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Abstract

Demand side response are proposed to incentivise customers to shift their electricity
usage from peak demand periods to o�-peak demand periods and to curtail their
electricity usage during peak demand periods, which show great potential to reduce
the peak loads, electricity prices, customers’ bills and further stabilize the power
systems. The investigation of this e�ect on the pricing strategies and the profits of
electricity retailers has recently emerged as a highly interesting research area. However,
the state-of-the-art, bi-level optimization modelling approach makes the unrealistic
assumption that retailers treat wholesale market prices as exogenous, fixed parameters.

On the other hand, distributed energy resources (DER) in electricity markets are
proposed to bring the significant operating flexibility which can support system bal-
ancing and reduce demand peaks, thereby limiting the balancing costs of conventional
generators and the investments costs of new generation and network assets. And, local
energy markets (LEM) have recently attracted great interest as they enable e�ective
coordination of small-scale DER at the customer side, and avoidance of distribution
network reinforcements. However, the introduction of LEM has also significant impli-
cations on the strategic interactions between the customers and incumbent electricity
retailers, which has not been explored.

Furthermore, a specific demand response technology of electric vehicles (EV) exhibits
the potential to support system balancing and limit demand peaks, thus improving
significantly the cost-e�ectiveness of low-carbon electricity systems. And the e�ective
pricing of EV charging by aggregators constitutes a key problem towards the realization
of the significant EV flexibility potential in deregulated electricity systems and has
been addressed by previous work through bi-level optimization formulations. However,
the solution approach adopted in previous work cannot capture the discrete nature
of the EV charging / discharging levels. Furthermore, aggregators su�ering from
communication and privacy limitations are hard to acquire the perfect knowledge of
EV operating characteristics and traveling patterns.
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Given such a context, this thesis aims at addressing the above challenges and
proposing strategic retail pricing-based energy response programs to study the interac-
tions between the electricity retailer / aggregator and its served flexible customers /
EV based on game theoretic modeling and learning based approaches. We conduct the
research in three di�erent application scenarios:

1) This thesis proposes a novel bi-level optimization problem which represents
endogenously the wholesale market clearing process as an additional lower-level problem,
thus capturing the realistic implications of a retailer’s pricing strategies and the resulting
demand response on the wholesale market prices. This bi-level optimization problem is
solved through converting it to a single-level Mathematical Programs with Equilibrium
Constraints (MPEC). The scope of the examined case studies is threefold. First of all,
they demonstrate the interactions between the retailer, the flexible consumers and the
wholesale market and analyse the fundamental e�ects of the consumers’ time-shifting
flexibility on the retailer’s revenue from the consumers, its cost in the wholesale market,
and its overall profit. Furthermore, they analyse how these e�ects of demand flexibility
depend on the retailer’s relative size in the market and the strictness of the regulatory
framework. Finally, they highlight the added value of the proposed bi-level model by
comparing its outcomes against the state-of-the-art bi-level modelling approach.

2) This thesis explores for the first time the interaction between electricity retailer
and LEM by proposing a novel bi-level optimization problem, which captures the
pricing decisions of a strategic retailer in the upper-level problem and the response of
both independent customers and the LEM (both including flexible consumers, micro-
generators and energy storages) in the lower-level problems. Since the lower-level
problem representing the LEM is non-convex, a new analytical approach is employed
for solving the developed bi-level optimization problem. The examined case studies
demonstrate that the introduction of an LEM reduces the customers’ energy dependency
on the retailer and limits the retailer’s strategic potential of exploiting the customers
through large di�erentials between buy and sell prices. As a result, the profit of the
retailer is significantly reduced while the customers, primarily the LEM participants
and to a lower extent non-participating customer, achieve significant economic benefits.

3) This thesis proposes a reinforcement learning (RL) method that the EV aggregator
gradually learns how to improve its pricing strategies by utilizing experiences acquired
from its repeated interactions with the EV and the wholesale market. Although RL can
tackle the challenge of imperfect information and MPEC reformulation, the state-of-the-
art RL methods require discretization of state and / or action spaces and thus exhibit
limitations in terms of solution optimality and computational requirements. This thesis
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proposes a novel deep reinforcement learning (DRL) method to solve the examined
EV pricing problem, combining deep deterministic policy gradient (DDPG) principles
with a prioritized experience replay (PER) strategy, and setting up the problem in
multi-dimensional continuous state and action spaces. Case studies demonstrate that
the proposed method outperforms state-of-the-art RL methods in terms of both solution
optimality and computational requirements, and comprehensively analyze the economic
impacts of smart-charging and vehicle-to-grid (V2G) flexibility on both aggregators
and EV owners.
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t Quadratic cost function of generation company at period t (£)
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MCostGenCo
t Linear marginal cost function of generation company at period t

(£/MWh)

CostÕ
t,b

GenCo Cost function of block b of generation company at period t (£)

MCostÕ
t,b

GenCo Marginal cost function of block b of generation company at period t

(£)

ProRetailer
t Profit function of electricity retailer at period t (£)

BenF D
t Quadratic benefit function of flexible consumer at period t (£)

MBenF D
t Linear marginal benefit function of flexible consumer at period t

(£/MWh)

BenÕ
t,c

F D Benefit function of block c of flexible consumer at period t (£)

MBenÕ
t,c

F D Marginal benefit function of block c of flexible consumer at period t

(£/MWh)

UtiF D
t Utility function of flexible consumer at period t (£/MWh)

CostMG
t Quadratic cost function of micro-generator at period t (£)

ProMG
t Profit function of micro-generator at period t (£)

ProEES
t Profit function of energy storage at period t (£)

CostEV
t Cost function of flexible EV at period t (£)

Nomenclature for Chapter 3
A. Indices and Sets

t œ T Time periods

i œ I Wholesale producers

b œ B Generation blocks of wholesale producers

c œ C Demand blocks of served consumers

B. Parameters
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NT Length of market horizon

⁄max Maximum limit of retail price (£/MWh)

K Parameter determining the relation between average retail and whole-
sale prices

⁄D
t,c Marginal benefit of block c of served consumers at period t (£/MWh)

dmax
t,c Maximum demand limit of block c of served consumers at period t

(MW)

– Load shifting limit of retail demand

Dbid
t Demand bid by other retailers in the wholesale market at period t

(MW)

⁄G
i,b Marginal cost of block b of wholesale producer i (£/MWh)

gmax
i,b Maximum generation limit of block b of wholesale producer i (MW)

RU
i Ramp-up limit of wholesale producer i (MW)

RD
i Ramp-down limit of wholesale producer i (MW)

gi,0 Initial generation of wholesale producer i (MW)

— Relative size of the retailer in wholesale market

C. V ariables

dt,c Demand of block c of served consumers at period t (MW)

dsh
t Change of demand of served consumers at period t due to loading

shifting (MW)

dbid
t Demand bid submitted by retailer in wholesale market at period t

(MW)

gi,b,t Generation of block b of wholesale producer i at period t (MW)

⁄r
t Retail price at period t (£/MWh)

⁄w
t Wholesale price at period t (£/MWh)
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µd≠
t,c , µd+

t,c Dual variables associated with constraints (3.6) (£/MWh)

› Dual variables associated with constraints (3.7) (£/MWh)

µsh≠
t , µsh+

t Dual variables associated with constraints (3.8) (£/MWh)

µg≠
i,b,t, µg+

i,b,t Dual variables associated with constraints (3.11) (£/MWh)

µr≠
i,t , µr+

i,t Dual variables associated with constraints (3.12) and (3.13) (£/MWh)

Nomenclature for Chapter 4
A. Indices and Sets

t œ T Time periods

i œ I Flexible consumers not participating in the LEM

iÕ œ I Õ Flexible consumers participating in the LEM

j œ J Micro-generators not participating in the LEM

jÕ œ J Õ Micro-generators participating in the LEM

k œ K Energy storages not participating in the LEM

kÕ œ K Õ Energy storages participating in the LEM

B. Parameters

⁄w
t Wholesale price at period t (£/MWh)

⁄max Maximum limit of retail price (£/MWh)

lD
i,t Linear benefit coe�cient of flexible consumer i at period t (£/MWh)

qD
i,t Quadratic benefit coe�cient of flexible consumer i at period t (£/MWh2)

dmax
i,t Maximum demand limit of flexible consumer i at period t (MW)

lG
j Linear cost coe�cient of micro-generator j (£/MWh)

qG
j Quadratic cost coe�cient of micro-generator j (£/MWh2)

gmax
j Maximum generation limit of micro-generator j (MW)
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smax
k Power capacity of energy storage k (MW)

Emin
k Minimum energy limit of energy storage k (MWh)

Emax
k Maximum energy limit of energy storage k (MWh)

E0
k Initial energy level of energy storage k (MWh)

÷c
k Charging e�ciency of energy storage k

÷d
k Discharging e�ciency of energy storage k

C. V ariables

⁄b
t Retail price for buying energy from the retailer at period t (£/MWh)

⁄s
t Retail price for selling energy from the retailer at period t (£/MWh)

di,t Demand of flexible consumer i at period t (MW)

gj,t Generation of micro-generator j at period t (MW)

sc
k,t Charging power of energy storage k at period t (MW)

sd
k,t Discharging power of energy storage k at period t (MW)

Ek,t Energy level of energy storage k at the end of period t (MWh)

ut Binary variable indicating whether the LEM buys energy from the
retailer (ut = 1) or sells energy to the retailer (ut = 0) at period t

nt Net demand of LEM at period t (nt > 0 if the LEM buys energy from
the retailer, nt < 0 if the LEM sells energy to the retailer) (MW)

wt Net demand of retailer in the wholesale market at period t (wt > 0
if the retailer buys energy from the wholesale market, wt < 0 if the
retailer sells energy to the wholesale market) (MW)

Nomenclature for Chapter 5
A. Indices and Sets

t œ T Time periods
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i œ I Inflexible EVs

j œ J Flexible EVs

T gr
j œ T Subset of periods when flexible EV j is connected to the grid

B. Parameters

�t Time resolution (h)

⁄w
t Wholesale price at period t (pence/kWh)

⁄min Minimum limit of retail price (pence/kWh)

⁄max Maximum limit of retail price (pence/kWh)

P inf
i,t Charging power of inflexible EV i at period t (kW)

P max
j Maximum charging / discharging rate of flexible EV j (kW)

Etr
j,t Energy requirements for travelling purposes of flexible EV j at period

t (kWh)

Emin
j Minimum energy limit of flexible EV j (kWh)

Emax
j Maximum energy limit of flexible EV j (kWh)

÷c
j Charging e�ciency of flexible EV j

÷d
j Discharging e�ciency of flexible EV j

C. V ariables

⁄r
t Retail price at period t (pence/kWh)

P w
t Net demand of aggregator in the wholesale market at period t (P w

t

> 0 if the aggregator buys energy from the wholesale market, P w
t <

0 if the aggregator sells energy to the wholesale market) (kW)

V c
j,t Binary variable indicating whether flexible EV j charges (V c

j,t = 1)
or not (V c

j,t = 0) at period t

V d
j,t Binary variable indicating whether flexible EV j discharges (V d

j,t =
1) or not (V d

j,t = 0) at period t
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Cj,t Charging power of flexible EV j at period t (kW)

Dj,t Discharging power of flexible EV j at period t (kW)

Ej,t Energy level of flexible EV j at period t (kWh)
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Chapter 1

Introduction

1.1 Context

Environmental and energy security concerns have driven governments worldwide to take
significant initiatives towards the decarbonization of both generation and demand sides
of energy systems [1]. However, these decarbonization initiatives introduce significant
challenges to the operation and development of electricity systems. On the generation
side, the decarbonization agenda involves the large-scale integration of renewable
generation, which is however inherently characterized by high variability and limited
controllability, challenging the cost-e�cient balancing of the electricity system. On the
demand side, the decarbonization agenda involves the electrification of transport and
heat sectors, which is however expected to significantly increase demand peaks and
drive capital-intensive generation and network investments.

In this setting, flexible demand technologies, enabling redistribution of electricity
demand in time, have the potential to significantly improve the cost-e�ectiveness of
low-carbon power systems by limiting demand peaks and increasing the use of renewable
and cheaper generation sources. For example, at the demand side, the decarbonization
agenda involves the electrification of certain sectors, with the electrification of the
transport sector through the large-scale integration of electric vehicles (EV) being
one of the key priorities. Amongst such flexible demand technologies, EV exhibit
an outstanding flexibility potential due to their inherent ability to store electrical
energy in their batteries, their low energy consumption requirements with respect to
the significant capacity of their batteries, and the Vehicle-to-Grid (V2G) capability
which enables EV to inject stored energy back to the grid. Numerous studies have
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investigated these beneficial impacts of di�erent kinds of flexible demand technologies
on electricity systems’ short-term operation and long-term development [2–6].

One the other hand, a large number of small-scale distributed energy resources
(DERs), including flexible loads, micro-generators and energy storages, are increasingly
being connected to the distribution network, with the overall objective of providing the
required flexibility to support the cost-e�ective development of low-carbon electricity
systems. However, this paradigm change greatly complicates the operation of the
system, as the e�ective coordination of such large numbers of DER involves very
significant communication and computational scalability challenges as well as privacy
concerns. In view of these challenges, local energy market (LEM) has recently emerged
as an interesting approach to deal with these coordination challenges, as the global
coordination burden is broken down to the coordination of local market clusters, each
grouping a number of customers with DER, coordinating the energy exchanges between
them and the upstream grid and addressing local network problems.

Beyond the above decarbonization initiatives however, governments worldwide have
also taken significant initiatives towards the deregulation of the electricity industry,
involving unbundling of vertically integrated monopoly utilities and the introduction
of competition in both generation and retail sectors [7]. In this deregulated setting,
beyond the above high-level impacts of demand side flexibility on the whole system
(the whole society), it becomes imperative to investigate its impacts on the business
case and strategies of di�erent, self-interested market participants.

Another very important category of self-interested market participants in this
deregulated setting includes electricity retailers (or suppliers, aggregators), especially
when considering their direct interaction with the demand side. Specifically, these
entities represent the large majority of the consumers in the wholesale electricity
market, buying energy from this market at the wholesale prices and reselling it to
their contracted consumers at certain retail prices. But these entities can also buy
energy from its served customers with generation capacity at certain retail prices
and resell to the wholesale market at the wholesale prices. The objective of these
self-interested entities lies in maximizing their individual profits by optimizing the
retail prices o�ered to their customers but also respecting regulatory limits [8]. By
activating their flexibility, customers can respond to the o�ered retail prices so as to
maximize their individual utility / profit. This e�ect will in turn impact the retailers’
decisions regarding the o�ered prices and eventually their profit.
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1.2 Motivation

A few recent works have modeled the dynamic interaction between the electricity
retailer and the served customers through a bi-level optimization model. The upper-
level problem represents the strategic decision making of the retailer who determines
the optimal retail prices o�ered to the customers and the hourly demand / generation
bids submitted to the wholesale market so as to maximize its profit over the considered
daily horizon. The lower-level problem represents the decision making of customers
which determine their optimal demand / generation response given the retail prices so
as to maximize their total utility / profit.

However, all of them exhibit a fundamental shortcoming: the impact of the o�ered
retail tari�s and the resulting energy response on the wholesale market is neglected.
As a result, the wholesale market price is treated as an exogenous parameter. This
assumption does not reflect the reality, as in most markets a relatively small number
of retailers serve the whole population of consumers. In the UK for example, despite
the early deregulation initiatives, the “Big Six” energy retailers still account for more
than 75% of the market [9]. As a result, the modeling approaches employed in these
works fail to fully capture the impact of customers’ response on the retailer’s strategies
and profit.

As discussed above, the LEM concept addresses the communication and scalability
challenges of DER coordination. However, the new LEM paradigm is also expected
to have significant implications on the strategic interactions between the local end
users and incumbent electricity retailers. With the introduction of LEM, the served
customers together and exchange energy between each other, thus this paradigm change
is expected to limit their dependency on the electricity retailers and reduce the volumes
of energy traded by the retailers. This e�ect will in turn a�ects the retailer’s decisions
regarding the o�ered prices and eventually its profit.

Moreover, in the deregulated electricity sector environment, the realization of the EV
flexibility potential needs to be integrated in electricity markets through an aggregator.
Bi-level optimization model constitutes the most widely employed methodological
framework in the existing literature for addressing this problem, where the upper-level
problem represents the pricing optimization problem of the aggregator and the lower-
level problems represent the response optimization problems of the EV. All relevant
previous works have solved such bi-level optimization problems by converting them to
single-level Mathematical Programs with Equilibrium Constraints (MPEC), through
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the replacement of the lower-level problems by their equivalent Karush-Kuhn-Tucker
(KKT) optimality conditions.

Nevertheless, this solution approach exhibits two fundamental limitations. Firstly,
it implicitly assumes that the aggregator has perfect knowledge of the EV operat-
ing characteristics and imperfect knowledge of the EV travelling patterns; such an
assumption is not generally realistic, particularly when considering that the current
penetration of EV is limited and thus existing work on the characterization of their
operating characteristics (especially their travelling patterns) is far from comprehensive.
Secondly, the lower-level problem does not include any binary decision variables since
the derivation of the equivalent KKT optimality conditions is only possible when
this problem is continuous and convex. As a result, previous works neglect physical
non-convex operating characteristics of EV such as discrete charging / discharging
levels, and therefore may lead to sub-optimal pricing strategies.

1.3 Research Questions

The research problem that we are looking at in this thesis focuses on strategic retail
pricing problem of an electricity retailer who considers the e�ect of its served local
flexibility. As an e�cient strategic retail pricing strategy always considers both i) the
interaction between the electricity retailer and the wholesale market, which a�ects
its energy cost; and ii) the interaction between the electricity retailer and its served
customers, which a�ects its energy revenue. In summary, there are three di�erent
scenarios when considering the potential questions in this thesis.

The first scenario happens when the electricity retailer serves a relatively large
number of consumers, implying that its tari� strategy and the resulting demand
response will have a significant impact on the wholesale market prices. The related
research questions are: 1) how can we design a comprehensive framework to model the
electricity retailer’s strategic retail pricing, the served customers’ demand response, and
wholesale market clearing processing into an integrated fashion? 2) how can we design
an e�cient demand response program to model the consumers’ characteristics of both
time-independent demand elasticity and time-coupling demand shifting? 3) how can
we model the regulatory constraints on the o�ered retail prices that prevent the retailer
from exploiting the consumers and making excessive profits? 4) how can we analyse
the impact of demand flexibility on electricity retailer’s pricing strategies and the
system parameters on its resulting business? 5) how can we evaluate the added value
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of our proposed model with respect to the state-of-the-art bi-level optimization model
neglecting the interaction between the retailer’s strategic pricing and the wholesale
market conditions?

The second scenario happens when LEM is introduced in the retail market. The
related questions are: 1) how can we design an e�cient market mechanism to coordinate
the energy exchanges between DER and the upstream grid? 2) how can we design an
e�cient framework to capture the interaction between retailer’s strategic pricing and
the LEM? 3) if the framework is designed as a bi-level optimization model, how can we
solve this model in an e�ective way? This is because the lower-level problem of LEM
is non-convex when it introduces the binary variables indicating whether the LEM
buys energy from the retailer or sells energy to the retailer at the same time period. 4)
how can we analyse the e�ects of introducing an LEM among the retailer’s customers
on the amount of energy served by the retailer, the buy and sell prices o�ered by the
retailer, the retailer’s profit and the di�erent customers’ economic surplus?

The third scenario happens when an aggregator represents a large number of EV
in the wholesale market and coordinates their operation according to the market
conditions and the EV operating characteristics. The related questions are: 1) how
can we design a suitable mechanism for the EV aggregator to design e�ective time-
specific prices, accounting for the discrete charging / discharging response patterns
of the served EV? 2) how can we propose a new methodology to address the two
fundamental limitations of MPEC approach as discussed in the previous section? 3)
how can we address the curse of dimensionality of conventional Q-learning algorithms
and accelerate the learning speed of deep reinforcement learning algorithms? 4) how
can we demonstrate that the proposed method achieves a significantly higher profit for
the examined aggregator and exhibits lower total computational requirements than the
state-of-the-art reinforcement learning methods? 5) how can we analyse the impacts of
smart-charging and V2G flexibility on the pricing decisions and profit of the aggregator
as well as the costs of EV owners?

1.4 Contributions

This section outlines the contributions of this thesis, which are discussed from the
problem development, model formulations, adopted methods, testing results and
physical analysis to address the challenges associated with impacts of demand flexibility,
local energy market on the electricity retailers as well as the strategic pricing problems
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for flexible electric vehicles charging. These contributions are further explored as
follows:
1. Investigating the E�ects of Demand Flexibility on Electricity Retailers’ Business
through a Bi-Level Optimization Model

- A bi-level optimization model is proposed, rigorously capturing the interactions
between the retailer’s pricing decisions (modeled in the upper-level), the flexible con-
sumers’ demand response (modeled in the first lower-level problem) and the wholesale
market clearing process (modeled in the second lower-level problem). In contrast with
state-of-the-art bi-level models, this model drops the unrealistic assumption that the
retailer treats wholesale market prices as exogenous, fixed parameters, and represents
endogenously the wholesale market clearing process; as a result, it captures the realistic
implications of the retailer’s pricing strategies on the wholesale market prices.

- Case studies with the proposed model demonstrate that demand flexibility reduces
the retailer’s revenue from the consumers, reduces the retailer’s cost in the wholesale
market, and does not have a uniform impact on the retailer’s overall profit. This latter
impact is shown to depend on the strictness of the regulatory constraints imposed on
the o�ered retail prices, implying that demand flexibility can e�ectively complement
regulatory policies in safeguarding the consumers against the strategic behavior of
retailers.

- Case studies also demonstrate that the above e�ects of demand flexibility on the
retailer’s revenue and cost are relatively enhanced as the relative size of the retailer
increases. However, the implications of the retailer’s size on its overall profit are not
uniform, but depend on the extent of demand flexibility, implying that new, small
players in the retail market are more likely to take initiatives towards the realization
of the flexibility potential of their consumers, than large, incumbent retailers.

- Finally, case studies demonstrate that the state-of- the-art bi-level models un-
derestimate the above e�ects of demand flexibility on the retailer’s revenue and cost,
compared to the proposed model, and this underestimation is enhanced as the retailer’s
size increases. This result implies that state-of-the-art models are suitable for driving
a retailer’s decision-making only under the limiting condition that the retailer’s size
is extremely small (around 1% of the market according to the obtained results), in
contrast with the general suitability of the proposed model.
2. Exploring the E�ects of Local Energy Markets on Electricity Retailers and Customers
through a Bi-Level Optimization Model
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- A bi-level optimization model is proposed, rigorously capturing the interactions
between the retailer’s pricing decisions (modeled in the upper-level), the demand /
generation response of flexible consumers, micro-generators, energy storages (modeled
in the first three lower-level problems), and the operation of an local energy market
among its served customers (modeled in the fourth lower-level problem). In contrast
with state-of-the-art bi-level models on retailer’s strategic pricing problems, this model
makes the first attempt to fill the knowledge gap of modelling the interactions between
the retailer’s strategic pricing decisions and the operation of a local energy market
among its served customers.

- Since this fourth lower-level problem is non-convex, as it includes the binary
decision variables of the local energy market to either buy or sell energy to the retailer
at each period, the formulated bi-level optimization problem cannot be solved through
the traditional approach of converting it to a Mathematical Program with Equilibrium
Constraints (MPEC). In this context, this thesis employs an approach, which is based
on the relaxation and primal-dual reformulation of the non-convex lower-level problem
and the penalization of the associated duality gap.

- Case studies with the proposed model demonstrate that the introduction of a
local energy market is shown to reduce the customers’ energy dependency on the
retailer, since they are able to trade energy among them at prices which lie between
the retailer’s high buy prices and low sell prices, which is mutually beneficial for all
flexible consumers, micro-generators and energy storages participants; regarding the
latter, the local energy market is shown to unlock their arbitrage potential and activate
them in the market.

- Case studies, consequently, also demonstrate that the retailer’s strategic potential
of exploiting the customers through large di�erentials between buy and sell prices is
limited, and the retailer strives to make its o�ered buy and sell prices more competitive
in order to attract more demand and generation by its customers. As a result of these
e�ects, the profit of the retailer is very significantly reduced, while the customers enjoy
significant economic benefits.

- Case studies demonstrate that this beneficial impact of local energy market is
significantly higher for customers participating in the local energy market, but it is
also substantial for non-participating customers, due to the above e�ects of the local
energy market on the retailer’s o�ered prices.
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- Finally, case studies quantitatively demonstrate that the proposed relaxation
method and primal-dual reformulation are e�ectively with the suitable selection of the
penalization weighting factor in the final multi-objective optimization problem.
3. A Deep Reinforcement Learning Method for Pricing Electric Vehicles with Discrete
Charging Levels

- A new bi-level optimization formulation is presented for modeling the examined
EV pricing problem, which, in contrast with the existing literature, considers the V2G
capability of EV and the discrete nature of their charging / discharging levels.

- A novel deep reinforcement learning (DRL) method is developed to solve the
formulated problem, combining deep deterministic policy gradient (DDPG) principles
with a prioritized experience replay (PER) strategy. In contrast with state-of-the-art
reinforcement learning (RL) methods, this approach poses the examined problem in
multi-dimensional continuous state and action spaces in a faster way.

- Case studies demonstrate that the proposed method achieves a significantly
higher profit for the examined EV aggregator and exhibits lower total computational
requirements than state-of-the-art RL methods.

- Case studies demonstrate that the proposed method exhibits a more favourable
computational performance than benchmark RL methods due to the employment of
the proposed PER strategy.

- Case studies apply the proposed method to di�erent scenarios in order to com-
prehensively analyse the impacts of smart-charging and V2G flexibility on the pricing
decisions and profit of the aggregator as well as the costs of EV owners.

1.5 Thesis Organization

The rest of this thesis is organized as follows:
Chapter 2 firstly introduces the di�erent market mechanisms of wholesale mar-

ket, retail market and local energy market in the deregulated electricity market and
how the market participants interact with each other at di�erent market mechanisms.
Secondly, we provide the design and mathematical modeling of di�erent market par-
ticipants examined in this thesis. Finally, this chapter discusses the key assumptions
made regrading the two proposed solution approaches of game-theoretic approach and
learning-based approach, and presents the fundamental formulation for each of them
adopted throughout the thesis.
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Chapter 3 proposes a novel bi-level optimization model for the retail pricing
decision making of a strategic electricity retailer, rigorously capturing the interactions
between the retailer’s pricing decisions (modeled in the upper-level), the flexible
consumers’ demand response (modeled in the first lower-level) and the wholesale
market clearing process (modeled in the second lower-level). Such model is equivalent
to an MPEC that can be recast as a tractable MILP problem using an exact linearization
approach. Finally, the case studies with the proposed model demonstrate the impact
of demand flexibility on the retailer’s revenue from the consumers, its cost in the
wholesale market, and its overall profit. This latter impact is shown to depend on the
strictness of the regulatory constraints imposed on the o�ered retail prices and the
relative size of the examined electricity retailer in the wholesale market. The add value
of the proposed bi-level model is also evaluated by comparing its outcomes against the
state-of-the-art bi-level modelling approach treating the wholesale market prices as
exogenous, fixed parameters that are not a�ected by the consumers’ response to the
retail prices.

Chapter 4 explores for the first time the significant implications of local energy
market on the strategic interactions between the customers and incumbent electricity
retailers by proposing a novel bi-level optimization model, which captures the pricing
decisions of a strategic retailer in the upper-level and the response of both independent
customers and the local energy market (both including flexible consumers, micro-
generators and energy storages) in the lower-level. Since the lower-level problem
representing the local energy market is non-convex, the formulated bi-level optimization
problem cannot be solved through the traditional approach of converting it to an
MPEC adopted in Chapter 3. To this end, a new analytical approach based on the
relaxation and primal-dual reformulation of the non-convex lower-level problem and
the penalization of the associated duality gap is employed for solving the developed
bi-level problem. The examined case studies comprehensively analyze the e�ects of
introducing an local energy market among the retailer’s customers on the amount
of energy served by the retailer, the buy and sell prices o�ered by the retailer, the
retailer’s profit and the di�erent customers’ economic surplus.

Chapter 5 proposes a new bi-level optimization formulation for modeling the
examined EV pricing problem, which, in contrast with the existing literature, considers
the V2G capability of EV and the discrete nature of their charging / discharging
levels. However, the game-theoretic solution approach adopted in Chapter 3 cannot
capture the discrete nature of the EV charging / discharging levels and adopted
in Chapter 4 assumes that the aggregator (solving the final MPEC) has perfect
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knowledge of the EV operating characteristics (which constitute parameters of the
lower-level problems), such an assumption is not generally realistic, particularly when
considering that the current penetration of EV is limited and thus existing work
on the systematic characterization of their operating characteristics (especially their
travelling patterns) is far from comprehensive. This chapter proposes a novel DRL
method for designing e�ective retail prices by an EV aggregator, accounting for the
discrete charging / discharging levels of the EV. This method is named prioritized deep
deterministic policy gradient method (PDDPG), as it is founded on the combination
of deep deterministic policy gradient (DDPG) principles and prioritized experience
replay (PER) strategy. In contrast with previous RL methods, this method sets up
the problem in multi-dimensional continuous state and action spaces. Case studies
compare the performance of the proposed method against the two state-of-the-art
methods (Q-learning and DQN) and investigate the economic impacts of EV flexibility
on both the aggregator and the EV owners.

Chapter 6 concludes this thesis providing a summary, relevant conclusions drawn
from the case studies carried out throughout the thesis work, and the main contributions
of the thesis. Finally, some topics are suggested for the future research.

Appendix A provides the data of the electric vehicles used in Chapters 5.



Chapter 2

Market Models and Modelling
Approaches

2.1 Market Mechanisms

In a traditional monopolistic or vertically integrated electricity market, market operators
mainly aim to minimize the expected costs while maintaining an adequate security
of supply [10]. Since 1980s, however, the electricity markets have been gradually
evolving toward liberalized or deregulated structures, which are characterized by open
competitive energy markets, unbundling electricity services, open access to the network,
etc. To establish a competitive electricity market and improve its e�ciency, the
restructured market allows for exercising market power and tends to stimulate the
emergence of new technologies [11, 12].

The key to open innovation in the deregulated power sector has been believed to
be the development of consumer-centric business models and well-designed demand
side management (DSM) programs [13, 14]. Following these ideas, the recent work in
[15] looks even further forward to more subtle modeling of customer behavior, with
considerations of their willingness to participate and even emotional or irrational
features. With these prevailing ideas in the research community, the next-generation
retail electricity market infrastructure will be a level playing field, where all energy
end-users and customers have equal opportunity to play the role of active participants
rather than pure passive price-takers [16, 8]. Fortunately, the recent development of the
functionalities of the electricity retailers has opened many new possibility for monitoring,
coordinating and controlling short-term delivery of electricity at the electricity retail
side [17]. Especially with the further development of the concept of the demand side
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response, deregulation of the electricity market has been spreading out from wholesale
market design into retail market design. In the new paradigm for energy transactions,
di�erent customers (e.g. flexible demand, micro-generation) or customer groups (e.g.,
energy community, local energy market) are strategical to a�ect the retailer’s business
as well as the wholesale market conditions.

Moreover, in smart grids, a growing number of customers will be able to have local
generation capability, i.e., distributed energy resources (DERs), along with various
flexible controllable loads, such as thermostatically-controlled loads (TCLs), distributed
energy devices (DESs) and smart washing machines [18, 19]. Electric vehicles (EVs)
and plug-in electric vehicles (PEVs) are also appealing as the most controllable loads
because they can be curtailed for significant periods of time (e.g., several hours)
without impact on end-use function [20, 21]. These kinds of customers are encouraged
to actively participate in the retail market to provide local flexibility or localized power
balance between energy surplus and energy deficit.

GenCo GenCo GenCo

Wholesale market

Retailer Aggregator

Retail market

Consumer DER Local energy 
market

Fig. 2.1 The deregulation of the retail electricity market.

Fig. 2.1 shows a general perspective of energy interactions among di�erent levels
of power system decision makers in a deregulated retail electricity market. In this
framework, generation companies (GenCos) are the first-level decision makers, electricity
retailers (aggregators) are the second-level decision makers and end-customers (e.g.,
consumers, DERs, local energy market) are considered as the third-level decision
makers. Other participants, due to their functionalities, may be located at each level
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of this framework. The first- and second-level decision makers are coupled with each
other in the wholesale electricity market, which is managed by the market operator.
The second- and third-level decision makers are coupled with each other in the retail
electricity market, which is managed by the electricity retailers. Finally, part of
end-customers (e.g. micro-generators and distributed energy storages) providing local
generation capability are coupled with local demands that forms into a local energy
market (LEM).

2.1.1 Wholesale Market

In this study, we model the wholesale electricity market as a pool-based, energy-only
market and hourly resolution. This assumption captures essential features of the UK
wholesale electricity market. The market employs a centralized market clearing mecha-
nism, where the market operator receives the demand bids from the electricity retailers,
derives the GenCos’ cost function and their corresponding operational constraints,
and determines the centralized solutions (constitute of market clearing dispatch of the
GenCos and market clearing prices) by solving a generation cost minimization problem
over the day-ahead horizon with hourly resolution.

Recently, there are a few papers [22–41] modeling the dynamic interaction between
retailers and electricity consumers. In the retail market, by deploying demand flexibility,
electricity consumers can modify their demand patterns according to the o�ered retail
tari�s so as to maximize their utility. However, this e�ect on the wholesale market
is neglected in these papers. As a result, the wholesale market price is treated as
an exogenous parameter. This assumption does not reflect the reality, as in most
markets a relatively small number of retailers serve the whole population of consumers.
Therefore, each retailer serves a relatively large number of consumers, implying that
its retail pricing strategy and the resulting demand response will have a significant
impact on the wholesale market prices and consequently on the retailer’s profit. As a
result, the modeling approaches employed in these papers [22–41] fail to fully capture
the impact of demand flexibility on the retailer’s strategies and profit.

2.1.2 Retail Market

Retailers in the retail electricity market are supposed to purchase electricity in the
wholesale electricity market and resell it to their subscribed end-user customers through
assigning appropriate retail prices, either in a temporal variance way or at a flat rate.
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Currently, the electricity retailer is usually operated as an entity that is independent of
any generation or distribution company [8]. The decision-making process involved in
buying and selling strategies usually contains some volatile market risks that are similar
to the ones in any other market, such as the stock market and oil market. Especially
with the further deregulation of the electricity market, along with the development
of DSM and the proliferation of DERs, retailers participating in both the wholesale
market and the retail market should carefully design their buying-selling trade-o� and
electricity portfolio optimization [42].

On the customer side, these end-consumers do respond to the retail pricing schemes
o�ered by the retailers. Hence, the averaged flat retail prices under traditional designs
give customers inaccurate information about the actual resources cost of power genera-
tion, and may ignore continuous changes in the electricity system conditions. Setting
prices that di�er for certain periods is an approach to realize these continuous market
conditions. These time-based pricing schemes incentivise electricity customers to lower
their usage during peak times, or shift their electricity usage from peak demand periods
to o�-peak demand periods. Time-of-use (TOU) tari�s play a crucial role in providing
demand flexibility and tari� design in the electricity retail market [43]. Specifically,
TOU tari�s are widely adopted by the retailer, which can achieve a better balance
between realizing the demand flexibility and protecting consumers from pricing risk
in the wholesale market. Among all the ToU tari�s, Economy 7 is adopted by UK
electricity retailers to provide 7 hours of cheap o�-peak electricity during the night.
Prices during the rest of the time are, by contrast, relatively expensive [44].

