
Correct Composition in the Presence of Behavioural
Conflicts and DephasingI

Juliana K. F. Bowlesa,∗, Marco B. Caminatia

aSchool of Computer Science, University of St Andrews, Jack Cole Building
St Andrews KY16 9SX, United Kingdom

Abstract

Scenarios of execution are commonly used to specify partial behaviour and inter-
actions between different objects and components in a system. To avoid overall
inconsistency in specifications, various automated methods have emerged in the
literature to compose scenario-based models. In recent work, we have shown how
the theorem prover Isabelle/HOL can be combined with an SMT solver to detect
inconsistencies between sequence diagrams and, only in their absence, generate
the behavioural composition. In this paper, we exploit this combination further
and present an efficient approach that generates all valid composed traces giving
us an equivalent representation of the conflict-free valid composed model. In
addition, we show a novel way to prove the correctness of the computed results,
and compare this method with the implementation and verification done within
Isabelle alone. To reduce the complexity of our technique, we consider priority
constraints and a notion of dephased models, i.e., models which start execution
at different times. This work has been inspired by a problem from a medical
domain where different clinical guidelines for chronic conditions may be applied
to the same patient at different points in time. We illustrate the approach with
a realistic example from this domain.

Keywords: Formal methods, Verification, SMT solver, Theorem prover,
Isabelle/HOL, Event structures, Model Composition, Optimisation

1. Introduction

To cope with the complexity of modern systems, design approaches combine
a variety of languages and notations to capture different aspects of a system, and
separate structural from behavioural models. In itself behavioural modelling is

IThis research is supported by grants: EPSRC EP/M014290/1 and MRC MR/S003819/1.
∗Corresponding author
Email addresses: jkfb@st-andrews.ac.uk (Juliana K. F. Bowles),

mbc8@st-andrews.ac.uk (Marco B. Caminati)
URL: http://orcid.org/0000-0002-5918-9114 (Juliana K. F. Bowles),

http://orcid.org/0000-0002-4529-5442 (Marco B. Caminati)

Preprint submitted to Elsevier July 28, 2019

challenging, and rather than attempt to model the complete behaviour of a
(sub)system [44], it is easier to focus on several possible scenarios of execution
separately. Scenarios give a partial understanding of a component and include
interactions with other system components. In industry, individual scenarios are
often captured using UML’s sequence diagrams [37]. Given a set of scenarios, we
want to obtain their combined behaviour, and incrementally continue to enrich
the overall behavioural model as more scenarios are identified. This requires a
mechanism to compose scenario-based models, and when this cannot be done
because the scenarios contain inconsistencies, we want to detect and remove
them to keep the overall composition model valid. Our approach allows us to
gain further understanding on the system behaviour, even when the complete
and overall behaviour is unknown.

It is widely recognised that composing systems manually can only be done
for small systems. As a result, in recent years, various methods for automated
model composition have been introduced [1, 14, 41, 30, 33, 43, 45, 46, 50, 13,
15, 16]. Most of these methods involve introducing algorithms to produce a
composite model from simpler models originating from partial specifications and
assume a formal underlying semantics [30]. In our recent work [13, 15, 16], we
have used constraint solvers for automatically constructing the composed model.
This involves generating all constraints associated to the models, and using an
automated solver to find a solution (the composed model) for the conjunction
of all constraints. We used the SAT solver underlying Alloy [28] in [13, 15] and
the SMT solver Z3 [34] in [16]. SAT-solvers have been used to merge different
versions of a sequence diagram in accordance to the system behaviour given by
a state machine in [46]. More generally, conflict detection algorithms and model
merging strategies have been actively researched (cf. [21] for a review) in order
to address problems inherent in model versioning systems. Even though some of
the existing approaches reduce the problem to a constraint satisfaction (usually
SAT) problem, the context and assumptions taken are very different from ours.

We have conducted several experiments showing that Z3 performs much bet-
ter than the Alloy analyzer for large systems [16]. Using Alloy and its underlying
SAT solver, for model composition, mostly in the context of structural models,
is very common (e.g., [43, 50]), but the use of an SMT solver Z3 in the same
context is a novelty of [16]. Even though we used Z3 in [16], we did not explore
Z3’s arithmetic capabilities, nor did we deal with incompatible constraints. We
have addressed both points recently in [17] as well as in the present paper.

As in our earlier work, our approach in [17] used event structures [49] as
an underlying semantics for sequence diagrams in accordance to [32, 12], and
explored how the theorem prover Isabelle/HOL [36] and constraint solver Z3 [34]
could be combined to detect and solve partial specifications and inconsistencies
over event structures. In this paper, we go one step further in improving the
process of automatically generating correct composition models for behavioural
models that may contain inconsistencies. To do so, we take the view that a
(composed) behavioural model corresponds to the set of valid traces of execution
for that model. To compose two or more behavioural models, we can generate
all possible traces of execution that respect any constraints for the composition

2

or individual models. If we can guarantee that the generated traces are valid
and the overall set of traces is complete, then we have obtained an equivalent
representation of the valid behaviour of the original composed model. Any
inconsistencies in the composed model are excluded (i.e., no inconsistent traces
are considered).

Generating all valid traces for a composition of behavioural models can
quickly become very complex, even when considering further constraints that
restrict the number of possible traces. Our approach allows the generation of
possible combined traces by prioritising the generation of preferred traces first.
A further novelty of our approach, which helps reduce the complexity of the
composed model, is the introduction of a notion of dephased models prior to
composition. This makes it possible to combine models which do not start
execution simultaneously, where events are executed at a different pace, and
where alternative events are given a different priority. The effect is a reduction of
detected inconsistencies (if any), and the automated generation of what are valid
context-specific traces of execution. This work has been inspired by a problem
from a medical domain where different clinical pathways for chronic conditions
are applied to the same patient with different starting points (diagnosis).

Our emphasis in this paper is the composition of two or more scenario-based
models and the behaviour that can be obtained from that composition even in
the presence of inconsistencies. If we disregard the traces from the scenario-
based models that lead to overall inconsistencies, we can obtain a composed
model. Approaches developed for the integration of multiple versions of a sce-
nario such as [46, 29] work under the assumption of an existing state-based
system model (a state machine) which can be used to detect inconsistencies of
different versions of a sequence diagram. This is different in our case, as we do
not have a reference system model and the inconsistencies in our approach are
between (elements within) the scenarios themselves. We argue that this can be
useful because a complete state-based behavioural model may not exist.

This paper extends our work presented in [18] by showing more generally
how to generate automatically all valid traces for composed models (with or
without dephasing) using SMT solvers. In the presence of inconsistencies be-
tween different behavioural models, we are interested in the composed model
that can be obtained after removing such inconsistencies. By generating the
set of all possible combined valid traces, we obtain an equivalent representation
of the behaviour of the composed model as intended. We use Isabelle both to
prove the validity of a trace and the completeness of the set of generated traces.
In addition to these proofs under a given bound, we also present an original,
general method to provide a formal correctness proof for SMT code.

This paper is structured as follows. The motivation and contributions of the
work presented here are discussed in Section 2, while in Section 3 we recall our
formal model (labelled event structures) used to provide a semantics to scenario-
based models given by sequence diagrams. Section 4 translates the formal model
into computable Isabelle functions and provides formal correctness theorems
about them, while Section 5 introduces SMT code to compute the underlying
traces of execution. Section 6 describes how Isabelle and the SMT solver Z3 are

3

combined to formally prove correctness theorems applying to the code. Section 7
uses the verified SMT code to obtain a complete set of execution traces and
hence a description of the composition of the given models. In Section 8, we
discuss some performance optimisations for the SMT code, and discuss how
they impact on the validity of the formal correctness proofs obtained and add
further proofs. We introduce an example from the clinical domain to illustrate
the applicability and power of our approach in Section 9. We conclude the paper
with a description of related work in Section 10, and a discussion of future work
in Section 11.

2. Context and Contribution

Continuing the work started in [17], we exploit the interface between Isabelle
and Z3 to obtain a versatile tool for the specification, analysis and computation
of the behaviour of complex systems. Representing labelled event structures, our
underlying semantic model for UML sequence diagrams (cf. [32, 12]), directly in
Isabelle means that we can check automatically the correctness of the diagrams,
obtain their composition (if it exists) with Z3 and fill any gaps, while being able
to prove at any point that the diagrams are valid [17]. If our diagrams contain
inconsistent behaviour, we use Z3 to locate the reason for this. However, we
argue in this paper, that not generating a composition model because of the
presence of conflicts is too restrictive. Instead, we are interested in obtaining a
valid behavioural model for the composition after discarding all inconsistencies.
Further, we may be able to avoid (some) inconsistencies further if we allow
models to be dephased, that is, we allow scenarios to start execution at different
times and continue execution at a different pace. We also consider a notion
of priority in a model. We develop a technique to automatically generate all
valid traces by defining exactly how the different scenarios come together (i.e.,
how they are dephased) and which traces are closer to satisfying assumed model
priorities. This allows us to generate all preferred solutions first, successively
generate all valid traces, and obtain the overall valid composed behaviour given
through its set of traces of execution. To keep the approach relevant in practice
we have chosen a healthcare inspired problem.

