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Abbreviations: 

PCV7   7 valent pneumococcal conjugate vaccine 

PCV13   13 valent pneumococcal conjugate vaccine 

IgG   Immunoglobulin G 

GMC   Geometric mean concentrations 

IPD   Invasive pneumococcal disease 

 

What’s known on this subject:  

Premature infants have a higher risk of invasive pneumococcal disease and are more likely to 

have lower vaccine responses compared to term infants.  The optimal primary schedule to 

generate protective concentrations of pneumococcal antibodies in preterm infants is 

unknown. 

 

What this study adds: 

This 13-valent pneumococcal conjugate vaccine schedule RCT in preterm infants 

demonstrated that a reduced primary schedule resulted in higher post-booster, but lower post-

primary IgG concentrations. The optimum schedule for preterm infants depends on when 

they are most at risk of invasive disease. 
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Abstract 

 

Background 

Premature infants have a higher risk of invasive pneumococcal disease and are more likely to 

have lower vaccine responses compared to term infants.  Increasingly, immunization 

schedules are including a reduced, 2-dose, pneumococcal conjugate vaccine (PCV) priming 

schedule. 

We aimed to assess the immunogenicity of 3 commonly used PCV13 priming schedules in 

premature infants, and their response to a 12-month booster dose. 

Methods 

Premature infants (<35 weeks gestation) were randomized to receive PCV13 at 2 and 4 

months (reduced schedule); 2, 3 and 4 months (accelerated schedule); or 2, 4 and 6 months 

(extended schedule). All infants received a 12-month PCV13 booster.  Serotype-specific 

pneumococcal immunoglobulin G (IgG) for PCV13 serotypes were measured by ELISA 1 

month after primary and booster vaccinations. 

Results 

A total of 210 infants (median birth gestation 29+6 weeks, range 23+2-34+6) were included. 

Following primary vaccination, 75% (95% CI 62-85), 88% (95% CI 76-95) and 97% (95% 

CI 87-99) of participants had protective antibody concentrations for at least half the PCV13 

serotypes for the reduced, accelerated and extended schedules respectively.  Following 

booster vaccination, participants receiving the extended schedule had significantly lower 

(p<0.05) geometric mean concentrations compared with reduced (for 9/13 serotypes) and 

accelerated schedules (for 4/13 serotypes), but nearly all participations, regardless of 

schedule or serotype, had seroprotective IgG concentrations. 

Conclusions  

A reduced priming schedule of PCV13 resulted in higher post-booster IgG concentrations, 

but lower post-primary concentrations. The optimum vaccine schedule for preterm infants 

will therefore depend on when they are most at risk of invasive pneumococcal disease.  



 

Introduction 

Premature infants are at increased risk of vaccine preventable diseases, including a two-fold 

risk of invasive pneumococcal disease (IPD) compared to term infants.[1–3] 

In most industrialised countries with established pneumococcal immunization programmes, 

the 13-valent pneumococcal conjugate vaccine (PCV13) has superseded the 7-valent PCV 

and has been shown to be highly immunogenic in term infants.[4–6] 

The immunogenicity of PCV13 in premature infants receiving a 2-3-4 and 12-month schedule 

was only recently reported and showed lower immunoglobulin G (IgG) concentrations for 8 

serotypes after both primary and booster doses compared to term infants.[7] This lower 

immunogenicity is consistent with previous PCV7 studies [8–10] and is concerning because 

premature infants are also less likely to benefit from the protective maternal antibodies 

transferred during late pregnancy. 

Additionally, national immunization programmes are increasingly including reduced (2) dose 

priming schedules.[11,12]  These schedules are immunogenic in term infants and, with some 

vaccines, may even improve B cell memory and booster responses.[13–16]  However, little is 

known about the immunogenicity of fewer primary doses in premature infants.  

 

This randomized, controlled trial aimed to assess the immunogenicity of reduced, accelerated 

(intended to provide maximum early protection) and extended (doses administered over a 

longer period) PCV13 priming schedules in premature infants after completion of the primary 

series and after a 12-month booster.  