However, TOU tari�s are fixed to consumers for several periods within the daily
horizon (e.g. peak and o�-peak hours) that cannot fully realize the flexibility potential
of the consumers. Using TOU pricing schemes as baselines, some additional incentive
mechanisms are also proposed on top of them to reflect the demand response from
customers with energy awareness, which are aware of the electricity price elasticity and
reasonable energy saving. In which, the time-specific retail pricing scheme is proposed
in order to fully realize the flexibility potential of the consumers so as to develop the
benefits of demand flexibility both on the market outcomes and the business of retailers.
Overall, these kinds of negotiation-based demand response programs can be categorized
as incentive mechanisms [45] that provide an additional economic management tool for
the power system and market e�ciency.
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2.1.3 Local Energy Market

In most scenarios, customers play a role of energy consumption in retail electricity,
purely serving as consumers of energy at the retail side. However, decentralisation
constitutes one of the main features of the emerging Smart Grid. Specifically, a
large number of small-scale DERs, including flexible loads, micro-generators and
micro-storages, are increasingly being connected to the distribution network, with the
overall objective of providing the much required flexibility to support the cost-e�ective
development of low-carbon electricity systems [46]. However, this paradigm changes
greatly complicates the operation of the system, as the e�ective coordination of such
large numbers of DERs involves very significant communication and computational
scalability challenges as well as privacy concerns, since DER owners are not generally
willing to disclose private information and be directly controlled by external entities
[47].

To develop strategies for these challenges, policy makers and planners need knowl-
edge of how these DER can be integrated e�ectively and e�ciently into a competitive
retail electricity market. LEM has recently emerged as an interesting approach to deal
with these coordination challenges, as the global coordination burden is broken down
to the coordination of local market clusters, each grouping a number of customers
with DER, coordinating the energy exchanges between them and the upstream grid
and addressing local network problems. Beyond this coordination benefit, the local
matching of power reduces net demand peaks and network losses, resulting in avoidance
or deferral of capital-intensive network reinforcements.

However, beyond these system coordination and investment planning impacts, this
new local market paradigm is expected to have significant implications on the business
case of incumbent electricity retailers. The objective of these self-interested retailers
lies in maximizing their individual profit by optimizing the o�ered electricity retail
prices to the LEM, but also represent them in the wholesale electricity market by
buying / selling energy consumed / produced by the LEM from / to the wholesale
market. With the introduction of LEM, the DER group together and exchange energy
between them. This paradigm change is expected to limit their dependency on the
retailers and reduce the volumes of energy traded by the retailers. This e�ect will in
turn impact the retailers’ decisions regarding the o�ered retail prices and eventually
their profits.
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2.2 Market Participants

Having introduced the market mechanisms of wholesale market, retail market and local
energy market in section 2.1, this section lies in providing the mathematical models of
the market participants examined in this thesis.

2.2.1 Generation Companies

For presentation clarity reasons and without loss of generality, we assume that the
Generation Company (GenCo) owns a single generation unit. And a simplified yet
representative model is employed, where the quadratic cost function, linear marginal
cost function and output limits of GenCo are expressed by (2.1), (2.2) and (2.3)
respectively:

CostGenCo
t (gt) = lGgt + qGg2

t (2.1)

MCostGenCo
t (gt) = lG + 2qGgt (2.2)

0 Æ gt Æ gmax, ’t (2.3)

In order to avoid non-linearities in the optimization model of further Section 3.3,
the quadratic cost function (2.1) is approximated by a piece-wise linear cost function,
consisting of a number of generation blocks (segments) [48]. Since the cost curve of
each segment is linear, the marginal cost of each segment is constant, which leads to a
step-wise linear marginal curve. The cost, marginal cost function and output limits of
each block b are expressed by (2.4), (2.5) and (2.6) respectively:

CostÕGenCo
t,b (gt,b) = ⁄G

b gt,b (2.4)

MCostÕGenCo
t,b (gt,b) = ⁄G

b (2.5)

0 Æ gt,b Æ gmax
b , ’t, ’b (2.6)

2.2.2 Electricity Retailers

A very important category of self-interested market participants in the deregulated
electricity market includes electricity retailers, especially when considering their direct
interaction with the demand side. Specifically, retailers represent the large majority of
the consumers in the wholesale electricity market, buying energy from this market at
the wholesale prices and reselling it to their contracted consumers at certain retail prices
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[8]. The objective of a retailer lies in maximizing its individual profits by optimizing
the retail buy prices ⁄b

t and retail sell prices ⁄s
t o�ered to its served customers and its

demand bids / generation o�ers dw
t in the wholesale market:

ProRetailer
t (⁄b

t , ⁄s
t , dw

t ) = ⁄b
tdt ≠ ⁄s

tgt ≠ ⁄w
t dw

t (2.7)

where dt and gt respectively expresses the demand and generation of the customers
served by the retailer and ⁄w

t indicates the wholesale prices.
It is assumed that customers are not allowed to directly buy / sell electricity from /

to the wholesale market, as each customer is too small to participate in the wholesale
market clearing. That means that the retailer is the only electricity provider who
possesses strong market power. To alleviate the retailer’s market power and build
a fair retail market, the regulatory constraint set (2.8), such as the maximum and
average retail prices (related to the wholesale prices), are subjected to prevent the
retailer from exploiting the customers and making excessive profits [49]. Furthermore,
the model can be enhanced by incorporating extra constraint set (2.8), (at the cost of
extra complexity) to reflect better the true interaction between retailer and users or
possible direct interaction between users and the wholesaler.

⁄b
t , ⁄s

t œ R, ’t (2.8)

Finally, the retailer has to ensure the energy sold to it served demand dt, the energy
bought from its served generation gt and the energy traded in the wholesale market dw

t

are balanced at each time period t in (2.9).

dt ≠ gt = dw
t , ’t (2.9)

2.2.3 Distributed Energy Resources

In this study, a general framework for implementing a retail market is proposed as
an electricity market structure with di�erent distributed energy resources (DERs)
penetration and demand side management of consumers. Moreover, the consumers
are able to participate in the market as flexible demand, micro-generators and energy
storage systems, but also a specific technology of electric vehicle.

Flexible Demand

Flexible Demand (FD) is based on the idea that the electricity use of consumers changes
from their normal consumption patterns to the price of electricity over time. On the
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one hand, FD is used to induce lower electricity use at periods of high retail prices and
higher electricity use at periods of low retail prices [50]. On the other hand, FD [51, 52]
involves temporal redistribution of consumers’ energy requirements. As a large number
of researchers have stressed, consumers’ flexibility regarding electricity use mainly
involves shifting of their loads’ operation in time instead of simply avoiding using their
loads [13, 2]. In other words, load reduction during certain periods is accompanied
by a load recovery e�ect during preceding or succeeding periods. This shift of energy
demand from di�erent periods drives a demand profile flattening e�ect.

Following the model employed in [53–55], the benefit obtained by the demand side
at each time period is expressed through a quadratic, non-decreasing and concave
function (2.10). The marginal benefit or “willingness to pay” is thus expressed through
a linear decreasing function (2.11) which captures the e�ect of demand’s self-price
elasticity. As the demand level increases the consumers are willing to pay a lower price;
equivalently, as the market price increases the demand requested by the consumers
is reduced. The maximum price lD

t that the consumers are willing to pay represents
the value of lost load (VOLL) [56]. The limits in the requested demand level at each
time period are expressed by (2.15). The VOLL, the slope of the marginal benefit
function and the maximum demand limit are time-specific parameters, capturing the
di�erentiated preferences of consumers across di�erent time periods [57].

BenF D
t (dt) = lD

t dt ≠ qD
t d2 (2.10)

MBenF D
t (dt) = lD

t ≠ 2qD
t d (2.11)

0 Æ dt Æ dmax
t , ’t (2.12)

The quadratic benefit function (2.10) is approximated by a piece-wise linear benefit
function, consisting of a number of blocks. The benefit, marginal benefit and demand
limits of each block c are expressed by (2.13), (2.14) and (2.15) respectively:

BenÕF D
t (dt,c) = ⁄D

t,cdt,c (2.13)

MBenÕF D
t (dt,c) = ⁄D

t,c (2.14)

0 Æ dt,c Æ dmax
t,c , ’t, ’c (2.15)

The time-shifting flexibility of the demand side is expressed by (2.16)-(2.17). The
variable dsh

t represents the change of the demand with respect to the baseline level
q

c dt,c at time period t due to load shifting, taking negative values when demand is
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moved away from t and positive values when demand is moved towards t. Constraint
(2.16) ensures that demand shifting is energy neutral within the examined time horizon
i.e. the total size of demand reductions is equal to the total size of demand increases
(load recovery), assuming that demand shifting does not involve energy gains or losses.
Constraint (2.17) expresses the limits of demand change at each time period due to
load shifting as a ratio – (0 Æ – Æ 1) of the baseline demand; – = 0 implies that the
demand side does not exhibit any time-shifting flexibility, while – = 1 implies that the
whole demand can be shifted in time.

ÿ

t

dsh
t = 0 (2.16)

≠ –
ÿ

c

dt,c Æ dsh
t Æ –

ÿ

c

dt,c, ’t (2.17)

The utility of the demand side at time period t is given by (2.18). While the energy
payment (second term) depends on the final demand after any potential load shifting,
the benefit (first term) is assumed to depend on the baseline demand; this assumption
expresses the flexibility of the consumers to shift the operation of some of their loads
without compromising the satisfaction they experience.

UtiF D
t (dt,c, dsh

t ) =
ÿ

c

⁄D
t,c dt,c ≠ ⁄b

t(
ÿ

c

dt,c + dsh
t ) (2.18)

where ⁄b
t expresses the retail buy prices o�ered by the retailer.

Distributed Generation

Micro-generators (MGs) are modern, small, on-site distributed energy generators that
can operate grid-connected or be isolated from it [58]. They generally have capacities
under 10 megawatts (MW) using renewable energy sources, such as solar panels and
wind turbines, or high e�ciency conversion of bio-energy or fossil fuels. Over the past
decade there has been a strong push to accelerate the integration of micro-generators
into the existing generation portfolio [59]. With suitable control they are able to
reduce peak loads and can provide reliable power for commercial buildings, industrial
facilities, and residential neighborhoods. What is more, they are attractive technologies
in achieving specific local operational objectives, such as reliability, carbon emission
reduction, diversification of energy sources, and cost reduction [60].
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To this end, electricity retailers are key enablers in reaching these goals as they
employ distributed generation and o�er flexible energy management solutions. On
the one hand, during the periods of supply-demand mismatch, micro-generators can
interact among the demand side participants and trade electric generation over a
marketplace. On the other hand, micro-generators make extra profit by selling their
excess power to the electricity retailers. Hence, micro-generators derive benefits from
both parties. In the literature, in order to quantify these benefits, the increasing
quadratic cost functions are predominantly used to model the power generation cost
of such generators. Then, the cost and generation limits are expressed by (2.19) and
(2.20) respectively:

CostMG
t (gt) = lGgt + qGg2

t (2.19)

0 Æ gt Æ gmax, ’t (2.20)

where gt is the power output at time period t, lG and qG are the cost coe�cients of the
generator, and gmax is the maximum generation limit of the generator. (2.19) usually
serves as a part of the profit function (2.21) in the energy trading:

ProMG
t (gt) = ⁄s

tgt ≠ (lGgt + qGg2
t ) (2.21)

where ⁄s
t is the retail sell price o�ered by the electricity retailer.

Energy Storage Systems

As the Energy Storage Systems (ESS) technology is becoming more economically viable,
the role of ESS in energy trading will be more prominent. For large-scale renewable
generation (e.g., solar arrays, wind farms), the ESS will be used to smooth out the
output of the system [61]. On the other hand, for end-user applications, (distributed)
community-based energy storage systems have already gained popularity [62]. In
this case, the goal is to deploy small size storage units in the residential feeders to
accommodate the demand of several houses during peak demand. Similarly for energy
trading applications, the primary role of the energy storage system will be to store
o�-peak hour energy, so that users can use and exchange it during the periods of
peak demand. Overall the goals of the ESS technologies are: 1) improving power grid
optimization for bulk power production; 2) balancing the power system operations
with intermittent renewable generation options; 3) providing ancillary services to grid
operations.
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The operational characteristics of an energy storage unit are expressed by (2.22)-
(2.26). Constraint (2.22) expresses the energy balance in the storage unit including
charging and discharging losses. Constraint (2.23) corresponds to its maximum depth
of discharge and state of charge ratings. Constraints (2.24)-(2.25) represent its power
limits. For the sake of simplicity, the storage energy content at the start and the end
of the examined temporal horizon are assumed equal (2.26).

Et = Et≠1 + sc
t ÷c ≠ sd

t /÷d, ’t (2.22)

Emin Æ Et Æ Emax, ’t (2.23)

0 Æ sc
t Æ smax, ’t (2.24)

0 Æ sd
t Æ smax, ’t (2.25)

E0 = ENT (2.26)

The EES can be directly attached to the operating constraints of market mechanism,
or is served by the electricity retailer with the objective of making arbitrage in price
di�erentials:

ProEES
t (sc

t , sd
t ) = ⁄s

t sd
t ≠ ⁄b

t sc
t (2.27)

where ⁄s
t and ⁄b

t are the retail sell and retail buy prices o�ered by the electricity retailer,
respectively. It should be mentioned that the profit function (2.27) can be modified to
take account of degradation cost of batteries, which is related to the depth of battery
charge and discharge (2.23).

Electric Vehicles

Even though the primary goal of Electric Vehicles (EVs) is to o�er environmentally
friendly and cost-e�ective transportation options, the capability of EVs to store huge
amount of electric power makes them a natural player in energy trading mechanism.
With the use of bidirectional chargers, EVs can exchange electric power with the power
grid or other market participants [63]. From energy trading standpoint, there are two
emerging concepts on the use of EVs. The first one is Grid-to-Vehicle (G2V), in which
the vehicle battery pack acts exactly the same as the ESS given in the previous section,
but given the fixed energy requirement during the travelling. As a second scenario,
which is also the most popular EV application concept is the Vehicle-to-Grid (V2G)
where the stored energy is exchange with the grid. The predominant use of EVs in the
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literature is for energy trading to make extra profit by selling excess power and the
related literature includes [64–66], however, the stored energy of EVs can also be used
in ancillary services [67, 68, 68].

In literature, the existing works consider the coordination of EV charging based on
the assumption that EVs can adjust their charging power continuously between zero
and their maximum charging rates (i.e., continuous charging). However, due to the
limitations of the current battery technology (e.g., the lithium-ion battery) and EV
charger technology (e.g., the constant-current constant voltage approach [69]), EVs
can only draw an approximately constant power during charging periods. Therefore,
the binary variables V c

t and V d
t (2.28) indicate whether the EV charges (V c

t = 1),
discharges (V d

t = 1), or remains idle (V c
t = V d

t = 0) at period t, with constraint (2.29)
ensuring that charging and discharging cannot happen simultaneously. (2.30)-(2.31)
express the fixed power rate (i.e., its maximum power rate at this period P max

t ) if the
EV charges or discharges at period t.

V c
t , V d

t œ {0, 1}, ’t (2.28)

V c
t + V d

t Æ 1, ’t (2.29)

Ct = V c
t P max

t , ’t (2.30)

Dt = V d
t P max

t , ’t (2.31)

The parameter P max
t is defined by (2.32); it is either equal to the power rating of

the battery if the EV is connected to the grid at period t, or equal to zero if it is not
(ensuring that charging or discharging cannot happen when the EV is not connected
to the grid).

P max
t =

Y
_]

_[

P max, if t œ T gr;

0, otherwise.
(2.32)

Constraints (2.33) express the energy balance in the EV battery, including the
energy required for travelling purposes as well as charging and discharging losses.
Constraints (2.34) express the minimum and maximum limits of the battery’s energy
content.

Et = Et≠1 + Ct ÷c �t ≠ Dt/(÷d �t) ≠ Etr
t , ’t (2.33)

Emin Æ Et Æ Emax, ’t. (2.34)
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Finally, the objective of the EV is minimizing the net cost of the EV charging /
discharging, which is defined as the di�erence between i) its cost of buying energy
from the retailer for charging (first term), and ii) its revenue from selling energy to the
retailer through discharging (second term).

CostEV
t (Ct, Dt) = ⁄b

tCt ≠ ⁄s
tDt (2.35)

where ⁄s
t and ⁄b

t are the retail sell and retail buy prices o�ered by the electricity retailer,
respectively.

2.3 Solution Approaches

The success of the energy trading mechanism heavily depends on the availability of the
necessary communication infrastructures to ensure reliable information dissemination.
In electricity market, participants need to update their demand or the amount of
available energy to sell with the market place via two-way communication technologies.
Also communication networks will enable trading entities to monitor their pricing
information and available energy. The literature in its current state assumes that
there is perfect communication between all players, then optimization based approach
assuming perfect information and system knowledge is adopted to theoretically optimize
the optimal decisions [70]. However, it is also important to quantify the impacts
of communication system performance (e.g., privacy information, lack of system
knowledge) on the operations of the energy trading mechanisms as it will create
another level of uncertainty [71]. To this end, the data-driven learning based approach
enables the trading entities to learn the optimal decisions by observing the limited
system information due to the loss of knowledge.

The literature on electricity markets can be classified into several subcategories
by considering the di�erent combinations of employed enabling technologies that
are presented in the previous section. Another important aspect in categorizing the
literature is the employed modeling framework. In general, such frameworks can be
classified into two categories. If the energy trading scenario is set to investigate one
large-size player who tries to optimize its own utilities with considering the rest of the
players and the market conditions, but also has the knowledge of the computational
algorithm of the market mechanisms and the operating parameters of its interacting
market players, in this case game theoretic approach is adopted to find the optimal
solutions. However, due to the mathematical limitation and the computational issue,
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game theoretic approaches often demonstrate the di�culty of modeling the practical
market in su�cient detail [72]. Simplified assumptions have to be made in the problem
formulation in order to make the problem solvable. To this end, the models developed
so far may fail to capture the operational characteristics of the system. Furthermore, in
majority of the cases there are many uncertain behaviors and demand fluctuation in the
market which is not more applicable in a realistic situation to acquire the knowledge of
the system. In order to overcome the above drawbacks, the investigated market player
adopts the learning-based approach to find the optimal solution by learning from the
observed experiences.

2.3.1 Game-theoretic Approach

Bi-level optimization problem constitutes the most widely employed methodological
framework of game-theoretic approach for developing the electricity market models
over the last two decades [73]. The popularity of this methodology lies in its ability to
capture the interaction between the strategic decision making of self-interested players
(modeled in the upper-level as the leader) and the response of its interacting market
players or the clearing of the electricity market (modeled in the lower-level as the
follower).

If the lower-level problem is continuous and convex, this bi-level optimization
problem can be solved by mathematical optimization software after converting it to a
single-level Mathematical Programs with Equilibrium Constraints (MPEC), through
the replacement of the lower-level problem by its equivalent optimality conditions
[74]. The two main approaches for optimiality conditions are Karush-Kuhn-Tucker
(KKT) optimality conditions and Primal-Dual transformation, where this conversion is
illustrated in Fig. 2.2. In the first approach (KKT optimality conditions), a number of
equalities are obtained from di�erentiating the corresponding Lagrangian with respect
to the primal variables, and such equalities are equivalent to the set of primal and
dual constraints of the second approach (primal-dual transformation). In addition, the
set of complementarity conditions obtained by the first approach (KKT optimality
conditions) is equivalent to the corresponding strong duality equality of second approach
(primal-dual transformation) [75].
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Bi-level Model

Maximize UL objective

Subject to:

1) UL constraints

2) Response of LL problem

Maximize LL objective

Subject to:

¾ LL constraints

MPEC Model

Maximize UL objective

Subject to:

1) UL constraints

2) Response of LL problem

Equivalent optimality conditions 

pertaining to LL

(KKT or Primal-dual) 

Conversion 

Fig. 2.2 Conversion of the bi-level model into its corresponding MPEC.

Formulation of the Bi-level Optimization Problem

This section presents the mathematical formulation for a general bi-level optimization
problem. Moreover, di�erent reactions could be generated in the lower-level towards
each possible action conducted at the upper-level when multiple followers are involved
in a bi-level decision-making. Hence, a general bi-level optimization problem can be
easily extended into a bi-level multi-follower optimization problem, with one upper-
level problem and multiple lower-level problems [76]. Mathematically, the objective
function (2.36) of the upper-level problem is constrained by the upper-level equality and
inequality constraints (2.37)-(2.38), and a set of Nl lower-level problems (2.39)-(2.41).

min
x

F (x, yú
l ) (2.36)

subject to:
1. upper-level inequality and equality constraints:

G(x, yú
l ) Æ 0 (2.37)

H(x, yú
l ) = 0 (2.38)

2. a set of Nl lower-level problems:

yú
l œ argmin

yl

{fl(x, yl) (2.39)
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subject to:
gl(x, yl) Æ 0 (2.40)

hl(x, yl) = 0}, ’l. (2.41)

The decision variables are divided into two sets, upper-level variables x œ RUL and
lower-level variables yl œ RLL

l . The problem has two sets of constraints: the upper-level
constraints (2.37)-(2.38) and the lower-level constraints (2.40)-(2.41). However, the
problem has a hierarchical structure, as the upper-level problem includes the optimal
solutions yú

l to the lower-level problem, as indicated in the constraint (2.39). Instead,
in the lower-level problem, the upper-level variables x are fixed parameters and not
decision variables.

MPEC Reformulation with KKT optimality conditions

The KKT optimality conditions are a set of equality and inequality constraints that
determine the optimal solutions of an optimization problem [77]. With necessary and
su�cient KKT optimality conditions, the bi-level optimization problem (2.36)-(2.41)
can be reformulated as an MPEC.

min
x,yl,µl,⁄l

F (x, yl) (2.42)

subject to:
1. upper-level inequality and equality constraints:

G(x, yl) Æ 0 (2.43)

H(x, yl) = 0 (2.44)

2. KKT optimality conditions associated with a set of Nl lower-level problems:

{gl(x, yl) Æ 0 (2.45)

hl(x, yl) = 0 (2.46)

µl Ø 0 (2.47)

Òyl
fl(x, yl) + µlÒyl

gl(x, yl) + ⁄lÒyl
hl(x, yl) = 0 (2.48)

µlgl(x, yl) = 0}, ’l. (2.49)
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where for each lower-level problem l, µl holds the dual variables to (2.40) and ⁄l

holds the free dual variables to (2.41). Note that we use the notation Òyl
for the

gradient with respect only to the lower-level variables yl. The constraints (2.49) are
the complementary slackness constraints, making the MPEC a non-linearly constrained
problem, irrespective of the original constraints.

The Non-linear complementarity constraints (2.49) are further handled by using
the Fortuny-Amat mixed-integer reformulation [78] as presented below:

min
x,yl,µl,⁄l,Êl

F (x, yl) (2.50)

subject to:
(2.43) ≠ (2.48) (2.51)

{µl Æ ÊlM
D
l (2.52)

≠ gl(x, yl) Æ (1 ≠ Êl)MP
l (2.53)

Êl œ {0, 1}} ’l. (2.54)

where Êl is additional binary variable and MP
l , MD

l are large enough constants. Model
(2.50)-(2.54) is a mixed-integer linear optimization problem that can be solved using
commercial software. And the objective function (2.50) is a bi-linear function of both
variables x and yl. However, the condition of problem (2.50)-(2.54) being equivalent
to problem (2.42)-(2.49) when the large enough constants MP

l , MD
l are valid upper

bounds for the primal and dual variables of the lower-level problem, respectively.
Notice that appropriate values for MP

l are often available, because they relate to primal
variables, which are typically bounded by nature. However, MD

l are upper bounds on
dual variables and therefore, tuning these large enough constants is a more challenging
task. The most commonly used trial-and-error tuning procedure [79].

MPEC Reformulation with Primal-Dual Optimality Conditions

To recast a bi-level optimization problem as an MPEC using primal–dual transformation
approach, it is necessary to formulate the dual problems of the lower-level problems
and the strong duality equalities. Consider that a set of Nl lower-level problems is
formulated as below:

min
yl

cT x + d(x)T yl (2.55)
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subject to:
Ax + B(x)yl Æ b1 : µl (2.56)

Cx + D(x)yl = b2 : ⁄l (2.57)

yl Ø 0 : ›l (2.58)

where the dual variable µl, ⁄l, ›l associated with the lower-level problems are indicated
at the corresponding equations following a colon. Similarly to the bi-level problem
(2.39)-(2.41), µl and ⁄l are respectively the inequality and equality dual variables
corresponding to the lower-level problem l. Additionally, dual variable ›l associates
with the non-negativity of the primal variable yl.

We can recast each lower-level problem l as an equivalent problem as:

cT x + min
yl

d(x)T yl (2.59)

subject to:
B(x)yl Æ b1 ≠ Ax : µl (2.60)

D(x)yl = b2 ≠ Cx : ⁄l (2.61)

yl Ø 0 : ›l (2.62)

By using the duality theorems, the associated dual problem is:

cT x + max
µl,⁄l,›l

µT
l (b1 ≠ Ax) + ⁄T

l (b2 ≠ Cx) (2.63)

subject to:
B(x)T µl + D(x)T ⁄l = d(x) (2.64)

µl, ›l Ø 0 (2.65)

⁄l : free (2.66)

and the strong duality theorem is defined as:

d(x)T yl = µT
l (b1 ≠ Ax) + ⁄T

l (b2 ≠ Cx) (2.67)

Considering the set of Nl lower-level primal problems (2.55)-(2.58), the set of their
primal constraints (2.56)-(2.58), dual constraints (2.64)-(2.66) and the strong duality
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theorem (2.67) are equivalent to the KKT conditions and, therefore, they are su�cient
conditions for the optimality.

Overall, the MPEC associated with the bi-level optimization problem (upper-level:
(2.42)-(2.44), lower-level: (2.55)-(2.58)) is derived below by using the primal-dual
optimality conditions.

min
x

F (x, yú
l ) (2.68)

subject to:
1. upper-level inequality and equality constraints:

G(x, yú
l ) Æ 0 (2.69)

H(x, yú
l ) = 0 (2.70)

2. lower-level primal inequality and equality constraints:

Ax + B(x)yl Æ b1 (2.71)

Cx + D(x)yl = b2 (2.72)

yl Ø 0 (2.73)

3. lower-level dual equality and inequality constraints:

B(x)T µl + D(x)T ⁄l = d(x) (2.74)

µl, ›l Ø 0 (2.75)

⁄l : free (2.76)

4. lower-level strong duality theorem:

d(x)T yl = µT
l (b1 ≠ Ax) + ⁄T

l (b2 ≠ Cx) (2.77)

2.3.2 Learning Based Approach

Reinforcement learning (RL) refers to a class of problems that are continuously learned
from interaction with the environment and the methods to solve such problems. RL
problems can be described as an agent (e.g., self-interested player in the upper-level
problem) continuously learning from the interaction with the environment (e.g., the
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response of its interacting market players or the participated market in the lower-
level problem) to achieve a specific goal, such as obtaining the maximum reward
value (e.g., daily profit) [80]. However, one of the main challenges to RL is the
need for manually designing quality features on which to learn. Each action cannot
directly obtain the supervision information. It needs to be obtained through the final
supervision information (reward) of the entire model, and it has a certain delay. In deep
reinforcement learning (DRL) [81], deep neural networks are trained to approximate
the optimal policy and/or the value function. In this way the DNN, serving as
function approximator, allows the automatic discovery of features and enables powerful
generalization.

RL Background

We now describe the background of reinforcement learning. In reinforcement learning,
there are two objects that can interact: the agent and the environment.

1. Agent can sense the status of the external environment (State) and the reward of
feedback (Reward), and learn and make decisions (Action). The decision-making
function of the agent refers to making di�erent actions according to the state of
the external environment, and the learning function refers to adjusting the strategy
according to the reward of the external environment.

2. Environment is everything outside the agent, and its state is changed by the
action of the agent, and the corresponding reward is returned to the agent.

In RL, an agent acts within an environment by sequentially taking actions over a
sequence of time steps t œ T , in order to maximize a cumulative reward. RL can be
defined as a Markov Decision Process (MDP) which includes:

(a) a state space S: a collection of the environment state;

(b) an action space A: a collection of the agent’s actions;

(c) a policy fi(a|s): a function of the agent to decide the next action according to
the environmental state;

(d) a dynamics distribution with conditional transition probability p(st+1|st, at), sat-
isfying the Markov property, i.e. p(st+1|st, at) = p(st+1|s1, a1, ..., st, at), represents
the probability that the environment will change to the state s

Õ at the next time
step after the agent makes an action a according to the current state s;
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(e) a reward r: S ◊ A æ R, that is, after the agent makes an action according to
the current state st, the environment will give an immediate reward rt to the
agent, and this reward is related to the next state st+1 after the action at.

The agent’s decision in terms of which action at is chosen at a certain state st is driven
by a policy fi(st) = at. The agent deploys its policy to interact with the MDP and emit a
trajectory of states, actions and rewards: · = s0, a0, r1, s1, a1, r2, s2, ..., sT ≠1, aT ≠1, rT , sT

over S ◊ A ◊ R. The agent starts from the perceived initial environment s0, then
decides to take a corresponding action a1, the environment feeds back to the agent
an instant reward r1 and changes accordingly to the new state s1, and then the agent
makes one action a1 according to state s1, reward r2 is rewarded and the environment
is changed to s2 accordingly. This interaction can continue until the end of the episode,
illustrated in Fig. 2.3.

Actions

States

Reward

Environment

Agent

Fig. 2.3 Agent-environment interactions in RL.

RL Objective

Given the policy fi(a|s), the trajectory · of an interaction process between the agent
and the environment receives the cumulative reward (Return) R(·) = qT ≠1

t=0 “trt+1,
which is the total discounted reward from time-step t onwards, where “ œ [0, 1] is the
discount factor which balances the importance between immediate and future rewards.
When “ is close to 0, the agent is more concerned about short-term returns; when “ is
close to 1, the long-term returns become more important.

Since both policy and state transition have a certain degree of randomness, the
trajectory obtained by each experiment is a random sequence, and the total return the
agent receives is also di�erent. The goal of reinforcement learning is to learn a policy
fi(a|s) that maximizes the cumulative discounted reward from the start state t = 0,
i.e., the agent is expected to perform a series of actions to obtain as much average
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return as possible. The objective function of reinforcement learning is:

J (fi) = Es≥flfi [R(·)] = Es≥flfi [
T ≠1ÿ

t=0
“trt+1] (2.78)

State-Action Value Function and Q-learning

To evaluate the expected return of policy fi, we define state-action value function (or
the Q-value function):

Qfi(st, at) = E[R|st, at, fi] (2.79)

Q-value function constitutes an estimation of the expected, accumulative, discounted
reward given an action at, at state st, and following the policy fi from the succeeding
states onwards. An optimal policy can be derived from the optimal Q-values Qú(s, a)
= maxfi Qfi(s, a) by selecting the action corresponding to the highest Q-value at each
state.

To learn Qfi, we exploit the Markov property and define the function as a Bellman
equation [82], which has the following recursive form:

Qfi(st, at) = Est+1 [rt + “Qfi(st+1, fi(at+1|st+1))] (2.80)

The Bellman equation indicates that the action value function under the current
policy can be decomposed in terms of itself. Namely, Qfi can be improved by boot-
strapping, i.e., we can improve the estimate of Qfi by using the current estimate of Qfi

through dynamic programming. This serves as the foundation of the Q-learning [83]
algorithm, where the Q-values are updated as:

Q(st, at) Ω Q(st, at) + –”t (2.81)

”t = rt + “ maxat+1 Q(st+1, at+1) ≠ Q(st, at) (2.82)

where – œ [0, 1] is the learning rate and ”t is the temporal di�erence (TD) error [84].
If the Q-value for each admissible state-action pair is visited infinitely often, and the
learning rate – decreases over the time step t in a suitable way, then as t æ Œ, Qfi(s, a)
converges with probability one to Qú(s, a) for all admissible state-action pairs [83].
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Deep Reinforcement Learning

Modeling policy fi(a|s) and state-action value functions Qfi(s, a) are generally required
in reinforcement learning. Early reinforcement learning algorithms focused on problems
where states and actions were discrete and limited, and tables could be used to record
these probabilities. But in many practical problems, the number of states and actions
of some tasks is very large. For example, the chess game of Go has 3361 ¥ 10170 states,
and the number of moves (i.e. positions of moves) is 361 [85]. There are also tasks
whose states and actions are continuous. In order to e�ectively solve these problems, it
is required to design a stronger policy function (such as deep neural network), so that
the agent can deal with complex environments, learn better strategies, and have better
generalization capabilities.

Deep Reinforcement Learning (DRL) is a combination of reinforcement learning
and deep learning [86, 87]. Reinforcement learning is used to define problems and
optimization goals, and deep learning is used to solve the modeling problems of policy
and value functions. Deep reinforcement learning is a powerful, broadly applicable
technique, that has be used to solve many complex problems not amenable to analytic
solution or to other computational approaches. There are two di�erent ways of
combining reinforcement learning and deep learning, use deep neural networks (DNNs)
to respectively model the state-action value function (value-based method) and the
policy (policy-based method) in reinforcement learning, and then use the error back
propagation algorithm to optimize the objective function.

In this thesis, we explore two popular deep reinforcement learning methods: 1) Deep
Q-Network (DQN) method which employs a DNN to approximate the state-action
value function, and has performed at the level of expert humans in playing Atari 2600
games [86] and demonstrated high quality performance in problems with continuous
state spaces and discrete action space; 2) Deep Deterministic Policy Gradient (DDPG)
method which concurrently learns a Q-function by the Bellman equation and uses the
Q-function to learn a policy [88]. And it does so in a way which is specifically adapted
for environments with both continuous state spaces and continuous action spaces.

Deep Q-Network

Deep Q-Network (DQN) leverages a Neural Network (parameterized by ◊) to estimate
the Q-value function, called Value Function Approximation.

Q◊(s, a) ¥ Qfi(s, a) (2.83)
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If the actions are finitely discrete Nm actions a1, ..., am, we can let the Q-Network
input the environment state s and output an Nm-dimensional vector, where each
dimension is represented by Q◊(s, am), corresponding to the approximated value of
value function Q(s, am).

Q◊(s, a) =

S

WWWWWWWWWU

Q◊(s, a1)
...

Q◊(s, am)
...

Q◊(s, aNm)

T

XXXXXXXXXV

¥

S

WWWWWWWWWU

Qfi(s, a1)
...

Qfi(s, am)
...

Qfi(s, aNm)

T

XXXXXXXXXV

(2.84)

We need to learn a parameter ◊ so that the function Q◊(s, a) can approximate the
value function Qfi(s, a). Taking Q-learning as an example, using temporal-di�erence
(TD) learning method, let Q◊(s, a) approximate Est+1 [r+“ Q◊(st+1, at+1)], the objective
(loss) function using gradient descent algorithm.

Prior to DQN, the employment of DNN for learning the Q-value function has gen-
erally been avoided since the learning process is prone to instability [87]. Nevertheless,
the fact that DQN is able to learn the Q-value function using DNN in a stable and
robust manner has been enabled by two innovations: the experience replay R and
the target network Q◊Õ(s, a) [87]. Concisely, the former method pools the collected
experiences in a replay bu�er and uniformly extracts samples to train the DNN, facili-
tating temporal de-correlation of consecutively generated training samples; the latter
approach temporarily fixes the target Q-value during training, and thus stabilizes the
learning process.

At each time step t, we sample a minibatch of N experiences {(sn, an, rn, sn+1)}N
n=1

from R, the training of the DNN is based on temporal di�erence (TD) learning [84]
through the minimization of the following loss function, representing the mean-squared
TD error:

L(◊) = 1
N

Nÿ

n=1

1
rn + “ max

an+1
Q◊Õ(sn+1, an+1)

¸ ˚˙ ˝
target

≠ Q◊(sn, an)
¸ ˚˙ ˝

prediction

22
(2.85)

and the following update is applied to the weights of DQN, where – is the learning
rate for the gradient descent algorithm:

◊ Ω ◊ + –Ò◊L(◊). (2.86)
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Deep Deterministic Policy Gradient

Deep Deterministic Policy Gradient (DDPG) is a policy gradient algorithm that uses a
stochastic behavior policy for good exploration but estimates a deterministic target
policy, which is much easier to learn. Policy gradient algorithms utilize a form of policy
iteration: they evaluate the policy, and then follow the policy gradient to maximize
performance. DDPG is an actor-critic algorithm; it primarily uses two neural networks,
one for the actor and one for the critic. These networks compute action predictions
for the current state and generate a temporal-di�erence (TD) error signal each time
step. The input of the actor network is the current state, and the output is a single
real value representing an action chosen from a continuous action space. The critic’s
output is simply the estimated Q-value of the current state and of the action given
by the actor. The deterministic policy gradient theorem provides the update rule for
the weights of the actor network. The critic network is updated from the gradients
obtained from the TD error signal.