Consider the problem of caring for patients with multimorbidities, i.e., pa-
tients with two or more chronic conditions. Clinical guidelines describe how to
care for a patient with one concrete chronic condition, but usually ignore the
presence of several ongoing conditions. It is, however, increasingly common for
people to develop two or more chronic conditions over time. In Scotland, over
half of all people with chronic conditions have two or more conditions simulta-
neously [39]. When different clinical guidelines for chronic conditions are being
applied to the same patient:

• different steps may be executed at a different pace. For instance, for
one condition we may need observations to be carried out every month,
whereas for others every three months is sufficient.

4

• one of the conditions may be prevalent and for this reason has higher
priority.

• some of the possible medications prescribed at a given step in the guide-
lines may have higher priority due to better treatment effectiveness. For
instance, the use of metformin in the treatment of type2 diabetes.

• the diagnosis of different conditions for a patient are likely to have oc-
curred at different times. For instance, the diagnosis of chronic kidney
disease often follows (and may be a consequence of) an earlier diagnosis of
type 2 diabetes. This leads to the corresponding care guidelines starting
execution at different times, in other words, their execution is dephased.

In particular, having an automated technique that allows us to find valid
combined traces taking into account priorities is useful as it gives us a flexible
mechanism to identify different solutions in similar but different cases. For
instance, patients with the same conditions overall but with different orders of
diagnosis, priorities or prevalent condition. To keep the presentation of this
paper more focused, we omit the medical details and instead show how the
approach works for an abstract example. A clinical example is introduced later
in Section 9. Consider the following example of UML sequence diagrams [37].

pro2

pro1

d1:D p:P
Asd

ma1
alt

ma3

ma2

mb1

Bsd

mb2

par

p:Pd2:D

x>20

x>9

Csd

mc1
alt

mc2

d3:D p:P

Figure 1: Three scenarios involving the same object instances.

Figure 1 shows three scenarios involving the same instance p and different
instances of the same class D, that is, d1, d2, d3. The scenarios use interaction
fragments for alternative behaviour (indicated by an alt on the top-left cor-
ner) and parallel behaviour (indicated by a par on the top-left corner). Other
fragment operators exist but are not used in this paper (cf. [37] for details).

Interaction fragments, such as alt and par amongst others, contain one
or more operands, which in the case of an alternative may be preceded by a
constraint or guard. All diagrams in Figure 1 have two operands each separated
by a dashed line. What happens to the behaviour contained within an operand
depends on the interaction fragment used. The alternative fragment in sdA uses
two constraints for the operands, namely pro1 and pro2, and we note that they
are not necessarily mutually exclusive. We may want to associate a priority to
pro1, to indicate for instance that if it holds we will want the corresponding
operand to execute (instead of the second operand and regardless of whether
pro2 holds or not). UML does not have direct notation to indicate this, but we
can assume the existence of a priority tag (not shown) and add a priority notion

5

to our formal model. For the messages shown (for instance, ma1, mb1, mc1, and
so on), we assume that when they are received, they imply an occurrence for
instance p. The marked points along the lifeline of instance p and next to the
conditions are what we call locations, borrowing terminology from Live Sequence
Charts (LSCs) [26]. They do not serve a purpose at the design level but make
it easier to understand the formal semantics (cf. [32] for details).

Assume that we know that the occurrence of ma1 conflicts with mc1, and
ma2 conflicts with mb2. This is not encoded directly in the scenarios above, but
is domain knowledge contained elsewhere. For instance, in a medical context
it is known that certain combinations of drugs when given together cause ad-
verse reactions and should hence not be given to a patient at the same time.
Furthermore, we may wish to distinguish the severity of such conflicts either by
categorising it (mild, moderate, severe) or giving it an integer value.

We now want to obtain the composition of these three diagrams in such a way
that the known underlying conflicts between some of the labels are taken into
account. It seems clear that, focusing only on instance p, to avoid these conflicts
the easiest thing to do is to take the second alternative in sdA assuming that pro2
holds. No conflict is present in that case. However, it may be the case that pro1
holds as well and it has an associated higher priority leading to the execution of
ma1 followed by ma2. The question is whether we can still obtain a valid trace
that includes this preference and avoids the known conflicts. Our approach
developed here gives an answer to this question under the assumption that
simultaneous occurrence of conflicting messages is avoided. Notions of current
state, pace and occurrence priority are introduced and used as parameters to find
valid traces in a composed model. We describe how these are treated formally
in the next sections.

In this paper, we focus on the formal semantics, the composition and valid
traces defined at that level, and the formal methods used to detect them. We
do not come back to a design level, but we assume the underlying formal models
used here have been generated from scenarios or process descriptions. See our
earlier work for an idea of the transformation defined at the metamodel level
[13, 15, 16]. See [31] for a description of the medical problem of treating patients
with multimorbidities. We will return to a medical example in Section 9.

3. Formal Model

The model we use to capture the semantics of a sequence diagram is a la-
belled (prime) event structure [49], or event structure for short. Event structures
have been widely used and studied in the literature, and have been used to give
a true-concurrent semantics to process calculi such as CCS, CSP, SCCS and
ACP (e.g., [48]). The advantages of prime event structures include their under-
lying simplicity and how they naturally describe fundamental notions present
in behavioural models including sequential, parallel and iterative behaviour (or
the unfoldings thereof) as well as nondeterminism (cf. [32, 12]), and are hence
our model of choice. Event structures have well-defined composition operators
(cf. e.g., [35]). However, these composition mechanisms ignore labels and are

6

hence inadequate for our use here. In [17], we developed an automated ap-
proach in that can detect the conflicts in the scenarios as described in Section 2,
formalised as event structures and given additional constraints on label con-
flicts. We now extend our approach to find all valid paths that avoid these
label-induced conflicts. We describe the formal model first.

In an event structure, we have a set of event occurrences together with binary
relations for expressing causal dependency (called causality) and nondetermin-
ism (called conflict). The causality relation implies a (partial) order among
event occurrences, while the conflict relation expresses how the occurrence of
certain events excludes the occurrence of others. From the two relations defined
over the set of events, a further relation is derived, namely the concurrency rela-
tion co. Two events are concurrent if and only if they are completely unrelated,
i.e., neither related by causality nor by conflict.

To see how these relations can be associated to notions within a sequence
diagram, recall the diagram sdA in Figure 1. The locations marked along the
lifeline of an instance will typically correspond to events. For example, the
location marking the receipt of message ma2 can correspond to an event e4.
According to the diagram, the occurrence of e4 has to be preceded by event e2
associated to the location marking the receipt of message ma1. This means that
these events are related by causality. Furthermore, the occurrence of event e3
associated to the location marking the receipt of message ma3 is in conflict with
both e2 and e4, since these events correspond to different (mutually exclusive)
operands in the alt interaction fragment. In the same figure, diagram sdB

shows a par interaction fragment instead which means that events associated
to locations in different operands should be in concurrency. This is the case for
event g2 associated to the receipt of message mb1 and event g3 associated to the
parallel receipt of message mb2.

The formal definition of an event structure, as provided for instance in [32],
is as follows.

Definition 1. An event structure is a triple E = (Ev,→∗,#) where Ev is a
set of events and →∗,# ⊆ Ev × Ev are binary relations called causality and
conflict, respectively. Causality →∗ is a partial order. Conflict # is symmetric
and irreflexive, and propagates over causality, i.e., e#e

′ ∧ e′ →∗ e′′ ⇒ e#e
′′

for all e, e
′
, e
′′ ∈ Ev. Two events e, e

′ ∈ Ev are concurrent, e co e
′

iff ¬(e→∗
e
′ ∨ e′ →∗ e ∨ e#e′). C ⊆ Ev is a configuration iff (1) C is conflict-free:
∀e, e′ ∈ C¬(e#e′) and (2) downward-closed: e ∈ C and e′ →∗ e implies e′ ∈ C.

We assume discrete event structures. Discreteness imposes a finiteness con-
straint on the model, i.e., there are always only a finite number of causally
related predecessors to an event, known as the local configuration of the event
(written ↓e). A further motivation for this constraint is given by the fact that
every execution has a starting point or configuration. A trace of execution in
an event structure is a maximal configuration. An event e may have an im-
mediate successor e′ according to the order →∗: in this case, we will usually
write e → e′. The relation given by → is called immediate causality. An event

7

e within a configuration C is maximal iff there are no other events in C that
are successors of e, i.e., for all e

′ ∈ C if e→∗ e′ then e = e
′
.