 



Patients and Methods  

Participants and recruitment 

Premature infants were enrolled in a phase IV open-label randomized controlled trial from 12 

UK centres between May 2012 and May 2013.   Potentially eligible infants were identified by 

the clinical teams and parents were provided with information by the research teams.  Infants 

were eligible for inclusion if they had a birth gestation less than 35+0 weeks, had no contra-

indications for vaccination as defined by Department of Health guidelines[17] and were 

between 7 and 12 weeks of age.  Additionally, infants should not have received any other 

vaccinations (with the exceptions of BCG and hepatitis B).  Information on the participants’ 

past medical, medication and vaccination history was collected from the medical records 

using a standardised case report form.  

Written informed consent was obtained from parents prior to enrolment.  The study was 

approved by the East of England – Essex research ethics committee (REC reference 

07/HO301.11) and registered on the EudraCT clinical trial database (2007-007535-23). 

 

Vaccination 

Infants were randomly assigned (1:1:1) to receive PCV13 (Prevenar13; Pfizer, New York) at 

2 and 4 months of age (reduced schedule - Group 1), at 2, 3 and 4 months of age (accelerated 

schedule - Group 2) or at 2, 4 and 6 months of age (extended schedule - Group 

3)(supplementary table 1).  A booster dose of PCV13 was administered to all infants at 12 

months of age.  Additionally, all participants received a combined diphtheria, tetanus, 

acellular pertussis, Haemophilus influenzae type b and inactivated polio vaccine (Pediacel; 

Sanofi Pasteur MSD, Lyon, France) at 2, 3 and 4 months old, meningococcal C-CRM197 

vaccine (Menjugate; Novartis Vaccines, Siena, Italy) at 3 and 4 months of age and a 

combined measles, mumps and rubella vaccine (Priorix; GlaxoSmithKline Biologicals, 



Rixensart, Belgium) and Hib-MenC-TT conjugate vaccine (Menitorix, GlaxoSmithKline 

Biologicals, Rixensart, Belgium) at 12 months of age (supplementary table 1).  Participants 

were vaccinated in hospital if still receiving inpatient care.  All vaccines were administered 

intramuscularly. 

Computerised block randomization was stratified by centre and gestation (<30 or ≥30 weeks 

gestation) and each centre was allocated blocks of sequential numbers (block size 18).  

Following consent the subject was allocated the next available study number for that centre 

and gestational age cohort, and the appropriate sealed envelope containing the group 

allocation opened.  The study was not blinded to parents or clinical personnel.  

 

Blood sampling and serological methods 

Up to 3 mL of whole blood was obtained from each participant prior to the first vaccination 

(baseline), 1 month following primary vaccination (at age 5 months for Groups 1 and 2 

participants and at age 7 months for Group 3 participants), prior to and 1 month after booster 

vaccination (12 and 13 months respectively) (supplementary table 1).   

Serological analysis was performed at the World Health Organisation reference laboratory for 

pneumococcal serology, Institute of Child Health, London.  Following extraction from whole 

blood, sera were stored at -70°C prior to assay for pneumococcal serotype-specific 

immunoglobulin G (IgG) concentrations for the PCV13 pneumococcal serotypes by enzyme-

linked immunosorbent assay (ELISA) as previously described.[18]  The lower limit of assay 

quantification was 0.15 µg/mL and IgG concentrations ≥0.35 µg/ml were considered 

protective.[19] 

 

Safety analysis 



All participants were observed for immediate adverse reactions.  Solicited systemic and local 

adverse reactions were recorded by the infant’s main caregiver for 7 days following each 

vaccination.  All AEs (including serious adverse events) were recorded for 28 days after each 

vaccination using an adverse event (AE) diary.  Parents had access to a 24-hour telephone 

contact number for AE reporting.  

 

Statistical analysis 

The primary objectives were to assess IgG geometric mean concentrations (GMCs) and the 

proportion of infants with protective serotype-specific antibody concentrations for PCV13 

serotypes at 1 month after completion of the primary vaccination course, according to the 3 

schedules.  The main secondary objectives were to assess differences in serotype-specific IgG 

GMC and seroprotection rates between schedules prior to and following booster vaccination 

at 12 months of age; and to quantify the percentage of children experiencing fever, local 

reactions and non-febrile systemic reactions within 7 days following each vaccine dose.  

Pre-trial sample size calculations estimated a minimum of 60 infants in each group to detect 

at least a 2 fold difference between groups after primary immunization, with 80% power and 

5% significance.  Based on published data, the standard deviation of IgG responses was 

estimated be 0.6 log10 units.[20]  To allow for drop out of subjects over the course of the 

study and the challenges of obtaining blood samples from very premature infants, we aimed 

to recruit 210 infants. 