The weights ◊Q of the critic network can be updated with the gradients obtained
from the loss function in (2.85). The actor network is updated with the Deterministic
Policy Gradient. The objective is to learn a deterministic policy µ◊µ(s) which gives
the action that maximizes Q◊Q(s, a). But rather than globally maximizing Q◊Q(s, a),
the critic provides gradients ÒaQ◊Q(s, a) which suggest directions of change of action
leading to higher estimated Q-values. To calculate the policy loss, we further take the
derivative of the objective function with respect to the policy parameter and apply the
chain rule:

Ò◊µJ(µ◊µ) = ÒaQ◊Q(s, a)Ò◊µµ◊µ(s) (2.87)

Similar as DQN, we update the policy with batches of experience and target network,
we take the mean of the sum of gradients calculated from the mini-batch:

Ò◊µJ(µ◊µ) = 1
N

Nÿ

n=1
ÒaQ◊Q(s, a)|s=sn,a=µ◊µ (sn)Ò◊µµ◊µ(s)|s=sn (2.88)

and the following update is applied to the weights of the actor network, where – is
the learning rate of the gradient decent algorithm:

◊µ Ω ◊µ + –Ò◊µJ(µ◊µ) (2.89)





Chapter 3

Strategic Pricing for Demand
Flexibility

3.1 Introduction

Environmental and energy security concerns have driven governments worldwide to take
significant initiatives towards the decarbonization of both generation and demand sides
of energy systems [1]. However, these decarbonization initiatives introduce significant
challenges to the operation and development of electricity systems. At the generation
side, the decarbonization agenda involves the large-scale integration of renewable
generation, which is however inherently characterized by high variability and limited
controllability, challenging the cost-e�cient balancing of the electricity system. At the
demand side, the decarbonization agenda involves the electrification of transport and
heat sectors, which is however expected to significantly increase demand peaks and
drive capital-intensive generation and network investments.

In this setting, flexible demand technologies, enabling temporal redistribution
(shifting) of electricity demand in time, have attracted great interest. This is because
demand flexibility exhibits the potential to support system balancing and reduce peak
demand levels, contributing to a more cost-e�ective transition to the low-carbon future.
Numerous studies have investigated these beneficial impacts of demand flexibility on
electricity systems’ short-term operation and long-term development [2–6].

Beyond the above decarbonization initiatives however, governments worldwide have
also taken significant initiatives towards the deregulation of the electricity industry,
involving unbundling of vertically integrated monopoly utilities and the introduction
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of competition in both generation and retail sectors [7]. In this deregulated setting,
beyond the above high-level impacts of demand flexibility on the whole system (the
whole society), it becomes imperative to investigate its impacts on the business case
and strategies of di�erent, self-interested market participants. For example, authors
in [13, 53, 89] have investigated the impacts of demand flexibility on the strategic
behavior and profits of large electricity producers.

Another very important category of self-interested market participants in this dereg-
ulated setting includes electricity retailers (or suppliers), especially when considering
their direct interaction with the demand side. Specifically, these entities represent the
large majority of the consumers in the wholesale electricity market, buying energy from
this market at the wholesale prices and reselling it to their contracted consumers at
certain retail prices. The objective of these self-interested entities lies in maximizing
their individual profits by optimizing the retail prices o�ered to their consumers but
also respecting regulatory limits [8]. By activating their demand flexibility, consumers
can respond to the o�ered retail prices so as to maximize their individual utility.
This e�ect will in turn impact the retailers’ decisions regarding the o�ered prices and
eventually their profit.

3.2 Literature Review

Numerous previous works have investigated the interactions between flexible consumers
and electricity retailers [22–41]. Table 3.1 summarizes in a structured way the main
characteristics of these works. The representation of consumers’ flexibility in these
papers includes the elasticity to modify their overall energy requirements and / or the
ability to shift their energy requirements in time. Furthermore, these papers generally
adopt two di�erent methodologies to model the interaction between an electricity
retailer and its flexible consumers.

Specifically, papers [22–29] employ single-level optimization models, which aim at
maximizing the retailer’s profit; in these models, the optimal response of the flexible
consumers to the retail prices is expressed as closed-form price-demand functions. The
drawback of this approach lies in the fact that the parameters of these functions are
determined based on exogenous data and therefore cannot accurately capture the
impacts of the retail prices on the consumers’ response.

In order to address this limitation, papers [30–41] employ bi-level optimization
models in order to rigorously capture the interactions between the optimization of the
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pricing decisions of the self-interested retailer (modeled in the upper level – UL) and
the optimization of the demand response of its flexible consumers (modeled in the
lower level – LL), which is thus represented endogenously and not based on exogenous
data. These bi-level optimization problems are solved either through converting them
to Mathematical Programs with Equilibrium Constraints (MPEC) or by employing
iterative approaches (Table 3.1).

Despite this methodological improvement achieved in [30–41], all previous relevant
papers [22–41] exhibit another fundamental shortcoming. The prices in the wholesale
market (from which the retailer buys energy) are treated by the retailer as exogenous,
fixed parameters that are not a�ected by the consumers’ response to the retail prices.
This assumption is only valid when considering a retailer serving a very small population
of consumers in the market. However, it does not generally reflect the reality, as in
most countries a relatively small number of retailers serve the largest share of the
market. In the UK for example, despite the early deregulation initiatives, the “Big
Six” energy retailers still account for more than 75% of the market [9]. Therefore,
considering a large retailer, its pricing strategies and the resulting demand response
of its consumers will have a significant impact on the wholesale market prices. As
a consequence, its pricing strategies will also a�ect its profit, given that the latter
depends on both its revenue from the consumers as well as its cost in the wholesale
market. In other words, the modeling approaches employed in previous works fail to
comprehensively capture the e�ects of demand flexibility on the retailer’s business case.

Beyond this methodological shortcoming, these previous works seem to provide
conflicting conclusions regarding the overall impact of demand flexibility on the retailer’s
business (Table 3.1). While papers [22, 23, 25, 30, 36, 41] indicate that demand
flexibility is likely to reduce the retailer’s profit, papers [24, 26, 27, 31, 38, 40] indicate
the exact opposite trend. We believe that these conflicting conclusions are driven by a
combination of the methodological shortcoming of these works and their insu�cient
analysis of di�erent parameters of the problem.

3.3 Approach

This chapter aims at addressing these limitations of previous works investigating
the e�ects of demand flexibility on electricity retailers. In order to address their
methodological shortcoming, this chapter proposes a novel bi-level optimization model
capturing the interactions between the retailer’s pricing decisions, the flexible consumers’
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demand response and the wholesale market clearing process in an integrated fashion.
This bi-level optimization problem is e�ciently solved after converting it to an MPEC,
and subsequently to a Mixed-Integer Linear Problem (MILP).

The scope of the examined case studies is threefold. First of all, they demonstrate
the interactions between the retailer, the flexible consumers and the wholesale market
and analyse the fundamental e�ects of the consumers’ time-shifting flexibility on the
retailer’s revenue from the consumers, its cost in the wholesale market, and its overall
profit. Furthermore, the case studies analyse how these e�ects of demand flexibility
depend on the retailer’s relative size in the market and the strictness of the regulatory
framework. Finally, they highlight the added value of the proposed bi-level model by
comparing its outcomes against the state-of-the-art bi-level model.

3.3.1 Modeling Assumptions

For clarity reasons, the main assumptions behind the proposed model are outlined
below:

1. The decision making problem of the examined retailer considers both the interaction
with the served consumers (to which it sells energy) and the interaction with the
wholesale market (from which it buys energy), with the overall aim of maximizing
the retailer’s profit.

2. The examined retailer serves a percentage — of the total demand in the system and
the rest of the demand is served by other retailers and is assumed to be inflexible.

3. In contrast with the traditional fixed pricing or time-of-use pricing regimes where
the o�ered retail prices are flat throughout the examined daily horizon or during
certain intervals of this horizon (e.g. peak and o�-peak periods), the examined
strategic retailer can o�er hour-specific retail prices to the served consumers. In
order to prevent the retailer from making excessive profits at the expense of the
consumers’ utility, regulatory constraints are imposed on the maximum and average
retail prices it can o�er to its consumers [49].

4. The flexibility of served consumers is represented as a generic, technology-agnostic
model [89]. This model captures two distinct aspects: their elasticity to reduce /
increase their overall energy requirements and their flexibility to shift the operation
of their loads in time, assuming that such shifting is energy neutral within the
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examined daily horizon and does not compromise the satisfaction and comfort of
the consumers.

5. Decision-making interactions between di�erent consumers are not considered. There-
fore, for computational reasons and following the similar modelling convention
adopted in [26, 27, 32–36], the decision-making process of all served consumers is
collectively modelled as a single optimization problem, maximizing their collective
utility.

6. The wholesale market is a pool-based, energy-only market with a day-ahead horizon
and hourly resolution, which is cleared by the market operator through the solution
of a generation cost minimization problem. Market participants include electricity
producers (submitting an increasing block-wise price-quantity o�er, consisting of
a number of blocks b and reflecting their cost characteristics) [89], the examined
retailer and other retailers (submitting a quantity-only bid).

3.3.2 Structure of the Bi-level Optimization Model

In order to comprehensively capture the interactions between the retailer, its consumers,
and the wholesale market, the proposed model is formulated as a bi-level optimization
problem, the structure is illustrated in Fig. 4.1.

Bi-level Optimization Model
Maximize Profit of strategic retailer

Subject to:
1) Regulatory constraints imposed on retail prices
2) Balance between energy sold to consumers and energy 

bought from wholesale market
3) Demand response of flexible consumers

4) Wholesale market clearing

Maximize Utility of flexible consumers
Subject to:
¾ Elasticity and time-shifting limits

Minimize Generation cost
Subject to:
¾ Demand-supply balance
¾ Generation limits
¾ Ramp rate limits
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Fig. 3.1 Structure of proposed bi-level optimization model.
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1. This bi-level model consists of an upper-level (UL) problem and two lower-level
(LL) problems.

2. The examined retailer behaves strategically through its strategic retail pricing and
bidding decisions made at the upper-level problem. The objective of the UL problem
is to maximize the net profit of the retailer, and is subject to i) the regulatory
constraints imposed on the o�ered retail prices, and ii) the balance constraint
between the energy sold to the consumers and the energy bought from the wholesale
market at each time period.

3. This UL problem is subject to two LL problems representing the conditions of the
retail side and the wholesale side of the retailer. As shown in Fig. 4.1, those two
lower-level problems respectively represent:

(a) The demand response of retailer’s served flexible consumers with the target
of maximizing total demand utility and is subject to the power limits for
consumption and time-coupling demand shifting constraints;

(b) The clearing of the wholesale market with the target of minimizing the total
generation cost and is subject to the demand-supply balance, the power and
ramp rate limits for generation.

4. The upper-level problem and the two lower-level problems of Fig. 4.1 are all coupled
as illustrated in Fig. 3.2, since:

Upper Level (UL) Problem

Maximize Profit of strategic retailer

Retail prices

1st Lower Level (LL1) Problem

Maximize Utility of flexible consumers

2nd Lower Level (LL2) Problem

Minimize Generation cost

Demand response

Wholesale pricesDemand bids

Fig. 3.2 Interrelation between the upper-level and 2 lower-level problems.
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(a) The retail prices determined by the retailer (UL problem) a�ect the response of
the consumers (as they constitute part of the objective function of LL1), while
this response a�ects the retailer’s decision making (as the consumers’ demand
constitutes part of the objective function and the retail balance constraint of
the UL).

(b) The demand bids determined by the retailer (UL problem) a�ect the wholesale
market clearing process (as they constitute part of the demand-supply balance
constraints of LL2), while this process determines the wholesale prices which
a�ect the retailer’s decision making (as they constitute part of the objective
function and average retail price constraint of the UL).

From a higher-level perspective, the proposed model captures the realistic, indirect
implications of the retail prices o�ered by large retailers on the wholesale prices, an
aspect which is not captured in the existing literature (Section 3.2). Specifically, the
o�ered retail prices directly a�ect the served consumers’ response; in most realistic
cases where each retailer’s size is substantial, this impact on the consumers’ response
will in turn a�ect the wholesale demand (as the retailer needs to buy in the wholesale
market the energy demanded by the consumers) and consequently the wholesale prices.

3.4 Formulation

The proposed bi-level optimization model, the resulting MPEC and the final MILP
problem are formulated in this section.

3.4.1 Decision Making of Strategic Retailer

The upper level (UL) problem represents the perspective of the examined retailer and
is formulated as follows:

max
{⁄r

t ,dw
t }

ÿ

t

⁄r
t (

ÿ

c

dt,c + dsh
t ) ≠

ÿ

t

⁄w
t dbid

t (3.1)

subject to:
⁄min Æ ⁄r

t Æ ⁄max, ’t (3.2)
ÿ

t

⁄r
t / |T | Æ K

ÿ

t

⁄w
t / |T | (3.3)

ÿ

c

dt,c + dsh
t = dbid

t , ’t (3.4)
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The objective function (3.1) maximizes the profit of the retailer, which is given
by the di�erence between i) its revenue from selling energy to its consumers at the
hourly retail prices ⁄r

t (first term) and ii) the cost of buying energy from the wholesale
market at the hourly wholesale prices ⁄w

t (second term). As discussed in Section 3.2
and following the formulation presented in [37], the maximum and average retail prices
are subject to the regulatory constraints (3.2) and (3.3), which aim at preventing
the retailer from exploiting the consumers and making excessive profits; a stricter
regulatory framework is expressed by lower values of the maximum retail price ⁄max

and the maximum ratio K between the average retail prices and the average wholesale
prices. Constraint (3.4) expresses the energy balance constraints of the retailer; since
the retailer acts as an intermediary between the consumers and the wholesale market
and cannot physically consume or produce energy, the energy it sells to its consumers
and the energy it buys from the wholesale market are equal at each hour.

3.4.2 Demand Response of Flexible Consumers

The first lower level problem (LL1) represents the collective response of all served
consumers to the retail prices determined by the retailer and is formulated as follows:

max
{dt,c, dsh

t }

1 ÿ

t,c

⁄D
t,c dt,c ≠

ÿ

t

⁄r
t (

ÿ

c

dt,c + dsh
t )

2
(3.5)

subject to:
0 Æ dt,c Æ dmax

t,c : µd≠
t,c , µd+

t,c , ’t, ’c (3.6)
ÿ

t

dsh
t = 0 : › (3.7)

≠ –
ÿ

c

dt,c Æ dsh
t Æ –

ÿ

c

dt,c : µsh≠
t , µsh+

t , ’t (3.8)

The objective function (3.5) maximizes the collective utility of the retailer’s con-
sumers, which is given by the di�erence between i) the benefit (or satisfaction) they
perceive from the use of energy (first term) and ii) the payment to the retailer (sec-
ond term). Constraints (3.6)-(3.8) express the flexibility of the consumers, which, as
discussed in Section 3.2, involves both elasticity and time-shifting potentials.

The consumers’ (self-price) elasticity is expressed by constraint (3.6) which implies
that one part of their demand (which is denoted as baseline demand in this work) at
each hour can be modified within certain limits, irrespectively of their demand levels at
other hours. However, according to microeconomic principles, their perceived benefit



46 Strategic Pricing for Demand Flexibility

(first term of (3.5)) is reduced with a reduction of their baseline demand. Following the
approach employed in [89], their benefit function is modeled as an increasing step-wise
function, consisting of a number of blocks c.

The consumers’ time-shifting flexibility is expressed by constraints (3.7)-(3.8). The
variable dsh

t expresses the change of demand at hour t with respect to the baseline level
q

c dt,c due to time-shifting, taking negative values when demand is shifted away from
t and positive values when demand is shifted towards t. Constraint (3.7) represents
the assumption that demand shifting is energy neutral within the daily horizon (i.e.
it does not induce energy losses or gains). Constraint (3.8) expresses the limits of
demand change at hour t due to time-shifting as a percentage – of the baseline level;
– = 0% implies that consumers do not exhibit any time-shiftable loads, while – > 0%
implies that a part of their energy demand can be shifted in time. The assumption
that load shifting does not compromise consumers’ satisfaction is expressed by the
fact that their perceived benefit (first term of (3.5)) depends only on their baseline
demand, while their payment to the retailer (second term of (3.5)) depends on their
final demand after any potential load shifting.

3.4.3 Wholesale Market Clearing

The second lower level problem (LL2) represents the wholesale market clearing process
and is formulated as:

min
{gi,b,t}

ÿ

i,b,t

⁄G
i,b gi,b,t (3.9)

subject to:
dbid

t + Dbid
t ≠

ÿ

i,b

gi,b,t = 0 : ⁄w
t , ’t (3.10)

0 Æ gi,b,t Æ gmax
i,b : µg≠

i,b,t, µg+
i,b,t, ’i, ’b, ’t (3.11)

≠ RD
i Æ

ÿ

b

gi,b,t ≠ gi,0 Æ RU
i : µr≠

i,t , µr+
i,t , ’i, t = 1 (3.12)

≠ RD
i Æ

ÿ

b

gi,b,t ≠
ÿ

b

gi,b,(t≠1) Æ RU
i : µr≠

i,t , µr+
i,t , ’i, ’t > 1 (3.13)

Based on the submitted retailers’ bids (including the examined retailer and other
retailers) and producers’ o�ers, the market operator minimizes the total generation cost
(3.9), while satisfying the market demand-supply balance constraint which ensures that
the system operates in a secure fashion (3.10) (the dual variables of which constitute
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the wholesale prices) and the producers’ operational limits (3.11) and ramp rate limits
(3.12)-(3.13).

3.4.4 MPEC

In order to e�ectively solve the above bi-level optimization problem, the two LL
problems are replaced by their respective equivalent Karush-Kuhn-Tucker (KKT)
optimality conditions, a transformation enabled by the continuity and convexity of
these LL problems. This converts the bi-level problem to a single-level Mathematical
Program with Equilibrium Constraints (MPEC), illustrated in Fig. 3.3.

It should be noted that the optimality conditions associated with the two LL
problems can be formulated through two alternative approaches: KKT conditions and
primal-dual transformation. In this respect, the following two observations are relevant:

1. The first approach (KKT conditions) includes a set of complementarity conditions
as a part of the optimality conditions. Such complementarity conditions can be
linearized by adding a set of auxiliary binary variables.

2. The second approach (primal-dual transformation) includes the non-linear strong
duality equality as a part of the optimality conditions, which can be adopted to
linearize the resulting MPEC.

KKT conditions and strong duality equality associated with the two lower-level
problems are derived in the next four subsections.

KKT Conditions Associated with the LL1 Problem

To obtain the KKT conditions associated with the first lower-level problem, the
corresponding Lagrangian function LLL1 below is required as below:

LLL1 =
ÿ

t,c

⁄r
t dt,c +

ÿ

t

⁄r
t d

sh
t ≠

ÿ

t,c

⁄D
t,cdt,c ≠

ÿ

t,c

µd≠
t,c dt,c +

ÿ

t,c

µd+
t,c (dt,c ≠ dmax

t,c )+

›
ÿ

t

dsh
t ≠

ÿ

t

µsh≠
t (dsh

t + –
ÿ

c

dt,c) +
ÿ

t

µsh+
t (dsh

t ≠ –
ÿ

c

dt,c) (3.14)

Considering the Lagrangian function LLL1 given by (3.14), the KKT first order opti-
mality conditions of the LL1 problem are derived as follows:

ÿ

t

dsh
t = 0 (3.15)
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ˆLLL1
ˆdt,c

= ⁄r
t ≠ ⁄D

t,c ≠ µd≠
t,c + µd+

t,c ≠ – µsh≠
t ≠ – µsh+

t = 0, ’t, ’c (3.16)

ˆLLL1
ˆdsh

t
= ⁄r

t ≠ › ≠ µsh≠
t + µsh+

t = 0, ’t (3.17)

0 Æ µd≠
t,c ‹ dt,c Ø 0, ’t, ’c (3.18)

0 Æ µd+
t,c ‹ (dmax

t,c ≠ dt,c) Ø 0, ’t, ’c (3.19)

0 Æ µsh≠
t ‹ (dsh

t + –
ÿ

c

dt,c) Ø 0, ’t (3.20)

0 Æ µsh+
t ‹ (–

ÿ

c

dt,c ≠ dsh
t ) Ø 0, ’t (3.21)

The structure of the KKT conditions (3.15)-(3.21) is explained below:

1. Equality (3.15) is the primal equality constraint (3.7) in the first LL problem.

2. Equalities (3.16)-(3.17) are obtained by di�erentiating the Lagrangian function LLL1

with respect to the primal variables in the set of {dt,c, dsh
t }.

3. Complementarity conditions (3.18)-(3.21) are related to the inequality constraints
(3.6) and (3.8).

KKT Conditions Associated with the LL2 Problem

To obtain the KKT conditions associated with the second LL problem, the corresponding
Lagrangian function LLL2 below is required as below:

LLL2 =
ÿ

i,b,t

⁄G
i,b gi,b,t +

ÿ

t
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t (dbid

t + Dbid
t ≠

ÿ

i,b
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µg≠
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ÿ
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ÿ
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ÿ
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µr+

i,t (
ÿ
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gi,b,t ≠ gi,0 ≠ RU
i ) ≠

ÿ

i,(t>1)
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i,t (
ÿ

b

gi,b,t ≠
ÿ
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gi,b,(t≠1) + RD
i )+

ÿ

i,(t>1)
µr+

i,t (
ÿ

b

gi,b,t ≠
ÿ

b

gi,b,(t≠1) ≠ RU
i ) (3.22)

Considering the Lagrangian function LLL2 given by (3.22), the KKT first order opti-
mality conditions of the first lower-level problem are derived as follows:

dbid
t + Dbid

t ≠
ÿ

i,b

gi,b,t = 0, ’t (3.23)
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ˆLLL2
ˆgi,b,t

= ⁄G
i,b≠⁄w

t ≠µg≠
i,b,t+µg+

i,b,t≠µr≠
i,t +µr≠

i,(t+1)+µr+
i,t ≠µr+

i,(t+1) = 0, ’i, ’b, ’t < NT (3.24)
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i,t = 0, ’i, ’b, t = NT (3.25)

0 Æ µg≠
i,b,t ‹ gi,b,t Ø 0, ’i, ’b, ’t (3.26)

0 Æ µg+
i,b,t ‹ (gmax
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i ) Ø 0, ’i, t = 1 (3.28)

0 Æ µr+
i,t ‹ (RU

i ≠
ÿ

b

gi,b,t + gi,0) Ø 0, ’i, t = 1 (3.29)

0 Æ µr≠
i,t ‹ (

ÿ

b

gi,b,t ≠
ÿ

b

gi,b,(t≠1) + RD
i ) Ø 0, ’i, ’t > 1 (3.30)

0 Æ µr+
i,t ‹ (RU

i ≠
ÿ

b

gi,b,t +
ÿ

b

gi,b,(t≠1)) Ø 0, ’i, ’t > 1 (3.31)

The structure of the KKT conditions (3.23)-(3.31) is explained below:

1. Equality (3.23) is the primal equality constraint (3.10) in the second LL problem.

2. Equality constraint (3.24)-(3.25) is obtained by di�erentiating the Lagrangian
function LLL2 with respect to the primal variable in the set of {gi,b,t}.

3. Complementarity conditions (3.26)-(3.27) are related to the inequality constraint
(3.11).

4. Complementarity conditions (3.28)-(3.29) and (3.30)-(3.31) are respectively related
to the inequality constraints (3.12) and (3.13).

Strong Duality Equality Associated with LL1 Problem

We consider the first LL problem is a convex optimization problem, thus we can directly
get the strong duality equality through the use of primal-dual transformation:

ÿ

t,c

⁄D
t,cdt,c ≠

ÿ

t,c

⁄r
t dt,c ≠

ÿ

t

⁄r
t d

sh
t = ≠

ÿ

t,c

µd+
t,c dmax

t,c (3.32)

where constraint (3.32) enforces the equality of the values of the primal objective
function and dual objective function at the optimal solution for the 1st LL problem.
This equality is used to linearize the final MPEC.
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Strong Duality Equality Associated with the LL2 Problem

We consider the second LL problem is also a convex optimization problem, thus we can
directly get the strong duality equality through the use of primal-dual transformation:

ÿ

i,b,t

⁄G
i,bgi,b,t = ≠

ÿ

i,b,t

µg+
i,b,tg

max
i,b ≠

ÿ

i,(t=1)
µr≠

i,t gi,0 +
ÿ

i,(t=1)
µr+

i,t gi,0 (3.33)

where constraint (3.33) enforces the equality of the values of the primal objective
function and dual objective function at the optimal solution for the second LL problem.
This equality is used to linearize the final MPEC.

Final MPEC Formulation

A single-level MPEC corresponding to the proposed bi-level model (3.1)-(3.13) is
obtained by replacing two LL problems (3.5)-(3.8) and (3.9)-(3.13) with their individual
KKT conditions (3.15)-(3.21) and (3.23)-(3.31). The resulting MPEC is given below:

max
V

ÿ

t

⁄r
t (

ÿ

c

dt,c + dsh
t ) ≠

ÿ

t

⁄w
t dbid

t (3.34)

where:

V = {⁄r
t , dbid

t , dt,c, dsh
t , µd≠

t,c , µd+
t,c , ›, µsh≠

t , µsh+
t , gi,b,t, ⁄w

t , µg≠
i,b,t, µg+

i,b,t, µr≠
i,t , µr+

i,t } (3.35)

subject to:
(UL constraints) : (3.2) ≠ (3.4) (3.36)

(KKT optimality conditions of the LL1 problem) : (3.15) ≠ (3.21) (3.37)

(KKT optimality conditions of the LL2 problem) : (3.23) ≠ (3.31) (3.38)

The objective function of the MPEC (3.34) coincides with the objective function of
the UL problem (3.1). The set of decision variables (3.35) includes i) the decision vari-
ables of the UL problem {⁄r

t , dbid
t }; the decision variables {dt,c, dsh

t , gi,b,t} of two LL prob-
lems; and the Lagrangian multipliers {µd≠

t,c , µd+
t,c , ›, µsh≠

t , µsh+
t , ⁄w

t , µg≠
i,b,t, µg+

i,b,t, µr≠
i,t , µr+

i,t }
associated with the constraints of the two LL problems.
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3.4.5 MILP

This MPEC formulation is non-linear, thus the global optimality of solutions obtained
by commercial solvers is not guaranteed. Therefore, we transform this MPEC to a
Mixed-Integer Linear Program (MILP) which commercial branch-and-cut solvers can
e�ciently solve [90].

More specifically, the above MPEC (3.34)-(3.38) includes two types of non-linearities:

1. The bilinear terms in the objective function (3.34), which is the product of energy
quantity and price variables.

2. The bilinear terms in the complementarity conditions (3.18)-(3.21) and (3.26)-(3.31).

Linearizing Objective Function

Adopting the linearization approach proposed in [91], which exploits the strong duality
theorem and some of the KKT equalities, the bilinear objective function is replaced
with the following linear expression:
For the strong duality of the first LL problem:

ÿ

t,c

⁄D
t,c dt,c ≠

ÿ

t,c

⁄r
t dt,c ≠

ÿ

t

⁄r
t dsh

t = ≠
ÿ

t,c

µd+
t,c dmax

t,c (3.39)

Rearrange the equality (3.39) and the first bilinear term in the objective function
(3.34):

ÿ

t

⁄r
t (

ÿ

c

dt,c + dsh
t ) =

ÿ

t,c

⁄D
t,c dt,c ≠

ÿ

t,c

µd+
t,c dmax

t,c (3.40)

By multiplying both sides of (3.24)-(3.25) by gi,b,t, summing for every i, b, t and
rearranging some terms we get:

ÿ

i,b,t

⁄w
t gi,b,t =

ÿ

i,b,t

⁄G
i,b gi,b,t ≠

ÿ

i,b,t

µg≠
i,b,t gi,b,t +

ÿ

i,b,t

µg+
i,b,t gi,b,t ≠

ÿ

i,b,t

µr≠
i,t gi,b,t+

ÿ

i,b,(t<NT )
µr≠

i,(t+1) gi,b,t +
ÿ

i,b,t

µr+
i,t gi,b,t ≠

ÿ

i,b,(t<NT )
µr+

i,(t+1) gi,b,t (3.41)

By making use of (3.4):
ÿ

i,b

gi,b,t = dbid
t + Dbid

t , ’t (3.42)
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Equation (3.4.5) becomes:

ÿ

t

⁄w
t dbid

t = ≠
ÿ

t

⁄w
t Dbid

t +
ÿ

i,b,t

⁄G
i,b gi,b,t ≠

ÿ

i,b,t

µg≠
i,b,t gi,b,t +

ÿ

i,b,t

µg+
i,b,t gi,b,t≠

ÿ

i,b,t

µr≠
i,t gi,b,t +

ÿ

i,b,(t<NT )
µr≠

i,(t+1) gi,b,t +
ÿ

i,b,t

µr+
i,t gi,b,t ≠

ÿ

i,b,(t<NT )
µr+

i,(t+1) gi,b,t (3.43)

For complementarity conditions (3.26) and (3.27):

ÿ

i,b,t

µg≠
i,b,t gi,b,t = 0 (3.44)

ÿ

i,b,t

µg+
i,b,t gi,b,t =

ÿ

i,b,t

µg+
i,b,t gmax

i,b (3.45)

By substituting (3.44) and (3.45) into (3.4.5), renders the equality below:

ÿ

t

⁄w
t dbid

t = ≠
ÿ

t

⁄w
t Dbid

t +
ÿ

i,b,t

⁄G
i,b gi,b,t +

ÿ

i,b,t

µg+
i,b,t gmax

i,b ≠

ÿ

i,b,t

µr≠
i,t gi,b,t +

ÿ

i,b,(t<NT )
µr≠

i,(t+1) gi,b,t +
ÿ

i,b,t

µr+
i,t gi,b,t ≠

ÿ

i,b,(t<NT )
µr+

i,(t+1) gi,b,t (3.46)

For complementarity conditions (3.28)-(3.31):

ÿ

i,b,t

µr≠
i,t gi,b,t ≠

ÿ

i,b,(t=1)
µr≠

i,t gi,0 ≠
ÿ

i,b,(t>1)
µr≠

i,t gi,b,(t≠1) = ≠
ÿ

i,b,t

µr≠
i,t RD

i (3.47)

ÿ

i,b,t

µr+
i,t gi,b,t ≠

ÿ

i,b,(t=1)
µr+

i,t gi,0 ≠
ÿ

i,b,(t>1)
µr+

i,t gi,b,(t≠1) =
ÿ

i,b,t

µr+
i,t RU

i (3.48)

Renders the equalities (3.47) and (3.48) below:

ÿ

i,b,t

µr≠
i,t gi,b,t ≠

ÿ

i,b,(t<NT )
µr≠

i,(t+1) gi,b,t = ≠
ÿ

i,b,t

µr≠
i,t RD

i +
ÿ

i,b,(t=1)
µr≠

i,t gi,0 (3.49)

ÿ

i,b,t

µr+
i,t gi,b,t ≠

ÿ

i,b,(t<NT )
µr+

i,(t+1) gi,b,t =
ÿ

i,b,t

µr+
i,t RU

i +
ÿ

i,b,(t=1)
µr+

i,t gi,0 (3.50)

By substituting (3.49) and (3.50) into (3.4.5), renders the equality below:

ÿ

t

⁄w
t dbid

t = ≠
ÿ

t

⁄w
t Dbid

t +
ÿ

i,b,t

⁄G
i,b gi,b,t +

ÿ

i,b,t

µg+
i,b,t gmax

i,b +

ÿ

i,b,t

µr≠
i,t RD

i ≠
ÿ

i,b,(t=1)
µr≠

i,t gi,0 +
ÿ

i,b,t

µr+
i,t RU

i +
ÿ

i,b,(t=1)
µr+

i,t gi,0 (3.51)
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Therefore, the bilinear terms q
t ⁄r

t (
q

c dt,c + dsh
t ) ≠ q

t ⁄w
t dbid

t in the objective function
(3.34) of the MPEC problem can be replaced with the expressions in the right side of
(3.40) and (3.4.5) which are linear, and the objective function of the MILP problem is:

ÿ

t,c

⁄D
t,c dt,c ≠

ÿ

t,c

µd+
t,c dmax

t,c +
ÿ

t

⁄w
t Dbid

t ≠
ÿ

i,b,t

⁄G
i,b gi,b,t ≠

ÿ

i,b,t

µg+
i,b,t gmax

i,b ≠

ÿ

i,b,t

µr≠
i,t RD

i +
ÿ

i,b,(t=1)
µr≠

i,t gi,0 ≠
ÿ

i,b,t

µr+
i,t RU

i ≠
ÿ

i,b,(t=1)
µr+

i,t gi,0 (3.52)

Linearizing complementarity conditions

The bilinear terms in the complementarity conditions (3.18)-(3.21) and (3.26)-(3.31)
can be expressed in the generic form 0 Æ µ ‹ p Ø 0, with µ and p representing
generic dual and primal terms respectively. The linearization approach proposed in
[92] replaces each of these conditions with the set of mixed-integer linear conditions
µ Ø 0, p Ø 0, µ Æ ÊMµ, p Æ (1 ≠ Ê)Mp, where Ê is an auxiliary binary variable, while
Mµ and Mp are large positive constants.

The values of the parameters MD and MP should be suitably selected in order
to achieve not only accurate but also computationally e�cient solution of the MILP.
Specifically, MD and MP should be large enough in order to avoid imposing additional
upper bounds on the decision variables and thus resulting in an inaccurate solution of
the MILP. On the other hand, extremely large values should be avoided as they hinder
the convergence of branch-and-cut solvers and result in large computational times [91].
Suitable values of the parameters MP corresponding to primal terms can be more
easily determined based on the bounds of primal variables which correspond to explicit
physical limits. For example, the parameter MP corresponding to the primal term of
the complementarity constraint (3.18) is set equal to the maximum demand limit dmax

t,c

which physically limits the primal variable dt,c. Suitable selection of the parameters
MD corresponding to dual terms is more challenging since the dual variables do not
exhibit explicit physical limits. In this context, the heuristic approach presented in
[91] has been employed to tune parameters MD.