To make a connection between the semantic model (here an event structure)
and the syntactic model (e.g., sequence diagram) it is describing, we need to
associate some additional information to individual events. Let L be a given set
of labels.

Definition 2. A labelled event structure over L is a triple M = (Ev, µ, ν)
where µ and ν are partial labelling functions µ : Ev → 2L and ν : Ev → N×N.

Labelled event structures are event structures enriched with two labelling
functions µ and ν. The function µ maps events onto a subset of elements of L.
The labels in the set L either denote formulas (constraints over integer variables,
e.g., x > 9 or y = 5), logical propositions (e.g., pro1) or actions (e.g., ma1). If
for an event e ∈ Ev, µ(e) contains an action α ∈ L, then e denotes an occurrence
of that action α. If µ(e) contains a formula or logical proposition ϕ ∈ L, then
ϕ must hold when e occurs.

The labelling function ν associates to each event its priority and duration,
for instance, ν(e) = (p, d) indicates that p is the priority and d is the duration
associated with e. The higher the value of p, the higher the priority associated
to the event. The duration d indicates the time units spent at event e. Giving
different priority values to events is meaningful in the presence of alternatives
(conflicting events), where the highest value can be used to determine the ideal
configuration in a model. We sometimes use ν(1) to indicate the priority function
and ν(2) the duration function, that is, ν(i) = proji ◦ν, where proji is the i-th
Cartesian projector map (i.e., the map extracting the i-th component of a tuple).
Further labels may be added to the framework as partial functions if required.
We call a labelled event structure a model in what follows.

In what follows assume a finite number of models M1, . . . ,Mn where n ∈ N,
in accordance with Definition 2. We define a map Γ specifying the level of
conflict between event labels across models as follows.

Definition 3. Label conflicts are given by Γ ⊆ Li × Lj × Z where i, j ∈ [1..n].

Here, we assume binary conflicts of a certain value. For instance, (l1, l2, v)
indicates that l1 and l2 are in conflict with an interaction score of value v. We
consider that the lower the value of v the higher the severity of the label conflict.

Let us return to the use of labelled event structures as a formal model for
behavioural models such as sequence diagrams. We do not show here how to
generate an event structure from a sequence diagram, but give the general idea.
As described briefly earlier, the locations along the lifelines of sequence diagrams
are associated to one or more events. Locations within different operands of an
alternative fragment correspond to events in conflict, whereas locations within
operands of a parallel fragment correspond to concurrent events. The events
associated to the locations along a lifeline are related by causality (partial order).
For more details, c.f. [32].

8

Recall the example of Figure 1. The locations along the lifeline of in-
stance p have been marked. The locations associated to the conditions/guards
of the alternative fragments belong to the instances of class D, but that dis-
tinction is irrelevant for our purposes. Assume the label conflicts given by
Γ = {(ma1,mc1,−200), (ma2,mb2,−100)}. The behaviour of p in the indi-
vidual diagrams of Figure 1 is shown in the three event structures MA, MB

and MC of Figure 2, where the events are associated to the marked locations
of the corresponding sequence diagram as expected. The defined labels are as
follows: µA(e2) = {pro1,ma1}, µA(e3) = {pro2,ma3}, and µA(e4) = {ma2}
for the event structure associated to sdA; µB(g2) = {mb1} and µB(g3) = {mb2}
associated to sdB; and µC(f2) = {x > 9,mc1} and µC(f3) = {x > 20,mc3}
associated to sdC.

Figure 2: Corresponding event structures for instance p.

The labels of some of the events (marked) above are conflicting according to
Γ, namely events e2 and f2, and events e4 and g3. When obtaining the composi-
tion of the models above we need to make sure label inconsistencies are detected
and avoided. A composed model that avoids label conflicts could reduce the
composition to the trace of execution τ1 = {e0, e1, e3, g0, g1, g2, g3, g4, f0, f1, f3}
or τ2 (identical to τ1 except that it contains f2 instead of f3). Note that a trace
of execution is a maximal configuration as introduced in Definition 1. How-
ever, these traces may not be the best with respect to the given priorities. The
labels on events are only inconsistent if they occur simultaneously, and if we
know where instance p is within each of the scenarios we may be able to avoid
conflicts. Function ν gives us that information. Furthermore, if inconsistencies
cannot be avoided we favour those with a higher interaction score (less severe).

Assume the following ν labels for some of the events in our example: νA(e0) =
νB(g0) = νC(f0) = (1, 1), νA(e1) = νB(g1) = νC(f1) = (1, 1), νA(e2) = (5, 3),
νA(e3) = (1, 3), νA(e4) = (5, 2), νB(g2) = (1, 2), νB(g3) = (1, 1), νC(f2) = (3, 3)
and νC(f3) = (1, 2). Consider the possible traces of execution shown in Figure 3
with time evolving from the left to the right, and considering the events in sdA

and sdC with highest priority (here assumed to have value 5 and 3 respectively).
The traces illustrate how the event duration and the (dephased) order in

which execution is done for the different scenarios may or may not contain
inconsistencies. The first two example traces contain inconsistencies, because
events with label conflicts occur at the same time. A resolution for trace1 could
replace the occurrence of f2 with f3 (compromising on the effectiveness of f2 but
guaranteeing the higher priority of e2), and for trace2 could change the order of

9

trace1 trace2 trace3

Figure 3: Possible traces of execution with and without inconsistencies.

occurrence of g2 and g3. Note that when having a conflict between two events
with an assigned priority we always try to satisfy the event with the highest
priority first. Here e2 has priority 5 and f2 has priority 3, so we favour e2. If
both events had the same priority the resolution would pick one of the events
at random. Between traces trace1 and trace2, the conflict severity is lower in
trace1 (value −100) and hence this trace (if conflicts would be unavoidable)
would be favoured. In this paper we avoid inconsistencies altogether and we do
not explore this feature further. In trace3 no inconsistencies are present and
all events have the highest priority. In the next section we show how we can
generate automatically the valid traces for a set of labelled event structures given
a set of label conflicts and the degree that each structure is being dephased.

4. Isabelle Implementation and Verification

We combine two formal techniques to calculate automatically the outcome
of the composition of two or more behavioural models as a set of allowed traces
and to determine that the result is correct : the theorem prover Isabelle [36] and
the SMT solver Z3 [34].

Isabelle is a theorem prover (proof assistant) providing a framework to ac-
commodate logical systems (inference rules, axioms), and compute the validity
of logical deductions according to the chosen logical system. In this paper, we
use Isabelle’s library based on higher-order logic (HOL): the resulting overall
system is referred to as Isabelle/HOL, but here we will use Isabelle and Is-
abelle/HOL interchangeably. In Isabelle/HOL the basic notions are type spec-
ification, function application, lambda abstraction, and equality. Using these
notions, mathematical definitions can be formulated; in turn, theorems about
these definitions can be proved using the axioms describing the intuitive prop-
erties of the basic notions and the inference rules of HOL. An important point
is that an Isabelle/HOL definition can be computed if suitably formulated: this
allows to use Isabelle/HOL to both perform computations and formally prove
their correctness by verifying theorems stating the wanted properties of the
corresponding definitions.

This idea is general, and can be, in theory, used to verify any algorithm.
In practice, however, the definition of the object we want to compute is often
non-constructive and therefore, while we can still use Isabelle/HOL to prove
theorems about it, we cannot directly compute it. One general approach (used in
[23]) to overcome this limitation is to keep the given non-constructive definition
specifying the given computational problem, to add a computable definition,
and to prove in Isabelle that they are equivalent through a so-called bridging

10

theorem: in this way, any theorem we prove about one of the two will carry over
to the other definition and, in particular, we can prove the correctness of our
implementation (given by the constructive Isabelle definition) with the respect
to the specification (given by the original, potentially non-constructive, Isabelle
definition).

These general considerations can be applied to our problem as described in
Section 3. As described earlier, a key step in obtaining a composed model is to
compute the traces of the given event structures, which entails the computation
of all possible configurations. We have defined event structures in Definition 1
and, according to that definition, a set of events C is a configuration if it is
conflict-free and downward-closed. In Isabelle, a configuration is described as
follows.

abbreviation ”isDownwardClosed cau C == (C ⊆ events cau &
(∀ e f . e ∈ C & (f , e) ∈ cau → f ∈ C))”

abbreviation ”isConflictFree cfl C == (∀ e e ’ .
e ∈ C & e ’ ∈ C → (e , e ’) /∈ cfl)”

Here we use cau to indicate the causality relation →∗, given by the set of
all ordered pairs related by →∗, and cfl corresponds to the conflict relation #,
given by the set of all pairs related by #. For instance, f →∗ e corresponds to
(f,e)∈ cau. Furthermore, events cau is a function returning the set of elements
over which cau is defined which corresponds to the set of events Ev.