Data were analyzed using a modified intention to treat analysis including all infants who 

received a dose of PCV13 and from whom at least one post-vaccination blood sample was 

obtained.  GMCs and 95% confidence intervals (CI) were calculated for each sampling time 

point, along with the proportion of infants achieving protective antibody concentrations and 



binominal CI.  Results below the lower limit of quantification (LLQ) were taken to be half 

the LLQ for computational purposes. 

Statistical comparison of antibody concentrations and the proportion of participants with 

protective concentrations or AEs between the 3 trial arms were performed using the Student’s 

t-test and the χ2-test or Fisher’s exact test, as appropriate.  Statistical significance was defined 

as p<0.05.  To facilitate comparisons we have analysed schedules based on the proportions 

achieving adequate protection for at least half of the serotypes.  The number of serotypes with 

protective concentrations per participant were compared using the non-parametric Kruskal–

Wallis one-way analysis of variance test.   

Logistic regression was used to examine the effect of gestation, the receipt of antenatal or 

postnatal steroids, blood transfusion, BCG vaccination, early post-vaccination paracetamol 

and the presence of chronic lung disease (CLD, defined as requiring oxygen or respiratory 

support at 28 days of age) on seroprotection.   Analysis was adjusted for gestation.  For post-

primary vaccination results multivariable linear regression using log-transformed values was 

performed (adjusting for group and gestation).  Linear regression was not performed on 

baseline IgG concentrations due to the large number of results below the LLQ.   

 

All data were analyzed using STATA version 13 (Stata Inc). 

 



Results 

A total of 210 infants were recruited.  199 participants (94.7%) completed the primary phase 

(primary endpoint) and 194 (92.4%) completed the entire study (Figure 1).  2 participants 

died of causes unrelated to the trial.   The majority of infants who did not meet the inclusion 

criteria were outside the study age range or were too unstable for vaccination.  A second 

group of infants was excluded for logistical reasons - many were transferred to their local 

neonatal unit prior to their first vaccination (Figure 1). 

The characteristics of randomized infants were similar between groups (Table 1) with a 

median birth gestation of 29+6 (range, 23+2-34+6) weeks and median birth weight of 1388g 

(range: 450-3390g).  112 vaccinations were administered to hospitalized participants.   

  

Primary vaccination 

At baseline participants had very low antibody concentrations for all pneumococcal serotypes 

(Table 2, supplementary table 2).  The highest IgG GMCs (for all participants) were seen for 

serotypes 14 (0.26 µg/mL) and 19A (0.19 µg/mL).   

Following the primary vaccination course, substantial increases in antibody concentrations 

were seen for all serotypes and all groups. There was considerable variation between 

serotypes with IgG GMCs ranging from 0.16 µg/mL for serotype 6B (reduced schedule) to 

8.49 µg/mL for serotype 14 (extended schedule) (Figure 2; Supplementary Table 3). 

 

The primary schedule had a significant impact on vaccine immunogenicity.  Lack of 

seroprotection for more than half the PCV13 serotypes was seen in 25%, 12% and 3% of 

participants receiving the reduced, accelerated and extended schedules respectively (p<0.001, 

supplementary figure 1 and supplementary table 4).  



Participants receiving the extended schedule had higher IgG GMCs compared with the 

reduced schedule for 11 serotypes and accelerated schedule for 7 serotypes.  The accelerated 

schedule was superior to the reduced schedule for 4 serotypes (Figure 2, Table 2; 

Supplementary table 3).    

 

Booster vaccination 

At 12 months of age, waning of pneumococcal antibody concentrations was evident with low 

rates of seroprotection against individual serotypes (Table 3; Supplementary table 5).   

Antibody concentrations remained significantly higher in those who had received the 

extended schedule compared with reduced (for 10 serotypes) or accelerated schedules (for 11 

serotypes), the accelerated schedule was superior to the reduced schedule for one serotype 

only. 

 

Following booster vaccination a high proportion of infants achieved protective concentrations 

(Table 3).  As at previous time points, significant variation in antibody concentrations 

between serotypes and groups was apparent (Figure 3).  In contrast to post-primary 

vaccination responses, participants receiving the extended schedule had lower GMCs 

compared with the reduced (for 9 serotypes) and accelerated schedules (for 4 serotypes).  The 

accelerated schedule was inferior to the reduced schedule for one serotype (19A) 

(supplementary table 6).  Infants who received the extended schedule had lower fold 

increases in concentrations following booster vaccination than the other groups 

(supplementary figure 2).   