Final MILP Formulation

Considering the linearization techniques presented above, MPEC (3.34)-(3.38) can be
transformed into the MILP problem given by (3.4.5)-(3.112). Where the set of decision
variables of the MILP formulation includes the set (3.54) as well as the auxiliary binary
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variables (3.55) introduced for linearizing (3.18)-(3.21) and (3.26)-(3.31).

max
V,S

ÿ

t,c

⁄D
t,c dt,c ≠

ÿ

t,c

µd+
t,c dmax

t,c +
ÿ

t

⁄w
t Dbid

t ≠
ÿ

i,b,t

⁄G
i,b gi,b,t ≠

ÿ

i,b,t

µg+
i,b,t gmax

i,b ≠

ÿ

i,b,t

µr≠
i,t RD

i +
ÿ

i,b,(t=1)
µr≠

i,t gi,0 ≠
ÿ

i,b,t

µr+
i,t RU

i ≠
ÿ

i,b,(t=1)
µr+

i,t gi,0 (3.53)

where:

V = {⁄r
t , dbid

t , dt,c, dsh
t , µd≠

t,c , µd+
t,c , ›, µsh≠

t , µsh+
t , gi,b,t, ⁄w

t , µg≠
i,b,t, µg+

i,b,t, µr≠
i,t , µr+

i,t } (3.54)

S = {Êd≠
t,c , Êd+

t,c , Êsh≠
t , Êsh+

t , Êg≠
i,b,t, Êg+

i,b,t, Êr≠
i,t , Êr+

i,t } (3.55)

subject to:
UL constraints:

⁄min Æ ⁄r
t Æ ⁄max, ’t (3.56)

ÿ

t

⁄r
t / |T | Æ K

ÿ

t

⁄w
t / |T | (3.57)

ÿ

c

dt,c + dsh
t = dbid

t , ’t. (3.58)

KKT optimality conditions and linearized complementary conditions of the 1st LL
problem:

ÿ

t

dsh
t = 0 (3.59)

⁄r
t ≠ ⁄D

t,c ≠ µd≠
t,c + µd+

t,c ≠ – µsh≠
t ≠ – µsh+

t = 0, ’t, ’c (3.60)

⁄r
t ≠ › ≠ µsh≠

t + µsh+
t = 0, ’t (3.61)

µd≠
t,c Ø 0, ’t, ’c (3.62)

dt,c Ø 0, ’t, ’c (3.63)

µd≠
t,c Æ Êd≠

t,c Mµ, ’t, ’c (3.64)

dt,c Æ (1 ≠ Êd≠
t,c ) MP , ’t, ’c (3.65)

µd+
t,c Ø 0, ’t, ’c (3.66)

dmax
t,c ≠ dt,c Ø 0, ’t, ’c (3.67)

µd+
t,c Æ Êd+

t,c Mµ, ’t, ’c (3.68)

dmax
t,c ≠ dt,c Æ (1 ≠ Êd+

t,c ) MP , ’t, ’c (3.69)
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µsh≠
t Ø 0, ’t (3.70)

dsh
t + –

ÿ

c

dt,c Ø 0, ’t (3.71)

µsh≠
t,c Æ Êsh≠

t,c Mµ, ’t (3.72)

dsh
t + –

ÿ

c

dt,c Æ (1 ≠ Êsh≠
t,c ) MP , ’t (3.73)

µsh+
t Ø 0, ’t (3.74)

dsh
t ≠ –

ÿ

c

dt,c Ø 0, ’t (3.75)

µsh+
t,c Æ Êsh+

t,c Mµ, ’t (3.76)

dsh
t ≠ –

ÿ

c

dt,c Æ (1 ≠ Êsh+
t,c ) MP , ’t (3.77)

Êd≠
t,c œ {0, 1}, ’t, ’c (3.78)

Êd+
t,c œ {0, 1}, ’t, ’c (3.79)

Êsh≠
t œ {0, 1}, ’t (3.80)

Êsh+
t œ {0, 1}, ’t (3.81)

KKT optimality conditions and linearized complementary conditions of the 2nd LL
problem:

dbid
t + Dbid

t ≠
ÿ

i,b

gi,b,t = 0, ’t (3.82)

⁄G
i,b ≠ ⁄w

t ≠ µg≠
i,b,t + µg+

i,b,t ≠ µr≠
i,t + µr≠

i,(t+1) + µr+
i,t ≠ µr+

i,(t+1) = 0, ’i, ’b, ’t < NT (3.83)

⁄G
i,b ≠ ⁄w

t ≠ µg≠
i,b,t + µg+

i,b,t ≠ µr≠
i,t + µr+

i,t = 0, ’i, ’b, t = NT (3.84)

µg≠
i,b,t Ø 0, ’i, ’b, ’t (3.85)

gi,b,t Ø 0, ’i, ’b, ’t (3.86)

µg≠
i,b,t Æ Êg≠

i,b,t Mµ, ’i, ’b, ’t (3.87)

gi,b,t Æ (1 ≠ Êg≠
i,b,t) MP , ’i, ’b, ’t (3.88)

µg+
i,b,t Ø 0, ’i, ’b, ’t (3.89)

gmax
i,b ≠ gi,b,t Ø 0, ’i, ’b, ’t (3.90)

µg+
i,b,t Æ Êg+

i,b,t Mµ, ’i, ’b, ’t (3.91)
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gmax
i,b ≠ gi,b,t Æ (1 ≠ Êg+

i,b,t) MP , ’i, ’b, ’t (3.92)

µr≠
i,t Ø 0, ’i, t = 1 (3.93)

ÿ

b

gi,b,t ≠ gi,0 + RD
i Ø 0, ’i, t = 1 (3.94)

µr≠
i,t Æ Êr≠

i,t Mµ, ’i, t = 1 (3.95)
ÿ

b

gi,b,t ≠ gi,0 + RD
i Æ (1 ≠ Êr≠

i,t ) MP , ’i, t = 1 (3.96)

µr+
i,t Ø 0, ’i, t = 1 (3.97)

RU
i ≠

ÿ

b

gi,b,t + gi,0 Ø 0, ’i, t = 1 (3.98)

µr+
i,t Æ Êr+

i,t Mµ, ’i, t = 1 (3.99)

RU
i ≠

ÿ

b

gi,b,t + gi,0 Æ (1 ≠ Êr+
i,t ) MP , ’i, t = 1 (3.100)

µr≠
i,t Ø 0, ’i, ’t > 1 (3.101)

ÿ

b

gi,b,t ≠
ÿ

b

gi,b,(t≠1) + RD
i Ø 0, ’i, ’t > 1 (3.102)

µr≠
i,t Æ Êr≠

i,t Mµ, ’i, ’t > 1 (3.103)
ÿ

b

gi,b,t ≠
ÿ

b

gi,b,(t≠1) + RD
i Æ (1 ≠ Êr≠

i,t ) MP , ’i, ’t > 1 (3.104)

µr+
i,t Ø 0, ’i, ’t > 1 (3.105)

RU
i ≠

ÿ

b

gi,b,t +
ÿ

b

gi,b,(t≠1) Ø 0, ’i, ’t > 1 (3.106)

µr+
i,t Æ Êr+

i,t Mµ, ’i, ’t > 1 (3.107)

RU
i ≠

ÿ

b

gi,b,t +
ÿ

b

gi,b,(t≠1) Æ (1 ≠ Êr+
i,t ) MP , ’i, ’t > 1 (3.108)

Êg≠
i,b,t œ {0, 1}, ’i, ’b, ’t (3.109)

Êg+
i,b,t œ {0, 1}, ’i, ’b, ’t (3.110)

Êr≠
i,t œ {0, 1}, ’i, ’t (3.111)

Êr+
i,t œ {0, 1}, ’i, ’t (3.112)
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3.5 Case Studies

3.5.1 Test Data and Implementation

By employing the model presented in Section 3.4, the examined case studies aim at
quantitatively demonstrating and analyzing the e�ects of demand flexibility on the
business case of an examined electricity retailer, including its revenue from selling
energy to its served consumers, its cost for buying energy from the wholesale market
and its profit. As discussed in Section 3.3.1, the proposed model captures both self-
price elasticity and time-shifting aspects of demand flexibility. However, the self-price
elasticity is generally very low, and the time-shifting flexibility is regarded as the most
promising flexibility potential, since consumers are more likely to shift their demand
towards preceding or succeeding periods rather than completely curtailing it [2]. In
this context, the case studies examine di�erent scenarios regarding the extent of this
time-shifting flexibility, as expressed by parameter –; the scenario without time-shifting
flexibility (– = 0%) is referred as the benchmark scenario in the remainder.

Furthermore, as discussed in Sections 3.2 and 3.3, in contrast with the existing
literature, the proposed model can capture the impact of the retail prices o�ered by
the examined retailer on the wholesale prices, which becomes particularly important
as the size of the retailer increases. In this context, the case studies also examine
di�erent scenarios regarding the relative size of the examined retailer, as expressed by
parameter —.

Finally, given that the retailer’s business case depends on potential regulatory
constraints discussed in Section 3.3, the case studies examine di�erent scenarios
regarding the maximum allowable retail price ⁄max (while the minimum allowable retail
price ⁄min = 0 and the maximum ratio K between the average retail prices and the
average wholesale prices is assumed equal to 1 in all examined studies).

The case studies apply the proposed model in the context of a single day. The
examined wholesale market reflects the general properties of the GB power system
and includes 7 electricity producers, the cost parameters and maximum output limits
of which are given in Table 3.2. The system demand profile Dt of the single day is
presented in Fig. 3.4, while the maximum demand of the consumers served by the
examined retailer is calculated by the parameter —, i.e., q

c dmax
t,c = — ◊ Dt and the

demand bid by other retailers in the wholesale market is expressed as Dbid
t = (1≠—)◊Dt.

The hourly values of the linear benefit coe�cient of the consumers are illustrated in
Fig. 3.5.
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Table 3.2 Operational parameters of 7 electricity producers.

Generation company i 1 2 3 4 5 6 7

lG
i (£/MWh) 10 15 23 35 50 70 100

qG
i (£/MW2h) 0.0001 0.0006 0.0014 0.0026 0.0042 0.0065 0.001

gmax
i (MW) 13,170 11,520 7,560 6,670 6,500 5,760 5,500

Fig. 3.4 System demand profile of the examined day.

Fig. 3.5 Hourly values of linear benefit coe�cient of consumers.
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The final MILP model has been implemented and solved using the optimization
software FICOTM Xpress [93] on a computer with a 6-core 3.50 GHz Intel(R) Xeon(R)
E5-1650 v3 processor and 32 GB of RAM. The total number of binary decision variables,
continuous decision variables and constraints of this MILP is 2304, 3361 and 10298,
respectively. The average computational time required for solving this MILP (within
a mixed-integer programming (MIP) gap lower than 0.01%) across all the examined
scenarios was around 1.7s.

3.5.2 Impact of Demand Flexibility

The aim of the first set of studies lies in analyzing the fundamental e�ects of demand
flexibility on the business case of the examined retailer, by executing the proposed
model for di�erent values of the time-shifting flexibility – of the retailer’s consumers,
while assuming that the relative size of the retailer is — = 30%, and the maximum
retail price is ⁄max = 200£/MWh.

As discussed in Section 3.3, the first interaction captured by the proposed model is
the one between the retail prices o�ered by the retailer and its consumers’ demand
response. Fig. 3.6 and 3.7 demonstrate this interaction by illustrating the hourly
demand of the consumers (after any potential load shifting, i.e. q

c dt,c + dsh
t ) and

the hourly retail prices o�ered by the retailer (⁄r
t ) in the examined day, for di�erent

time-shifting flexibility scenarios.
When the consumers do not exhibit any time-shifting flexibility (– = 0), the retailer

o�ers the highest allowable price (⁄max = 200£/MWhh) at peak hours (periods with
the highest demand) and the lowest price (0) at o�-peak hours (periods with the
lowest demand) (Fig. 3.7), in order to maximize its revenue, which is determined by
the summation of the demand-price products across all hours, but also satisfy the
regulatory constraint imposed on the average retail price (3.3).

However, when the consumers exhibit some time-shifting flexibility (– > 0), they
are able to respond to the hour-specific prices o�ered by the retailer and shift a part
of their demand from high-price hours to low-price hours in order to maximize their
utility, with this shifting e�ect being enhanced with a higher – (Fig. 3.6). Since the
strategic retailer anticipates this shifting response by its consumers (by employing the
proposed model), it o�ers higher prices at o�-peak hours and lower prices at peak
hours, in order to maintain its revenue at the highest possible level. Consequently, a
higher time-shifting flexibility results in a flatter retail price profile (Fig. 3.7).
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Fig. 3.6 Hourly demand of retailer’s consumers for di�erent demand flexibility scenarios.

Fig. 3.7 Hourly retail prices for di�erent demand flexibility scenarios.
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Fig. 3.8 Hourly system demand for di�erent demand flexibility scenarios.

Fig. 3.9 Hourly wholesale market prices for di�erent demand flexibility scenarios.
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The second interaction captured by the proposed model is the one between the
decision making of the retailer and the wholesale market. Fig. 3.8 and 3.9 demonstrate
this interaction by illustrating the hourly system demand (dbid

t + Dbid
t ) and the hourly

wholesale market prices (⁄w
t ) in examined day, for di�erent demand flexibility scenarios.

Since the retailer needs to buy from the wholesale market the energy sold to its
consumers at each hour, and given that its share in the market is substantial (— = 30%),
the demand shifting response of its consumers drives a flattening e�ect on the system
demand and subsequently on the wholesale market prices, which is enhanced with
a higher – (Fig. 3.8 and 3.9). Furthermore, it should be noted that although the
demand flattening e�ect is balanced i.e. the overall demand reduction during peak
hours is equal to the overall demand increase during o�-peak hours (due to the assumed
energy neutrality of demand shifting (3.7)), the same does not apply to the wholesale
price flattening e�ect. Specifically, the wholesale price reduction during peak hours is
significantly more substantial than the wholesale price increase during o�-peak hours.
This trend is driven by the increasing slope of the producers’ marginal cost curve as
the demand level increases [2]. As a result of this trend, the average wholesale price
over the examined day is reduced and subsequently, given the regulatory constraint
imposed the average retail price (3.3) and the e�ort of the retailer to maximize its
profit, the average retail price is accordingly reduced (Table 3.3).

In line with the discussion in Section 3.2, it should be stressed at this point that the
above e�ects on the wholesale prices (flattened profile and reduced average) cannot be
captured by the models proposed in the existing literature, as they treat the wholesale
prices as exogenous, fixed that are not a�ected by the retailer’s pricing decisions and
the subsequent response of its consumers. The proposed model is able to capture these
e�ects by representing endogenously the wholesale market clearing process.

Table 3.3 Average retail and wholesale price for di�erent demand flexibility scenarios.

Demand Flexibility – = 0% – = 10% – = 30% – = 50%

Average Price (£/MWh) 69.70 67.40 64.59 62.69

Having demonstrated the interactions between the retailer, its consumers’ response
and the wholesale market, the final part of this analysis lies in investigating what are
the overall e�ects of demand flexibility on the business case of the examined retailer.
Fig. 3.10 illustrates the overall revenue, cost and profit of the retailer over the examined
day, for di�erent time-shifting flexibility scenarios.
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Fig. 3.10 Retailer’s revenue, cost and profit for di�erent demand flexibility scenarios.

First of all, the total revenue of the retailer is reduced with a higher –. This trend
is driven by the following e�ects of demand flexibility: i) the consumers’ demand and
the o�ered retail prices become flatter (Fig. 3.6 and 3.7), and the retailer’s revenue is
given by the summation of the demand-retail price products across all hours, and ii)
the average retail price is reduced (Table 3.3); it should be noted that the first e�ect
has a more prominent role in the reduction of the retailer’s revenue. This trend implies
that demand flexibility deteriorates the business case of the retailer, since it limits
the strategic potential of exploiting the consumers through setting large retail price
di�erentials between peak and o�-peak hours (Fig. 3.7).

Furthermore, the total cost of the retailer is also reduced with a higher –. This
trend is driven by the following e�ects of demand flexibility: i) the consumers’ demand
and the wholesale prices become flatter (Fig. 3.6 and 3.9), and the retailer’s cost
is given by the summation of the demand-wholesale price products across all hours,
and ii) the average wholesale price is reduced (Table 3.3); the first e�ect has a more
prominent role in the reduction of the retailer’s cost. This trend implies that demand
flexibility improves the business case of the retailer, since it enables the retailer to a)
buy more energy at low-price (o�-peak) hours but also b) reduce the wholesale prices
at high-price (peak) hours.
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Finally, the e�ect of demand flexibility on the total profit of the retailer (which
constitutes the most important index of the retailer’s business case) is naturally driven
by the combination of its e�ects on the retailer’s revenue and cost. Since these e�ects
counteract each other, i.e. demand flexibility reduces its profit by reducing its revenue
but also increases its profit by reducing its cost, the overall e�ect on the retailer’s
profit depends on which of these two profit components is reduced at a higher rate.
For the scenario investigated so far, the revenue exhibits a higher rate of reduction
than the cost and consequently the profit is reduced with higher demand flexibility
(Fig. 3.10). However, this trend is not definite and it can be reversed, depending
on other parameters of the problem, analyzed in the later Sections 3.5.3 and 3.5.4.
After analyzing how the demand flexibility a�ects the retailer’s business, it would be
also interesting to benchmark the simulated results against a perfectly coordinated
wholesale / retail market without retailer interaction, that would expect a lower energy
cost in both retail and wholesale market.

3.5.3 Impact of Market Competition

As discussed above in Section 3.5.2, the profit trend of the examined retailer is related
to the parameters of the problem. This section aims at analyzing how these e�ects
depend on one such parameter, the strictness of the imposed regulatory constraints on
the retail prices. In this context and as discussed in Section 3.5.1, we examine di�erent
scenarios regarding the maximum allowable retail price ⁄max for a certain extent of
time-shifting flexibility (– = 30%) and the same relative size of the retailer (— = 30%).

Fig. 3.11 illustrates the hourly retail prices o�ered by the retailer in the examined
day, for the examined time-shifting flexibility scenario and the benchmark scenario
without demand flexibility (– = 0%), and three di�erent scenarios regarding ⁄max. As
previously discussed, when the consumers do not exhibit flexibility, the retailer o�ers
⁄max at peak hours; as a result, a stricter regulatory constraint on ⁄max reduces the
revenue of the retailer. However, when the consumers exhibit flexibility of – = 30%,
the o�ered retail prices are flatter and do not reach ⁄max at any hour, irrespectively of
the value of ⁄max. In other words, the strictness of the regulatory constraint on ⁄max

does not a�ect the o�ered retail prices and the revenue of the retailer in this case.
Fig. 3.12 demonstrates the e�ect of demand flexibility on the business case of the

examined retailer, by illustrating the reduction of its revenue, cost and profit driven by
the introduction of time-shifting flexibility – = 30% with respect to the benchmark
scenario (– = 0%), for the di�erent scenarios regarding ⁄max. Following the above
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Fig. 3.11 Hourly retail prices for di�erent demand flexibility and maximum retail price
scenarios.

Fig. 3.12 Retailer’s revenue, cost and profit reduction brought by demand flexibility of
– = 30% for di�erent maximum retail price scenarios.
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discussion concerning the impact of ⁄max under – = 0% and – = 30%, the deteriorating
e�ect of demand flexibility on the retailer’s revenue is diminished as ⁄max reduces.
On the other hand, ⁄max does not a�ect that wholesale market conditions and does
not alter the positive e�ect of demand flexibility on the retailer’s cost. As a result,
for the lowest value of the maximum retail price (⁄max = 100£/MWh), the revenue
exhibits a lower reduction than the cost and consequently demand flexibility increases
the retailer’s profit (as demonstrated by the negative reduction in Fig. 3.12). This is
the reverse trend with respect to scenarios with higher ⁄max.

These results imply that a stricter regulatory framework limits the retailer’s strategic
potential of exploiting inflexible consumers through setting large price di�erentials
between peak and o�-peak hours, and therefore the impact of demand flexibility
in limiting this potential is diminished. Therefore, in this case, demand flexibility
improves the overall business case of the retailer since its most important impact is
the improvement of the retailer’s position in the wholesale market. On the other hand,
under a looser regulatory framework, demand flexibility deteriorates the business case
of the retailer since its most important impact is the limitation of the retailer’s strategic
potential.

3.5.4 Impact of Retailer’s Relative Size

After having analyzed the fundamental e�ects of demand flexibility on the retailer’s
business case, the aim of this section lies in analyzing how these e�ects depend on the
retailer’s relative size. As discussed in Section 3.1, this analysis is highly relevant for
this work, as the ability of the proposed model to capture the impact of the retailer’s
pricing strategies on the wholesale market becomes particularly important as the size
of the retailer increases. In this context and in contrast with the previous Section, the
proposed model is executed for di�erent values of the relative size — of the examined
retailer, while assuming that the maximum retail price is ⁄max = 200£/MWhh.

Fig. 3.13, 3.14 and 3.15 illustrate the normalized hourly demand of the retailer’s
consumers, the hourly retail prices and the hourly wholesale prices in the examined day,
respectively, for di�erent time-shifting flexibility and retailer’s relative size scenarios.
It should be noted that Fig. 3.13 presents the normalized demand for each scenario
regarding – and — (ND–,—

t ) instead of the absolute one, in order to facilitate the
subsequent analysis; specifically, the hourly demand in each scenario is normalized
with respect to the peak demand in a scenario with the same retailer’s relative size —
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Fig. 3.13 Normalized hourly retail demand for di�erent demand flexibility and retailer’s
relative size scenarios.

Fig. 3.14 Hourly retail prices for di�erent demand flexibility and retailer’s relative size
scenarios.
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Fig. 3.15 Hourly wholesale market prices for di�erent demand flexibility and retailer’s
relative size scenarios.

and without demand flexibility (– = 0%):

ND –, —
t = demand –, —

t

maxt demand –=0%, —
t

(3.113)

As a result, when the consumers do not exhibit flexibility (– = 0%), the profile of
this normalized demand is identical for all relative size scenarios, peaking at 100% (Fig.
3.13). The same trend applies to the retail and wholesale prices (Fig. 3.14 and 3.15),
since in the absence of demand flexibility the retailer does not change the o�ered retail
prices and does not a�ect the wholesale market conditions.

This trend of insensitivity to the retailer’s relative size is also observed in the retail
prices under a certain (positive) demand flexibility scenario. Specifically, although the
shape of the retail prices is a�ected by the extent of demand flexibility – (a higher
– results in a flatter retail price profile, as also explained in Section 3.5.2), it is not
substantially a�ected by the retailer’s size — (Fig. 3.14). The only observed impact of
— on the retail prices is a small reduction of the retail prices during certain hours as —

increases, which is driven by the combination of two factors: i) a higher — enhances
the flattening e�ect of the consumers’ demand shifting response on the system demand
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and subsequently on the wholesale prices (Fig. 3.15), and also reduces the average
wholesale price (Table 3.4), since the impact of the retailer’s demand on the wholesale
market conditions becomes naturally more prominent when its market share increases,
and ii) the average retail price is accordingly reduced (as explained in Section 3.5.2
and demonstrated in Table 3.4). Since this average retail price reduction is relatively
small, the observed reduction of the hourly retail prices as — increases is also small.

Table 3.4 Average retail and wholesale price for di�erent demand flexibility and retailer’s
relative size scenarios.

– = 0% – = 10% – = 50%
’— — = 10% — = 30% — = 50% — = 10% — = 30% — = 50%

69.70 68.85 67.40 66.36 66.36 62.69 60.63

In contrast to the retail prices, the wholesale prices under a certain (positive) demand
flexibility scenario are substantially a�ected by the retailer’s size —. Specifically, and as
mentioned before, a higher — enhances the flattening e�ect of the consumers’ demand
shifting response on the wholesale prices, since the impact of the retailer’s demand on
wholesale market conditions becomes naturally more prominent when its market share
increases. The above discussion implies (rather intuitively) that the retailer’s relative
size is a factor a�ecting mostly the interaction between the retailer and the wholesale
market and much less the interaction between the retailer and its consumers.

After analyzing the impact of — on retail and wholesale prices, lets us now analyze
its impact on the demand of the retailer’s consumers; interestingly, a mixed e�ect
is observed in Fig. 3.13, with di�erent trends being evident under di�erent demand
flexibility scenarios.

Under a relatively high demand flexibility scenario (– = 50%), the shape of the
normalized demand profile is greatly a�ected by the retailer’s size. Specifically, when
this size is relatively small (— = 10%), the normalized demand profile is somewhat
complementary to the benchmark (– = 0%) demand profile and the wholesale price
profile, exhibiting increased (with respect to the benchmark profile) demand during
hours with low wholesale prices and reduced demand during hours with high wholesale
prices. The reason is that, given that the retailer cannot greatly a�ect the wholesale
prices (due to its relatively small —), it prefers to utilize a large extent of the available
time-shifting flexibility of its consumers to buy more energy at low-price (o�-peak)
hours and consequently reduce its total cost. On the other hand, as the retailer’s size
increases, this complementarity of the normalized demand profile gradually fades and
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this profile becomes flatter. The reason is that, given that the retailer increasingly
a�ects the wholesale prices (due to its increasing —), it prefers to utilize less the available
time-shifting flexibility of its consumers, since otherwise the wholesale prices will become
unfavorable, i.e. they will become higher during hours with higher consumers’ demand
and lower during hours with lower consumers’ demand, increasing the retailer’s cost in
the wholesale market.

In other words, following the discussion in Section 3.5.2, demand flexibility has
two (correlated) improving e�ects on the retailer’s cost: a) it enables the retailer to
buy more energy at low-price (o�-peak) hours and b) reduce the wholesale prices at
high-price (peak) hours. This implies that the former e�ect is more important for the
retailer when its size is relatively small, while the latter e�ect is more important when
its size is relatively large.

Moving now to a scenario with a relatively low demand flexibility (– = 10%), the
above discussed trends are much less evident and the normalized demand is rather
insensitive to the retailer’s size (Fig. 3.13). This is because both improving e�ects of
demand flexibility on the retailer’s cost are diminished and thus their correlation is
not greatly a�ected by the retailer’s size.

The final part of this analysis lies in investigating what are the overall e�ects of
the retailer’s relative size on its business case. Fig. 3.16, 3.17 and 3.18 illustrate the
% reduction of the retailer’s revenue, cost and profit driven by the introduction of
relatively low (– = 10%) and relatively high (– = 50%) demand flexibility with respect
to the benchmark scenario, for di�erent retailer’s relative size scenarios. In other
words, the relative revenue reduction (RRR –, —), relative cost reduction (RCR –, —) and
relative profit reduction (RPR –, —) in these figures are calculated as:

RRR –, — = Revenue –=0%, —
t ≠ Revenue –, —

t

Revenue –=0%, —
t

(%) (3.114)

RCR –, — = Cost –=0%, —
t ≠ Cost –, —

t

Cost –=0%, —
t

(%) (3.115)

RPR –, — = Profit –=0%, —
t ≠ Profit –, —

t

Profit –=0%, —
t

(%) (3.116)

First of all, under a certain (positive) demand flexibility scenario, the RRR –, — is
always increased with a larger retailer’s size, irrespectively of the extent of this demand
flexibility (Fig. 3.16). This trend is driven by the following e�ects: i) the consumers’
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(normalized) demand and (to a lesser extent) the o�ered retail prices become flatter
(Fig. 3.13 and Fig. 3.14), and the retailer’s revenue is given by the summation of the
demand-retail price products across all hours, and ii) the average retail price is reduced
(Table 3.4). This trend implies that the deteriorating e�ect of demand flexibility on
the revenue of the retailer (explained in Section 3.5.2) is relatively enhanced as the
size increases.

Fig. 3.16 Retailer’s relative revenue reduction for di�erent demand flexibility and
retailer’s relative size scenarios.

Furthermore, under a certain (positive) demand flexibility scenario, the RCR –, — is
also always increased with a larger retailer’s size, irrespectively of the extent of this
demand flexibility (Fig. 3.17). This trend is driven by the following e�ects: i) the
consumers’ (normalized) demand and the wholesale prices become flatter (Fig. 3.13 and
Fig. 3.15), and the retailer’s cost is given by the summation of the demand-wholesale
price products across all hours, and ii) the average wholesale price is reduced (Table
3.4). This trend implies that the improving e�ects of demand flexibility on the cost
of the retailer (explained in Section 3.5.2) are relatively enhanced as the size of the
retailer increases.

In similar vein with the retailer’s profit analysis in Section 3.5.2, since the impacts
of the retailer’s size on its revenue and cost counteract each other, i.e. a larger size
increases its revenue reduction (deteriorating its business case) but also increases its
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Fig. 3.17 Retailer’s relative cost reduction for di�erent demand flexibility and retailer’s
relative size scenarios.

cost reduction (improving its business case), the overall impact of the retailer’s size on
its profit depends on which of the above two impacts is more significant. Interestingly,
in contrast to the uniform impacts on revenue and cost, a mixed impact is observed
in Fig. 3.18, with di�erent trends being evident under di�erent demand flexibility
scenarios. This mixed impact of the retailer’s size on its profit is linked with the
similarly mixed impacts of the retailer’s size on the two improving e�ects of demand
flexibility on retailer’s cost, discussed earlier in this section.

Under a relatively low demand flexibility scenario (– = 10%), the RPR –, — is reduced
with a larger retailer’s size, which means that a larger size improves the retailer’s
business case. The reason is that the limited demand flexibility of its consumers does
not allow the retailer to significantly reduce its cost in the wholesale market by buying
energy at low-price (o�-peak) hours. Therefore, in this scenario, the retailer would
prefer to have a larger size in order to be able to flatten the wholesale price profile
and at least reduce the wholesale prices at high-price (peak) hours (which the retailer
cannot greatly avoid due to the limited demand flexibility of its consumers).

Under a relatively high demand flexibility scenario (– = 50%), the RPR –, — is
increased with a larger retailer’s size, which means that a larger size deteriorates the
retailer’s business case. The reason is that the significant demand flexibility allows the
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Fig. 3.18 Retailer’s relative profit reduction for di�erent demand flexibility and retailer’s
relative size scenarios.

retailer to significantly reduce its cost in the wholesale market by buying a significant
part of its energy requirements at low-price (o�-peak) hours. Therefore, in this scenario,
the retailer would prefer to have a smaller size in order to avoid flattening the wholesale
price profile and increasing the wholesale prices at o�-peak hours (which are particularly
important due to the significant demand flexibility of its consumers).

3.5.5 Comparison with the State-of-the-art Model

As discussed in Sections 3.2 and 3.3.2, the proposed bi-level optimization model makes a
fundamental contribution with respect to the state-of-the-art bi-level models adopted in
the existing literature. Specifically, state-of-the-art bi-level models treat the wholesale
market prices as exogenous, fixed parameters that are not a�ected by the retailer’s
pricing decisions. On the other hand, the proposed bi-level model captures the realistic,
indirect impacts of the retailer’s pricing decisions on the wholesale prices by representing
endogenously the wholesale market clearing process (through the LL2 problem in Fig.
4.1), which becomes particularly important as the size of the retailer increases.

The analysis presented in Sections 3.5.3 and 3.5.4 has demonstrated that this feature
of the proposed bi-level model reveals certain important trends around the impact



3.5 Case Studies 75

of demand flexibility on the retailer’s business, which, on a theoretical basis, cannot
be captured through state-of-the-art bi-level models. The aim of this section lies in
comparing the state-of-the-art and the proposed modeling approach on a quantitative
basis, to clearly demonstrate their di�erences.

In this context, the state-of-the-art bi-level model has been reproduced by removing
the LL2 optimization problem from the mathematical formulation presented in Section
3.4, and assuming that the wholesale prices are exogenous input parameters, which are
derived ex-ante by solving the wholesale market clearing problem with fixed (inflexible)
demand. Both state-of-the-art and proposed models have been then executed for
di�erent scenarios regarding the relative size — of the examined retailer, while assuming
that the time-shifting flexibility of the retailer’s consumers is – = 30% and the
maximum retail price is ⁄ = 200£/MWh.

Fig. 3.19, 3.20 and 3.21 illustrate the hourly wholesale prices, the hourly retail
prices and the normalized hourly demand of the retailer’s consumers in the examined
day, for both the state-of-the-art model and the proposed model, and di�erent retailer’s
relative size scenarios.

Fig. 3.19 Hourly wholesale market prices for di�erent retailer‘s relative size scenarios
under di�erent models.

Given the assumptions of the state-of-the-art model, the wholesale price profile
is identical to the respective profile under the benchmark scenario (– = 0%) and



76 Strategic Pricing for Demand Flexibility

Fig. 3.20 Hourly retail prices for di�erent retailer’s relative size scenarios under di�erent
models.

Fig. 3.21 Normalized hourly retail demand for di�erent retailer’s relative size scenarios
under di�erent models.
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is not a�ected by the retailer’s size. Under the proposed model on the other hand,
as discussed in Section 3.5.4, the wholesale prices are substantially a�ected by the
retailer’s size, with a higher size yielding a flatter wholesale price profile and a lower
average wholesale price.

A similar trend applies to the retail prices. Under the proposed model, as discussed
in Section 3.5.4, a higher retailer’s size reduces (to a small but visible extent) the retail
prices during hours outside the o�-peak window, driven by the combination of the
reduction of the average wholesale price and the regulatory constraint imposed on the
average retail price. Under the state-of-the-art model on the other hand, the retail
price profile is not a�ected by the retailer’s size, driven by the same insensitivity of the
wholesale price profile.

Finally, a similar trend applies to the retail demand. Under the proposed model,
as discussed in Section 3.5.4, the shape of the normalized demand profile is greatly
a�ected by the retailer’s size. When its size is relatively small (— = 10%) and thus
cannot greatly a�ect the wholesale prices, the retailer prefers to utilize a large extent of
the available shifting flexibility of its consumers to buy energy at low-price (o�-peak)
hours, leading to a normalized demand profile which is somewhat complementary to
the wholesale price profile. When its size is relatively large (— = 30% and — = 50%)
and thus substantially a�ects the wholesale prices, the retailer prefers to utilize less
the available shifting flexibility of its consumers (since otherwise the wholesale prices
will become unfavorable), leading to a flatter normalized demand profile.

Under the state-of-the-art model on the other hand, it can be observed that: a) the
normalized demand profile is not a�ected by the retailer’s size, and b) this profile is
complementary to the wholesale price profile, and this complementarity is more acute
than the one observed under the proposed model and a relatively small (— = 10%)
retailer’s size, with very high spikes during hours with low wholesale prices. The reason
behind these trends is that the retailer does not a�ect at all the wholesale prices,
irrespectively of its size (given the assumptions of the state-of-the-art model), and
therefore always prefers to utilize as much as possible the available shifting flexibility
of its consumers to buy energy at low-price hours. This discussion implies (rather
intuitively) that the state-of-the-art model becomes equivalent to the proposed model
and suitable for driving the retailer’s decision making, only under the condition that
the retailer’s size is extremely small.

In order to further demonstrate the di�erences between the two models, Fig. 3.22
and 3.23 illustrate the retailer’s relative revenue reduction RRR–,— (defined by (3.114))
and relative cost reduction RCR–,— (defined by (3.115)) driven by the introduction of
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demand flexibility – = 30% with respect to the benchmark scenario (– = 0%), for both
the state-of-the-art model and the proposed model, and di�erent retailer’s relative size
scenarios.

Fig. 3.22 Retailer‘s relative revenue reduction for di�erent retailer’s relative size
scenarios under di�erent models.

First of all, under the state-of-the-art model, both the RRR–,— and the RCR–,— are
constant and not a�ected by the retailer’s size, which is driven by the same insensitivity
of the wholesale prices, retail prices and consumers’ demand, as discussed above. Under
the proposed model on the other hand, as discussed in Section 3.5.4, both the RRR–,—

and the RCR–,— are increased with a larger retailer’s size. This trend implies that the
proposed model (in contrast with the state-of-the-art model) captures the impacts of
the retailer’s size on its business case.

Furthermore, it can be observed that both the RRR–,— and the RCR–,— are higher
under the proposed model than under the state-of-the-art model, for all retailer’s
size scenarios. The reason behind the higher RCR–,— is that, in contrast with the
state-of-the-art model, the proposed model captures the impacts of demand flexibility
on wholesale prices (flattened profile and reduced average, Fig. 3.19) and therefore
captures an additional improving e�ect of demand flexibility on the retailer’s cost
(apart from the ability of the retailer to buy energy at more favorable hours, which is
captured by both models). The reason behind the higher RRR–,— is that the reduction
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Fig. 3.23 Retailer‘s relative cost reduction for di�erent retailer’s relative size scenarios
under di�erent models.

of retail prices (during hours outside the o�-peak window) is more significant under the
proposed model (Fig. 3.20) due to the reduction of the average wholesale price (which
is not captured by the state-of-the-art model) in combination with the regulatory
constraint imposed on the average retail price. These trends imply that the state-of-
the-art model underestimates both the deteriorating e�ect of demand flexibility on the
retailer’s revenue and the improving e�ect of demand flexibility on the retailer’s cost,
and thus is not generally suitable for driving the retailer’s decision making

Finally, these di�erences in both the RRR–,— and the RCR–,— between the two
models are enhanced as the retailer’s size increases. As previously discussed, this is
because the ability of the proposed model to more accurately capture the impacts of
demand flexibility on wholesale prices and retail prices becomes more important as
the size of the retailer increases. On the other hand, the impact of this feature of the
proposed model on the RRR–,— and the RCR–,— becomes negligible when the size of
the retailer becomes very small, as indicated by the scenario — = 1% in Fig. 18 and
19. This validates our previous conclusion that the state-of-the-art model becomes
equivalent to the proposed model and suitable for driving the retailer’s decision making,
only under the limiting condition that the retailer’s size is extremely small.
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3.6 Conclusions

This chapter has proposed a novel bi-level optimization model to comprehensively
investigate the e�ects of demand flexibility on an electricity retailer’s business case.
In contrast with state-of-the-art bi-level optimization models, this model drops the
unrealistic assumption that the retailer treats wholesale market prices as exogenous,
fixed parameters, and represents endogenously the wholesale market clearing process,
thus capturing the realistic implications of the retailer’s pricing strategies on the
wholesale market prices.