The above definitions are, however, not constructive since they describe the
properties C must have, but not how to compute it. We mentioned that the
general solution is to introduce a computable definition as follows.

abbreviation ”extension cau C == (C ∪ (cauˆ{−1} ‘ ‘C))”
abbreviation ”restriction cfl C == C − (cfl ‘ ‘ C)”

abbreviation ”configurations cau cfl ==
{C . C ∈ Pow (events cau) & extension cau C ⊆ C &

C ⊆ restriction cfl C}”

Above, ‘‘ applies a relation to a set, ˆ\{−1\} takes the converse of a rela-
tion, and Pow takes the powerset. For example, let C={e} and (f,e)∈cau, then
(e,f)∈cauˆ\{−1\} and f∈(e,f)∈cauˆ\{−1\} ‘‘C, which then gives C={e,f}.
In other words, the first expression extension guarantees that C contains all
the predecessors of all events in C. The second expression guarantees that con-
flicting events of any event in C are not in C. The final expression combines
both to define configurations, where C is a subset of the events in the consid-
ered structure. The advantage of configurations is that it is constructive and
can therefore be used to actually compute all configurations. It is not immedi-
ate how configurations relates to the original definition, and we introduce the
following bridging theorem to certify their equivalence.

theorem ”(C ∈ configurations cau cfl) ↔
(isConflictFree cfl C & isDownwardClosed cau C)”

11

The next step to the solution of our problem outlined in Section 3 is finding
traces (maximal configurations) in a model. A maximal set X in a family F of
sets can be formulated as follows.

(X ∈ F & (∀ Y ∈ F . X ⊆ Y → X = Y))

This states that X is a maximal set in a family of sets F if and only if any
other arbitrary set Y in F larger than X is equivalent to X. This definition is also
descriptive, rather than constructive, and we need to provide an equivalent,
constructive definition instead. Below we use f‘Z to denote the image of set Z

through function f.

abbreviation ”isMaximal F X == ({} /∈ (λ Y . X−Y) ‘ (F−{X }))”
abbreviation ”maximals F == {X ∈ F . isMaximal F X}”

along with a bridging theorem:

theorem ”X ∈ maximals F ↔ (X ∈ F & (∀ Y ∈ F . X⊆Y → X=Y))”

We are now able to compute all traces for a given event structure as follows.

abbreviation ”traces cau cfl ==
maximals (configurations cau cfl)”

In the above, we define traces over cau and cfl as maximal configurations
over the same relations.

We proceed by implementing all notions outlined in Section 3 and illustrated
in the example of Figure 2. We need to be able to determine whether traces
for different event structures (aka models) contain events with conflicting labels
(according to Γ, Definition 3), and what are the preferred traces with respect to
defined priorities (according to labelling function ν(1), Definition 2). In addition,
we need to specify how events in a trace of one model overlap timewise with
events in a trace of another model (using the duration values given by labelling
function ν(2), Definition 2). This corresponds to representing the traces in a
linear fashion as shown in Figure 3 in accordance to cau and cfl.

Given a list tr, whose entries are the events in a trace, and two distinct
elements f and s of such a list which are related by causality (f,s)∈cau, then
the index of f must be smaller than the index of s. This is defined next.

(∀ f s . ((f , s) ∈ set cau & f ∈ set tr & s ∈ set tr) →
the (findFirstIndex (λx . x=f) tr) <=
the (findFirstIndex (λx . x=s) tr))

where findFirstIndex (λx. x=e) l returns the index of the first entry of the list
tr equal to e. Since in general such an entry may not exist (prevented in the
clause above by the conditions on f and s), this function actually returns a value
of type optional with a special value None for these cases. Note that the function
the above converts back this optional type to a natural number as required.

However, since this condition does not allow us to compute all the traces
(lists) as needed, we introduce a corresponding constructive definition.

12

abbreviation ”isOrderPreserving cau tr ==
(None = (List . find (λx . x=True)
[let m=findFirstIndex (λx . x=f) tr in

let n=findFirstIndex (λx . x=s) tr in

(m 6= None & n 6=None & the m > the n) . (f , s) <− cau])) ”

which in the last line makes use of the list comprehension notation: .(f,s)<−cau.
This is used to parse all the pairs (f,s) in cau and applies to each one of them
the function specified on the left of the dot, producing a list of the results thus
obtained. The following bridging theorem ensures that isOrderPreserving is
correct.

theorem ”(∀ f s .
((f , s) ∈ set cau & f ∈ set tr & s ∈ set tr) →
the (findFirstIndex (λ x . x=f) tr) <=
the (findFirstIndex (λ x . x=s) tr))

↔ (isOrderPreserving cau tr)”

Once we have all the lists representing the traces and respecting the un-
derlying partial order given by causality, it is easy to calculate the temporal
configurations of all the events occurring in one such list. This corresponds
to calculating the abscissa of each event appearing in a diagram representing
traces, as for instance shown in Figure 3, and can be implemented in Isabelle
as follows.

abbreviation ”clocks dephasing durations tr ==
map (op + dephasing)
[listsum (map durations (take i tr)) . i<−[0..<size tr]] ”

where the function clocks takes a list tr representing a sorted trace and returns
the list of the abscissas (i.e., the time at which they start) of the corresponding
events. This is calculated by summing for each event the durations of the pre-
ceding events (given by function ν(2), Definition 2) and by adding the dephased
value of the corresponding model.

Finally, having computed all the sorted traces and the temporal scope of
all events in the traces, pruning the combination of traces where events with
label conflicts overlap is straightforward. From the remaining traces, the over-
all priority is computed through the standard Isabelle function listsum, then
allowing us to use the function Isabelle argmax to pick the best combination of
traces. We omit the details here, and focus, in the remainder, on the issue of
the performance of the obtained implementation.

Up to now, the stress was on correctness achieved through bridging theorems
between specification and implementation definitions in the functional language
Isabelle/HOL. Like any implementation, however, the one we have introduced
is liable to optimisations: for example, the definition of configurations on page
11 starts from the powerset of all events and is then refined in accordance
with the properties extension and restrictions. Since the computation of the
powerset is extremely expensive, one could try to find an equivalent definition for
configurations which does not require it, and then proceed to prove a further

13

bridging theorem stating the correctness of the new definition. This extends
the bridging theorem approach by introducing chains of equivalent definitions,
each more and more efficient, linked by several bridging theorems, leading to
a general approach to writing algorithms which are both efficient and formally
proven correct [19].

Here, rather than following that approach, we proceed by introducing an
alternative technique to improve performance by producing non-Isabelle code
which is, however, still amenable to Isabelle proofs. In this case this corresponds
to satisfiability modulo theories code. A satisfiability modulo theories (SMT)
solver is a computer program designed to check the satisfiability of a set of
formulas (known as assertions) expressed in first-order logic, where for instance
arithmetic operations and comparison are understood, and additional relations
and functions can be given a semantic meaning in order to make the problem
satisfiable. The next section reformulates our problem in SMT terms, while
Section 6 introduces a general technique to apply Isabelle correctness proofs to
the SMT code.

5. SMT Implementation

Contrary to what we did in Section 4 with Isabelle code, we will not show here
the very SMT code for our implementation. SMT code is essentially unreadable
because of the limited number of native notions and constructs available, and
any computation involving sets, for instance, is cumbersome. Furthermore, to
increase efficiency, usually a number of transformations are applied to the code
making it even less readable: e.g., a universally quantified assertion over a finite
type is often replaced by multiple non-quantified assertions, each for one element
of the type (quantifier elimination). In Section 6, we will see a way to ensure
that all these modifications do not affect the correctness of the final SMT code.
Finally, SMT-LIB [6], the standard specifying a common language for SMT
solvers, consistently employs reverse polish notation, aggravating the problem
of (human) readability.

Our solution to this expository problem is to write formulas close to the
first-order logic language used by SMT solvers, but, for the sake of readabil-
ity, adopt some simplifications. In particular, we adopt infix notation instead
of prefix notation, use set-theoretical styling instead of predicates (e.g., write
(j, k) ∈ Gi instead of Gi j k = True), use set-theoretical operations (e.g., union,
intersection, cartesian product, domain, range, etc.) instead of the correspond-
ing first-order logic renditions, omit type specifications, and use the universal
quantifier ∀ even when in the actual code it has been eliminated.