 

Predictors of antibody concentrations 



Increased odds of seroprotection at 2 months of age were seen with each week of increased 

gestation for 4 serotypes: 6A (OR 1.34, 95% CI 1.12-1.60; p=0.001), 14 (OR 1.25, 95% CI 

1.12-1.41; p<0.001), 19A (OR 1.27, 95% CI 1.12-1.45; p<0.001) and 19F (OR 1.29, 95% CI 

1.09-1.52; p=0.003).  Later gestation was associated with an increase in post primary 

vaccination IgG concentrations for 3 serotypes: 1 (6% increase per week, 95% CI 0.9-12; 

p=0.021), 3 (8% increase per week, 95% CI 4-14, p<0.001) and 7F (8% increase per week, 

95% CI 3-13; p=0.002).   

 

Receipt of antenatal steroids was associated with decreased odds of seroprotection at 2 

months for 4 serotypes: 5 (OR 0.09, 95% CI 0.01-0.83; p=0.033), 6A (OR 0.26, 95% CI 0.10-

0.69; p=0.006), 19A (OR 0.19, 95% CI 0.08-0.45; p<0.001 and 23F (OR 0.23, 95% CI 0.06-

0.80, p=0.021).   Additionally, post-primary vaccination serotype-specific IgG GMCs for 

serotypes 1, 4 and 9V were reduced in infants who had been exposed to antenatal steroids.  

At no time-points were antenatal steroids associated with higher antibody concentrations.    

 

Pre- or post-primary protective concentrations were not associated with any other factors in 

regression analysis.  An insufficient number of infants (14) received postnatal steroids to 

analyse any effect.  Serotype-specific antibody concentrations after the 12-month PCV13 

booster were affected by priming schedule and pre-existing antibody levels only. 

 

Safety and adverse events 

There were no significant differences in the frequency or severity of local and systemic AEs 

between vaccination schedules at any time-point. Altogether 77 serious adverse events 

(SAEs) were reported (including the 2 deaths).  SAEs were predominantly acute respiratory 

infections.  There was 1 possibly related (suspected) unexpected serious adverse reaction 



from each randomized group: 2 participants had necrotising enterocolitis within a week of 

vaccination and 1 participant had post-vaccination cardiorespiratory instability requiring 

readmission; all 3 infants made a good recovery.  

 

Discussion  

This is the first study to compare different PCV13 schedules in premature infants and 

demonstrates the need for early and effective immunization strategies for this vulnerable 

group, given their very low pre-immunization antibody concentrations. Our results indicate 

that most preterm infants can achieve seroprotective antibody concentrations for the 

serotypes in PCV13 regardless of the primary schedule administered, especially after the 12-

month booster, but the magnitude of their immunological response is dependent on the 

primary schedule they receive.   

 

Serotype-specific responses varied, with lower IgG GMCs achieved for serotypes 3, 5 and 6B 

after the primary course and for serotypes 3, 9V and 18C after the booster dose; these 

findings are consistent with those observed in term infants.[4,21] However, when compared 

with previous term (PCV13) and preterm (PCV7) studies, antibody concentrations after 

primary and booster vaccination are lower overall, resulting in lower seroprotection following 

primary vaccination.[4,5,8,9,22] 

 

Similarly, compared with the recent PCV13 preterm study[7], lower IgG GMCs and 

seroprotection rates were seen for all serotypes.  These differences may be due to the 

different laboratory testing methodology for serotype-specific antibody concentrations, but 

potential biological explanations include interactions with concurrently administered 

vaccines, the younger gestation of our cohort or our broad inclusion criteria encompassing 



infants with complex medical problems – representative of the preterm population.  