The presented case studies provide numerous new and valuable insights. First of
all, they demonstrate the interactions between the retailer, the flexible consumers and
the wholesale market and demonstrate that demand flexibility: a) reduces the retailer’s
revenue from the consumers, since it limits the retailer’s strategic potential of exploiting
the consumers through setting large retail price di�erentials between peak and o�-peak
hours, b) also reduces the retailer’s cost in the wholesale market, since it enables the
retailer to buy more energy at low-price hours and also reduce the wholesale prices at
high-price hours, and c) does not have a uniform impact on the retailer’s overall profit.

Going further, this impact of demand flexibility on the retailer’s profit is shown to
depend on the strictness of the regulatory constraints imposed on the o�ered retail
prices. Under a looser regulatory framework demand flexibility reduces the overall
profit of the retailer, while under a stricter regulatory framework it increases this profit.

Moreover, the presented case studies analyse how the above e�ects of demand
flexibility depend on the retailer’s relative size in the market. Specifically, the obtained
results demonstrate that both the deteriorating e�ect of demand flexibility on the
retailer’s revenue and its improving e�ect on the retailer’s cost are relatively enhanced
as the size of the retailer increases. However, the implications of the retailer’s size
on its overall profit are not uniform, but depend on the extent of demand flexibility.
Under relatively high demand flexibility the retailer achieves a higher profit when its
size is smaller, while under relatively low demand flexibility the retailer achieves a
higher profit when its size is larger.

Finally, the presented case studies highlight the added value of the proposed bi-
level model by comparing its outcomes against the state-of-the-art bi-level model.
Specifically, the obtained results demonstrate that the state-of-the-art bi-level model
underestimates the above e�ects of demand flexibility on the retailer’s revenue and cost,
compared to the proposed model, and this underestimation is enhanced as the retailer’s
size increases. This result implies that the state-of-the-art model is suitable for driving
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a retailer’s decision-making only under the limiting condition that the retailer’s size
is extremely small (around 1% of the market according to the obtained results), in
contrast with the general suitability of the proposed model.

Given the conclusion of physical insights from the presented case studies, the policy
recommendations are also highlighted to promote this novel work. First of all, demand
flexibility is highly encouraged to reduce the energy cost both in retail and wholesale
markets. Secondly, demand flexibility can e�ectively complement regulatory policies
in safeguarding the consumers against the strategic behavior of retailer. Finally, the
small and new players in the retail market are more likely to take initiatives towards
the realization of the flexibility potential of their consumers, than large and incumbent
retailers.





Chapter 4

Strategic Pricing for Local Energy
Market

4.1 Introduction

Driven by environmental concerns, governments worldwide have taken significant
initiatives towards the decarbonization of energy systems, mainly involving the large-
scale integration of renewable generation and the electrification of transport and
heat sectors of the demand side [1]. However, these initiatives introduce critical
techno-economic challenges to electricity systems’ operation and planning; conventional
generators incur significant costs to provide system balancing services given the inherent
variability of renewable generation, while electric transport and heat loads drive capital-
intensive generation and network reinforcements [94].

A very promising paradigm change towards addressing these challenges and achiev-
ing a cost-e�ective transition to the low-carbon future lies in the deployment of
flexible, small-scale distributed energy resources (DER), including flexible loads, micro-
generators and energy storage. These DER exhibit significant operating flexibility
which can support system balancing and reduce demand peaks, thereby limiting the
balancing costs of conventional generators and the investments costs of new generation
and network assets. In other words, this paradigm change partially shifts the provision
of security of supply and system services from large-scale centralised assets to small-
scale DER. Numerous recent works have demonstrated and analyzed the value of this
paradigm change [94, 95, 5, 96]. However, this paradigm change greatly complicates the
operation of the system, as the e�ective coordination of large numbers of small-scale
DER involves very significant communication and computational scalability challenges
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as well as privacy concerns, since DER owners are not generally willing to disclose
private information and be directly controlled by external entities [97].

One of the coordination approaches that has recently attracted great interest by
both industry and academia is the establishment of local energy markets (LEM). Under
this approach, the global coordination burden is broken down to the coordination of
local market clusters, each grouping a number of end users with DER (lately referred
to as community), and enabling direct energy trading between them [98]. Beyond
addressing scalability and privacy challenges, the LEM concept exhibits a number of
potential benefits, such as a) deferring or avoiding distribution network reinforcements
as a result of matching local demand with local generation, b) enhancing the engagement
of local end-users in system operation by creating a local identity and promoting social
cooperation, and c) revitalizing the local economy by shaping opportunities for local
investment, creating new jobs at the community level and promoting self-su�ciency.
Recent studies have illustrated these benefits of LEM [99–101].

However, the introduction of LEM is also expected to have significant implications
on the strategic interactions between the local end users and incumbent electricity
retailers. After the deregulation of electricity systems, electricity retailers have been
representing the large majority of the end users in the wholesale electricity market, by
buying / selling energy consumed / produced by their end users from / to the wholesale
market. The objective of these self-interested market entities lies in maximizing their
individual profits by optimizing the retail prices o�ered to their customers but also
respecting regulatory limits [8]. With the introduction of LEM, customers can directly
trade energy between them, thus limiting their energy dependency on the incumbent
retailer and increasing their economic surplus. This e�ect is expected to in turn impact
the retailer’s decisions regarding the o�ered prices and eventually its profit.

4.2 Literature Review

Numerous previous works in the existing literature have investigated the interactions
between strategic retailers and individual customers with di�erent types of DER [22–
24, 27, 28, 102, 30, 36, 37, 33, 103]. Table 4.1 summarizes in a structured way the main
characteristics of these works. The representation of customers’ flexibility in these
papers includes flexible loads, micro-generation, energy storage. Furthermore, these
papers generally adopt two di�erent methodologies to model the interaction between
an electricity retailer and its flexible customers.
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Table 4.1 Summary of existing literature associated with the examined problem.

Paper Optimization model Approach DER type

Local energy

market

[22] Single-level Elasticity function Flexible demand No

[23] Single-level Elasticity function Flexible demand No

[24] Single-level Elasticity function Flexible demand No

[27] Single-level Elasticity function

Flexible demand, Wind

Distributed generation, PV

Energy storage system

No

[28] Single-level Elasticity function

Flexible demand, Wind

Distributed generation, PV

Energy storage system, EV

No

[102] Bi-level MPEC Distributed generation No

[30] Bi-level MPEC Flexible demand No

[36] Bi-level Iterative algorithm Flexible demand No

[37] Bi-level Iterative algorithm Flexible demand No

[33] Bi-level MPEC
Flexible demand

Distributed generation

No

[103] Bi-level MPEC
Flexible demand

Distributed generation

No

This

work

Bi-level

MPEC

Binary relaxation

Primal-dual

Flexible demand

Distributed generation

Energy storage system

Yes

Specifically, papers [22–24, 27, 28] employ single-level optimization models, which
aim at maximizing the retailer’s profit; in these models, the optimal response of the
flexible DERs to the retail prices is expressed as closed-form elasticity functions. The
drawback of this approach lies in the fact that the parameters of these functions are
determined based on exogenous data and therefore cannot accurately capture the
impacts of the retail prices on the DERs’ response.

In order to address this limitation, papers [102, 30, 36, 37, 33, 103] employ bi-
level optimization models in order to rigorously capture the interactions between the
optimization of the pricing decisions of the self-interested retailer (modeled in the
upper level – UL) and the optimization of the demand response of its flexible DERs
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(modeled in the lower level – LL), which is thus represented endogenously and not based
on exogenous data. These bi-level optimization problems are solved either through
converting them into Mathematical Programs with Equilibrium Constraints (MPEC)
or by employing iterative approaches (Table 4.1).

Although the existing literature has investigated the strategic interactions between
retailers and individual customers with di�erent types of DER [22–24, 27, 28, 102,
30, 36, 37, 33, 103]. Table 4.1, the respective interactions between retailers and LEM
integrating all these DER types and enabling energy trading between them, have not
yet been analytically explored.

4.3 Approach

This chapter makes the first attempt to fill this knowledge gap by proposing a novel
multi-period bi-level optimization problem that captures the interactions between the
retailer’s strategic pricing decisions formulated in the UL problem and the operation
of an LEM among its served customers formulated in the LL problem.

Since the LL problem is non-convex, as it includes the binary decision variables
of the LEM to either buy or sell energy to the retailer at each period, the formulated
bi-level optimization problem cannot be solved through the traditional approach of
converting it to a Mathematical Program with Equilibrium Constraints (MPEC). In
this context, we develop a new approach, which is based on the relaxation and primal-
dual reformulation of the original, non-convex LL problem and the penalization of the
associated duality gap.

4.3.1 Modeling Assumptions

For clarity reasons, the main assumptions behind the proposed model are outlined
below:

1. The customers served by the examined retailer are modelled with di�erent types of
DER (flexible loads, micro-generation, energy storage), and each customer receiving
the retail prices signals operates under its individual operating characteristics.

2. The decision making problem of the examined retailer considers both the interaction
with the served independent customers (i.e. the flexible consumers and energy
storages to which it sells energy, and the micro-generators and energy storages from
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which it buys energy) and the interaction with the LEM (to which it sells energy or
from which it buys energy), with the overall aim of maximizing the retailer’s profit.

3. The examined retailer is assumed to serve a relatively small population of customers
and therefore its decisions do not a�ect the wholesale prices, which are thus treated
as fixed, exogenous parameters of the problem, i.e. the retailer is assumed to be a
price-taker in the wholesale market.

4. In contrast with the traditional fixed pricing or time-of-use pricing regimes where
the o�ered retail prices are flat throughout the examined daily horizon or during
certain intervals of this horizon (e.g. peak and o�-peak periods), the examined
strategic retailer can o�er hour-specific retail prices to the served customers. In
order to prevent the retailer from exploiting the customers and making excessive
profits, regulatory constraints are imposed on the maximum retail prices it can o�er
to its customers [103].

5. Reflecting the reality, it is assumed that the examined retailer can o�er di�erentiated
prices to its customers for buying and selling energy, but these buy and sell prices
are not di�erentiated for di�erent customers. Such a kind of dual pricing mechanism
means that the strategic retailer is capable of o�ering a relative high buy price and
a relative low sell price in order to obtain more revenue from but pay less cost to
its served local customers. This assumption also allows its served customers to
have incentive to participate in the local energy market when they see the price
di�erentials between retail buying and retail selling.

6. For presentation clarity and without loss of generality, it is also assumed that only
one LEM operates among (a subset of) the retailer’s served customers; each customer
is assumed to either participate in the LEM or trade independently with the retailer,
neglecting the potential of customers participating directly in the wholesale market
(which is a realistic assumption for small size customers). It would be also interesting
to model how the customers are optimized to choose between retailer and LEM,
which is also one extension of the future work.

4.3.2 Structure of the Bi-level Optimization Model

In order to comprehensively capture the interactions between the retailer, its individual
customer, and the LEM, the proposed model is formulated as a bi-level optimization
problem, the structure is illustrated in Fig. 4.1.
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Bi-level Optimization Model
Maximize Profit of strategic retailer

Subject to:
1) Regulatory constraints imposed on retail prices
2) Balance between energy traded with consumers and energy 

traded with wholesale market
3) Demand response of individual flexible consumers

4) Generation response of individual micro-generators

5) Charging / discharging response of individual energy storages

6) Net response of local energy market

Maximize Utility of individual flexible consumers
Subject to:
¾ Demand operating constraints

Maximize Total surplus of local energy market
Subject to:
¾ Balance between local net energy and net energy traded 

with retailer
¾ Demand, generation, storage operating constraints
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Fig. 4.1 Structure of proposed bi-level optimization model.

1. This bi-level model consists of an upper-level (UL) problem and four lower-level
(LL) problems.

2. The UL problem represents the strategic decision making of a self-interested retailer
who determines the optimal time-specific retail prices o�ered to the customers
for buying and selling energy so as to maximize its profit, while respecting i) the
regulatory constraints imposed on the o�ered retail prices, and ii) the balance
constraint between the energy sold / purchased to / from its served customer as
well as the LEM and the energy bought / sold from / to the wholesale market at
each time period.

3. This UL problem is subject to four LL problems. As shown in Fig. 1, those four LL
problems respectively represent:
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(a) The first three of them (LL1-3) represent the decision making of flexible
consumers (FC), micro-generators (MG) and energy storages (ES), which do
not participate in the LEM and thus optimize their demand / generation
response to the o�ered retail prices so as to maximize their own economic
surplus, and subject to their individual operation constraints;

(b) The fourth LL (LL4) problem represents the operation of an LEM with
di�erent participants (FC, MG and ES) which, given the o�ered retail prices
and the techno-economic parameters of its participants, determines the optimal
dispatch of these participants and the energy exchanges with the retailer so
as to maximize their total surplus, and subject to their individual operation
constraints.

4. The upper-level problem and the two lower-level problems of Fig. 4.1 are all coupled
as illustrated in Fig. 4.2, since:

Upper Level (UL) Problem

Maximize Profit of strategic retailer

Buy
prices

LL1 Problem

Maximize Utility of 
individual flexible 

consumers

LL2 Problem

Maximize Profit of 
individual 

micro-generators

Demand 
response

LL3 Problem

Maximize Profit of 
individual energy 

storages

LL4 Problem

Maximize Total 
surplus of local 
energy market

Buy prices
Sell prices

Sell
prices

Generation 
response

Storage
response

Buy prices
Sell prices

Net
response

Fig. 4.2 Interrelation between the upper-level and 4 lower-level problems.

(a) The buy and sell prices determined by the retailer (UL) a�ect the responses
of the customers (as they constitute part of the objective functions of the
LL1-LL4 problems);

(b) These responses a�ect the retailer’s pricing decisions (as they constitute part
of both the objective function and the energy balance constraints of the UL
problem).
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4.4 Formulation

4.4.1 Decision Making of Strategic Retailer

The upper-level (UL) problem optimizes the pricing decisions of the examined retailer
and is formulated as follows:

max
V UL={⁄b

t , ⁄s
t , wt}
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t
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ÿ

i

di,t ≠
ÿ

j
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ÿ

k

(sc
k,t ≠ sd

k,t) + nt = wt, ’t (4.4)

The objective function (4.1) maximizes the overall profit of the retailer, which
includes the following components: i) its revenue from selling energy to demanding
customers, including independent FC, independent ES when charging, and the LEM
when buying energy from the retailer (first term), ii) its cost of buying energy from
generating customers, including independent MG, independent ES when discharging,
and the LEM when selling energy to the retailer (second term); and iii) its net cost in
the wholesale market, i.e. its cost / revenue of buying / selling energy from / to the
wholesale market (third term).

The o�ered retail prices are subject to the regulatory constraints (4.2)-(4.3) which
aim at preventing the retailer from exploiting the customers and making excessive
profits. Constraints (4.4) express the energy balance constraints of the retailer; the
net energy traded with its customers (including independent FC, independent MG,
independent ES and the LEM) and the net energy traded with the wholesale market
are equal at each period.

4.4.2 Demand Response of Individual Flexible Consumers

The first LL problem (LL1) optimizes the demand response of independent FC (not
participating in the LEM) to the retail (buy) prices determined by the retailer, and is
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formulated as follows for independent FC i:

max
P LL1={di,t}
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2
(4.5)

subject to:
0 Æ di,t Æ dmax

i,t : µd≠
i,t , µd+

i,t , ’t (4.6)

The objective function (4.5) maximizes the utility of independent FC i, which is
given by the di�erence between i) its benefit (or satisfaction) perceived from the use
of energy (first term), modelled as a quadratic function of its demand levels; and ii)
its cost of buying energy from the retailer (second term), modelled as the product of
retail (buy) prices and its demand levels. Constraint (4.6) expresses the flexibility of
independent FC i to modify its demand within certain limits.

4.4.3 Generation Response of Independent Micro-Generators

The second LL problem (LL2) optimizes the generation response of independent MG
(not participating in the LEM) to the retail (sell) prices determined by the retailer,
and is formulated as follows for independent MG j:

max
P LL2={gj,t}

1 ÿ

t

⁄s
t gj,t ≠
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(lG
j gj,t + qG

j g 2
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(4.7)

subject to:
0 Æ gj,t Æ gmax

j : µg≠
j,t , µg+

j,t , ’t (4.8)

The objective function (4.7) maximizes the profit of independent MG j, which
is given by the di�erence between i) its revenue from selling energy to the retailer
(first term), modelled as a quadratic function of its power outputs; and ii) its cost of
production (second term), modelled as the product of retail (sell) prices and its power
outputs. Constraint (4.8) expresses the power output limits of independent MG j.

4.4.4 Charging / Discharging Response of Independent En-
ergy Storages

The third LL problem (LL3) optimizes the charging / discharging response of indepen-
dent ES (not participating in the LEM) to the retail (buy and sell) prices determined
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by the retailer, and is formulated as follows for independent ES k:

max
P LL3={sc

k,t, sd
k,t, Ek,t}

1 ÿ

t

⁄s
t sd

k,t ≠
ÿ

t

⁄b
t sc

k,t

2
(4.9)

subject to:
Ek,t = Ek,t≠1 + sc

k,t ÷c
k ≠ sd

k,t/÷d
k : ›k,t, ’t (4.10)

Emin
k Æ Ek,t Æ Emax

k : µse≠
k,t , µse+

k,t , ’t (4.11)

0 Æ sc
k,t Æ smax

k : µsc≠
k,t , µsc+

k,t , ’t (4.12)

0 Æ sd
k,t Æ smax

k : µsd≠
k,t , µsd+

k,t , ’t (4.13)

E0
k = Ek,NT : ›0

k (4.14)

The objective function (4.9) maximizes the profit of independent ES k, which is
given by the di�erence between i) its revenue from selling energy to the retailer when
discharging (first term) and ii) the cost of buying energy from the retailer when charging
(second term). Constraint (4.10) expresses the energy balance of the ES including
charging and discharging losses. Constraint (4.11)-(4.13) represents its minimum and
maximum energy and power limits. Finally, constraint (4.14) expresses the energy
neutrality assumption, i.e. the ES energy content at the start and the end of the
examined horizon are assumed equal.

4.4.5 Operation of Local Energy Market

Beyond individually contracted FC, MG and ES, the examined retailer trades energy
with a LEM generally including the same types of customers and enabling energy
trading between its participating customers. The fourth LL problem (LL4) represents
the operation of the LEM which optimizes the dispatch of the participating customers
and the energy exchanges with the retailer, and is formulated as follows:

max
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ut œ {0, 1}, ’t (4.18)
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The objective function (4.15) maximizes the total surplus of the LEM, which
includes the following components: i) the total benefit of all participating FC iÕ (first
term), ii) the total production cost of all participating MG jÕ (second term), iii) the
cost of buying energy from the retailer when the LEM exhibits excess demand (third
term), and iv) the revenue from selling energy to the retailer when the LEM exhibits
excess generation (fourth term).

Constraints (4.17) express the energy balance constraints of the LEM, ensuring that
the excess demand / generation is bought from / sold to the retailer. The fact that the
LEM can either buy energy from the retailer or sell energy to the retailer at each period
is expressed through the binary decision variable ut (4.18). When the LEM exhibits
excess demand (nt > 0), it needs to buy energy from the retailer (ut = 1), implying
that the LEM incurs a cost to the retailer (as the third term of (4.15) becomes positive)
and does not earn a revenue from the retailer (as the fourth term of (4.15) becomes
zero). On the other hand, when the LEM exhibits excess generation (nt < 0), it needs
to sell energy to the retailer (ut = 0), implying that the LEM earns a revenue from the
retailer (as the fourth term of (4.15) becomes positive) and does not incur a cost to the
retailer (as the third term of (4.15) becomes zero). Finally, constraints (4.19)-(4.25)
express the individual operating constraints of the FC, MG and ES participating in
the LEM, and follow the formulations adopted in LL1-LL3 problems, respectively.

4.4.6 Reformulation of Non-convex LL problem

The traditional approach for solving such a bi-level optimization problem in the
existing literature (see for example [102, 30, 33, 103] lies in converting it to a single-
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level Mathematical Program with Equilibrium Constraints (MPEC). This is achieved by
replacing the LL problems by their equivalent Karush-Kuhn-Tucker (KKT) optimality
conditions, provided that the LL problems are continuous and convex, and introducing
these conditions as constraints of the UL problem.

However, in the examined bi-level optimization problem, the LL4 problem repre-
senting the operation of the LEM, is non-convex as it includes the binary decision
variables ut of the LEM to either buy energy from the retailer or sell energy to the
retailer at each period (4.18). This non-convexity prevents the derivation of equivalent
KKT conditions for LL4 and thus means that the traditional MPEC approach is not
applicable to the examined problem to guarantee its optimality.

In order to address this fundamental challenge and solve the examined problem,
this chapter employs a new approach recently proposed by the authors in [104].

Relax Non-convex LL4 problem

Problem LL4 is converted from a non-convex mixed-integer problem to a convex
problem by relaxing its binary constraints (4.18) as continuous constraints:

0 Æ ut Æ 1 : µu≠
t , µu+

t , ’t (4.26)

with µu≠
t , µu+

t being their respective dual variables. This relaxation enables the defini-
tion of dual variables for all the constraints of the LL4 problem, which are indicated
after a colon in constraints (4.17) and (4.19)-(4.25) above. In other words, this relax-
ation coverts the LL4 problem from a mixed-integer linear problem to a continuous
linear problem, defined by:

max
V P

(LL4 objective function) : (4.15) (4.27)

subject to:

(LL4 continuous constraints) : (4.17) and (4.19) ≠ (4.25) (4.28)

(LL4 relaxed binary constraint) : (4.26) (4.29)



4.4 Formulation 95

Dual Formulation of Relaxed LL4 problem

After the above conversion, the dual problem associated with the relaxed LL4 problem
(4.27)-(4.29) can be derived, which is formulated as follows:
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t + ›kÕ,t/÷d

kÕ + µsd+
kÕ,t Ø 0, ’kÕ, ’t (4.35)

ˆLLL4
ˆEkÕ,t

= ’kÕ,t ≠ ’kÕ,t+1 ≠ µse≠
kÕ,t + µse+

kÕ,t Ø 0, ’kÕ, ’t < NT (4.36)

ˆLLL4
ˆEkÕ,t

= ’kÕ,t ≠ ›0
kÕ ≠ µse≠

kÕ,t + µse+
kÕ,t Ø 0, ’kÕ, t = NT (4.37)

ˆLLL4
ˆnt

= ⁄b
t ut ≠ ⁄s

t (ut ≠ 1) ≠ ⁄l
t Ø 0, ’t (4.38)

ˆLLL4
ˆut

= ⁄b
t nt ≠ ⁄s

t nt + µu+
t Ø 0, ’t (4.39)

µd+
iÕ,t Ø 0, ’iÕ, ’t (4.40)

µg+
jÕ,t Ø 0, ’jÕ, ’t (4.41)

µse≠
kÕ,t , µse+

kÕ,t , µsc+
kÕ,t , µsd+

kÕ,t Ø 0, ’kÕ, ’t (4.42)

µu+
t Ø 0, ’t (4.43)
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Constraints (4.32)-(4.39) constitute dual constraints with respect to primal variables
diÕ,t, gjÕ,t, sc

kÕ,t, sd
kÕ,t, EkÕ,t and nt respectively, while constraints (4.40)-(4.43) express

non-negativity of the relevant dual variables.

Primal-dual Formulation of Relaxed LL4 problem

However, the relaxation of the binary constraints (4.26) implies that the reformulated
LL4 problem (4.27)-(4.29) does not generally produce the optimal solution of the
original LL4 problem (4.15)-(4.25). Thus, in order to ensure that the reformulated LL4
problem produces a solution that minimally deviates from the solution of the original
LL4 problem, the following primal-dual formulation is adopted:

min
{P LL4,DLL4}

DG © ≠(4.15) ≠ (4.30) (4.44)

subject to:

(Relaxed LL4 primal constraints) : (4.17) and (4.19) ≠ (4.25) (4.45)

(Relaxed LL4 dual constraints) : (4.32) ≠ (4.43) (4.46)

(Original LL4 binary constraint) : (4.18) (4.47)

Problem (4.44)-(4.47) minimizes the duality gap (DG) between the primal and
dual objective function values of the relaxed LL4 problem, while enforcing the primal
constraints (4.17), (4.19)-(4.25) and the dual constraints (4.32)-(4.43) of the relaxed
LL4 problem, as well as the original binary constraints (4.18). It should be noted that
although the binary constraints were previously relaxed to enable the derivation of the
dual problem, they are enforced in (4.47) to ensure that the solution of this problem
conforms to the physical reality of LEM to buy energy from the retailer (ut = 1) or
sell energy to the retailer (ut = 0) at period t.

4.4.7 Single-level Optimization Model Reduction

Formulation (4.44)-(4.47) constitutes the reformulation of the original LL4 problem.
However, the optimal pricing problem from the perspective of a strategic retailer we
aim at solving in this chapter is the bi-level problem (4.1)-(4.25) which additionally
contains the one UL problem and the other three LL continuous problems. In order to
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achieve this in a mathematically rigorous fashion, we convert this bi-level problem to a
single-level problem by the following two steps, which are illustrated in Fig. 4.3.

KKT Optimality Conditions Associated with Convex LL1-3 Problems

As discussed in previous section 4.2, the bi-level model can be solved by replacing its
convex LL problems with its equivalent KKT optimality conditions and subject to
the UL problems, rendering an MPEC. To this end, we derive the KKT optimality
conditions of LL1-3 problems in the first step:

1. KKT Optimality Conditions Associated with the LL1 Problem

To obtain the KKT conditions associated with the LL1 problem, the corresponding
Lagrangian function LLL1 below is required as below:

LLL1 =
ÿ

i,t

⁄b
t di,t ≠

ÿ

i,t

(lD
i,t di,t ≠ qD

i,t d 2
i,t) ≠

ÿ

i,t

µd≠
i,t di,t +

ÿ

i,t

µd+
i,t (di,t ≠ d max

i,t ) (4.48)

Considering the Lagrangian function LLL1 given by (4.48), the KKT first order
optimality conditions of the LL1 problem are derived as follows:

ˆLLL1
ˆdi,t

= ⁄b
t ≠ (lD

i,t ≠ 2 qD
i,t di,t) ≠ µd≠

i,t + µd+
i,t = 0, ’i, ’t (4.49)

0 Æ µd≠
i,t ‹ di,t Ø 0, ’i, ’t (4.50)

0 Æ µd+
i,t ‹ (d max

i,t ≠ di,t) Ø 0, ’i, ’t (4.51)

The structure of the KKT conditions (4.49)-(4.51) is explained below:

(a) Equality (4.49) is obtained by di�erentiating the Lagrangian function LLL1

with respect to the primal variables di,t.

(b) Complementarity conditions (4.50)-(4.51) are related to the inequality con-
straints (4.6).

2. KKT Optimality Conditions Associated with the LL2 Problem

To obtain the KKT conditions associated with the LL2 problem, the corresponding
Lagrangian function LLL2 below is required as below:

LLL2 =
ÿ

j,t

(lG
j gj,t + qG

j g 2
j,t) ≠

ÿ

j,t

⁄s
t gj,t ≠

ÿ

j,t

µg≠
j,t gj,t +

ÿ

j,t

µg+
j,t (gj,t ≠ gmax

j ) (4.52)
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Considering the Lagrangian function LLL2 given by (4.52), the KKT first order
optimality conditions of the LL2 problem are derived as follows:

ˆLLL2
ˆgj,t

= (lG
j + 2 qG

j gj,t) ≠ ⁄s
t ≠ µg≠

j,t + µg+
j,t = 0, ’j, ’t (4.53)

0 Æ µg≠
j,t ‹ gj,t Ø 0, ’j, ’t (4.54)

0 Æ µg+
j,t ‹ (gmax

j ≠ gj,t) Ø 0, ’j, ’t (4.55)

The structure of the KKT conditions (4.53)-(4.55) is explained below:

(a) Equality (4.53) is obtained by di�erentiating the Lagrangian function LLL2

with respect to the primal variables gj,t.

(b) Complementarity conditions (4.54)-(4.55) are related to the inequality con-
straints (4.8).

3. KKT Optimality Conditions Associated with the LL3 Problem

To obtain the KKT conditions associated with the LL3 problem, the corresponding
Lagrangian function LLL3 below is required as below:

LLL3 =
ÿ

k,t

⁄b
t sc

k,t ≠
ÿ

k,t

⁄s
t sd

k,t +
ÿ

k,t

1
›k,t (Ek,t ≠ Ek,t≠1 ≠ sc

k,t ÷c
k + sd

k,t/÷d
k)

2
≠

ÿ

k,t

µse≠
k,t (Ek,t ≠ Emin

k ) +
ÿ

k,t

µse+
k,t (Ek,t ≠ Emax

k ) ≠
ÿ

k,t

µsc≠
k,t sc

k,t+

ÿ

k,t

µsc+
k,t (sc

k,t ≠ smax
k ) ≠

ÿ

k,t

µsd+
k,t sd

k,t +
ÿ

k,t

µsd+
k,t (sd

k,t ≠ smax
k )+

ÿ

k

›0
k(E0

k ≠ Ek,NT ) (4.56)

Considering the Lagrangian function LLL3 given by (4.56), the KKT first order
optimality conditions of the LL3 problem are derived as follows:

ˆLLL3
ˆsc

k,t

= ⁄b
t ≠ ›k,t ÷c

k ≠ µsc≠
k,t + µsc+

k,t = 0, ’k, ’t (4.57)

ˆLLL3
ˆsd

k,t

= ≠⁄s
t + ›k,t/÷d

k ≠ µsd≠
k,t + µsd+

k,t = 0, ’k, ’t (4.58)

ˆLLL3
ˆEk,t

= ›k,t ≠ ›k,t+1 ≠ µse≠
k,t + µse+

k,t = 0, ’k, ’t < NT (4.59)
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ˆLLL3
ˆEk,t

= ›k,t ≠ ›0
k ≠ µse≠

k,t + µse+
k,t = 0, ’k, t = NT (4.60)

0 Æ µse≠
k,t ‹ (Ek,t ≠ Emin

k ) Ø 0, ’k, ’t (4.61)

0 Æ µse+
k,t ‹ (Emax

k ≠ Ek,t) Ø 0, ’k, ’t (4.62)

0 Æ µsc≠
k,t ‹ sc

k,t Ø 0, ’k, ’t (4.63)

0 Æ µsc+
k,t ‹ (smax

k ≠ sc
k,t) Ø 0, ’k, ’t (4.64)

0 Æ µsd≠
k,t ‹ sd

k,t Ø 0, ’k, ’t (4.65)

0 Æ µsd+
k,t ‹ (smax

k ≠ sd
k,t) Ø 0, ’k, ’t (4.66)

The structure of the KKT conditions (4.57)-(4.66) is explained below:

(a) Equalities (4.57)-(4.60) are obtained by di�erentiating the Lagrangian function
LLL3 with respect to the primal variables in the set of {sc

k,t, sd
k,t, Ek,t}.

(b) Complementarity conditions (4.61)-(4.66) are related to the inequality con-
straints (4.22)-(4.24).

Final Single-level Optimization Problem Formulation

In the second step, we combine the objective functions of the UL problem (4.1) and the
reformulated LL4 problem (4.44)-(4.47) into a new designed objective function (4.67)
and formulate it into a multi-objective optimization problem. In order to do this, we
adopt the penalty function method [105] and penalize the DG by a positive constant
W . By following this approach, the DG is indirectly suppressed (as prescribed by
(4.44)), while still pursuing a higher retailer’s profit (as prescribed by (4.1)). The value
of the penalty constant W is selected by balancing the trade-o� between the accuracy
of the local energy market solution and the consideration of the retailer’s profit. The
impact of di�erent values of W on the performance of the model and the selection of a
suitable value are quantitatively analyzed in Section 4.5.3.

Enforcing all the constraints of the UL problem, the KKT optimality conditions of
LL1-3 problems and the constraints of the reformulated LL4 problem. The resulting
single-level problem is formulated as follows:

max
{V }

(4.1) ≠ W ú DG (4.67)
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where:
V = {V UL, P LL1, P LL2, P LL3, P LL4, DLL1, DLL2, DLL3, DLL4} (4.68)

subject to:
(UL constraints) : (4.2) ≠ (4.4) (4.69)

(KKT optimality conditions of LL1) : (4.49) ≠ (4.51) (4.70)

(KKT optimality conditions of LL2) : (4.53) ≠ (4.55) (4.71)

(KKT optimality conditions of LL3) : (4.57) ≠ (4.66) (4.72)

(Primal-dual constraints of relaxed LL4) : (4.45) ≠ (4.47) (4.73)

At this point, it should be stressed that this single-level optimization model is
merely a tool used by the strtaegic retailer to determine its strategic making-decisions
{⁄b

t , ⁄s
t , wt} and is not generally fully accurate, as the proposed reformulation of the

LL4 problem implies that it does not generally produce the optimal solution of the
original LL4 problem. As a result, the profit (4.1) determined by the solution of model
(4.67)-(4.73) is the profit estimated by the strategic retailer based on the proposed
model (we will refer to it as estimated profit in the remainder) and is not generally
equal to its actual profit, which is ultimately determined after inputting the values
of optimal set {⁄b

t , ⁄s
t , wt} obtained from model (4.67)-(4.73) to the actual response

models (4.5)-(4.14) and local energy market operation (4.15)-(4.25).

4.4.8 MIQP

Furthermore, it should be noted that the resulting single-level optimization formulation
is characterized by two types of non-convexity and thus any solution obtained by
commercial solvers is not guaranteed to be globally optimal. Therefore, we aim at
transforming this single-level optimization problem into a mixed-integer quadratic
programming (MIQP), which can be e�ciently solved to global optimality using
commercial branch-and-cut solvers.