Recall Definitions 1, 2 and 3 (cf. Section 3). Our problem consists of an
n-tuple of models

M1 = (E1, µ1, ν1) , . . . ,Mn = (En, µn, νn) ,

where each model consists of an event structure and labelling functions,

E1 = (Ev1,→∗1,#1) , . . . , En = (Evn,→∗n,#n)

14

and an additional set of label conflicts Γ is provided

Γ ⊆
n−1⋃
i=1

n⋃
j=i+1

Li × Lj × Z

All notions above have been introduced, and we assume, as usual, that the
sets of events Ev1, . . . , Evn are pairwise disjoint. In what follows we denote the
immediate causality →i by Gi, and set

G :=
⋃

i=1,...,n

Gi # :=
⋃

i=1,...,n

#i

Given a relation R over a set Y and a set X ⊆ Y , we introduce the notation
R→ (X) to denote the image of X through R.

We proceed in steps: first, we show how to compute traces, then how to use

ν to obtain the preferred one, depending on the priority (ν
(1)
i) and the duration

(ν
(2)
i) assigned to arbitrary events of Evi.

5.1. Trace Calculation

To represent a trace of execution, we need to express which events are part
of the trace and in which order. The first piece of information is given by a
boolean function over all the events, namely, isSelected.

We can compute isSelected using an SMT solver as follows. Let us illustrate
the procedure for a fixed event structure Mi with events given by Evi. A trace is
a configuration and hence conflict-free and downward-closed (see Definition 1),
and this can be expressed as follows:

∀j, k ∈ Evi. isSelected (j) ∧ isSelected (k)→ ¬ (j#k)

∀j ∈ Range (Gi) . isSelected (j)→
∧

k∈(G−1
i)
→{j}

isSelected (k)

where Range(Gi) consists of all the events which are immediate successors of
other events in Mi (in other words, j cannot be an initial event). The formu-
las above capture the notion of configuration, where the first represents that
a configuration must be conflict-free and the second that a configuration must
be closed for all predecessors of an event (known as downward-closed, cf. Def-
inition 1) in a way amenable to SMT solvers. To compute traces of execution,
we have to further capture the notion of a maximal configuration. This notion
implies quantifying over configurations, which is not allowed in the first-order
logic universe of SMT solvers. However, the notion of maximality can be refor-
mulated in the case of configurations of finite event structures as follows.

15

∀z ∈ Evi. ¬ isSelected (z)→
(∃y ∈ Evi.((y#z ∧ isSelected (y)) ∨ ((y, z) ∈ Gi ∧ ¬ isSelected (y)))) (1)

The formulas above can be used to compute traces via an SMT solver. More
precisely, the events for which isSelected is true correspond to all the events in
the trace, and the events of any legal trace must satisfy the assertions above.
We will formally prove the correctness of this statement in Section 6.

To add an order to this set, we define on it a natural-valued map si which
is an order morphism between the partial order →∗i and the canonical order
relation on N. Therefore, we first obtain the partial order relation (let us denote
it as Pi) from the immediate causality Gi.

The following assertions impose that Pi is a transitive and reflexive extension
of Gi:

∀j, k. (j, k) ∈ Gi → (j, k) ∈ Pi (2)

∀j, k, l. (j, k) ∈ Pi ∧ (k, l) ∈ Pi → (j, l) ∈ Pi

∀j ∈ Evi. (j, j) ∈ Pi

∀j, k. (j, k) ∈ Pi ∧ (k, j) ∈ Pi → j = k

Pi is the transitive-reflexive closure of Gi, i.e., the minimal of all the transitive
and reflective extensions of Gi; therefore, on top of those assertions, conditions
imposing the minimality of Pi are needed: these are discussed separately in
Section 8.

Now that we have the partial order Pi, it is possible to require that si is an
order morphism, thereby sorting all the selected events of Evi. This can be
done by imposing that si is order-preserving (between the partial order Pi and
the canonical order relation for natural numbers), surjective over the integer
interval [1, . . . , |Evi|], and such that si (j) < si (k) whenever j is selected and k
is not:

∀j, k. (j, k) ∈ Pi → si (j) ≤ si (k) (3)

∀j, k ∈ Evi.j 6= k → si (j) 6= si (k)

∀j ∈ Evi.si (j) ≥ 1

∀j ∈ Evi.si (j) ≤ |Evi|
∀j, k ∈ Evi. isSelected (j) ∧ ¬ isSelected (k)→ si (j) < si (k)

We will see in Section 8 how to prove that one can use Gi in lieu of Pi for the
job of sorting traces; we also anticipate that in Section 6 the notion of partial
order will emerge again in the code verification process.

5.2. Using ν for Trace Selection

As done in the example of Figure 3, we want to be able to determine whether
events from distinct event structures overlap, in order to decide whether the

16

conflict they might have is triggered or not. We associate a clock function
to each event, expressing the time when the event starts. To calculate it, we
use the sorting functions si obtained in the previous section, together with the
duration of each event provided by ν. This can be done by requiring that an
event following another (according to si) starts exactly when the latter ends:

∀j, k ∈ Evi.
(isSelected j ∧ isSelected k ∧ si (j) ≤ |Evi| ∧ si (k) ≤ |Evi| ∧ si (k)− si (j) = 1)

→ clock (k) = clock (j) + ν(2) (j)

where ν(2)(j) corresponds to the duration of event j. We note that some of
the formulas above are logically redundant (for example, si (k) ≤ |Evi| follows
from (3)). However, they serve the purpose of reducing the search space for the
SMT solver: we recall that at the beginning of this section we anticipated the
occurrence of performance-oriented modifications to the code, and this is just
one of many such occurrences. The general verification technique discussed in
Section 6 will make sure correctness will not be affected by these modifications.

The formula above leaves the clocks of the source nodes (i.e., the nodes with
no incoming edges) undetermined, hence we need to set them separately. This
allows us to introduce dephasing between different models, by specifying differ-
ent clocks for the source nodes of different models, which means starting each
model at dephased times. In other words, the set of values clock(j) obtained
when j ranges over all the source nodes completely describes the dephasing,
and can be chosen freely. Finally, the concept of clock allows us to avoid in-
consistencies due to events mutually in conflict, but whose occurrence is not
simultaneous.

To attain this goal, we assign a score to each event and to each pair of events
from distinct models, through the function priority and Score, respectively, both
yielding integer values. Score (j, k) will take into account both the absolute
conflict between events j and k, and their clock, in order to decide whether
they are in conflict given a trace (recall, from the definition above and the
definition of si in previous section, that each trace determines clock values for
each event). Formally, this is obtained by the following requirement, repeated
for all m 6= n, m,n ∈ {1, . . . , n}:

∀j ∈ Evm, k ∈ Evn. isSelected (j) ∧ isSelected (k)→ Score (j, k) =

f
(

clock (j) , clock (k) , ν(2) (j) , D (µ (j) , µ (k))
)

where D calculates the absolute conflict (a negative number) between events
based on their label, and is passed to f . For example, referring to the example
depicted in Figure 2, one would have D(µA(e2), µC(f2)) = −200.

Further, f combines that with the distance of the event occurrences to obtain
the effective result, as follows:

f (x1, x2, y, z) :=

{
z, if x2 − x1 ∈ [0, y]

0, otherwise

17

Besides label conflicts between events in distinct models, the other criterion
when picking a trace is the absolute priority of each event. Therefore, we also
require

∀j. isSelected (j)→ priority (j) = ν(1) (j)

∀j.¬ isSelected (j)→ priority (j) = 0

where ν(1)(j) corresponds to the priority assigned to j.
To obtain the final trace, we define an integer variable totScore summing

over all the Score (j, k) and over all the values priority (j), and pick the trace
maximising totScore. This very last step corresponds to the addition of a single
assertion using the Z3 keyword maximize, which is not part of the SMT-LIB
standard, but is provided by the optimizing part of the SMT solver Z3, νZ [7].
νZ is now part of the default distribution of the recent versions of Z3.

5.3. Example

We test the output of our approach with respect to the simple example of
Figure 3. In the first case (trace1 of Figure 3), all the models start executing
together, and the SMT solver yields the optimal trace in Table 1. The incom-
patibility between g3 and e4 does not pose problems, since those two events
cannot overlap. However, the solver has been forced to choose between the
branch starting at e2 and f2. Given that the e2 branch has the highest pri-
ority overall, it has been picked. But event f2 also has a high priority, which
leads to his choice over f3, as soon as dephasing allows that. We now test that
this is indeed the case. Table 2 displays the output resulting from running the
same experiment, but with f0 happening at time 4 and g0 happening at time 1
(corresponding to trace3 in Figure 3).

clock event priority duration
0 e0 1 1
0 f0 1 1
0 g0 1 1
1 e1 1 1
1 f1 1 1
1 g1 1 1
2 e2 5 3
2 f3 1 2
2 g2 1 2
4 g3 1 1
5 e4 5 2
5 g4 1 4

Table 1: Outputs corresponding to trace1

18

clock event priority duration
0 e0 1 1
1 e1 1 1
1 g0 1 1
2 e2 5 3
2 g1 1 1
3 g3 1 1
4 f0 1 1
4 g2 1 2
5 e4 5 2
5 f1 1 1
6 f2 3 3
6 g4 1 4

Table 2: Outputs corresponding to trace3

Now, the incompatibility between e2 and f2 can be avoided by dephasing,
and indeed both events are part of the new trace. We also note that the incom-
patibility between e4 and g3 has also been avoided by swapping the execution
of g2 and g3, as expected.