Additionally, Martinon-Torres et al. did not report baseline IgG concentrations which may 

differ between countries and impact on post-vaccination concentrations.[7] 

 

When comparing schedules within our cohort, the most striking finding was the contrasting 

immunogenicity of the 3 schedules at different time points, with the reduced dose schedule 

generating inferior antibody concentrations after the primary course but superior antibody 

concentrations after the booster dose.  The higher post-primary IgG GMCs following 3 doses 

(compared with 2 doses) is consistent with two meta-analyses of primary schedules in term 

infants.[23,24]  Of the 3-dose schedules, higher antibody concentrations were seen in 

premature infants receiving the extended schedule.  This was not observed in the meta-

analyses of term infant responses but an older age at final vaccination may be more important 

in premature infants as it will allow further maturation of their immune system.[25,26]  

However, this needs to be set against the optimal age at which protection is required in this 

population. Several studies have indicated an increased susceptibility of IPD in babies born 

prematurely when compared with term infants; this risk appears maximal in the first 6 months 

of life.[1–3] 

 

The differences in response to the booster dose was unexpected as the type of priming 

schedule has not been consistently shown to affect the generation of immunological memory 

and PCV booster vaccine responses in term infants.[23,27]  The improved post-booster 

immunogenicity of fewer priming doses is well described for meningococcal C conjugate 

vaccines and is thought to be due to lower total antigen exposure favouring differentiation of 

B lymphoblasts into memory B cells instead of antibody-generating plasma cells.[14,15]  In 

pneumococcal conjugate vaccines, a study of Fijian infants receiving one PCV7 priming dose 



followed by the 23-valent pneumococcal polysaccharide vaccine (PPV23) at 12 months had 

higher IgG GMC for serotypes 4, 9V, 19F compared with those who had been primed with 

two or three PCV7 doses.[13]  Similarly, infants receiving a lower antigen-containing 

investigational tetravalent PCV for priming had higher booster responses than those who had 

received the higher antigen-containing preparation.[28]  However, it should be noted that a 

statistically significant difference between the reduced and accelerated schedule groups was 

observed for only one serotype. 

 

Despite seroprotective concentrations, infants who had received the extended schedule had 

lower fold increases in antibody concentrations following booster vaccination than those 

receiving either the reduced dose or accelerated schedules suggesting that the higher pre-

booster antibody concentrations at 12 months may have interfered with booster responses.   

This effect has been observed following booster doses for other vaccines and several 

hypotheses have been proposed including the formation of immune complexes consisting of 

pre-existing antibody and vaccine antigen resulting in less available vaccine antigen, and B 

cell receptor mediated negative feedback mechanisms, analogous to those described for high 

maternal antibody concentrations impairing primary vaccine responses.[29–33]   

Within our cohort of premature infants, increasing birth gestation was associated with 

increased immunogenicity.  This has previously been described for other vaccines and 

reflects deficiencies in both the innate and adaptive immune systems in these more premature 

infants.[34–39] 

 

Limitations 

The study had some potential limitations.  The different ages of infants at blood sampling 

between the groups must be considered when comparing primary schedules; the antibody 



concentrations at 7 months for babies in Groups 1 and 2 are not known.  It is possible, that 

infants in those groups may have had a rise in their antibody concentrations between their 5 

month sample and 7 months of age due to natural exposure.[40]  However, a recent study 

comparing schedules in term infants which sampled some infants at both 5 and 8 months did 

not find a rise in antibodies between these ages.[27]  We also did not measure antibody 

concentrations beyond 13 months of age.  

As the objectives of this study were to look at schedule differences within the premature 

population we did not include a term comparator group, however lower antibody 

concentrations were seen in our cohort when compared with a recent cohort of term infants in 

the UK who received a reduced dose schedule, which was analyzed in the same 

laboratory.[22]  

Additionally, we did not include any assessment of functional activity of the antibodies 

detected.  Opsonophagocytic antibody titres may have allowed us to assess the potential 

clinical impact of schedule differences in more detail and should be considered in future 

studies.  A previous meta-analysis of primary PCV schedules in term infants has shown a 

good relationship between ELISA measured IgG concentrations and opsonophagocytic 

antibody titres, however an analysis of serotype-specific OPA values did not find a consistent 

protective OPA titre across all vaccine serotypes.[24,41]    

 

Conclusion 

PCV13 is well tolerated in premature infants. Different priming schedules result in higher 

IgG concentrations at different times during the first 13 months of life. We believe that such 

data will be of benefit to those planning or providing pneumococcal vaccines to preterm 

infants and will enable them to consider this in the context of their own immunization 

programmes and epidemiological situations.  
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Table 1:  Participant characteristics by group.  

Median (range) or n (%).  CLD: Chronic lung disease.  BCG: Bacillus Calmette-Guérin 

vaccination. 