Linearizing Objective Function

The first one involves the bilinear terms in the objective function (4.67) of single-level
problem, more specifically for (4.1) since the DG is a linear expression. We divided
(4.1) into three parts: the business from individual response OID, the business in local
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energy market OLEM , and the business in wholesale market OW :

OID =
ÿ

t

⁄b
t

1 ÿ

i

di,t +
ÿ

k

sc
k,t

2
≠

ÿ

t

⁄s
t

1 ÿ

j

gj,t +
ÿ

k

sd
k,t

2
(4.74)

OLEM =
ÿ

t

⁄b
tutnt ≠

ÿ

t

⁄s
t(ut ≠ 1)nt (4.75)

OW =
ÿ

t

⁄w
t wt (4.76)

Following the same steps in Chapter 3, the business from the individual response
OID can be linearized by exploiting the strong duality theorem and some of the KKT
optimiality conditions of LL1-3 problems. First of all, multiplying both sides of (4.49)
by di,t, summing for every i œ I, t œ T and rearranging some terms we get:

ÿ

i,t

⁄b
t di,t =

ÿ

i,t

(lD
i,t di,t ≠ 2 qD

i,t d 2
i,t) ≠

ÿ

i,t

µd≠
i,t di,t +

ÿ

i,t

µd+
i,t di,t (4.77)

For complementarity conditions (4.50) and (4.51):

ÿ

i,t

µd≠
i,t di,t = 0 (4.78)

ÿ

i,t

µd+
i,t di,t =

ÿ

i,t

µd+
i,t dmax

i,t (4.79)

By substituting (4.78) and (4.79) into (4.77), renders the equality below:

ÿ

i,t

⁄b
t di,t =

ÿ

i,t

(lD
i,t di,t ≠ 2 qD

i,t d 2
i,t) +

ÿ

i,t

µd+
i,t dmax

i,t (4.80)

Secondly, multiplying both sides of (4.53) by gj,t, summing for every j œ J , t œ T and
rearranging some terms we get:

ÿ

j,t

⁄s
t gj,t =

ÿ

j,t

(lG
j gj,t + 2 qG

j g 2
j,t) ≠

ÿ

j,t

µg≠
j,t gj,t +

ÿ

j,t

µg+
j,t gj,t (4.81)

For complementarity conditions (4.54) and (4.55):

ÿ

j,t

µg≠
j,t gj,t = 0 (4.82)

ÿ

j,t

µg+
j,t gj,t =

ÿ

j,t

µg+
j,t gmax

j,t (4.83)
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By substituting (4.78) and (4.83) into (4.81), renders the equality below:

ÿ

j,t

⁄s
t gj,t =

ÿ

j,t

(lG
j gj,t + 2 qG

j g 2
j,t) +

ÿ

j,t

µg+
j,t gmax

j (4.84)

Finally, We consider the LL3 problem is also a convex optimization problem, thus we can
directly get the strong duality equality through the use of primal-dual transformation:

ÿ

k,t

⁄b
t sc

k,t ≠
ÿ

k,t

⁄s
t sd

k,t = ≠
ÿ

k,(t=1)
›k,t E0

k +
ÿ

k

›0
k E0

k +
ÿ

k,t

µse≠
k,t Emin

k ≠

ÿ

k,t

µse+
k,t Emax

k ≠
ÿ

k,t

µsc+
k,t Smax

k ≠
ÿ

k,t

µsd+
k,t Smax

k (4.85)

By combining (4.80), (4.84) and (4.4.8), renders the equality below:

OID =
ÿ

i,t

(lD
i,t di,t ≠ 2 qD

i,t d 2
i,t) +

ÿ

i,t

µd+
i,t dmax

i,t ≠
ÿ

j,t

(lG
j gj,t + 2 qG

j g 2
j,t)≠

ÿ

j,t

µg+
j,t gmax

j ≠
ÿ

k,(t=1)
›k,t E0

k +
ÿ

k

›0
k E0

k +
ÿ

k,t

µse≠
k,t Emin

k ≠
ÿ

k,t

µse+
k,t Emax

k ≠

ÿ

k,t

µsc+
k,t Smax

k ≠
ÿ

k,t

µsd+
k,t Smax

k (4.86)

However, the above techniques are not applicable to OLEM , since its corresponding
LL4 problem is non-convex and therefore strong duality does not hold. In order to
address this challenge, the linearization of mixed-integer products [106] and the binary
expansion approach [107, 108] are employed. The first step is introducing a new
continuous variable xnet

t = utnt to linearize the product of the binary variable ut and
the continuous variable nt, and formulate the utnt into the below mix-integer linear
constraint (4.87):

Mnet ≠ (1 ≠ ut)Mnet Æ xnet
t Æ utM

net (4.87)

where Mnet is the big-M values to bound the continuous variables nt and is selected
as tightly as possible. The second step is letting {⁄b

t , ⁄s
t , l = 1, 2, ..., L} be a set of

discrete values in the range [0, ⁄max] as prescribed by the physical bounds (4.2)-(4.3).
Then, the variables ⁄b

t , ⁄s
t can be expressed as the following sum of binary variables:

⁄b
t =

logL
2 ≠1ÿ

n=0
2n —b yb

t,n, ’t (4.88)
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⁄s
t =

logL
2 ≠1ÿ

n=0
2n —s ys

t,n, ’t (4.89)

where —b = —s = ⁄max

L≠1 and yb
t,n, ys

t,n are the auxiliary binary variables. Multiplying
both sides of (4.88) and (4.89) by xnet

t , and both sides of (4.89) by nt, summing for
every t, and defining three dummy variables zb

t,n, zs
t,n, zs0

t,n, results in:

ÿ

t

⁄b
t xnet

t =
ÿ

t,n

2n —b zb
t,n (4.90)

ÿ

t

⁄s
t xnet

t =
ÿ

t,n

2n —s zs
t,n (4.91)

ÿ

t

⁄s
t nt =

ÿ

t,n

2n —b zs0
t,n (4.92)

zb
t,n = yb

t,n xnet
t (4.93)

zs
t,n = ys

t,n xnet
t (4.94)

zs0
t,n = ys

t,n nt (4.95)

Therefore, the bilinear terms q
t ⁄b

t xnet
t , q

t ⁄s
t xnet

t and q
t ⁄s

t nt can be replaced by
the expressions in the right side of (4.90), (4.91) and (4.92) which are all linear. The
product of variables in (4.93), (4.94) and (4.95) can be transformed into the following
equivalent mixed-integer linear constraints:

M b ≠ (1 ≠ yb
t,n)M b Æ zb

t,n Æ yb
t,nM b, ’t, ’n (4.96)

M s ≠ (1 ≠ ys
t,n)M s Æ zs

t,n Æ ys
t,nM s, ’t, ’n (4.97)

M s ≠ (1 ≠ ys
t,n)M s Æ zs0

t,n Æ ys
t,nM s, ’t, ’n (4.98)

where M b, M s are two positive constants that are large enough for (4.96)-(4.97) to
hold when yb

t,n = ys
t,n = 0 and yb

t,n = ys
t,n = 1, respectively.

Based on the above derivations, the business in the local energy market OLEM can be
expressed by the following expression, and subject to the above mixed-integer linear
constraints (4.96)-(4.98):

OLEM =
ÿ

t,n

2n —b zb
t,n ≠

ÿ

t,n

2n —s zs
t,n +

ÿ

t,n

2n —b zs0
t,n (4.99)



4.4 Formulation 105

Linearizing complementarity conditions

The second one is the bilinear terms in the complementarity conditions (4.50)-(4.51),
(4.54)-(4.55), and (4.61)-(4.66), which can be expressed in the generic form 0 Æ µ ‹
p Ø 0, with µ and p representing generic dual and primal terms respectively. The
linearization approach proposed in [92] replaces each of these conditions with the set
of mixed-integer linear conditions µ Ø 0, p Ø 0, µ Æ ÊMµ, p Æ (1 ≠ Ê)Mp, where Ê is
an auxiliary binary variable, while Mµ and Mp are large positive constants.

The values of the parameters Mµ and Mp should be suitably selected in order to
achieve not only accurate but also computationally e�cient solution of the MIQP.
Specifically, Mµ and Mp should be large enough in order to avoid imposing additional
upper bounds on the decision variables and thus resulting in an inaccurate solution of
the MIQP. On the other hand, extremely large values should be avoided as they hinder
the convergence of branch-and-cut solvers and result in large computational times
[91]. Suitable values of the parameters Mp corresponding to primal terms can be more
easily determined based on the bounds of primal variables which correspond to explicit
physical limits. For example, the parameter Mp corresponding to the primal term of
the complementarity constraint (4.50) is set equal to the maximum demand limit dmax

i,t

which physically limits the primal variable di,t. Suitable selection of the parameters
Mµ corresponding to dual terms is more challenging since the dual variables do not
exhibit explicit physical limits. In this context, the heuristic approach presented in
[91] has been employed to tune parameters Mµ.

Final MIQP Formulation

Considering the three linearization techniques presented above, the final single-level
optimization problem (4.67)-(4.73) can be transformed into the MIQP problem given by
(4.100)-(4.178). Where the set of decision variables of the MIQP formulation includes
the set (4.68) as well as the auxiliary binary variables introduced for linearizing
(4.50)-(4.51), (4.54)-(4.55), and (4.61)-(4.66).

max
V,Z,S

Profit ≠ W ú DG (4.100)
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where:

Profit =
ÿ

i,t

(lD
i,t di,t ≠ 2 qD

i,t d 2
i,t) +

ÿ

i,t

µd+
i,t dmax

i,t ≠
ÿ

j,t

(lG
j gj,t + 2 qG

j g 2
j,t)≠

ÿ

j,t

µg+
j,t gmax

j ≠
ÿ

k,(t=1)
›k,t E0

k +
ÿ

k

›0
k E0

k +
ÿ

k,t

µse≠
k,t Emin

k ≠

ÿ
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ÿ
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V = {⁄b
t , ⁄s

t , wt, di,t, gj,t, sc
k,t, sd

k,t, Ek,t, diÕ,t, gjÕ,t, sc
kÕ,t, sd

kÕ,t, EkÕ,t, ut, nt,

µd≠
i,t , µd+

i,t , µg≠
j,t , µg+

j,t , ›k,t, µse≠
k,t , µse+

k,t , µsc≠
k,t , µsc+

k,t , µsd≠
k,t , µsd+

k,t , ›0
k,

⁄l
t, µd+

iÕ,t, µg+
jÕ,t, ›kÕ,t, µse≠

kÕ,t , µse+
kÕ,t , µsc+

kÕ,t , µsd+
kÕ,t , ›0

kÕ , µu+
t } (4.103)

Z = {zb
t,n, zs

t,n, zs0
t,n, yb

t,n, ys
t,n} (4.104)

S = {Êd≠
i,t , Êd+

i,t , Êg≠
j,t , Êg+

j,t , Êse≠
k,t , Êse+

k,t , Êsc≠
k,t , Êsc+

k,t , Êsd≠
k,t , Êsd+

k,t , } (4.105)

subject to:
UL constraints:

⁄min Æ ⁄b
t Æ ⁄max, ’t (4.106)

⁄min Æ ⁄s
t Æ ⁄max, ’t (4.107)

ÿ

i

di,t ≠
ÿ

j

gj,t +
ÿ

k

(sc
k,t ≠ sd

k,t) + nt = wt, ’t (4.108)

KKT optimality conditions and linearized complementary conditions of the LL1 prob-
lem:

⁄b
t ≠ (lD

i,t ≠ 2 qD
i,t di,t) ≠ µd≠

i,t + µd+
i,t = 0, ’i, ’t (4.109)
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µd≠
i,t Ø 0, ’i, ’t (4.110)

di,t Ø 0, ’i, ’t (4.111)

µd≠
i,t Æ Êd≠

i,t Mµ, ’i, ’t (4.112)

di,t Æ (1 ≠ Êd≠
i,t ) MP , ’i, ’t (4.113)

µd+
i,t Ø 0, ’i, ’t (4.114)

dmax
i,t ≠ di,t Ø 0, ’i, ’t (4.115)

µd+
i,t Æ Êd+

i,t Mµ, ’i, ’t (4.116)

dmax
i,t ≠ di,t Æ (1 ≠ Êd+

i,t ) MP , ’i, ’t (4.117)

KKT optimality conditions and linearized complementary conditions of the LL2 prob-
lem:

(lG
j + 2 qG

j gj,t) ≠ ⁄s
t ≠ µg≠

j,t + µg+
j,t = 0, ’j, ’t (4.118)

µg≠
j,t Ø 0, ’j, ’t (4.119)

gj,t Ø 0, ’j, ’t (4.120)

µg≠
j,t Æ Êg≠

j,t Mµ, ’j, ’t (4.121)

gj,t Æ (1 ≠ Êg≠
j,t ) MP , ’j, ’t (4.122)

µg+
j,t Ø 0, ’j, ’t (4.123)

gmax
j ≠ gj,t Ø 0, ’j, ’t (4.124)

µg+
j,t Æ Êg+

j,t Mµ, ’j, ’t (4.125)

gmax
j ≠ gj,t Æ (1 ≠ Êg+

j,t ) MP , ’j, ’t (4.126)

KKT optimality conditions and linearized complementary conditions of the LL3 prob-
lem:

⁄b
t ≠ ›k,t ÷c

k ≠ µsc≠
k,t + µsc+

k,t = 0, ’k, ’t (4.127)

≠ ⁄s
t + ›k,t/÷d

k ≠ µsd≠
k,t + µsd+

k,t = 0, ’k, ’t (4.128)

›k,t ≠ ›k,t+1 ≠ µse≠
k,t + µse+

k,t = 0, ’k, ’t < NT (4.129)

›k,t ≠ ›0
k ≠ µse≠

k,t + µse+
k,t = 0, ’kÕ, t = NT (4.130)

µse≠
k,t Ø 0, ’k, ’t (4.131)
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Ek,t ≠ Emin
k Ø 0, ’k, ’t (4.132)

µse≠
k,t Æ Êse≠

k,t Mµ, ’k, ’t (4.133)

Ek,t ≠ Emin
k Æ (1 ≠ Êse≠

k,t )MP , ’k, ’t (4.134)

µse+
k,t Ø 0, ’k, ’t (4.135)

Emax
k ≠ Ek,t Ø 0, ’k, ’t (4.136)

µse+
k,t Æ Êse+

k,t Mµ, ’k, ’t (4.137)

Emax
k ≠ Ek,t Æ (1 ≠ Êse+

k,t )MP , ’k, ’t (4.138)

µsc≠
k,t Ø 0, ’k, ’t (4.139)

sc
k,t Ø 0, ’k, ’t (4.140)

µsc≠
k,t Æ Êsc≠

k,t Mµ, ’k, ’t (4.141)

sc
k,t Æ (1 ≠ Êsc≠

k,t )MP , ’k, ’t (4.142)

µsc+
k,t Ø 0, ’k, ’t (4.143)

smax
k ≠ sc

k,t Ø 0, ’k, ’t (4.144)

µsc+
k,t Æ Êsc+

k,t Mµ, ’k, ’t (4.145)

smax
k ≠ sc

k,t Æ (1 ≠ Êsc+
k,t )MP , ’k, ’t (4.146)

µsd≠
k,t Ø 0, ’k, ’t (4.147)

sd
k,t Ø 0, ’k, ’t (4.148)

µsd≠
k,t Æ Êsd≠

k,t Mµ, ’k, ’t (4.149)

sd
k,t Æ (1 ≠ Êsd≠

k,t )MP , ’k, ’t (4.150)

µsd+
k,t Ø 0, ’k, ’t (4.151)

smax
k ≠ sd

k,t Ø 0, ’k, ’t (4.152)

µsd+
k,t Æ Êsd+

k,t Mµ, ’k, ’t (4.153)

smax
k ≠ sd

k,t Æ (1 ≠ Êsd+
k,t )MP , ’k, ’t (4.154)
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Primal-dual constraints of relaxed LL4 problem:

ÿ

iÕ
diÕ,t ≠

ÿ

jÕ
gjÕ,t +

ÿ

kÕ
(sc

kÕ,t ≠ sd
kÕ,t) = nt, ’t (4.155)

0 Æ diÕ,t Æ dmax
iÕ,t , ’iÕ, ’t (4.156)

0 Æ gjÕ,t Æ gmax
jÕ , ’jÕ, ’t (4.157)

EkÕ,t = EkÕ,t≠1 + sc
kÕ,t ÷c

kÕ ≠ sd
kÕ,t/÷d

kÕ , ’kÕ, ’t (4.158)

Emin
kÕ Æ EkÕ,t Æ Emax

kÕ , ’kÕ, ’t (4.159)

0 Æ sc
kÕ,t Æ smax

kÕ , ’kÕ, ’t (4.160)

0 Æ sd
kÕ,t Æ smax

kÕ , ’kÕ, ’t (4.161)

E0
kÕ = EkÕ,NT , ’kÕ (4.162)

⁄l
t ≠ (lD

iÕ,t ≠ 2 qD
iÕ,t diÕ,t) + µd+

iÕ,t Ø 0, ’iÕ, ’t (4.163)

(lG
jÕ ≠ 2 qG

jÕ gjÕ,t) ≠ ⁄l
t + µg+

jÕ,t Ø 0, ’jÕ, ’t (4.164)

⁄l
t ≠ ’kÕ,t ›c

kÕ + µsc+
kÕ,t Ø 0, ’kÕ, ’t (4.165)

≠ ⁄l
t + ›kÕ,t/÷d

kÕ + µsd+
kÕ,t Ø 0, ’kÕ, ’t (4.166)

’kÕ,t ≠ ’kÕ,t+1 ≠ µse≠
kÕ,t + µse+

kÕ,t Ø 0, ’kÕ, ’t < NT (4.167)

’kÕ,t ≠ ›0
kÕ ≠ µse≠

kÕ,t + µse+
kÕ,t Ø 0, ’kÕ, t = NT (4.168)

⁄b
t ut ≠ ⁄s

t (ut ≠ 1) ≠ ⁄l
t Ø 0, ’t (4.169)

⁄b
t nt ≠ ⁄s

t nt + µu+
t Ø 0, ’t (4.170)

µd+
iÕ,t Ø 0, ’iÕ, ’t (4.171)

µg+
jÕ,t Ø 0, ’jÕ, ’t (4.172)

µse≠
kÕ,t , µse+

kÕ,t , µsc+
kÕ,t , µsd+

kÕ,t Ø 0, ’kÕ, ’t (4.173)

µu+
t Ø 0, ’t (4.174)

ut œ {0, 1}, ’t (4.175)
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Equivalent mixed-integer linear constraints to linearize the products of binary and
continuous variables:

M b ≠ (1 ≠ yb
t,n)M b Æ zb

t,n Æ yb
t,nM b, ’t, ’n (4.176)

M s ≠ (1 ≠ ys
t,n)M s Æ zs

t,n Æ ys
t,nM s, ’t, ’n (4.177)

M s ≠ (1 ≠ ys
t,n)M s Æ zs0

t,n Æ ys
t,nM s, ’t, ’n (4.178)

4.5 Case Studies

4.5.1 Test Data and Implementation

The examined case studies apply the model developed in Section 4.4 in the context of a
single day with hourly resolution, i.e. T = {1, 2, .., 24}. The examined retailer serves a
set of customers including 12 FC of three di�erent types, 6 MG of three di�erent types
and 2 identical ES, which are presented in Table 4.2. The total generation capacity
of the 6 MG (Table 4.3) and the total power capacity of the 2 ES (Table 4.4) are
assumed to be equal to 50% and 10% of the aggregate peak demand of the 12 FC (Fig.
4.4), respectively; these designing assumptions are made to ensure that a potential
LEM among the retailer’s customers can enable substantial amounts of energy trading
between them, and examine conditions where the LEM can be both a buyer (during
peak demand hours), but also a seller (during o�-peak demand hours) of energy to
the retailer. The assumed wholesale market prices across the examined day follow
the pattern of a typical winter day in the UK, illustrated in Fig. 4.5. Finally, the
maximum retail price is assumed ⁄max = 250£/MWh.

Table 4.2 Energy use types and sizes of flexible consumers.

Consumer i 1-6 7-10 11-12

Type Residential Commercial Industrial
Size (%) 32.88 37.00 30.12

The final MIQP model (Section 4.4.8) has been implemented and solved using the
optimization software FICOTM Xpress [93] on a computer with a 6-core 3.50 GHz
Intel(R) Xeon(R) E5-1650 v3 processor and 32 GB of RAM. It should be mentioned
that this kind of relaxation and primal-dual reformulation approach is limited to the
size of the problem. Given the examined case (12 FC, 6 MG, 2 ES) presented in this
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Table 4.3 Operating parameters of micro-generators.

Micro-generator j Type lG
j (£/MWh) qG

j (£/MW2h) gG
j (MW)

1 Fuel cell 3 0.05 67.5
2 Fuel cell 3 0.05 67.5
3 Microturbine 8 0.09 40.5
4 Microturbine 8 0.09 40.5
5 Microturbine 13 0.14 27
6 Microturbine 13 0.14 27

Table 4.4 Operating parameters of energy storages.

Energy storage k Emax
k (MWh) Emin

k (MWh) E0
k (MWh) Smax

k (MW) ÷c
k, ÷d

k (%)

1 108 21.6 27 27 90
2 108 21.6 27 27 90

Fig. 4.4 Maximum demand of the aggregated consumers.
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Fig. 4.5 Wholesale market price of the examined day.

work, the average computational time required for solving this MIQP across all the
examined scenarios was around 62.8s.

4.5.2 Impact of Local Energy Market

The aim of the presented studies lies in analyzing the e�ects of introducing an LEM
among the retailer’s customers on both the retailer’s and the customers’ economic
surplus. In this context, we examine three di�erent scenarios regarding the composition
of this LEM:

(i) No LEM: This constitutes the benchmark scenario where an LEM does not exist
and all customers interact individually with the retailer.

(ii) Small LEM: Half of the retailer’s customers (6 FC, 3 MG and 1 ES) participate
in the LEM while the other half interacts individually with the retailer.

(iii) Large LEM: All customers participate in the LEM.

For each of these scenarios, Fig. 4.6 illustrates the hourly profiles of the net
demand of the LEM nt (nt > 0 if the LEM buys energy from the retailer, nt < 0 if
the LEM sells energy to the retailer); Fig. 4.7 illustrates the hourly profiles of the
aggregate charging / discharging power of the 2 ES (positive values indicate charging
and negative values indicate discharging); Fig. 4.8 illustrates the hourly profiles of the
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total customers’ demand served by the retailer (q
i di,t + q

k sc
k,t + utnt); and Fig. 4.9

illustrates the hourly profiles of the total customers’ generation served by the retailer
(q

j gj,t + q
k sd

k,t + (ut ≠ 1)nt).
Furthermore, Fig. 4.10 illustrates the hourly profiles of the retail buy prices ⁄b

t

o�ered by the retailer (and the wholesale prices ⁄w
t for comparison purposes); Fig. 4.11

illustrates the hourly profiles of the retail sell prices ⁄s
t o�ered by the retailer (and the

wholesale prices ⁄w
t for comparison purposes); Fig. 4.12 illustrates the hourly profiles

of the clearing prices of the LEM (in the two scenarios with LEM), which correspond
to the dual variables of constraints (4.21) (and the buy and sell prices o�ered by the
retailer in the No LEM scenario for comparison purposes); and Fig. 4.13 illustrates
the hourly profiles of the comparison between the retail buy prices, retail sell prices
and LEM clearing prices in the Small LEM scenario.

Fig. 4.6 Net demand of LEM for di�erent scenarios.

In the benchmark scenario (No LEM scenario), both the total demand and the
total generation served by the retailer exhibit the highest values across all hours (Fig.
4.8 and 4.9, respectively). This is because in the absence of an LEM, the only option
for the customers to buy and sell energy is through the retailer. The strategic retailer
exploits this dependency of its customers by o�ering very high buy prices (significantly
higher than the wholesale prices) to demanding customers (Fig. 4.10) and very low
sell prices (significantly lower than the wholesale prices) to generating customers (Fig.
4.11); please note that, for clarity purposes, the high wholesale prices during hours
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Fig. 4.7 Aggregare charging / discharging power of all ES for di�erent scenarios.

9-22 are not presented in this figure) in order to maximize its overall profit (4.1). In
other words, the strategic retailer exploits the customers by setting large di�erentials
between buy and sell prices.

The o�ered buy prices are higher during peak hours, driven by a combination of
the higher energy requirements of the retailer’s consumers and the higher wholesale
prices. The o�ered sell prices are also higher during peak hours, as the retailer strives
to attract higher generation by its customers in order to reduce its net demand in
the wholesale market which exhibits higher prices at these hours. However, even the
lowest buy price (o�ered at hour 5) is higher than the highest sell price (o�ered at
hours 10-21), rendering energy arbitrage non-profitable. As a result, the ES served by
the retailer prefer to remain idle (neither charge nor discharge throughout the day) in
order to avoid negative profits (Fig. 4.7).

When an LEM is introduced (Small LEM and Large LEM scenarios), the participat-
ing customers have the additional option (apart from trading energy with the retailer)
to trade energy between them. Given that the retailer o�ers very high buy prices and
very low sell prices in the No LEM scenario, the LEM participants choose to exercise
this option and trade energy at intermediate prices (Fig. 4.12), which is mutually
beneficial for all FC, MG and ES participants. As a result, the dependency of the LEM
participants on the retailer is limited; both the total demand and the total generation
served by the retailer are significantly reduced (Fig. 4.8 and 4.9, respectively). It is
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Fig. 4.8 Total demand served by the retailer for di�erent scenarios.

Fig. 4.9 Total generation served by the retailer for di�erent scenarios.
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worth noting however that although this dependency is reduced, it is not completely
eliminated; the LEM still: i) buys energy from the retailer at peak hours, since its
available generation and storage capacity is not su�cient to cover the high demand
requirements during these hours, and ii) sells energy to the retailer at o�-peak hours,
since its available generation capacity is higher than the low demand requirements
during these hours (Fig. 4.6).

Regarding the ES customers in particular, it is worth stressing that in these two
scenarios, in contrast with the No LEM scenario, the ES participating in the LEM do
not remain idle and carry out charging / discharging actions (Fig. 4.7), since such
actions are beneficial for both: i) the ES participants themselves, given that they now
face the LEM clearing prices which, in contrast to the retailer’s di�erentiated buy and
sell prices, render energy arbitrage profitable, as they are higher during peak hours
and lower during o�-peak hours (Fig. 4.12), and ii) the LEM as a whole, given that
these actions further limit the dependency of the LEM on the retailer, as less demand
is served by the retailer during peak hours (due to ES discharging) and less generation
is served by the retailer during o�-peak hours (due to ES discharging). In the same
vein, it is noted that in the Small LEM scenario, the charging / discharging actions
illustrated in Fig. 4.7 correspond to the ES participating in the LEM while the other
ES still remains idle.

As expected, this e�ect of limiting the dependency of the customers on the retailer
is enhanced when all customers participate in the LEM (Large LEM scenario) with
respect to the scenario where only half of them participate (Small LEM scenario). In
particular, during the o�-peak hours 24-8, the demand served by the retailer becomes
zero (Fig. 4.8), as the available generation capacity is able to cover the low demand
requirements; on the other hand, during the peak hours 9-23, the generation served by
the retailer becomes zero (Fig. 4.9), as the whole generation and storage capacity is
utilized within the LEM to cover a part of the high demand requirements and limit as
much as possible the dependency of the consumers on the retailer.

As a result of this e�ect of LEM in limiting the dependency of the customers on the
retailer, the latter reduces substantially the o�ered buy prices across the majority of
hours (Fig. 4.10) in order to attract higher demand from its demanding customers and
compensate the reduction of its served demand caused by the LEM. In mathematical
terms, this is due to the fact that the revenue of the retailer (first term of its overall
profit (4.1)) depends on the summation of the buy price-demand products across all
hours, i.e. the retailer needs to balance the trade-o� between buy prices and customers’
demand. In the Large LEM scenario and during the o�-peak hours 24-8, given that
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Fig. 4.10 Buy prices o�ered by the retailer for di�erent scenarios.

Fig. 4.11 Sell prices o�ered by the retailer for di�erent scenarios.
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Fig. 4.12 LEM clearing prices for di�erent scenarios.

Fig. 4.13 Buy prices, sell prices and LEM clearing prices in the Small LEM scenario.
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the demand served by the retailer is zero (Fig. 4.8), the o�ered buy prices have no
physical impact (in mathematical terms they constitute free variables) and thus are
omitted from Fig. 4.10.

In a similar spirit, the retailer increases substantially the o�ered sell prices across the
majority of hours (Fig. 4.11) in order to attract higher generation from its generating
customers and compensate the reduction of its served generation caused by the LEM. In
mathematical terms, although this increase of the sell prices and customers’ generation
increases its cost at the retail side (second term of its overall profit (4.1)), it reduces
its net demand wt in the wholesale market (4.4) and therefore reduces its cost (during
peak hours) and increases its revenue (during o�-peak hours) at the wholesale side
(third term of its overall profit (4.1)). In the Large LEM scenario and during the peak
hours 9-23, given that the generation served by the retailer is zero (Fig. 4.9), the
o�ered sell prices have no physical impact (in mathematical terms they constitute free
variables) and thus are omitted from Fig. 4.11.

From a higher-level perspective, the above trends imply that the introduction of
the LEM limits the retailer’s strategic potential of exploiting the customers by setting
large di�erentials between buy and sell prices. The o�ered buy prices are reduced and
the o�ered sell prices are increased, i.e. they both move closer to the wholesale prices,
implying that the retailer behaves more competitively.

It is also worth noting that in the Small LEM scenario and during o�-peak hours,
the LEM clearing prices are equal to the sell prices o�ered by the retailer (since the
LEM sells its excess generation to the retailer), which are significantly lower than the
buy prices o�ered at the same hours (Fig. 4.13); this implies that FC participating in
the LEM gain significant benefits with respect to individual FC during these hours. In
a similar vein, during peak hours, the LEM clearing prices are equal to the buy prices
o�ered by the retailer (since the LEM buys its excess demand from the retailer), which
are significantly higher than the sell prices o�ered at the same hours; this implies that
MG participating in the LEM gain significant benefits with respect to individual MG
during these hours.

Having analyzed the fundamental interactions between the retailer and the LEM
through the demand / generation profiles of Fig. 4.6-4.9 and the price profiles of Fig.
4.10-4.13, the final part of this analysis lies in quantifying and analyzing the overall
economic e�ects of the LEM on both the retailer and its customers. Starting from
the former, Table I presents the total (daily) profit of the examined retailer and its
three components (corresponding to the three terms of (4.1)), for each of the examined
scenarios.
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Table 4.5 Profit of Retailer for Di�erent Scenarios.

Scenario Revenue (£) Retail cost (£) Wholesale net cost (£) Profit (£)

No LEM 913,313 96,288 93,645 723,380
Small LEM 645,532 61,635 174,032 409,866
Large LEM 402,109 10,522 271,815 119,772

We start our analysis from the retailer’s revenue which, as demonstrated in Table
4.5, constitutes the most significant component of its overall profit. This revenue is
greatly reduced in the Small LEM scenario (29% with respect to the No LEM scenario)
and further reduced in the Large LEM scenario (56% with respect to the No LEM
scenario). This trend is driven by the fact that the introduction of the LEM reduces
both the total demand served by the retailer (Fig. 4.8) and the buy prices o�ered by
the retailer (Fig. 4.10).

In a similar vein, the retailer’s cost of buying energy from its generating customers
is substantially reduced (36% in the Small LEM scenario and 89% in the Large LEM
scenario). This trend is driven by the fact that the introduction of the LEM reduces
significantly the total generation served by the retailer (Fig. 4.9), despite the relatively
small increase of the sell prices o�ered by the retailer (Fig. 4.11).

Going further, the retailer’s net cost in the wholesale market is significantly increased
(86% in the Small LEM scenario and 190% in the Large LEM scenario). This trend is
driven by the fact that the introduction of the LEM reduces the total generation served
by the retailer to a higher extent than the reduction of the total demand served by the
retailer (Fig. 4.8 and 4.9), especially during peak hours when the di�erence between
the LEM clearing prices and the sell prices o�ered by the retailer are extremely high
(Fig. 4.12). As a result, the retailer needs to buy more energy in the wholesale market,
especially during peak periods which are characterized by high wholesale prices.

Overall, the introduction of the LEM reduces very significantly the retailer’s total
profit (43% in the Small LEM scenario and 83% in the Large LEM scenario), driven
primarily by the reduction of its retail net revenue and secondarily by the increase of
its wholesale net cost.

Moving our focus to the customers, Tables 4.6-4.8 present the total (daily) economic
surplus of two identical FC, two identical MG and the two (identical) ES. The only
di�erence between the two members of each of these sets of customers lies in the fact
that, in the Small LEM scenario, the first member (the one corresponding to the
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second column of Tables 4.6-4.8) participates in the LEM while the second (the one
corresponding to the third column of Tables 4.6-4.8) does not.

Table 4.6 Utility of Flexible Consumers for Di�erent Scenarios.

Scenario Utility of FC1 (£) Utility of FC2 (£)

No LEM 32,890 32,890
Small LEM 55,220 46,279
Large LEM 70,327 70,327

Table 4.7 Profit of Micro-generators for Di�erent Scenarios.

Scenario Profit of MG1 (£) Profit of MG2 (£)

No LEM 16,395 16,395
Small LEM 154,956 20,266
Large LEM 141,460 141,460

Table 4.8 Profit of Energy Storages for Di�erent Scenarios.

Scenario Profit of ES1 (£) Profit of ES2 (£)

No LEM 0 0
Small LEM 14,991 0
Large LEM 14,276 14,276

The surplus of most customers is increased in the Small LEM scenario with respect
to the No LEM scenario. This beneficial impact of the LEM is evident even for FC
and MG not participating in the LEM, driven by the fact that the introduction of the
LEM reduces the buy prices and increases the sell prices o�ered by the retailer (Fig.
4.10 and 4.11). The only exception to this beneficial impact is ES2; in a similar fashion
with the response of the two ES in the No LEM scenario, ES2 remains idle and thus
makes zero profit (Table 4.8), since the lowest buy price is still higher than the highest
sell price, despite the above e�ects of the LEM (Fig. 4.13).

However, this beneficial impact is significantly higher for customers participating
in the LEM, since they trade energy based on the LEM clearing prices. As previously
discussed, during o�-peak hours, these prices are substantially lower than the buy
prices o�ered by the retailer, creating additional benefits for FC1 participating in the
LEM with respect to the individual FC2 (Table 4.6). In a similar vein, during peak
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hours, the LEM clearing prices are significantly higher than the sell prices o�ered by
the retailer, creating additional benefits for MG1 with respect to the individual MG2
(Table 3.1); it is worth noting that the surplus di�erence between MG1 and MG2 is
significantly higher than the one between FC1 and FC2, due to the extremely high
di�erence between the LEM clearing prices and the retailer’s sell prices during peak
hours. Considering ES1 participating in the LEM, in contrast with the individual
ES2, it does not remain idle and carries charging / discharging actions which generate
positive profits (Table 4.8), since it faces the LEM clearing prices which are higher
during peak hours and lower during o�-peak hours (Fig. 4.12).

In the Large LEM scenario, the utility of FC1 is further increased with respect to
the Small LEM scenario, since the LEM clearing prices are reduced during peak hours
(Fig. 4.12), driven by the participation of more generation and storage capacity in
the LEM. On the other hand, this reduction of the LEM clearing prices during peak
hours causes a reduction of the profit of MG1 and ES1 with respect to the Small LEM
scenario. Finally, the surplus of FC2, MG2 and ES2 increases, since, in contrast with
the Small LEM scenario, they now participate in the LEM and face the more favorable
LEM clearing prices.

4.5.3 E�ectiveness of Proposed Relaxation Approach

As discussed in Section 4.4.7, the proposed single-level optimization model is a multi-
objective optimization problem, thus the e�ectiveness of the proposed model highly
depends on the selection of W . In order to quantitatively demonstrate this, we select
the large community scenario as the examined case, execute the proposed model for
di�erent values of W and compare its respective solutions in terms of: i) the DG
determined by the proposed model; ii) the minimum DG obtained in (4.44)-(4.47)
given the optimal value of ⁄b

t , ⁄s
t , wt determined by the proposed model; iii) the profit

of retailer determined by the proposed model; and iv) the actual profit of retailer
obtained through the actual response problems (4.5)-(4.25) after inputting the optimal
value of ⁄b

t , ⁄s
t determined by the proposed model. The results of this analysis are

included in Tables 4.9.
These results demonstrate that relatively small values of W (1-100) do not su�-

ciently penalize the DG in the objective function (4.100) and therefore the optimal
DG is higher than the minimum DG. This means that the model is not as accurate
as it could be in approximating the community response solution of the original LL4
problem. Intuitively, this implies a higher profit than the actual profit as the objective
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Table 4.9 Performance of Proposed Approach for Di�erent Values of Penality Value W .

W Proposed DG (£) Mini DG (£) Proposed Profit (£) Actual Profit (£)

1 6,887 5,689 125,012 108,843
10 5,839 4,641 123,066 110,041
100 3,593 3,144 120,820 116,628
1,000 1,647 1,647 120,071 119,772
10,000 1,198 1,198 117,077 118,425

of optimization concentrates on profit maximization. However, the optimal profit is
far away from the actual profit, leading to the over-optimistic strategies. Driven by
this reason, increasing values of W corrects the above problem, the optimal DG equals
to the minimum DG above 1,000. However, a significant higher value of W results in
another issue, retailer’s profit becomes less important in the objective (4.100) and leads
to the under-optimistic strategies. Eventually, the best value selection of W exists
the highest actual profit with the zero di�erence between the optimal DG and the
minimum DG. In this case, W = 1, 000 (Table 4.9) is the one to be selected.
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4.6 Conclusions

This chapter has explored for the first time the interactions between the operation of
LEM with di�erent types of participants (FC, MG and ES) and the strategic pricing
decisions of incumbent electricity retailers, and has quantitatively analyzed the overall
economic e�ects of LEM on both the retailer and its customers. In order to achieve
that, this chapter has developed a novel multi-period bi-level optimization model,
which captures the pricing decisions of a retailer in the upper level (UL) problem
and the response of both independent customers and the LEM in the lower level (LL)
problems. Since the LL problem representing the LEM is non-convex, the traditional
MPEC approach is not applicable for solving the developed bi-level problem, and a
new approach recently proposed by the authors is employed instead, which is based on
the relaxation and primal-dual reformulation of the non-convex LL problem and the
penalization of the associated duality gap.