6. Verification

The first-order language used in SMT solvers often requires laborious and
error-prone translation from higher-level mathematical abstractions. Let us
take the notion of event structure as an example: the concepts of partial order,
and relation in general are expressed typically through sets of ordered pairs.
However, the notion of set is not directly available in SMT-LIB, and one is
forced to choose an alternative lower-level representation. One possibility is to
represent binary relations as boolean predicates taking two arguments, but a
consequence of this choice is that it will make higher-level operations (such as
composition, image, taking the domain, injectivity, etc.) more complicated.

A way of tackling the complexity arising from this translation, and to make
sure that it correctly represents the involved objects, is to write the wanted
original definitions in a higher-order language (e.g., higher-order logic, HOL)
which allows us to express them easily. In the same language, we can of course
also write definitions closer to the ones required for SMT solvers. The crucial
point is that Isabelle provides an SMT-LIB generator which can generate, from
the latter definitions, SMT assertions directly executable by SMT solvers. This
in addition means that we can prove, inside Isabelle, the equivalence between
the standard definitions and those closer to the SMT language. Since we use
the latter directly to generate the SMT code, the formal equivalence proof is
also a proof of correctness for our generated SMT code.

To illustrate this, consider the following Isabelle definition of event structure
close to the formal one given in Definition 1:

19

abbreviation ”isLes causality conflict ==
propagation conflict causality & sym conflict &
irrefl conflict & trans causality &
antisym causality & reflex causality”

Above isLes causality conflict returns true exactly when the binary
relations causality and conflict satisfy the necessary conditions and hence
constitute a valid event structure. In the definition above, the relations of
causality and conflict are given as sets of pairs, which permits us to use the
standard property of symmetry (sym), transitivity (trans) already present in
the Isabelle libraries. We only needed to introduce propagation as a direct
translation of the propagation condition occurring in Definition 1, which we
omit here.

On the other hand, an equivalent definition is also introduced in Isabelle:

abbreviation ”IsLes Causality Conflict ==
Propagation Conflict Causality & Sym Conflict &
Irrefl Conflict & Trans Causality &
Antisym Causality & Reflex Causality”

which is similar to the previous one, but where Causality and Conflict are
no longer sets, but predicates.

This allows us to use the definition of IsLes for producing SMT code directly
through Isabelle’s SMT generator. Since this generator is originally provided
for theorem proving, and not for direct SMT computations as we are interested
here, we have to trick Isabelle into proving a lemma:

lemma assumes ”IsLes Causality Conflict” shows False

sledgehammer run [provers=z3 , minimize=false ,
overlord=true , timeout=1] (assms)

The lemma above makes some assumptions (hypotheses) written after the
keyword assumes. The assumptions include that the two relations described
constitute a valid event structure. The keyword shows introduces the thesis
(here False) and sledgehammer is Isabelle’s command for referencing outside
tools (ATPs, SMT solvers), used here to run Z3. We note that the argument
assms is used to instruct sledgehammer to ignore any other theorems in the
Isabelle library and consider only the stated assumptions.

In the lines above, Isabelle will pass to Z3 a file which contains one dec-
laration for each of the relations Causality and Conflict, and assertions for
each of the stated hypotheses. In the present case, we only have one hypothesis,
which will result in an SMT definition of event structure, directly usable for our
computations.

The last step to certify the correctness of this SMT generated code is to prove
the equivalence of isLes and IsLes, which is attained through the following
theorem:

theorem ”IsLes causality conflict ↔
(isLes (pred2set Causality) (pred2set Conflict))”

20

Efficient
SMT Code

Isabelle-generated
SMT code equivalence

proved by Z3

Isabelle
Definitions

Correctness
Formal Theoremsstate properties of

Figure 4: Overview of the formal verification of the SMT code.

where pred2set converts from relations represented as predicates into relations
represented as sets.

The idea of using Isabelle as an interface to SMT code becomes even more
fruitful in cases where the SMT code used for computing a given object departs
substantially from the original or standard mathematical definition of that ob-
ject. This usually happens, e.g., because the original definition is not directly
expressible as a finite number of formulae in first-order logic (the language of
SMT solvers), or because, even if it is, it is inefficient. In such cases, we can
express both the original definition and the definition used for SMT computing
in Isabelle, which we can then use both to generate the SMT code for the latter
and to formally prove the equivalence of the two definitions, as from the diagram
in Figure 4. As an example, let us take the trace computation seen at the be-
ginning of Section 5.1: there we had to resort to an alternative, less intelligible
definition of maximal configuration (1), because the original definition implied
quantifying over all configurations.

In Isabelle, we can easily render the pen-and-paper definitions of an event
structure (which we have seen earlier). A configuration is defined as follows.

abbreviation ”isConfiguration Ca Cf C =
isConflictFree Cf C & isDownwardClosed Ca C”

In addition, a trace (maximal configuration) is defined next.

abbreviation ”isTrace Ca Cf C =
isConfiguration Ca Cf C &
(∀ Y . Y ⊃ C → ¬ (isConfiguration Ca Cf Y))”

where the last line expresses that the configuration C is maximal. We write the
same line in the way seen in Section 5.1:

abbreviation ”isMaximalConfSmt Ca Cf C ==
(∀ z ∈ events Ca − C .

z ∈ Cf ‘ ‘ C ∨ (immediatePredecessors Ca {z})−C 6= {})”

where immediatePredecessors Ca {z} returns all the events e satisfying e → z
(we recall that → is the immediate causality obtained from →∗). Finally, the
following Isabelle theorem states that (1) is equivalent, for a configuration of a
finite event structure, to the original trace definition:

21

theorem correctness : assumes ”finite Ca” ”isLes Ca Cf”
”isConfiguration Ca Cf C” shows

”(isTrace Ca Cf C) ↔ isMaximalConfSmt Ca Cf C”

We note that the theorem assumes that C is a configuration: this is not
a problem because, as seen in Section 5.1, the notion of configuration ad-
mits a straightforward formulation in SMT, while the problematic one is that
of a maximal configuration. We also note that isMaximalConfSmt builds on
immediatePredecessors Ca, rather than directly on Ca. This is also not a prob-
lem, since the SMT computations we introduced in Section 5.1 take as input
the immediate causality relations Gi, i = 1, . . . , n, and use them to calculate via
SMT the causality relations →∗i .

The Isabelle definition isMaximalConfSmt can be used to automatically gen-
erate SMT code through sledgehammer, as we did with IsLes. This corresponds
to the vertical arrow on the left in Figure 4. In this case, however, the obtained
SMT code is not as efficient as the one we wrote in Section 5.1. In general,
the efficiency of SMT code can depend dramatically on formal details, such as
eliminating universal quantifiers by explicit enumeration, rewriting assertions
in normal form, etc. We want to keep both the efficiency of the non-Isabelle-
generated SMT code and the correctness of the Isabelle-generated SMT code.
Our solution is to take both, and prove their equivalence using the SMT solver it-
self. This corresponds to the horizontal arrow at the bottom of Figure 4, and can
be implemented as follows. We introduce an SMT boolean function maximality

which is true exactly when (1), repeated for each i = 1, . . . , n, is true. We
also introduce another boolean function maximalityIsabelle, defined by using
the SMT code generated by Isabelle using isMaximalConfSmt. If maximality and
maximalityIsabelle were not equivalent, there would be some isSelected satisfy-
ing one but not the other. Therefore, we challenged the SMT solver as follows:

(assert (or (and maximality (not maximalityIsabelle))
(and (not maximality) maximalityIsabelle)))

obtaining the answer (unsat), which guarantees that the SMT code we use for
maximal configuration (trace) calculation is correct.

Correctness, as usual, means that if we trust the SMT solver, Isabelle, and
the environment in which they run, then we can trust that the result of our
computation is indeed a trace. Furthermore, we know that any trace will satisfy
the SMT formula (i.e., Formula 1) passed to the solver for the computation. To
increase our confidence in the results, we could also prove the correctness of the
remaining computations, for instance trace selection (Section 5.1). The general
mechanism represented in Figure 4 could again be applied: we would need to
write an Isabelle formal specification of the desired property guiding the trace
selection, write an Isabelle definition to generate SMT code, and an Isabelle
theorem proving that the latter obeys the former. Finally, we would use the
SMT solver to prove that the Isabelle-generated SMT code and the non-Isabelle-
generated SMT code are equivalent. Again, this would imply correctness as
soon as we trust the solver and Isabelle, though in this case we would also

22

need to trust νZ (see end of Section 5.2), which we use for trace selection.
This is because the νZ commands minimize and maximize cannot be expressed
in the first-order logic fragment of SMT-LIB, and hence cannot undergo the
transformation represented by the vertical arrow in the diagram of Figure 4.