 

 

Table 1 

 
Reduced dose 

(Group 1) 

n = 68 

Accelerated 

(Group 2) 

n = 67 

Extended 

(Group 3) 

n = 71 

Gestation (weeks) 29.6 (24.9-34.9) 30 (23.6-34.9) 30 (23.3-34.9) 

Birth weight (g) 1410 (576-2600) 1360 (510-3390) 1390 (450-2680) 

Weight at 1st vaccination (g) 2442 (845-4660) 2350 (1260-5070) 2497 (920-4560) 

Sex (male) 37 (54) 32 (48) 38 (54) 

Ethnicity (white) 57 (84) 54(81) 60 (85) 

CLD 23 (34) 22 (33) 27 (38) 

Antenatal steroids 59 (87) 56 (84) 62 (87) 

Postnatal steroids 4 (6) 4 (6) 6 (8) 

Blood transfusion 28 (41) 30 (45) 29 (41) 

BCG 5 (7) 5 (7) 7 (10) 

Age at visit 1 (days) 61 (49-86) 61 (49-83) 61 (46-88) 

Age at visit 2 (days) 93 (78-136) 93 (82-119) 95 (79-132) 

Age at visit 3 (days) 126 (111-178) 126 (114-160) 126 (106-160) 

Age at visit 4 (days) 158 (132-199) 158 (135-187) - 

Age at visit 5 (days) - - 181 (156-258) 

Age at visit 6 (days) - - 209 (177-298) 

Age at visit 7 (days) 368 (353-410) 367 (351-404) 368 (351-429) 

Age at visit 8 (days) 400 (367-443) 400 (376-492) 397 (375-606) 

 

  



 

Table 2: Proportion of infants with protective antibody concentrations (IgG ≥0.35 µg/mL) for 

the 13 PCV13 serotypes at baseline and 1 month after final primary vaccination.  

Proportion (95% CI). a b c: p<0.05 comparing reduced and accelerated, accelerated and 

extended, and reduced and extended schedules respectively;  *p<0.001 

 

Table 2 

Serotype 

Baseline Post primary immunization 

All 
N = 197 

Reduced dose 

(Group 1) 
N = 66 

Accelerated 

(Group 2) 

N = 60 

Extended 

(Group 3) 

N = 69 

1 0.03 (0.01-0.07) 0.85 (0.74-0.92) 0.80 (0.68-0.89)b 0.94 (0.86-0.98) 

3 0.01 (0.00-0.03) 0.61 (0.48-0.73) 0.66 (0.53-0.78) 0.80 (0.68-0.88)c 

4 0.02 (0.01-0.05) 0.92 (0.83-0.97) 0.88 (0.77-0.95) 0.94 (0.86-0.98) 

5 0.02 (0.01-0.05) 0.36 (0.25-0.49) 0.47 (0.34-0.60) b 0.74 (0.62-0.84)c* 

6A 0.13 (0.09-0.19) 0.58 (0.45-0.70) 0.72 (0.59-0.83)b* 0.94 (0.86-0.98) c* 

6B 0.07 (0.04-0.11) 0.20 (0.11-0.31)a* 0.52 (0.38-0.65) b 0.78 (0.66-0.87) c* 

7F 0.05 (0.02-0.09) 0.91 (0.81-0.97) 0.97 (0.88-1.00) 1.00 (0.95-1.00) c* 

9V 0.06 (0.03-0.10) 0.59 (0.46-0.71)a 0.85 (0.73-0.93) 0.93 (0.84-0.98) c* 

14 0.38 (0.31-0.45) 0.94 (0.85-0.98) 0.98 (0.91-1.00) 0.99 (0.92-1.00) 

18C 0.05 (0.02-0.08) 0.88 (0.78-0.95) 0.87 (0.75-0.94) 0.96 (0.88-0.99) 

19A 0.24 (0.18-0.30) 0.83 (0.72-0.91)a 0.95 (0.86-0.99) 0.96 (0.88-0.99) c 

19F 0.14 (0.09-0.19) 0.97 (0.89-1.00) 1.00 (0.94-1.00) 1.00 (0.95-1.00) 

23F 0.06 (0.03-0.10) 0.47 (0.34-0.60) 0.63 (0.50-0.75) b 0.83 (0.72-0.91) c* 

 

  



 

Table 3: Proportion of infants with protective antibody concentrations (IgG ≥0.35 µg/mL) 

prior to booster vaccination (12 months) and 1 month after booster vaccination.  

