for example, sensitivities of 0.3 and 0.97, and Type I Errors of 0.1 and 0.4, making the first 
observation raises the prior to 0.75 and failing to make the second decreases it to 0.05, yield-
ing a posterior based on the combined package of 0.13. Qualitatively, the two pieces of 
evidence would still be a SG and a HT, but while 0.5 in the first case conveys the uncertainty 
that we would normally associate with contradictions, the 0.13 of the second case is a pretty 
convincing disconfirmation of the theory.

Concluding remarks: Diagnostic evaluation is possible and 
necessary

Many of the benefits provided by diagnostic evaluation have been outlined in Befani (2020), 
including the minimisation of CB and conservatism. This article has shown how to apply the 
approach in practice, following the typical steps; addressing the many risks and types of biases 
arising along the way, and suggesting protective measures. We have shown how to formulate 
statements/propositions/theories, assign probabilities, work with qualitative confidence 
descriptors and how to handle multiple observations, a.k.a. evidence packages, including in 
the presence of weak or contradictory evidence.

Applying this approach potentially presents challenges, some of which seem to be more 
serious just when the approach is comparatively more useful, like in situations of weak or 
conflicting evidence that are at higher risk of bias. While diagnostic evaluation provides sev-
eral practical opportunities to minimise both CB and conservatism, we find that the latter is 
particularly problematic, especially when we are confronted with seemingly inconclusive 
pieces of evidence; hence, we advocate increased precision in the characterisation of SW tests. 
The early literature on Process Tracing tests focused on extremes, which are relatively easy to 
identify, while reality is more often populated with middle grounds and in-betweens; and tests 
approximating straws abound.

The numerical formalisation of Bayesian Updating allows us to make more fine-grained 
distinctions among different inconclusive tests, allowing us to spot differences in terms of 
both strength and direction. This is essential when having to estimate the probative value 
and direction of evidence packages. In general, it is very difficult to predict how much add-
ing one piece of evidence of a certain kind and strength, affects the kind and strength of an 
existing package. It can easily be seen by playing with the updating tool (Befani, 2017). 
Diagnostic evaluation reduces the uncertainty and confusion by letting the evidence speak 
for itself.



514 Evaluation 26(4)

Funding 

The author received no financial support for the research, authorship and/or publication of this article.

ORCID iD 

Barbara Befani  https://orcid.org/0000-0002-8379-8905

Supplemental material

Supplemental material for this article is available online.

Notes

 1. The notion of falsifiability referenced here is not meant in a deterministic or strictly Popperian 
sense; but it is mentioned because probabilistic results approximate determinism for very high 
levels of confidence, for example, 0.99999 or higher.

 2. Unlike Fairfield and Charman (2017), we do not require the multiple compared theories to be 
always and necessarily mutually exclusive. It is not rarely the case in evaluation that multiple 
explanations of the outcome co-exist. Each theory is compared with its opposite, but for example, 
in policy influence, there can be multiple sources of influence; and multiple influence processes can 
co-exist. 

 3. These can be elicited following any of the techniques referenced above, and experts and stakehold-
ers invited to express their judgements, preferably using relative frequencies in addition to odds 
and percentages. Their views can then be assembled through behavioural aggregation (SHELF), 
mathematical aggregation (Cooke’s), or something in between (Delphi), depending on the nature 
of the specific evaluation.

 4. As explained elsewhere (Befani, 2020), we do not advocate an uncritical use of the decibel scale 
in the social sciences as proposed by Fairfield and Charman (2017) because using 30db as the gold 
standard of evidence threshold (10 Log10 (LR)) translates into a likelihood ratio of around 1140 
and a posterior of 0.999 starting from a prior of 0.5. This is much stricter than the 95 per cent level 
of confidence (associated with a LR of 19, dB < 13) typically used in quantitative social science. 
There is no reason why qualitative social science evidence standards should be 60 times stronger 
– or 17 dB ‘louder’ – than quantitative social science ones. Our proposed scale preserves the non-
linearity of the logarithmic scale while allowing a fine-grained assessment of confidence. For an 
alternative way of cutting the 0–1 probability space, see (Befani et al., 2016)

 5. The Weight of Evidence is calculated as the logarithm of the Likelihood Ratio (the ratio between 
Sensitivity and Type I Error) (Kaye, 1986). 

 6. This is done by carrying out four different updating calculations, one for each of the following 
scenarios: min S min T1E; min S max T1E; max S min T1E; and max S max T1E. Two of these 
represent the extremes for probative value: min S max T1E at the lower end and max S min T1E at 
the higher end.