One of the motivations we gave above for the approach represented in Fig-
ure 4 is the ability to rewrite SMT formulas into logically equivalent ones for
performance reasons. Some of such rewritings, however, depend on the argu-
ments. For example, if we replace a universal quantifier ranging over all the
events of an event structure with the explicit enumeration of each single event,
we obtain a logical formula which varies upon which event structure we are con-
sidering. An important consequence of this is the need, in general, of repeating
the last SMT assertion given above for each case.

7. Completeness

The optimal trace obtained and verified previously is usually not the only
possible one. The SMT solver will not return sub-optimal traces, and will arbi-
trarily break any possible tie among optimal solutions when there are several.
However, in our case we want to obtain all possible traces (respecting certain
constraints) to gain a complete understanding of the valid composed model.

Figure 5: Incremental approach

To this end, the idea is to first compute the optimal trace (cf. Section 5),
called base assertions in the sequel, then successively add assertions to the
SMT solver’s stack imposing that the next solution differs from the previous
one (along with all the previous assertions characterising the previous solution),
and iterate until no further solutions can be found and the solver returns unsat.
This approach is schematically represented in Figure 5.

23

We make two remarks on the above approach: first, this scheme reuses the
same base assertions for each computed solutions, thereby carrying over the
correctness results introduced in Section 6 to each computed solution. Second,
since the solutions are determined incrementally, without restarting the SMT
solver between each solution, the solver will typically be able to improve its
performance after finding the first solution: this is because a part of its internal
computations are common over the determination of all the solutions, and hence
can be saved after finding the first.

However, implementing the scheme just proposed presents technical chal-
lenges: the main problem is that, after finding the first solution (e.g., x1 in
Figure 5), there is no way, in the SMT-LIB standard used by SMT solvers,
of referring to it in the subsequent assertions (as in, e.g., the assertion “assert
x 6= x1” appearing in the second step of Figure 5).1 There are provisions to
attain this in some APIs provided by some SMT solvers [7]; however, giving
up SMT-LIB in favour of a particular API would mean no longer being able to
apply Isabelle correctness proofs to SMT code as outlined in Section 6. More
precisely, the vertical arrow on the left of Figure 4 relies on Isabelle’s SMT-
LIB generator, which in turn exploits the close adherence of SMT-LIB with the
first-order logic fragment contained in higher-order logic. Additionally, these
APIs are dependent on the particular SMT solver used, while SMT-LIB has
the advantage of preserving some freedom in the choice of the solver to run our
SMT code on.

Figure 6: Schematic diagram of the incremental invocation of the SMT solver

Our solution to hurdle this is to keep the SMT solver running as a background
process, waiting for commands to be supplied through a UNIX named pipe (let
us call it smtInPipe), and outputting its results to another named pipe (let us call
it smtOutPipe). In parallel with this background process, a simple UNIX Bourne
shell script loops analysing the output received on smtOutPipe: when the script
sees sat, it requests the SMT solver the current solution through the SMT-
LIB command (get−model), saves the solution on a cumulative file, formulates
assertions for the next solution to be distinct from the current solutions and

1See the comment at https://stackoverflow.com/questions/11867611/

z3py-checking-all-solutions-for-equation#comment15793591_11869410 from one of
the lead developers of the Z3 SMT solver.

24

https://stackoverflow.com/questions/11867611/z3py-checking-all-solutions-for-equation#comment15793591_11869410
https://stackoverflow.com/questions/11867611/z3py-checking-all-solutions-for-equation#comment15793591_11869410

clock event order priority duration
0 e0 1 1 1
1 e1 2 1 1
1 g0 1 1 1
2 e2 3 5 3
2 g1 2 1 1
3 g3 3 1 1
4 f0 1 1 1
4 g2 4 1 2
5 e4 4 5 2
5 f1 2 1 1
6 f3 3 1 2
6 g4 5 1 4

Table 3: A trace of score 20

sends them to the solver through smtInPipe. This is iterated until the script
sees unsat on smtOutPipe. This unsat message is important not only because
it allows the mechanism to terminate, but also because, through it, the SMT
solver provides a partial correctness proof stating the completeness of the results
we obtained. Figure 6 represents this solution.

A secondary technical issue is that the illustrative pseudocode assert x6= x_1

appearing in Figure 5 cannot usually expressed directly as appears. Indeed, x

represents a model, which is typically expressed through several objects not
being first-class in the first-order logic of SMT. In particular, those objects
cannot be directly the subject of an inequality assertion: for example, in case the
model x is represented by a function over some finite type, we will instead assert
that there is at least one argument over which it yields a different value than
the previously found model x_1. Therefore, the particular additional assertions
behind the pseudocode assert x6=x_1 will depend on the problem at hand.

We applied this approach to the example from Section 3 (with the dephas-
ings corresponding to the rightmost part of Figure 3), obtaining all the possible
execution traces. Referring to this particular application of the technique de-
scribed above, note that the dephasings are not variables to be optimised by
the solver, but arbitrary constants fixed before running our solver. The optimal
score found is 22, but there were other execution traces scoring at 20, 13 and
11, with no other score values possible. A solution with score 22 had already
been reported in Table 2. We represent, in the same form, one solution for each
of the sub-optimal score values 20, 13 and 11 in Table 3, 4 and 5 respectively.

8. Relations between Optimisations and Verification

In Section 4, we used the Isabelle function isOrderPreserving to construct a
sorting of traces, and then proved its correctness through the formal theorem on
page 13, which states that the sorting preserves the partial order given by the

25

clock event order priority duration
0 e0 1 1 1
1 e1 2 1 1
1 g0 1 1 1
2 e3 3 1 3
2 g1 2 1 1
3 g2 3 1 2
4 f0 1 1 1
5 f1 2 1 1
5 g3 4 1 1
6 f2 3 3 3
6 g4 5 1 4

Table 4: A trace of score 13

clock event order priority duration
0 e0 1 1 1
1 e1 2 1 1
1 g0 1 1 1
2 e3 3 1 3
2 g1 2 1 1
3 g2 3 1 2
4 f0 1 1 1
5 f1 2 1 1
5 g3 4 1 1
6 f3 3 1 2
6 g4 5 1 4

Table 5: A trace of score 11

causality relation. The corresponding computation using SMT solving is that of
the formulas in (3). In this section, we discuss how the general verification idea
put in place in Section 6 cannot only be used to prove the correctness of these
formulas, but also to improve their performance while preserving the validity of
the proof.

We start by defining an SMT boolean variable isMonotonicSMT defined as the
conjunction of some of the formulas appearing in (3) for all values of i ranging
over the given event structures; more precisely, we take the formulas

∀j, k. (j, k) ∈ Pi → si (j) ≤ si (k)

∀j, k ∈ Evi.j 6= k → si (j) 6= si (k)

∀j ∈ Evi.si (j) ≥ 1

∀j ∈ Evi.si (j) ≤ |Evi|

let i range over all the given event structures, and take the conjunction to
determine the value of isMonotonicSMT. Note that the last formula of (3) was

26

dropped, being it an additional condition not related to monotonicity. We also
define an integer-yielding SMT function s over all the nodes by taking the union
of all the functions si, so that isMonotonicSMT is actually a condition imposed
on s.

Wanting to apply again the idea of Section 6, we will also need an Isabelle
counterpart of isMonotonicSMT stating in Isabelle that s is monotonic. This is
expressed by the following statement.

abbreviation ”isMonotonicIsabelle P s ==
(∀ e1 e2 . P e1 e2 & e1 6= e2 → s e2 > s e1) &
(∀ e1 e2 .