The presented case studies have provided numerous new and valuable insights
around the role and impact of LEM. First of all, the introduction of an LEM is shown
to reduce the customers’ energy dependency on the retailer, since they are able to
trade energy among them at prices which lie between the retailer’s high buy prices
and low sell prices, which is mutually beneficial for all FC, MG and ES participants;
regarding the latter, the LEM is shown to unlock their arbitrage potential and activate
them in the market. As a consequence, the retailer’s strategic potential of exploiting
the customers through large di�erentials between buy and sell prices is limited, and
the retailer strives to make its o�ered buy and sell prices more competitive in order to
attract more demand and generation by its customers. As a result of these e�ects, the
profit of the retailer is very significantly reduced, while the customers enjoy significant
economic benefits. Although this beneficial impact of LEM is significantly higher
for customers participating in the LEM, it is also substantial for non-participating
customers, due to the above e�ects of the LEM on the retailer’s o�ered prices.



Chapter 5

Strategic Pricing for Electric
Vehicles with Discrete Charging

5.1 Introduction

Environmental and energy security concerns have driven governments worldwide to take
significant initiatives towards the decarbonization of both generation and demand sides
of energy systems [1]. However, these decarbonization initiatives introduce significant
techno-economic challenges to the operation and development of electricity systems.
At the generation side, the decarbonization agenda involves the large-scale integration
of renewable generation, which is however inherently characterized by high variability
and limited controllability, challenging the cost-e�cient balancing of the electricity
system. At the demand side, the decarbonization agenda involves the electrification of
certain sectors, with the electrification of the transport sector through the large-scale
integration of electric vehicles (EV) being one of the key priorities. However, due to the
natural energy intensity and temporal demand patterns of transportation vehicles, this
paradigm change is accompanied by a significant increase of demand peaks, driving
capital-intensive generation and network investments [94].

In this setting, flexible demand technologies, enabling redistribution of electricity
demand in time, have recently attracted great interest, since they exhibit the potential
to support system balancing and limit demand peaks, thus improving significantly
the cost-e�ectiveness of low-carbon electricity systems [94, 2, 6]. Amongst such
flexible demand technologies, EV exhibit an outstanding flexibility potential due to
their inherent ability to store electrical energy in their batteries, their low energy
consumption requirements with respect to the significant capacity of their batteries,
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and the Vehicle-to-Grid (V2G) capability which enables EV to inject stored energy
back to the grid [109–111].

Beyond the above decarbonization initiatives however, governments worldwide have
also taken significant initiatives towards the deregulation of the electricity industry,
involving unbundling of vertically integrated monopoly utilities and the introduction of
competition in both generation and retail sectors [7]. In this deregulated environment,
the realization of the EV flexibility potential needs to be driven by their full and
suitable integration in electricity markets. One of the most promising mechanisms to
achieve such market integration is EV aggregation [112], given that individual EV do
not have su�cient capacity to participate independently in the wholesale electricity
market. An EV aggregator (which is a role that can also be taken in practice by
electricity suppliers) represents a large number of EV in the wholesale market and
coordinate their operation according to the market conditions and the EV operating
characteristics (e.g. travelling patterns and battery’s / charger’s operating parameters)
to maximize its overall profit.

Since centralized, direct coordination approaches su�er from communication, com-
putational and privacy limitations, price-based coordination approaches have lately
attracted significant interest [113]. The EV aggregator o�ers certain retail electricity
prices to the EV which then independently determine their optimal charging / discharg-
ing responses by solving their own cost minimization problems. The prices employed
by the aggregator are usually time-specific in order to activate the EV flexibility and
exploit favorable market conditions. In this context, the EV aggregator requires a
suitable mechanism to design e�ective time-specific prices to maximize its overall profit,
accounting for the response patterns of its EV.

5.2 Literature Review

Bi-level optimization constitutes the most widely employed methodological framework
in the existing literature for addressing this problem [31, 34, 114, 115]. The popularity
of this methodology lies in its ability to capture the interactions between the pricing
optimization problem of the EV aggregator (modeled as the upper level problem -
UL) and the response optimization problems of the EV (modeled as the lower level
problems - LL). All relevant existing works [31, 34, 114, 115] have solved this bi-level
optimization problem by converting it to a single-level Mathematical Program with
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Equilibrium Constraints (MPEC), through the replacement of the LL problems by
their equivalent Karush-Kuhn-Tucker (KKT) optimality conditions.

Nevertheless, this solution approach exhibits two fundamental limitations. First
of all, it implicitly assumes that the aggregator (solving the final MPEC) has perfect
knowledge of the EV operating characteristics (which constitute parameters of the LL
problems) and imperfect knowledge of the EV travelling patterns (which constitute
uncertainties of the LL problems); such an assumption is not generally realistic,
particularly when considering that the current penetration of EV is limited and thus
existing work on the systematic characterization of their operating characteristics
(especially their travelling patterns) is far from comprehensive [116]. Secondly, the
LL problems do not include any binary decision variables since the derivation of the
equivalent KKT optimality conditions is mathematically possible only when these
problems are continuous and convex [77]. As a result, all relevant existing works
[31, 34, 114, 115] make the unrealistic assumption that EV can adjust their charging /
discharging power continuously between zero and maximum rates, and neglect that
current EV battery and charger technologies allow discrete charging / discharging
levels [117–119]. Therefore, employment of this approach may lead to sub-optimal
pricing strategies for the EV aggregator.

To address these two fundamental limitations of previous works, this work resorts
to reinforcement learning (RL) [80] which has recently emerged as an interesting
alternative to MPEC formulations in electricity market modeling problems. In this
modeling framework, the original bi-level optimization problem is not converted to a
single-level, closed-form MPEC. Instead, it is solved in a recursive fashion; the EV
aggregator gradually learns how to improve its pricing strategies (actions) by utilizing
experiences acquired from its repeated interactions with the EV and the wholesale
market. In other words, the aggregator does not rely on knowledge (perfect or imperfect)
of the EV operating characteristics, but only on the observed EV responses (states
of the environment). Furthermore, since this framework avoids the derivation of the
equivalent KKT optimality conditions of the LL problems, it is capable of capturing
the discrete charging / discharging levels of the EV.

However, previous works employing RL in electricity pricing design problems
[39, 120, 121] have employed conventional Q-learning algorithms and its variants [80].
This type of algorithms relies on look-up tables to approximate the action-value function
for each possible state-action pair and thus requires dicretization of both state and
action spaces. Therefore, it su�ers severely from the curse of dimensionality; as the
number of considered discrete states and actions increases, the computational burden
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grows exponentially, soon rendering the problem intractable. If on the other hand a
small number of discrete states and actions are considered, the feedback the aggregator
receives regarding the impact of its pricing actions on the EV is distorted and the
feasible action space is adversely a�ected, leading to sub-optimal pricing decisions.
This challenge is aggravated in the setting of the examined problem, since both states of
the environment (wholesale prices) and actions (retail prices) are not only continuous,
but also multi-dimensional (due to the multi-period nature of the pricing problem).

In the context of addressing such dimensionality challenges, recent work in the
emerging area of deep reinforcement learning (DRL) has proposed the deep Q network
(DQN) method, which employs a deep neural network (DNN) to approximate the action-
value function, and constitutes an extension of Q-learning to the multi-dimensional
continuous state space [87]. Numerous recent papers have applied the DQN method
to di�erent electricity system problems [122–124], although its application in pricing
design problems has yet to be explored. However, although this work has demonstrated
high quality performance of the DQN method in problems with continuous state spaces,
its performance in problems with continuous action spaces is less satisfactory because
the employed DNN is trained to produce discrete action-value estimates rather than
continuous actions [88], which significantly hinders its e�ectiveness in addressing the
examined pricing design problem, since the aggregator’s pricing actions are continuous
and multi-dimensional.

As discussed above, Table 5.1 summarizes and compares the main characteristics
of these works with respect to our work in this chapter.

Table 5.1 Summary of existing literature associated with the examined problem.

Paper
Optimization

model

Require perfect

knowledge

Ability to model

discrete charging levels
State space Action space

[31] Bi-level Yes No - -

[34] Bi-level Yes No - -

[114] Bi-level Yes No - -

[115] Bi-level Yes No - -

[120] Q-learning No Yes Discrete Discrete

[121] Q-learning No Yes Discrete Discrete

[39] Q-learning No Yes Discrete Discrete

[122] DQN No Yes Continuous Discrete

[123] DQN No Yes Continuous Discrete

[124] DQN No Yes Continuous Discrete

This work PDDPG No Yes Continuous Continuous
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5.3 Approach

This chapter proposes a new bi-level optimization problem for modeling the strategic
EV pricing problem, which, in contrast with the existing literature, considers the V2G
capability of EV and the discrete nature of their charging / discharging levels. However,
as discussed in Section 5.2, the existing literature on EV pricing [31, 34, 114, 115] solves
the formulated bi-level optimization problem by converting it to a single-level MPEC,
through the replacement of the LL problems by their equivalent KKT optimality
conditions. This reformulation is possible since the EV response optimization (LL)
problems in this literature are convex as they assume that EV can adjust their charging
/ discharging power continuously. This solution approach is not applicable to our
bi-level optimization problem since the aggregator does not acquire the perfect and
imperfect knowledge of the EV, and the LL EV response problems are non-convex as
they include the binary decision variables in order to capture the discrete nature of
EV charging / discharging.

In order to address this challenge, we adopt a RL-based methodology, since it avoids
the derivation of the equivalent KKT optimality conditions of the LL problem and
solves the above bi-level optimization problem in a recursive fashion. Furthermore,
in contrast with previous RL methods, a novel DRL method is developed to sets up
the problem in multi-dimensional continuous state and action spaces. This method is
named prioritized deep deterministic policy gradient method (PDDPG), as it is founded
on the combination of deep deterministic policy gradient (DDPG) principles with a
prioritized experience replay (PER) strategy.

5.3.1 Modeling Assumptions

For clarity reasons, the main assumptions behind the proposed model are outlined
below:

1. The decision making problem of the examined aggregator considers the interaction
with the number of flexible EV and inflexible EV (to which it sells energy or from
which it buys energy when flexible EV exhibit V2G capability) with the overall aim
of maximizing its profit.

2. It is assumed that the examined aggregator serves a relatively small population of
EV and therefore its decisions do not a�ect the wholesale prices, which are thus
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treated as fixed, exogenous parameters of the problem, i.e., the examined aggregator
is assumed to be a price-taker in the wholesale market.

3. It is practical to assume that the aggregator has imperfect knowledge of the EV
operation characteristics (especially their travelling patterns), when considering that
the current penetration of EV is limited. Thus, the conventional approach of MPEC
assuming that market players have knowledge of the computational algorithm of its
examined problem (formulated as LL problem) generally cannot be applied here,
and this motivates our work into the reinforcement learning approach.

4. In contrast with the traditional fixed pricing or time-of-use pricing regimes where
the o�ered retail prices are flat throughout the examined daily horizon or during
certain intervals of this horizon (e.g. peak and o�-peak periods), the examined
strategic aggregator can o�er hour-specific retail prices to the served EV. In order
to prevent the aggregator from making excessive profits at the expense of the EVs’
cost, regulatory constraints are imposed on the maximum and average retail prices
it can o�er to its served EV [49].

5. The flexibility of served EV is represented as a discrete nature of the EV charging /
discharging levels. In particular, most of the existing works consider the coordination
of EV charging based on the assumption that EVs can adjust their charging power
continuously between zero and their maximum charging rates (i.e., continuous
charging). However, due to the limitations of the current battery technology (e.g.,
the lithium-ion battery) and EV charger technology (e.g., the constant-current
constant voltage approach), EVs can only draw an approximately constant power
during charging periods. Therefore, it is of practical importance to investigate the
coordination of EV charging based on the discrete charging method.

6. Beyond the smart charging capability of EV (ability to flexibly select the periods
when they buy energy for charging), their V2G capability is also considered (ability
to sell energy through discharging).

7. The inflexible EV is assumed to start charging with the fixed charging rate imme-
diately after it is connected to the grid until it covers its daily travelling energy
requirements.
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5.3.2 Structure of the Bi-level Optimization Model

In order to comprehensively capture the interactions between the aggregator, its flexible
and inflexible EV, the proposed model is formulated as a bi-level optimization problem,
the structure is illustrated in Fig. 5.1.

Retail prices

Charging / Discharging
response

Upper Level: EV Aggregator
Maximize profit

Determine

➢ Retail prices
➢ Energy bids in wholesale market

Minimize net costs
Determine
➢ Discrete charging / discharging response
➢ Battery energy level

Lower Level: Flexible EVs

Fig. 5.1 Bi-level structure of the proposed pricing EV problem.

1. This bi-level model consists of an upper-level (UL) problem and multiple lower-level
(LL) problems.

2. The examined aggregator behaves strategically through its strategic retail pricing
and bidding decisions made at the UL problem. The objective of the UL problem is
to maximize the net profit of the EV aggregator, which is defined as the di�erence
between i) its net revenue from selling energy to its served inflexible and flexible EV,
and ii) the net cost of buying energy from the wholesale market, and is subject to i)
the maximum, minimum and average retail prices, and ii) the balance constraint
between the energy sold / purchased to / from the EVs and the energy bought /
sold from / to the wholesale market at each time period.

3. Each LL problem is considered representing the charging / discharging response of
each flexible EV with the objective of minimizing its individual net cost, which is
defined as the di�erence between i) its cost of buying energy from the EV aggregator
for charging, and ii) its revenue from selling energy to the EV aggregator through
discharging, and is subject to i) the EV discrete charging / discharging constraints,
and ii) the energy constraints in the EV battery.

4. The UL problem and the multiple LL problems of Fig. 5.1 are all coupled, since
the retail prices determined by the EV aggregator (UL problem) a�ect the response
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of the flexible EVs (as they constitute part of the objective function of LL), while
this response a�ects the retailer’s decision making (as the EVs’ demand constitutes
part of the objective function and the energy balance constraint between the retail
and wholesale markets of the UL).

5.4 Formulation

As discussed in Section 5.1 and following the existing literature on EV pricing [31,
34, 114, 115], the examined problem is formulated as a bi-level optimization problem.
However, this bi-level problem is characterized by two important di�erences with
respect to [31, 34, 114, 115]: a) beyond the smart charging capability of EV (ability to
flexibly select the periods when they buy energy for charging), their V2G capability
is also considered (ability to sell energy through discharging), and b) the charging /
discharging levels of the EV are discrete and cannot be continuously adjusted.

5.4.1 Decision Making of Strategic EV Aggregator

The UL problem optimizes the pricing decisions of the examined aggregator, who acts
as an intermediary entity between the EV and the wholesale market; this problem is
formulated as follows:
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The objective function (5.1) maximizes the overall profit of the aggregator, which
includes the following components: i) its revenue from selling energy to its inflexible
EV, i.e. EV without smart charging or V2G capabilities (first term), ii) its revenue
from selling energy to its flexible EV (second term), iii) its cost of buying energy from
its flexible EV with V2G capability (third term), and iv) its net cost in the wholesale
market, i.e. its cost / revenue of buying / selling energy from / to the wholesale
market (fourth term). It is assumed that the examined aggregator serves a relatively
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small population of EV and therefore its decisions do not a�ect the wholesale prices
⁄w

t , which are thus treated as fixed, exogenous parameters of the problem (i.e. the
aggregator is assumed to be a price-taker in the wholesale market).

Following the formulation employed in [30], the maximum, minimum and average
retail prices o�ered by the aggregator are subject to the regulatory constraints (5.2)
and (5.3), which aim at preventing the aggregator from exploiting the EV and making
excessive profits. Constraints (5.4) express the energy balance constraints of the
aggregator; the net energy traded with its EV and the net energy traded with the
wholesale market are equal at each period.

5.4.2 Charging / Discharging Response of Flexible EV

Each of LL problems optimizes the charging / discharging response of each flexible EV
j to the retail prices o�ered by the aggregator, and is formulated as follows:
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The objective function (5.5) minimizes the net cost of flexible EV j, which is
defined as the di�erence between i) its cost of buying energy from the aggregator for
charging (first term), and ii) its revenue from selling energy to the aggregator through
discharging (second term).

In order to capture the discrete nature of EV charging / discharging, constraints
(5.6)-(5.9) are employed. The binary variables V c

j,t and V d
j,t (5.6) indicate whether EV j
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charges (V c
j,t = 1), discharges (V d

j,t = 1), or remains idle (V c
j,t = V d

j,t = 0) at period t, with
constraint (5.7) ensuring that charging and discharging cannot happen simultaneously.
Following the assumption of [117–119], if EV j charges or discharges at period t, then
it does so based on a fixed power rate, equal to its maximum power rate at this period
P max

j,t (5.8)-(5.9).
The latter parameter is defined by (5.10); it is either equal to the power rating of

the battery if the EV j is connected to the grid at period t, or equal to zero if it is not
(ensuring that charging or discharging cannot happen when the EV is not connected to
the grid). Constraints (5.11) express the energy balance in the EV battery, including
the energy required for travelling purposes as well as charging and discharging losses.
Constraints (5.12) express the minimum and maximum limits of the battery’s energy
content.

5.4.3 RL Formulation

In this section, we detail the RL formulation of the examined EV aggregator pricing
problem, the key elements of which are outlined in Fig. 5.2:

Retail prices
(action) Wholesale price, 

Inflexible demand, 
Flexible demand

(state)

EV Aggregator
(Agent) Profit – Price penalization

(reward)

(Environment)
Inflexible demandWholesale market Flexible demand

Fig. 5.2 Agent-environment interactions in the examined problem.

1) Agent: The examined EV aggregator constitutes the agent, which gradually
learns how to improve its retail pricing decisions by utilizing experiences from its
repeated interactions with the environment.

2) Environment: The environment consists of the EV (both inflexible and flexible
ones) and the wholesale market, with both of which the EV aggregator interacts.

3) State: The state vector s plays the role of a feedback signal for the agent
regarding the impact of its action on the environment. In this problem, this is a
3◊ |T |-dimensional vector which consists of the wholesale market prices, the demand of
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inflexible EV and the net demand of flexible EV, i.e. s = [⁄w
1:|T |,

q
i P inf

i,1:|T |,
q

j(Cj,1:|T | ≠
Dj,1:|T |)] œ S.

4) Action: The action is a |T |-dimensional continuous vector which includes the
retail prices o�ered by the aggregator, i.e. a = [⁄r

1:|T |] œ A. These retail prices should
satisfy the regulatory constraints (5.2) and (5.3). However, a fundamental limitation
of RL is that constraints coupling action dimensions (i.e. the time-coupling average
retail price constraint (5.3) in the examined problem) cannot be directly satisfied [125].
This limitation is addressed as explained in the following point.

5) Reward: From a physical perspective, the reward of the aggregator should be
set equal to its overall profit (5.1). However, in order to address the limitation discussed
in the previous point, we add a penalty term in the reward (5.13), penalizing the
extent of violation of constraint (5.3), i.e. the absolute di�erence between the average
retail price and the average wholesale price, with W denoting the (positive) penalty
weighting constant. By employing a large enough value for W , the RL algorithm is
incentivized to select actions that satisfy constraint (5.3).

r = (5.1) ≠ W ú
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5.4.4 State-of-the-art RL Methods

Before detailing the proposed RL method, we briefly discuss the two state-of-the-art
RL methods employed in the electricity system literature (Section 5.2).

Q-Learning: The Q-value function can be described in a recursive format according
to the Bellman equation [126]:

Qfi(s· , a· ) = E[r· + “ Qfi(s·+1, fi(s·+1))] (5.14)

The Bellman equation indicates that the Q-value can be updated by bootstrapping,
i.e. we can improve the future estimate of Q by using the current estimate of Q. This
serves as the foundation of Q-learning [83], a form of temporal di�erence (TD) learning
[80], where the Q-value is updated after taking action a· at state s· and observing
reward r· and resulting state s·+1, a detailed updating procedure of the Q-Learning
method is outlined in Algorithm 1.

Q(s· , a· ) Ω Q(s· , a· ) + – ”· (5.15)
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”· = r· + “ maxa·+1 Q(s·+1, a·+1) ≠ Q(s· , a· ) (5.16)

where – œ [0, 1] is the step size, ”· is the correction of the estimation of the Q-value
function (known as the TD error), and r· +“ maxa·+1 Q(s·+1, a·+1) expresses the target
Q-value at time step · .

The final Q-Learning method is outlined in Algorithm 1.

Algorithm 1 Updating procedure of Q-Learning
1: Initialize the Q-table Q(s, a) for s œ S and a œ A.
2: for episode = 1 : M train do
3: Selects random retail prices in the action space and the resulting net demand

of flexible EV (solved in LL problems of Fig. 5.1), along with the demand
of inflexible EV and the wholesale prices are used as the initial state of the
environment for the current episode.

4: for time step = 1 : T do
5: Selects action at based on the ‘-greedy policy [80]:

with probability ‘ select a random action
otherwise select a = argmaxa Q(s, a).

6: Execute action a· in the environment, observe reward r· , and transit to the
new state s·+1.

7: Update the Q-table using (5.15) and (5.16).
8: end for
9: end for

If the Q-value for each admissible state-action pair is visited infinitely often, and the
learning rate – decreases over the time step · in a suitable way, then as · æ Œ, Q(s, a)
converges with probability one to the optimal Qú(s, a) for all admissible state-action
pairs [83].

Although Q-learning merits simplicity and its convergence is theoretically guaran-
teed, it su�ers severely from the curse of dimensionality [80]. This is because Q-learning
stores the Q-value function in a look-up table, which then necessitates the RL problem
being set up in discrete state and action spaces. Therefore, as the number of considered
discrete states and actions increases, the computational burden grows exponentially,
soon rendering the problem intractable. For example, if we discretize each state and
action dimension in 10 integer values, then for a 10-dimensional state and action vector,
this leads to 1010 rows and 1010 columns of the look-up table. In other words, the
granularity of the discretization of the state and action spaces a�ects significantly the
performance of Q-learning. Specifically, a lower granularity results in poor generaliza-
tion capabilities of Q-learning, whereas a higher granularity, despite helping Q-learning
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generalize better, leads to an exponential growth of the number of states and actions,
and consequently impractical memory requirements.

DQN: In order to address the dimensionality challenges of tabular-based Q-learning,
the DQN method [86, 87] employs a DNN, parameterized by ◊, as a function approxi-
mator to represent the Q-value function in multi-dimensional continuous state space:

Q(s· , a· ) ¥ Q(s· , a· |◊) (5.17)

DQN takes as input a continuous state s· and outputs an estimate of the Q-value
function for each discrete action and, when acting, selects the maximally valued output
at a given state. Prior to DQN, the use of large, non-linear function approximators
(such as DNNs) for learning the Q-value function has generally been averted since
theoretical convergence guarantees are impossible, and the learning tends to be unstable
[80]. However, such non-linear approximators prove to be essential for the agent to
learn and generalize on a multi-dimensional continuous state space [88]. Nevertheless,
DQN is able to learn the Q-value function using DNN in a stable and robust fashion.
This is enabled by two innovations: the use of the experience replay R [86, 87] and
the target network Q◊Õ(s, a) [87]. In brief, the former stores gathered experiences (an
experience is a transition tuple (s· , a· , r· , s·+1)) in a replay bu�er R and randomly
samples a minibatch (of size N) of experiences to to train the DNN, enabling de-
correlation of consecutively generated training samples. The later temporarily freezes
the Q-value target during training, thereby stabilizing the learning process. A more
detailed discussion of these two mechanisms is presented in Section 5.4.5.

The training procedure of the DQN method is outlined in Algorithm 2. At each
time step t, we sample a minibatch of N training experiences {(sn, an, rn, sn+1)}N

n=1
from R, the training of the DNN is based on temporal di�erence (TD) learning through
the minimization of the following loss function, representing the mean-squared TD
error:

L◊ = 1
N

Nÿ

n=1

1
rn + “ maxan+1 Q◊Õ(sn+1, an+1) ≠ Q◊(sn, an)

22
(5.18)

and the following update is applied to the DNN weights ◊, where – is the learning rate
for the gradient descent algorithm. The target network weights ◊Õ is updated with the
online network weights ◊ every C time steps to stabilize learning.

◊ Ω ◊ + –Ò◊L◊. (5.19)
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The final DQN method is outlined in Algorithm 2.

Algorithm 2 Training procedure of DQN
1: Initialize the online Q network with random weights ◊.
2: Initialize the target Q network with weights ◊Õ Ω ◊.
3: for episode = 1 : M do
4: Selects random retail prices in the action space and the resulting net demand

of flexible EV (solved in LL problems of Fig. 5.1), along with the demand
of inflexible EV and the wholesale prices are used as the initial state of the
environment for the current episode.

5: for time step = 1 : T do
6: Selects action a· based on the ‘-greedy policy [80]:

with probability ‘ select a random action
otherwise select a = argmaxa Q◊(s, a).

7: Execute action a· in the environment, observe reward r· using (5.13), and
transit to the new state s·+1.

8: Store experience (s· , a· , r· , s·+1) in R.
9: Sample uniformly a minibatch of transitions {(sn, an, rn, sn+1)}N

n=1 from R.
10: Update the online network using (5.18) and (5.19).
11: Update the target network with ◊Õ with ◊Õ Ω ◊ every C time steps.
12: end for
13: end for

Although DQN performs well in problems with continuous state space, the curse of
dimensionality persists. This is owing to the fact that the DNN are trained to output
discrete estimates of the Q-values rather than continuous actions. Therefore, to address
problems with a continuous action domain, dicretization of the action space is required.
Furthermore, even if a good approximation of the Q-value function can be obtained, it
is still challenging to find a continuous action that corresponds to the highest Q-value
at a given state. This motivates investigation of more sophisticated RL methods which
facilitate e�ective learning in multi-dimensional continuous state and action spaces, as
prescribed by the examined pricing problem.

5.4.5 Proposed PDDPG Method

In order to address the limitations of the DQN method in problems with continuous
action spaces (Section 5.2), we propose the novel PDDPG method, the overall workflow
of which is illustrated in Fig. 5.3.
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PDDPG features an actor-critic architecture and employs two DNNs for di�erent
purposes [88]. The critic network Q◊, parameterized by ◊, takes as input a state s·

and action a· and outputs a scalar estimate of the Q-value function Q◊(s· , a· ). The
actor network µ„, parameterized by „, takes as input a state s· and implements the
policy improvement task, updating the policy with respect to the estimated Q-value
function and outputting a continuous action µ„(s· ).

Regarding the policy improvement, the common approach adopted in Q-learning
and DQN involves a greedy maximization of the Q-value function, i.e., µ(s· ) =
argmaxa·

Q(s· , a· ) (Section 5.4.4). However, greedy policy improvement tends to be
intractable in multi-dimensional continuous action spaces as it requires the global
maximization of the Q-value function at every time step. In this context, the proposed
method employs the actor network µ to generate an action µ„(s· ) for the current state.
The critic network then implements the policy evaluation task, appraising the policy
by producing an estimate of the Q-value function with TD learning. This is achieved
through the minimization of the following loss function:

L(◊) = ”2
· (5.20)

”· = r· + “ Q◊(s·+1, µ(s·+1)) ≠ Q◊(s· , a· ). (5.21)

where ”· and r· + “ Q◊(s·+1, µ(s·+1)) express the TD error and the target Q-value at
time step · , respectively. Instead of globally maximizing Q◊(s· , a· ), the critic calculates
gradients ÒaQ◊(s· , a· ) which indicate directions of change of action resulting in higher
estimated Q-values. These gradients are calculated via back-propagation through the
critic, which is more e�cient in computational terms than solving an optimization
problem in continuous action space. In order to update the actor µ„, these gradients are
placed at the actor’s output layer and then are back-propagated through the network.
For a given state s· , a forward pass through the actor produces an action a· that the
critic appraises, and the resulting policy gradients Ò„ µ are employed to update the
actor:

Ò„µ = ÒaQ◊(s, a)|s=s· ,a=µ(s· )Ò„µ„(s)|s=s· . (5.22)

In RL, maintaining an appropriate balance between exploration and exploitation is
deemed imperative in selecting the agent’s actions. Through exploration, the agent
collects more information by trying out di�erent actions in the action space. Through
exploitation, the agent learns to make the best decision given the available information.
A significant advantage of the proposed method lies in decoupling the exploration
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problem from the learning algorithm. Specifically, we construct an exploration policy
µ̂(s· ) by adding a random Gaussian noise N· (0, ‡2I) to the actor’s output µ„(s· ) in
order to aid the agent in exploring the environment thoroughly:

µ̂(s· ) = µ„(s· ) + N· (0, ‡2I). (5.23)

RL tends to exhibit unstable learning behavior when used in combination with
a DNN as the Q-value function approximator [87]. First of all, since the online
network Q◊(s· , a· ) being updated is also employed in evaluating the target value r· +
“ Q◊(s·+1, µ(s·+1)) (as shown in (5.21)), the Q-value update is prone to oscillations.
An e�ective approach to tackle this instability is to introduce a target network[87] for
both actor and critic networks, denoted as µ„Õ(s· ) and Q◊Õ(s· , a· ), respectively, and
employ them to evaluate the target values. The weights of these target networks („Õ

and ◊Õ) are updated by slowly tracking the weights of online networks („ and ◊) as
„Õ Ω ‹„ + (1 ≠ ‹)„Õ and ◊Õ Ω ‹◊ + (1 ≠ ‹)◊Õ with ‹ π 1. The logic behind this soft
update lies in restricting the target values (for both actor and critic) to change slowly
so as to stabilize the learning process.

During the learning process, experiences are generated as the agent sequentially
interacts with the environment, meaning that these samples are temporally correlated,
which hinders the application of deep learning algorithms. An e�ective solution to
remedy this issue is to incorporate an experience replay bu�er which is a pool that stores
past experiences and uniformly samples a minibatch to update the actor and critic at
each time step. Mixing recent with previous experiences contributes to diminishing
the temporal correlations presented in the replayed experiences. Additionally, the
experience replay allows samples to be reused, and thereby increases the sampling
e�ciency [87].

To further enhance the sampling e�ciency of the original experience replay mecha-
nism and thereby accelerate the learning process, we propose the use of the prioritized
experience replay method [127]. In this method, the magnitude of TD-error is used as
a measure of the correction for the Q-value estimation. In other words, it suggests to
what extent an agent could learn from an experience. Experiences with large positive
TD-errors are associated with very successful attempts, while experiences with large
negative TD-errors signal the conditions where the agent’s actions are highly erroneous
and therefore that the states of these conditions are inadequately learned. Prioritizing
replaying of these experiences during training enables the agent to improve its policy
more quickly from very successful attempts and also prevents the agent from selecting
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the unfavorable actions in some states, and thereby improves the quality of the policy
learned.

Consider a prioritized experience replay bu�er PR of size NP R, we define the
probability Pn of sampling experience n based on the absolute TD error as:

Pn = p—1
n /

ÿ
m

p—1
m (5.24)

where —1 controls the extent of prioritization used, pn = 1/rankn is the priority assigned
to experience n, and rankn indicates the rank of experience n when the PR is ordered
according to the absolute TD error |”n|, which is defined as:

|”n| =
----rn + “ Q◊Õ

1
sn+1, µ„Õ (sn+1)

2
≠ Q◊(sn, an)

---- (5.25)

However, since experiences with high |”| are more regularly replayed, this practice
alters the visitation frequency of some states and thus introduces bias. To correct this
bias, we resort to importance-sampling (IS) weights:

Wn = (NP RPn)≠—2/ maxm Wm (5.26)

where —2 controls the extent of correction used. These weights are then incorporated in
the computation of the critic loss by substituting ”n with Wn”n. For stability reasons,
the IS weights are normalized by maxm Wm.

Finally, by employing the target network and the prioritized experience replay, the
critic loss (5.20) can be restated as the weighted mean-squared TD error calculated
based on the training data, i.e. a minibatch of prioritized sampled N experiences with
priority pn and IS weights Wn.

L(◊) = 1
N

Nÿ

n=1
Wn”2

n (5.27)

The policy gradient for the actor update (5.22) can be restated in a similar fashion as:

Ò„µ = 1
N

Nÿ

n=1
ÒaQ◊(sn, a)|a=µ„(sn)Ò„µ„(sn) (5.28)

The following updates are applied to the weights of the online critic and actor
networks, respectively, where –◊ and –„ are the learning rates of the gradient decent



5.4 Formulation 143

algorithm:
◊ Ω ◊ + –◊Ò◊L◊ (5.29)

„ Ω „ + –„Ò„J(µ„) (5.30)

The target critic and actor networks are updated to gradually track the online critic
and actor networks according to:

◊Õ Ω ‹◊ + (1 ≠ ‹)◊Õ (5.31)

„Õ Ω ‹„ + (1 ≠ ‹)„Õ (5.32)

The final PDDPG method is outlined in Algorithm 3.

Algorithm 3 Proposed PDDPG Algorithm
1: Initialize the online critic and actor networks with random weights ◊ and „,

respectively.
2: Initialize the target critic and actor networks with weights ◊Õ Ω ◊ and „Õ Ω „,

respectively.
3: for episode = 1 : M do
4: Select random retail prices in the action space; the resulting net demand of flexible

EV (solved in LL problems of Fig. 5.1), along with the demand of inflexible EV
and the wholesale prices, are used as the initial state of the environment for the
current episode.

5: Initialize a random Gaussian exploration noise N· .
6: for time step = 1 : T do
7: Select retail pricing decisions using (5.23).
8: The new state s·+1 is determined and the reward r· is calculated through

(5.13).
9: Store, in PR, experience (s· , a· , r· , s·+1) and set p· = maxn<· pn.

10: for n = 1 : N do
11: Sample experience n with probability Pn in (5.24).
12: Compute the absolute TD-error |”n| using (5.25).
13: Compute the IS weights Wn using (5.26).
14: Update the priority pn according to |”n|.
15: end for
16: Update the critic network using (5.27) and (5.29).
17: Update the actor network using (5.28) and (5.30).
18: Update the target networks using (5.31) and (5.32).
19: end for
20: end for
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5.5 Case Studies

5.5.1 Test Data and Implementation

The following case studies examine the EV aggregator pricing problem (Section 3.4) in
the context of a single day with hourly resolution, i.e. T = {1, 2, ..., 24}. The examined
aggregator serves a population of 1,000 EV, divided in 25 di�erent types (of 40 EV
each) according to their travelling times, grid connection times and travelling energy
requirements in the examined day. The travelling data is based on UK national surveys
[128] while the EV are assumed connected to the grid between the end of their last trip
and the start of their first trip of the day, in line with the home-charging paradigm.
For space limitation reasons, this data is provided in the Appendix A.

Fig. 5.4 Wholesale market price of the examined day.

The assumed values of the remaining technical parameters of the EV are P max
j

= 3 kW, Emin
j = 1.5 kWh, Emax

j = 15 kWh, ÷c
j = ÷d

j = 0.93 for every flexible EV
j. Each inflexible EV i is assumed to start charging (with the same, fixed rate of 3
kW) immediately after it is connected to the grid until it covers its daily travelling
energy requirements; the charging power profile of the inflexible EV of each of the 25
types is also provided in the Appendix A. In the following studies, di�erent scenarios
are examined regarding the percentage of EV being flexible as well as the nature of
their flexibility (smart charging capability only or combined smart charging and V2G
capabilities). The assumed wholesale market prices across the examined day follow the
pattern of a typical winter day in the UK, which are illustrated in Fig. 5.4. Finally,
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the regulatory minimum and maximum retail prices are assumed ⁄min = 2 pence/kWh
and ⁄max = 20 pence/kWh, respectively.