Proportion (95% CI). a b c: p<0.05 comparing reduced and accelerated, accelerated and 

extended, and reduced and extended schedules respectively;  *p<0.001 

 

Table 3 

Serotype 

Pre-booster vaccination Post booster vaccination 

Reduced dose 

(Group 1) 
N = 64 

Accelerated 

(Group 2) 
N =57 

Extended 

(Group 3) 
N = 69 

Reduced dose 

(Group 1) 
N = 64 

Accelerated 

(Group 2) 
N = 59 

Extended 

(Group 3) 
N = 68 

1 0.23 (0.14-0.36) 0.19 (0.10-0.32)b* 0.49 (0.37-0.62)c 0.98 (0.92-1.00) 1.00 (0.94-1.00) 1.00 (0.95-1.00) 

3 0.18 (0.09-0.30) 0.22 (0.12-0.35) 0.29 (0.18-0.41) 0.89 (0.78-0.95) 0.93 (0.83-0.98) 0.87 (0.76-0.94) 

4 0.11 (0.05-0.21) 0.11 (0.04-0.22)b 0.35 (0.24-0.47)c* 1.00 (0.94-1.00) 0.98 (0.91-1.00) 0.99 (0.92-1.00) 

5 0.20 (0.11-0.32) 0.14 (0.06-0.26)b 0.32 (0.21-0.44) c* 0.98 (0.92-1.00) 0.97 (0.88-1.00) 0.93 (0.84-0.98) 

6A 0.39 (0.27-0.52) 0.38 (0.25-0.51)b* 0.75 (0.63-0.85) c* 0.98 (0.92-1.00) 0.98 (0.91-1.00) 1.00 (0.95-1.00) 

6B 0.19 (0.10-0.30) 0.16 (0.08-0.28) b* 0.48 (0.36-0.60) c* 0.98 (0.91-1.00) 0.97 (0.88-1.00) 0.99 (0.92-1.00) 

7F 0.64 (0.51-0.76) 0.68 (0.54-0.80)b 0.86 (0.75-0.93) c 0.98 (0.92-1.00) 1.00 (0.94-1.00) 1.00 (0.95-1.00) 

9V 0.06 (0.02-0.15) 0.09 (0.03-0.19) b* 0.39 (0.27-0.51) c* 0.98 (0.92-1.00) 0.98 (0.91-1.00) 0.99 (0.92-1.00) 

14 0.86 (0.75-0.93) 0.95 (0.85-0.99) 0.99 (0.92-1.00) c 1.00 (0.94-1.00) 1.00 (0.94-1.00) 1.00 (0.95-1.00) 

18C 0.06 (0.02-0.15) 0.09 (0.03-0.20) b* 0.35 (0.24-0.47) c* 1.00 (0.94-1.00) 0.97 (0.88-1.00) 0.94 (0.86-0.98) 

19A 0.39 (0.27-0.53) 0.57 (0.43-0.70) 0.64 (0.51-0.75) c 1.00 (0.94-1.00) 1.00 (0.94-1.00) 1.00 (0.95-1.00) 

19F 0.63 (0.50-0.75) 0.49 (0.35-0.63) b* 0.78 (0.67-0.87) 1.00 (0.94-1.00) 1.00 (0.94-1.00) 1.00 (0.95-1.00) 

23F 0.15 (0.07-0.26) 0.11 (0.04-0.22) b* 0.38 (0.27-0.51) c 0.98 (0.91-1.00) 1.00 (0.94-1.00) 0.97 (0.90-1.00) 

 

 

 

  



 

 

Figure 1: Consort diagram 

 

Figure 2: Pneumococcal IgG GMCs following primary vaccination for each serotype and 

group.  a b c: p<0.05 comparing groups 1 and 2, 2 and 3, and 1 and 3 respectively.  Black 

capped lines indicate 95% confidence intervals, solid horizontal red line indicates 

0.35µg/mL. 

 

Figure 3: Pneumococcal IgG GMCs following booster vaccination for each serotype and 

group.  a b c: p<0.05 comparing groups 1 and 2, 2 and 3, and 1 and 3 respectively.  Black 

capped lines indicate 95% confidence intervals, solid horizontal red line indicates 

0.35µg/mL.  