 7. If theories are mutually exclusive, this is always the case – see Fairfield and Charman (2017).
 8. One observation is stochastically independent from another if observing it does not alter the prob-

ability of observing the other: the conditional and unconditional probabilities are the same, where 
the conditioning is intended to apply to the observation, and not (only) on whether the theory is true 
or not. See also the next footnote.

 9. Formally, two pieces of evidence E1 and E2 are stochastically independent if P(E1|E2) = P(E1) and 
P(E2|E1) = P(E2). Therefore, P(E1 ∩ E2), which is P(E1)*P(E2|E1) or P(E2)*P(E1|E2), is equal to 
P(E1)*P(E2).

10. For a more comprehensive discussion of this question that is not limited to probability estimates, 
see Bennett and Checkel (2014b).

https://orcid.org/0000-0002-8379-8905
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11. For our purposes here, observing a Doubly Decisive (DD) is equal to observing (passing) a Smoking 
Gun (SG), while not observing a DD is equal to failing (not observing) a Hoop test (HT). At the 
same time, observing or not observing a SW does not provide conclusive information and thus can-
not replace neither a HT nor a SG.

12. or vice versa.

References

Befani B (2017) Bayes Formula Confidence Updater Spreadsheet. Guildford: CECAN.
Befani B (2020) Quality of quality: A diagnostic approach to qualitative evaluation. Evaluation 26(3): 

333–49.
Befani B, Elsenbroch C and Badham J (forthcoming) Supporting Diagnostic Theory-Based Evaluation 

with Computer-Based Simulation. 
Befani B, Rees C, Varga L, et al. (2016) Testing Contribution Claims with Bayesian Updating. CECAN 

Evaluation Policy and Practice Note No. 2.1. Available at: https://www.cecan.ac.uk/sites/default/
files/2018-01/BARBARA%20v2.5.pdf

Befani B and Stedman-Bryce G (2017) Process tracing and Bayesian updating for impact evaluation. 
Evaluation 23(1): 42–60.

BEIS (2018) Evaluation of the Transitional Arrangements for Demand Side Response. London: UK 
Department of Business, Energy, and Industrial Strategy (BEIS).

Bennett A and Checkel J (2014a) Process tracing. In: Bennett A and Checkel J (eds) Process Tracing: 
From Metaphor to Analytic Tool (Strategies for Social Inquiry). Cambridge: Cambridge University 
Press, 3–38.

Bennett A and Checkel J (eds) (2014b) Process Tracing: From Metaphor to Analytic Tool. Cambridge: 
Cambridge University Press.

Cooke RM (1991) Experts in Uncertainty: Opinion and Subjective Probability in Science. New York 
and Oxford: Oxford University Press.

D’Errico S, Befani B, Booker F, et al. (2017) Influencing Policy Change in Uganda: An Impact Evaluation 
of the Uganda Poverty and Conservation Learning Group’s Work. London: International Institute 
for Environment and Development (IIED).

Dekking F, Kraaikamp C, Lopuhaä H, et al. (2006) A Modern Introduction to Probability and Statistics: 
Understanding Why and How. London: Springer-Verlag.

EFSA (2014) Guidance on expert knowledge elicitation in food and feed safety risk assessment. EFSA 
Journal 12(6): 3734.

Fairfield T and Charman A (2017) Explicit Bayesian analysis for process tracing: Guidelines, opportu-
nities, and caveats. Political Analysis 25(3): 363–380.

Gosling JP (2014) Methods for eliciting expert opinion to inform health technology assessment. Available 
at: https://mrc.ukri.org/documents/pdf/methods-for-eliciting-expert-opinion-gosling-2014/ 

Kaye D (1986) Quantifying probative value. Boston University Law Review 66: 761–766.
O’Hagan A, Buck CE, Daneshkhah A, et al. (2006) Uncertain Judgements: Eliciting Experts’ Probabilities. 

Available at: https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1541-0420.2008.01082_3.x
Oakley JE and O’Hagan A (2016) SHELF: The Sheffield Elicitation Framework (Version 3.0). Sheffield: 

School of Mathematics and Statistics, University of Sheffield, UK.
Wauters B and Beach D (2018) Process tracing and congruence analysis to support theory-based impact 

evaluation. Evaluation 24(3): 284–305.

Barbara Befani has been developing evaluation methods for 15 years. In particular, innovative, rigorous 
and appropriate methods to assess impact, like Bayesian Updating/Process Tracing and Qualitative 
Comparative Analysis (QCA).

https://www.cecan.ac.uk/sites/default/files/2018-01/BARBARA%20v2.5.pdf
https://www.cecan.ac.uk/sites/default/files/2018-01/BARBARA%20v2.5.pdf
https://mrc.ukri.org/documents/pdf/methods-for-eliciting-expert-opinion-gosling-2014/
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1541-0420.2008.01082_3.x