The main implementation details of the 3 examined RL methods are discussed as:
Q-Learning: The examined problem needs to be set up in discrete state and action

spaces. We discretize the hourly net demands of flexible EV (states) in 20 integer
values and the hourly retail prices (actions) in 19 integer values (between ⁄min = 2
pence/kWh and ⁄max = 20 pence/kWh, with a step of 1 penny/kWh). Therefore, the
aggregator employs 24 look-up tables, each of size 20 ◊ 19 to store and update the
Q-values of state-action pairs at each hour. Note that it is impractical to use a single
look-up table of size 2024 ◊ 1924 to store the Q-values associated with di�erent daily
state-action pairs under the assumed discretization.

DQN: This method employs a DNN as an approximator that provides the Q-value
estimate for each discrete action and, when acting, selects the action corresponding to
the highest Q-value at a given state. Similar to the approach adopted in [123], in the
examined problem the state is represented as a time-window of two adjacent hours,
i.e., hour identifier t, and wholesale price, demand of inflexible EV, and net demand
of flexible EV at hours t ≠ 1 and t, resulting in 7 neurons in the input layer of the
DNN. The continuous action space is discretized in the same fashion as in Q-learning,
resulting in 19 neurons in the output layer of the DNN.

PDDPG: We employ two DNNs i.e. the online and the target network, for both
actor and critic (Fig. 5.3). The Adam optimizer is employed for learning the neural
network weights with a learning rate –µ = 10≠4 and –Q = 10≠3 for the actor and
critic, respectively. For the critic, we use a discount factor of “ = 0.7, and include a
L2 regularization term in its loss function with a weight decay rate of 10≠2 in order
to avoid very large weights. We use ‹ = 0.001 as the target network updating rate.
The structure of the actor and critic networks is illustrated in Fig. 5.3. Both the actor
and critic employ the rectified non-linearity (ReLU) for all hidden layers. The output
layer of the actor is a sigmoid layer to bound the continuous actions. We train with
a minibatch size of N = 128 and for M = 1000 episodes, with 20 days per episode.
The parameters employed in the prioritized experience replay are set as — = 0.6 and
NB = 104. We use W = 103 for the penalty weighting constant in the reward (5.13).

The examined RL methods have been implemented using Tensorflow [129] in Python.
The LL problem of Fig. 5.1 has been implemented using the Xpress Optimizer Python
interface [130]. The case studies have been carried out on a computer with a 6-core
3.50 GHz Intel(R) Xeon(R) E5-1650 v3 processor and 32 GB of RAM.
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5.5.2 Performance Comparison of RL Methods

The aim of the first set of studies lies in comparing the performance of the proposed
PDDPG method against the state-of-the-art Q-Learning and DQN methods in the
examined problem, considering a scenario where 25% of the EV of each type are
assumed flexible with smart charging capability only. We generate 10 di�erent random
seeds, and for each one we train each of the three RL methods for 1000 episodes, with
one episode consisting of 20 time steps (Algorithm 3). It should be mentioned that the
random seed is used to fix the stochasticity in RL simulation (e.g., initial state of per
episode, weights initialization of the DNNs), thus we generate 10 random seeds for the
experiment to evaluate the robustness and variation of the proposed methods to the
examined problem. For the detailed analysis, please refer to the standard deviation in
Fig. 5.5 and Table 5.2.

Fig. 5.5 Episodic average profit over 10 di�erent random seeds for the examined RL
methods.

Fig. 5.5 and Table 5.2 present the episodic average profit of the aggregator over
the 10 di�erent random seeds for each RL method. The mean µ and the standard
deviation ‡ of the average profit over the 10 seeds at di�erent episodes are illustrated
in Fig. 5.5 through the solid lines and the shaded areas, respectively, and are also
provided in Table 5.2. As demonstrated in Fig. 5.5, the average profit is negative
during the initial learning stages, since the aggregator is gathering more experiences
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by randomly exploring di�erent, not necessarily profitable, actions. However, as the
learning process progresses and more experiences are collected, the average profit turns
positive, it keeps increasing, and eventually converges for all three methods. This
convergence is reflected in the stabilized mean and standard deviation of the average
profit during the last learning stages (Fig. 5.5 and Table 5.2).

Table 5.2 Mean µ (£) and standard deviation ‡ (£) of average profit over 10 di�erent
random seeds at di�erent episodes for examined RL methods.

Episode
0 100 200 300 600 1000

Q-Learning
µ -61.15 45.00 133.06 173.46 198.63 199.94
‡ 44.72 33.19 19.75 11.29 11.41 11.54

DQN
µ -69.42 158.83 212.49 231.70 231.57 231.84
‡ 43.94 20.09 9.60 8.56 8.09 8.05

PDDPG
µ -63.86 147.18 257.24 262.55 262.74 262.89
‡ 46.37 24.90 7.69 5.19 4.29 4.14

The proposed PDDPG method exhibits a larger standard deviation compared to
Q-learning and DQN, and a slower learning pace compared to DQN during the initial
learning stages. This e�ect is driven by the fact that the exploration of suitable pricing
decisions in multi-dimensional continuous action space (performed by PDDPG) is more
challenging than in discrete space (performed by Q-Learning and DQN). However, as
the learning process progresses, the PDDPG method significantly outperforms the
two state-of-the-art methods, and converges to the highest average profit (£262.89)
and the lowest standard deviation (£4.14). In relative terms, PDDPG achieves 31% /
13% higher average profit and 64% / 49% lower standard deviation with respect to
Q-Learning / DQN.

5.5.3 Impact of PER on Learning Performance

This section lies in demonstrating the impact of PER, by comparing the performance
of the PDDPG method against the original DDPG method adopting uniform sampling
(Section 5.4.5). Fig. 5.6 presents the performance of the examined methods in terms of
their learning speed and policy quality. The solid lines illustrate the episodic average
profit over 10 di�erent random seeds for the two examined methods while the dashed
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lines indicate the number of episodes required to reach the baseline profit level (set as
the episodic average profit of the DQN method at convergence).

Fig. 5.6 Episodic average profit over 10 di�erent random seeds for the DDPG and
PDDPG methods..

As shown in Fig. 5.6, PDDPG and DDPG reach the baseline reward in approxi-
mately 155 and 380 episodes, respectively, suggesting that the learning speed of PDDPG
is approximately 2.45 times as fast as DDPG. Furthermore, PDDPG results in more
profitable pricing decisions, reflected by the approximately 5.08% higher average profit
at convergence. The rationale behind this favourable learning speed and policy quality
lies in the fact that PER more frequently replays experiences corresponding to higher
TD-error which promises significant benefits in improving the agent’s policy. On the
other hand, such experiences may be rarely (or never) replayed when uniform sampling
is adopted.

5.5.4 Continuous Action Vs. Discrete Action

The superior performance of the proposed method with respect to the most advanced
state-of-the-art RL method (DQN) is driven by its ability to capture a continuous action
space in contrast with the naive discretisation approach adopted by DQN. In order to
investigate the physical significance of this methodological advantage of PDDPG, Figs.
5.7-5.8 and Table 5.3 compare the retail pricing decisions of the aggregator and the
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resulting demand of all EV at the convergence state of the DQN and PDDPG methods.
As demonstrated in Figs. 5.7-5.8, the fundamental di�erence between the solutions
obtained by the two methods lies in the retail pricing decisions at hours 1-13. From
an economic perspective, the aggregator aims at attracting the demand of flexible EV
(with smart charging capability only in the scenario examined in this Section) at the
hours with the lowest wholesale market prices (hours 4 and 5) in order to reduce its
cost in the wholesale market (fourth term of its profit (5.1)); therefore, the aggregator
is motivated to o�er lower retail prices at these two hours with respect to other hours
of the day.

Fig. 5.7 Retail prices for DQN and PDDPG methods.

Table 5.3 Retail prices (pence/kWh) for DQN and PDDPG methods.

Hour 3 Hour 4 Hour 5 Hour 6 Hour 12 Hour 13

⁄w
t 2.8329 2.5171 2.2644 2.6147 9.3071 9.5071

⁄r
t (DQN) 3 2 2 3 3 13

⁄r
t (PDDPG) 2.0006 2.0003 2.0003 2.0004 5.2109 19.9981

Under PDDPG, given that the pricing actions can continuously vary, the di�erence
between the prices at these two hours and other, adjacent o�-peak hours is marginally
low (Table 5.3). Under DQN, given that the pricing actions can only vary in discrete
steps (of 1 penny/kWh in the examined studies, Section 5.5.1), the aggregator is forced
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Fig. 5.8 EV net demand for DQN and PDDPG methods.

to di�erentiate the prices at these two hours with respect to adjacent o�-peak hours
by 1 penny/kWh; therefore, it o�ers the lowest allowable price ⁄min = 2 pence/kWh
at hours 4 and 5 and a price of 3 pence/kWh at the o�-peak hours 1-3 and 6-11
(Fig. 5.7). Because of this substantial increase of the o�ered prices at hours 1-3 and
6-11 (with respect to PDDPG, where the respective prices are still very close to the
lowest allowable level of 2 pence/kWh), and in order to satisfy the average retail price
constraint (5.3), the aggregator is forced to reduce the o�ered prices at other, peak
hours of the day (specifically, hours 12 and 13 as demonstrated in Fig. 5.7 and Table
5.3). These price reductions reduce significantly the revenue of the aggregator from
its inflexible EV, which charge during peak hours; as a result, the overall profit of the
aggregator is substantially lower under DQN (Table 5.2).

5.5.5 Computational Performance

Beyond the economic performance of the three RL methods, it is highly valuable to
compare their computational performance. In this context, Table 5.4 presents the
average computational time per episode, the number of episodes required to reach
convergence, and the total computational time required to reach convergence, for
each method in the examined scenario. The average time per episode is the lowest
in Q-Learning (since this method relies on look-up tables and does not require the
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computationally intensive training of a DNN), higher in DQN (since this method
involves training of one DNN) and the highest in the proposed PDDPG (since this
method involves training of two DNNs). However, the number of episodes and the
total computational time is the lowest in PDDPG due to the employment of the PER
strategy, followed by DQN and Q-Learning. These results demonstrate that beyond
achieving a higher average profit and a smaller standard deviation of profit with respect
to the two state-of-the-art RL methods, the proposed PDDPG method also exhibits a
more favorable computational performance.

Table 5.4 Computational performance of the examined RL methods

Method Average computational
time per episode (sec)

Number of
episodes

Total computational
time (sec)

Q-learning 2.16 480 1,037
DQN 3.18 300 954
PDDPG 3.41 220 750

5.5.6 Impact of EV Flexibility

Having established the superiority of the proposed PDDPG method with respect to
state-of-the-art methods in the previous section, the second set of studies applies this
method to di�erent scenarios regarding the nature and extent of the EV flexibility,
aiming to investigate the impacts of the flexibility on the pricing decisions and the
overall profit of the aggregator as well as the costs of EV owners. Specifically, two
di�erent scenarios regarding the nature of EV flexibility -smart charging capability only
(denoted by G2V in the remainder) and combined smart charging and V2G capabilities
(denoted by V2G in the remainder) and two di�erent scenarios regarding the percentage
of EV being flexible (25% and 50%) are examined, along with the benchmark scenario
of all EV being inflexible.

For each of these scenarios, Fig. 5.9 and 5.10 illustrate the hourly profiles of
the net demand of all EV in the aggregator’s portfolio (positive values indicate net
charging and negative values indicate net discharging), and the retail prices o�ered by
the aggregator, respectively. When all EV are inflexible, given that a home-charging
paradigm is assumed in these studies (Section 5.5.1), most of their charging demand is
concentrated during the afternoon / evening (peak) hours 13-19, when most EV owners
return at their homes (Fig. 5.9). Therefore, the aggregator o�ers the highest allowable
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Fig. 5.9 EV net demand for di�erent EV flexibility scenarios.

Fig. 5.10 Retail prices for di�erent EV flexibility scenarios.

price (⁄max = 20 pence/kWh) at these peak hours and the lowest allowable price (⁄min

= 2 pence/kWh) at other (o�-peak) hours (Fig. 5.10) in order to maximize its revenue,
which is determined by the summation of the EV demand-retail price products across
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all hours, but also satisfy the regulatory constraint imposed on the average retail price
(5.3). In other words, the aggregator exploits the EV owners by setting large retail
price di�erentials between peak and o�-peak hours.

When EV exhibit smart charging capability, they are able to respond to the time-
di�erentiated prices o�ered by the aggregator and shift their charging demand from
high-price, peak hours to low-price, o�-peak hours in order to minimize their cost, with
this e�ect being enhanced as the percentage of smart charging EV increases (Fig. 5.9).
While in the scenario where this percentage is lower (25% G2V) the o�ered prices do
not substantially change (the black dashed line coincides with the blue solid line in Fig.
5.10), in the scenario where this percentage is higher (50% G2V), in anticipation of
the significant shifting response, the aggregator increases its o�ered prices at o�-peak
hours in order to maintain its revenue at the highest possible level, and reduces its
o�ered prices at hours 12-13 in order to satisfy the average retail price constraint (Fig.
5.10). In other words, a smart charging capability of significant extent results in a
flatter retail price profile and thus limits the exploitation of the EV owners by the
aggregator. Furthermore, in both scenarios with smart charging EV and as explained
in Section 5.5.2, the aggregator o�ers marginally lower prices at the two hours with
the lowest wholesale prices (4-5) compared to other, adjacent o�-peak hours, in order
to attract the demand of smart charging EV at these two hours (Fig. 5.9) and thus
reduce its cost in the wholesale market (this marginal di�erence is not visible in Fig.
5.10 but is demonstrated in Table 5.3).

When EV exhibit V2G capability, apart from shifting their charging demand to low-
price, o�-peak hours, they also discharge during high-price, peak hours (as indicated
by the lower net demand with respect to the smart-charging-only scenarios, which even
becomes negative in some peak hours, in Fig. 5.9) to gain high revenues from selling
energy. Thus, their charging window and their overall charging energy consumption
during o�-peak hours are larger with respect to the smart-charging-only scenarios
(Fig. 5.9). In other words, the V2G EV perform energy arbitrage. In anticipation
of this response, the aggregator increases further its o�ered prices at o�-peak hours
and reduces further its o�ered prices at peak hours, resulting in a higher prominent
flattening e�ect on the retail price profile with respect to the smart-charging-only
scenarios (Fig. 5.10).

Having analyzed the impacts of EV flexibility on the net demand of the EV and the
pricing decisions of the aggregator, the final part of this analysis lies in investigating
the overall economic e�ects of this flexibility on both the aggregator and the EV owners.
Starting from the former, Table 5.5 presents the total (daily) profit of the aggregator
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(5.1) along with its net retail revenue (corresponding to the sum of the first three
terms of (5.1)) and net wholesale cost (corresponding to the fourth term of (5.1))
components, for each of the examined scenarios.

The net retail revenue of the aggregator is reduced as the percentage of smart
charging EV increases (by 22% in the 25% G2V scenario and 43% in the 50% G2V
scenario), driven by the flattening e�ect on the EV net demand (Fig. 5.9) and the
o�ered retail prices (Fig. 5.10), considering that the net retail revenue of the aggregator
is determined by the summation of the EV net demand-retail price products across
all hours. In scenarios where EV also exhibit V2G capability, this flattening e�ect
is enhanced and thus the net retail revenue of the aggregator is further reduced (by
53% in the 25% V2G scenario and 57% in the 50% V2G scenario). This trend implies
that EV flexibility deteriorates the business case of the aggregator, since it limits the
strategic potential of exploiting the EV owners by setting large retail price di�erentials
between peak and o�-peak hours.

Going further, the net wholesale cost of the aggregator is also reduced as the
percentage of smart charging EV increases (by 20% in the 25% G2V scenario and 40%
in the 50% G2V scenario), due to the shift of charging demand (which constitutes the
demand of the aggregator in the wholesale market) from hours with high wholesale
prices to hours with low wholesale prices. In scenarios where EV also exhibit V2G
capability, the net demand of the aggregator in the wholesale market during high-price,
peak hours is further reduced -and even becomes negative in some peak hours (Fig.
5.9) -and thus the net wholesale cost of the aggregator is further reduced (by 51% in
the 25% V2G scenario and 99% in the 50% V2G scenario). This trend implies that EV
flexibility improves the business case of the aggregator, since it enables the aggregator
to buy more energy at low-price hours and, in the case with V2G capability, even sell
energy at high-price hours.

The impact of EV flexibility on the total profit of the aggregator (which constitutes
the most important index of the aggregator’s business case) is intuitively driven by the
combination of its impacts on the aggregator’s retail revenue and wholesale cost. Since
these impacts counteract each other, i.e. EV flexibility reduces its profit by reducing
its retail revenue but also increases its profit by reducing its wholesale cost, the overall
impact on the aggregator’s profit depends on which of these two profit components is
reduced at a higher rate in each of the examined scenarios. Table 5.5 demonstrates a
non-uniform trend in the examined study; while the aggregator’s profit is reduced in
scenarios 25% G2V, 50% G2V and 25% V2G with respect to the scenario where all
EV are inflexible, it is increased in scenario 50% V2G.
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Table 5.5 Profit of aggregator for di�erent EV flexibility scenarios.

Scenario Net retail revenue (£) Net wholesale cost (£) Profit (£)

Inflexible EV 1081.96 723.00 358.96
25% G2V 842.57 579.68 262.89
50% G2V 620.48 436.36 184.12
25% V2G 513.31 354.02 159.29
50% V2G 462.95 8.73 454.22

Shifting our focus to the EV owners, Table 5.6 presents the average daily cost of an
inflexible EV and a flexible EV, for each of the examined scenarios; the average cost is
employed as a representative economic index, due to the fact that di�erent EV are
characterized by di�erent travelling times, grid connection times and travelling energy
requirements (Section 5.5.1). The introduction of flexibility, irrespectively of its nature
and extent, reduces the average cost of an EV with respect to the benchmark scenario
where all EV are inflexible.

This beneficial impact of flexibility is even evident for EV which are not flexible,
driven by the fact that the introduction of flexibility in other EV reduces the retail
prices o�ered by the aggregator at peak hours (Fig. 5.10), during which inflexible
EV charge. As the percentage of flexible EV increases and when V2G capability is
introduced, this reduction of peak retail prices is enhanced, and thus the average cost
of an inflexible EV is further reduced (Table 5.6).

However, this beneficial impact is significantly higher for EV which exhibit this
flexibility, since they shift their charging demand from high-price hours to low-price
hours. Interestingly however, as the percentage of flexible EV increases and when V2G
capability is introduced, the retail price profile becomes flatter (Fig. 5.10), and thus
the average cost reduction enjoyed by a flexible EV is diminished (Table 5.6).

Table 5.6 Average cost of EV for di�erent EV flexibility scenarios.

Scenario Inflexible EV average cost (£) Flexible EV average cost (£)

Inflexible EV 1.0820 N/A
25% G2V 1.0818 0.1248
50% G2V 0.9839 0.2570
25% V2G 0.6035 0.2428
50% V2G 0.5566 0.3693



156 Strategic Pricing for Electric Vehicles with Discrete Charging

5.6 Conclusions

In the context of realizing the significant EV flexibility potential in deregulated elec-
tricity systems, this chapter has addressed the problem of e�ectively pricing EV by
aggregators through a bi-level optimization formulation. In contrast with the existing
literature, this formulation also considers the V2G capability of EV and the discrete
nature of their charging / discharging levels. Considering the fundamental limitations of
the traditional MPEC approach in capturing these discrete EV operating characteristics
and thus e�ectively solving this problem, this chapter has focused on RL approaches.
In this setting, motivated by the solution optimality and computational limitations of
state-of-the-art RL methods, associated with their need to discretize state and / or
action spaces, this chapter has proposed a novel deep reinforcement learning method,
named prioritized deep deterministic policy gradient method (PDDPG), which sets up
the problem in multi-dimensional continuous state and action spaces.

The scope of the presented case studies has been twofold. First of all, the proposed
PDDPG method has been compared against the two state-of-the-art RL methods,
namely Q-learning and DQN. The results have demonstrated that the proposed method
achieves 31% and 13% higher profit for the examined EV aggregator than the Q-learning
and DQN methods, respectively, driven by its ability to capture continuous pricing
decisions. Furthermore, it exhibits lower total computational requirements, driven by
the employment of the proposed prioritized experience replay (PER) strategy.

Secondly, the presented case studies have applied the proposed method to di�erent
scenarios regarding the nature and extent of the EV flexibility, in order to investigate
the economic impacts of such flexibility on both the aggregator and the EV owners.
The results have demonstrated that as the percentage of flexible EV increases and when
V2G capability is introduced, the profile of retail prices o�ered by the aggregator gets
flatter and the aggregator’s retail revenue from the EV is reduced, implying that EV
flexibility limits the aggregator’s potential of exploiting the EV owners by setting large
retail price di�erentials between peak and o�-peak hours. However, EV flexibility also
reduces the aggregator’s cost in the wholesale market, since it enables the aggregator
to buy more energy at low-price hours and, in the case with V2G capability, even
sell energy at high-price hours. As a result, the overall impact of EV flexibility on
the aggregator’s total profit is not uniformly beneficial or detrimental, but is rather
scenario-specific. On the other hand, the introduction of EV flexibility has been shown
to always reduce the average electricity cost of EV. Although this beneficial impact
is significantly higher for the EV which exhibit this flexibility, it is also substantial
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for inflexible EV, driven by the impact of EV flexibility in reducing the retail prices
o�ered by the aggregator at peak hours.





Chapter 6

Conclusions and Future Work

6.1 Conclusion

This thesis studies the strategic retail pricing methods to the flexible customers
based on game-theoretic and learning based techniques in the smart grid. It includes
1) developing a comprehensive framework for electricity retailers taking both the
customer’s demand response and the wholesale market clearing into consideration; 2)
investigating the impact of LEM on electricity retailer’s pricing strategies, its profit
and the served customers’ economic surplus; 3) building a learning based method for
the aggregator to design e�ective retail prices, accounting for the discrete charging /
discharging response patterns of the served EV.

We concentrate on studying the interactions between the electricity retailer /
aggregator and the served customers from the following three aspects:
1. The impact of demand flexibility on an electricity retailer’s pricing strategies and its
business case through a bi-level optimization problem is firstly investigated in Chapter
3.

In contrast with state-of-the-art bi-level optimization models of the interaction
between the retailer and its customers, this model drops the unrealistic assumption
that the retailer treats wholesale market prices as exogenous, fixed parameters, and
represents endogenously the wholesale market clearing process as an additional lower-
level problem. Thus, this chapter can be seen as our first attempt to solve the demand
response based strategic retail pricing problem by capturing the realistic implications
of the retailer’s pricing strategies on the wholesale market prices. As the lower-level
problems considered in this chapter are both continuous and convex, we proposed a



160 Conclusions and Future Work

KKT condition based solution to solve the proposed bi-level optimization problem
model e�ectively.

The presented case studies provide numerous new and valuable insights. First of
all, they demonstrate that demand flexibility reduces the retailer’s revenue from the
consumers, since it limits the retailer’s strategic potential of exploiting the consumers
through setting large retail price di�erentials between peak and o�-peak hours; and
also the retailer’s cost in the wholesale market, since it enables the retailer to buy more
energy at low-price hours and also reduce the wholesale prices at high-price hours.

Going further, this impact of demand flexibility on the retailer’s profit implies
that demand flexibility can e�ectively complement regulatory policies in safeguarding
the consumers against the strategic behavior of retailers. Specifically, under a looser
regulatory framework demand flexibility reduces the overall profit of the retailer, while
under a stricter regulatory framework it increases this profit.

Moreover, the presented case studies demonstrate that under relatively high demand
flexibility the retailer achieves a higher profit when its size is smaller, while under
relatively low demand flexibility the retailer achieves a higher profit when its size is
larger. This result implies that new, small players in the retail market are more likely
to take initiatives towards the realization of the flexibility potential of their consumers,
than large, incumbent retailers.

Finally, the presented case studies highlight the added value of the proposed bi-level
model by comparing its outcomes against the state-of-the-art bi-level model neglecting
the wholesale market clearing. The result implies that the state-of-the-art model
is suitable for driving a retailer’s decision-making only under the limiting condition
that the retailer’s size is extremely small (around 1% of the market according to the
obtained results), in contrast with the general suitability of the proposed model.
2. The impact of LEM on an electricity retailer’s pricing strategies, its business case
and the di�erent customers’ economic surplus through a bi-level optimization problem
is firstly investigated in Chapter 4.

This chapter has explored for the first time the interactions between the operation
of LEM with di�erent types of participants (FC, MG and ES) and the strategic pricing
decisions of incumbent electricity retailers, and has quantitatively analyzed the overall
economic e�ects of LEM on both the retailer and its customers.

In order to achieve that, this chapter has developed a novel multi-period bi-level
optimization model, which captures the pricing decisions of a retailer in the upper-level
problem and the response of both independent customers and the LEM in the lower-
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level problems. Since the lower-level problem representing the LEM is non-convex, the
traditional MPEC approach is not applicable for solving the developed bi-level problem,
and a new approach recently proposed by the authors is employed instead, which is
based on the relaxation and primal-dual reformulation of the non-convex lower-level
problem and the penalization of the associated duality gap.

The presented case studies have provided numerous new and valuable insights
around the role and impact of LEM. First of all, the introduction of an LEM is shown
to reduce the customers’ energy dependency on the retailer, since they are able to
trade energy among them at prices which lie between the retailer’s high buy prices
and low sell prices, which is mutually beneficial for all FC, MG and ES participants;
regarding the latter, the LEM is shown to unlock their arbitrage potential and activate
them in the market. As a consequence, the retailer’s strategic potential of exploiting
the customers through large di�erentials between buy and sell prices is limited, and
the retailer strives to make its o�ered buy and sell prices more competitive in order to
attract more demand and generation by its customers. As a result of these e�ects, the
profit of the retailer is very significantly reduced, while the customers enjoy significant
economic benefits. Although this beneficial impact of LEM is significantly higher
for customers participating in the LEM, it is also substantial for non-participating
customers, due to the above e�ects of the LEM on the retailer’s o�ered prices.
3. A novel deep reinforcement learning method to solve the pricing EV problem with
discrete charging / discharging levels is firstly proposed in Chapter 5.

This chapter solves the problem of e�ectively pricing EV by aggregators through
a bi-level optimization formulation. In contrast with the existing literature, this
formulation also considers the V2G capability of EV and the discrete nature of their
charging / discharging levels.

Considering the fundamental limitations of the traditional KKT condition based
approach in capturing these discrete EV operating characteristics and thus e�ectively
solving this problem, this chapter has focused on RL approaches. In this setting,
motivated by the solution optimality and computational limitations of state-of-the-art
RL methods, associated with their need to discretize state and / or action spaces, this
chapter has proposed a novel deep reinforcement learning method, named prioritized
deep deterministic policy gradient method (PPDPG), which sets up the problem in
multi-dimensional continuous state and action spaces.

The presented case studies firstly demonstrate that the proposed PDDPG method
has been compared against the two state-of-the-art RL methods, namely Q-learning and



162 Conclusions and Future Work

DQN. The results have demonstrated that the proposed method achieves 31% and 13%
higher profit for the examined EV aggregator than the Q-learning and DQN methods,
respectively, driven by its ability to capture continuous pricing decisions. Furthermore,
it exhibits lower total computational requirements, driven by the employment of the
proposed prioritized experience replay (PER) strategy.

The presented case studies secondly demonstrated that as the percentage of flexible
EV increases and when V2G capability is introduced, the profile of retail prices o�ered
by the aggregator gets flatter and the aggregator’s retail revenue from the EV is
reduced, implying that EV flexibility limits the aggregator’s potential of exploiting the
EV owners by setting large retail price di�erentials between peak and o�-peak hours.

On the other hand, the introduction of EV flexibility has been shown to always
reduce the average electricity cost of EV. Although this beneficial impact is significantly
higher for the EV which exhibit this flexibility, it is also substantial for inflexible EV,
driven by the impact of EV flexibility in reducing the retail prices o�ered by the
aggregator at peak hours.

6.2 Future Work

Although the thesis fulfils the aims of developing e�cient smart pricing strategies to
flexible customers in the retail market via game-theoretic and learning based techniques,
there is still some work that can be developed in the future.

1. The developed model in Chapter 3 as well as the similar bi-level optimization
models employed in the existing literature for analysing strategic decision-making in
deregulated electricity markets, neglect the complex unit commitment constraints of
electricity producers in the wholesale market. This limitation is associated with the
mathematical challenge of rigorously solving a bi-level optimization problem with binary
decision variables in the lower-level problem, given that the derivation of the respective
KKT optimality conditions is impossible. However, these complex constraints generally
a�ect the wholesale market outcome and subsequently the retailer’s pricing strategies
and profit. In this context, future work will enable the incorporation of binary unit
commitment variables in the developed model through 1) the mathematical approach
of the relaxation and primal-dual reformulation of the non-convex lower-level problem
and the penalization of the associated duality gap, which is adopted in Chapter 4
or 2) the reinforcement learning approach of learning the strategies by acquiring the
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experiences from the environment that can be modeled as a non-convex optimization
problem, which is adopted in Chapter 5.

2. Beyond the generic, technology-agnostic representation of demand flexibility
employed in Chapter 3 and 4, the detailed representation of di�erent residential and
commercial flexible demand technologies, including electric vehicles [34], electric heat
pumps [30] and smart appliances [35], will be incorporated in the model.

3. The network is also an important issue in the power system. Our future work will
consider how the network constraints can be integrated into the developed optimization
framework in Chapter 3-5 and see the e�ects of the line congestion on the market
outcomes and the strategic decisions of the retailer as well as its businesses. Take
the bi-level model of Chapter 3 as an example, in order to consider the e�ect of
the transmission network, the DC power flow model proposed in [89, 131] will be
implemented to the second lower-level problem (i.e. wholesale market clearing); while
for the e�ect of the distribution network, the AC power flow model proposed in [26]
could be implemented to the upper-level problem. And the approximated network
equations developed in [132] are necessary to keep the model linear.

4. The additional one lies in capturing the strategic interaction between multiple
independent retailers by extending the proposed model to an equilibrium programming
model determining retail market equilibria and considering the ability of consumers
to switch electricity retailer, depending on the o�ered retail prices. Authors in [133–
136] formulate this equilibrium problem by replacing each player’s MPEC problem
by its KKT optimality conditions and concatenate them together, resulting in a set
of nonlinear constraints known as equilibrium problem with equilibrium constraints
(EPEC). An iterative diagonalization algorithm (DIAG) is used in [89, 131, 137, 138] to
identify the imperfect equilibrium, in which each retailer solves its own MPEC problem
treating the strategies of the rest of the retailers as fixed, until the algorithm converges
to a fixed market outcome. Furthermore, multi-agent reinforcement learning (MARL)
is also adopted to address the equilibrium problem in the context of reinforcement
learning algorithm [139, 140].

5. Furthermore, the presented models in Chapter 3-5 are deterministic, assuming
that the examined retailer has accurate projections of its customers’ flexibility and
the generation / demand characteristics of the wholesale market. Future work aims
at incorporating uncertainties that retailers face regarding these parameters and
investigating the retailers’ strategies and business case in this setting, rendering the
problem into a stochastic optimization problem. In addition, the retailer also accounts
for potential hedging strategies through their participation in financial derivative
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markets [141], such as forward contacts, futures, swaps, and options, that are introduced
to manage the risk coming from the uncertainties of wholesale prices and consumers’
flexibility, because the prices of these derivatives are predefined, but normally are
expensive than the wholesale prices. More specifically, a risk-taken retailer is willing
to accept the risk from wholesale prices, and thus purchases more energy from the
wholesale market and less energy from financial derivatives, so as to reduce its expected
cost and increase its expected profit. While a risk-aversion retailer aims at mitigating
the risk from wholesale prices, and thus reduces the energy procurement from the
wholesale market and increases the energy procurement from financial derivatives [142].
However, its expected profit is reduced because the risk-aversion retailer purchases
more expensive financial derivatives.

6. Future work aims at enhancing the developed model in Chapter 4-5. The
developed model assumes that the retailer / aggregator’s decisions do not a�ect the
wholesale market prices, which constitutes a realistic assumption only for retailer /
aggregator serving a small population of customers / EV. Future work aims at dropping
this assumption and exploring the e�ects of the introduction of LEM / EV flexibility
on large retailer / aggregator who can also act strategically in the wholesale market,
but also considers the more realistic constraints incorporating the model dynamics.

7. Specifically, for Chapter 4, the future work aims at model the optimal decisions of
the customers to choose between the strategic retailer and LEM. To this end, it would
be interesting to implement such a complex model in a multi-agent deep reinforcement
learning (MADRL) framework. The strategic retailer and the served customers are both
treated as the agents, where the retailer aims at maximizing its profit (reward), receives
the response from individual customers and LEM (state) and o�ers the strategic prices
(action); the customers aim at maximizing their individual benefits (reward), receives
the price signals o�ered by the retailer (state) and optimize their selection choice and
optimal response (action).

8. Finally, the future work of Chapter 5 aims at incorporating the realistic variability
of the exogenous state features (namely EV traveling patterns and wholesale prices)
in the learning procedure of the proposed PDDPG method, through the employment
of data from large EV trials. This will help us test and enhance the generalization
performance of the proposed method to render it robust against such variability, which
constitutes a major current research challenge in the area of RL.
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Appendix A

Travelling Data of 25 EV Types

It is assumed that each EV makes two journeys per day, an assumption reflecting
the intuitive commuting patterns, mainly involving journeys from the home to the
work place and vice versa, while the EVs are assumed connected to the grid between
the end of their last trip and the start of their first trip of the day, in line with
the home-charging paradigm. Each type is defined by the combination of the start
time, end time and travel energy requirement of each of its two daily journeys. The
total number of EV types considered in the case studies of Chapter 5 is 25 and their
respective characteristics are presented in Table A.1.

Each inflexible EV is assumed to start charging (with the same, fixed rate of 3 kW)
immediately after it is connected to the grid until it covers its daily travelling energy
requirements and their respective fix charging characteristics are presented in Table
A.2.
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Table A.1 Travelling characteristics of 25 EV types.

1st journey 2nd journey

Type
Start

time (h)
End

time (h)
Energy requirement

(kWh)
Start

time (h)
End

time (h)
Energy requirement

(kWh)

1 8 8 2.2350 10 10 2.1547
2 8 8 2.2350 11 11 2.1547
3 8 8 2.2350 12 12 2.1547
4 8 8 2.2350 13 13 2.1547
5 8 8 2.2350 14 14 2.1547
6 8 8 2.2350 15 15 2.1547
7 8 8 2.2350 16 16 2.1547
8 8 8 2.2350 17 17 2.1547
9 8 8 2.2350 18 18 2.1547
10 9 9 2.2350 11 11 2.1547
11 9 9 2.2350 12 12 2.1547
12 9 9 2.2350 13 13 2.1547
13 9 9 2.2350 14 14 2.1547
14 9 9 2.2350 15 15 2.1547
15 9 9 2.2350 16 16 2.1547
16 9 9 2.2350 16 17 2.1547
17 9 9 2.2350 17 18 2.1547
18 10 10 2.2350 13 13 2.1547
19 10 10 2.2350 14 14 2.1547
20 10 10 2.2350 15 15 2.1547
21 10 10 2.2350 16 16 2.1547
22 10 10 2.2350 17 17 2.1547
23 11 11 2.2350 15 15 2.1547
24 11 11 2.2350 16 16 2.1547
25 11 11 2.2350 17 17 2.1547
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Table A.2 Inflexible demand charging of 25 EV types.

Type
Total energy requirement

(kWh)
Fixed charging rate

(kW)
Fixed charging time

(h)

1 4.3897 3 11-12
2 4.3897 3 12-13
3 4.3897 3 13-14
4 4.3897 3 14-15
5 4.3897 3 15-16
6 4.3897 3 16-17
7 4.3897 3 17-18
8 4.3897 3 18-19
9 4.3897 3 19-20
10 4.3897 3 12-13
11 4.3897 3 13-14
12 4.3897 3 14-15
13 4.3897 3 15-16
14 4.3897 3 16-17
15 4.3897 3 17-18
16 6.5445 3 18-20
17 6.5445 3 19-20
18 4.3897 3 14-15
19 4.3897 3 15-16
20 4.3897 3 16-17
21 4.3897 3 17-18
22 4.3897 3 18-19
23 4.3897 3 16-17
24 4.3897 3 17-18
25 4.3897 3 18-19