(e1 6= e2 & (∃ e0 . (P e0 e1 & P e0 e2))) → s e1 6= s e2) &
(∀ e . ((s e) : : int) ≥ 1) &
(∀ e2 . s e2 > 1 →

(∃ e0 e1 . s e1=s e2 − 1 & P e0 e1 & P e0 e2 & s e0=1))”

This Isabelle definition can be used to automatically generate a correspond-
ing SMT definition by forcing Isabelle into proving a dummy theorem, as seen
in Section 6. In this case a possible dummy theorem is:

lemma assumes ”isMonotonicIsabelle ’ p s”
shows False sledgehammer

[provers=z3 , minimize=false , timeout=1,overlord=true] (assms)

the generated SMT code corresponds to the bottom left node in Figure 4, while
isMonotonicIsabelle corresponds to the top left node and isMonotonicSMT corre-
sponds to the bottom-right node. Although the definition of isMonotonicIsabelle
could be already be seen itself as stating the monotonicity of s, we also proved a
more explicit Isabelle theorem granting this, and corresponding to the top-right
node in Figure 4:

lemma assumes ”isMonotonicIsabelle ’ (set2pred P) s”
”s e0 < s e1” ”(e0 , e1) ∈ P ∨ (e1 , e0) ∈ P”
shows ”(e0 , e1) ∈ P & e0 6= e1”

This theorem states that if e0 and e1 are comparable through the partial order P,
then s must respect their P-order. Corresponding to the bottom horizontal arrow
in the diagram (Figure 4), we finally prove the equivalence of isMonotonicSMT and
the SMT code automatically generated from isMonotonicIsabelle by making
sure to obtain unsat following the assertion:

(assert (or (and isMonotonicIsabelle (not isMonotonicSMT))
(and (not isMonotonicIsabelle) isMonotonicSMT)))

Having formally established the monotonocity of the s function as specified
by the assertions (3), we can wonder whether we can optimise those assertions,
for example by reducing their number. It is intuitive that, by virtue of the
transitivity of the partial orders Pi’s, we can reduce the assertions corresponding
to the first line of formulas (3) by substituting it with:

∀j, k. (j, k) ∈ Gi → si (j) ≤ si (k)

27

Recall that Gi only contains the pairs being bound by immediate causality,
thereby reducing the number of checks the SMT solver has to perform. If we
modify the definition of isMonotonicSMT accordingly, the last assertion we wrote
still returns unsat, thereby providing correctness proof of the new implementa-
tion with very little effort.

Similar modifications can be implemented and cheaply verified in other parts
of the SMT code: for example, the assertions represented by last lines in for-
mulas (2), and imposing antisymmetry of the transitive closure Pi of Gi can
intuitively be dropped due to the fact that the antisymmetry of Gi is preserved
through the operation of transitive–reflexive extension performed by the lines
above it. This is again confirmed by re-running the assertion above, thereby
carrying over the whole proof we already produced to the new implementation.
We can crudely compare the original algorithm against the one improved with
the optmisations we introduced in this section by applying them to the simple
example given in Table 2: the former computes that solution in 5.13 seconds,
while the latter takes 2.09 seconds to produce the same solution. These are run
times on the same machine, averaged over three runs after discarding the first.

We conclude this section discussing one point we left open in Section 5, where
we mentioned that formulas (2) only produce a transitive–reflexive extension of
the immediate causality Gi. On top of those assertions, additional ones have to
be imposed specifying that the extension we pick is minimal. We implemented
two versions of this step. One is written purely in first-order logic and is based
on recursion on the graph G:

∀l, n. (l, n) ∈ P → l = n ∨ (l, n) ∈ G ∨ ∃m. ((l,m) ∈ G ∧ (m,n) ∈ P)

where P is the union of all the partial orders P1, . . . , Pn. The second version
works by reducing the minimisation of the extension to the minimisation of its
cardinality, which, being a numerical minimisation problem, can be dealt with
by the numerical optimisation capabilities of νZ. Concretely, this means defining
an SMT integer variable numberOfEdges counting the number of pairs contained
in P and then adding the assertion

(minimize numberOfEdges)

Two observations about this minimisation are in order: first, such minimisation
must appear before the maximisation of totScore (see end of Section 5). This
is because the solver will give priority to the optimisation constraint in the
order in which they appear, and we want to maximise totScore over all the
possible transitive closures of G; therefore, the computation of the transitive
closure, which involves the minimize command above, must happen before the
maximisation of totScore. The second observation is that the two versions of
the transitive closure computation above present one important difference: the
second implementation using minimize breaks the verification idea represented
in Figure 4. This is because the minimize statement cannot be expressed in first-
order logic, and therefore, will not be included in the definition of maximality

(see Section 6). As a consequence maximality will no longer actually represent

28

maximality correctly, and the assertion appearing on page 22 will obviously
return sat, which means we cannot conclude that our code is correct. This is
why we also provide the first implementation not using minimize: however, it is
slightly slower than the one using it.

9. Clinical example

The approach introduced in this paper can be used to obtain a composed
model in a variety of different applications. Here, we show a concrete example
from the medical domain (taken from [47]) to illustrate what our technique can
do when we do not have a complete behavioural model, and instead only a partial
understanding of how individual diseases are managed (clinical guidelines) and
the consequences of applying them simultaneously on a patient. We consider
atrial fibrillation and chronic kidney disease as conditions to be managed.

sdA

par

p:PAfib

alt

par

ACEI

CCB

FLEC
dur<48

dur>=48

Cref

ref BB

p:P
Csd

ASP
alt

WARF

Afib p:P

NSBB
alt

SBB

BBsd

Afib

Figure 7: Modelling Atrial fibrillation (Afib)

Figure 7 shows a clinical guideline for atrial fibrillation (Afib) modelled as
a sequence diagram where the main lifeline of interest is the patient lifeline p,
and the messages received imply actions or checks to manage the disease. To
keep the models simpler, some of the details are referred to (using the interac-
tion fragment ref) other models (here BB and C). As earlier in the paper, we
mark the locations along the lifeline of p which will correspond to events in the
formal model. We colour-coded the locations to indicate locations associated to
duplicated events caused by alternative behaviour (red) or single events (blue).

The sequence diagram Afib shows within the main parallel fragment, three
operands (separated by dashed lines) executing in parallel: (1) the patient re-
ceives a beta blocker (diagram BB, and the priority is to give a non-selective beta
blocker (NSBB) though an alternative of a selective beta blocker (SBB) exists);
(2) if the duration of the Afib episode was less than 48 hours then the patient

29

receives flecainide (FLEC), and thereafter both a calcium channel blocker (CCB)
and an ACE inhibitor (ACEI) in an arbitrary order; and (3) the behaviour given
in sequence diagram C is executed. This corresponds to a choice between two
medications: aspirin (ASP) and warfarin (WARF).

The composition of fairly simple models quickly becomes very complex, as
can be seen with the Afib labelled event structure of Figure 8.

Figure 8: Labelled event structure for Atrial fibrillation (Afib)

The model contains eight possible traces. The initial event µA(a0) = {afib}
has a label to indicate the diagnosis of atrial fibrillation. The model shows the
medication given at different events (e.g., µA(a13) = {asp}), conditions that
may be required to hold (e.g., µA(a7) = {d < 48, f lec} indicating that flec
is prescribed if the episode has lasted less than 48 hours). Some events have
an associated priority value because they are preferred choices in the clinical
guideline (e.g., νA(a3) = (5, n) where n is the duration the medication will be
given for). There are two traces with the highest priority: τ1 with maximal
event af1 and τ2 with maximal event af2. Our solver would obtain either of
these as the best treatment path for a patient with atrial fibrillation.

The clinical guideline associated to chronic kidney disease (CKD) is shown
in Figure 9 on the left. The severity of CKD is determined by analysing the
results of the estimated glomerular filtration rate (EGFR). If the value is below
60 (which is the case for more severe stages of the disease), the patient needs
to be checked for anemia (shown separately in diagram Acheck). Thereafter, a
patient is checked for metabolism abnormalities (mabn). If they are present the
patient is given a phosphate binder (PB). Such a patient receives further recom-
mendations given in the separate diagram MGMNT. This specifies two concurrent
checks: life-style management for CKD (ls mgt ckd) and cardio-vascular risk
management (cv risk mgt). If the value of EGFR is greater or equal to 60

30

p:P

MGMNT

EGFR>=60

par ASP

ACEI

Csd

alt

CKD

EGFR<60

ref
Acheck

alt
mabn

PB

!mabn

ref

ref
MGMNT

alt

p:Pd:D

alt

anemia

fe<100

FeSalt

fe>=100

!anemia

sd Acheck

ESA

MGMNTsd

ls ckd mgt

cv risk mgt

par

d1:D p:P

Figure 9: Modelling CKD, checking for anemia, and CKD and CV risk management

(first two stages of the disease), then the patient receives (in arbitrary order)
aspirin (ASP), an angiotensin-converting enzyme (ACE) inhibitor (ACEI), and
recommendation for management of conditions MGMNT. For checking anemia the
following is done. If the ferritin level (fe) is below 100, the patient receives
ferrous salt (FeSalt), otherwise nothing is prescribed. In both cases the patient
is given an erythropoiesis-stimulating agent (ESA). We do not show the formal
model for CKD. The initial event in the model, say c0, would have a label to indi-
cate the diagnosis, i.e., µC(c0) = {ckd}. Let c5 denote the event with marking
given by µC(c5) = {asp}, a medication prescribed if EGFR≥ 60.

Consider a patient with both Afib and CKD, and with EGFR≥ 60. Experts
recommend that a patient with CKD should not be given a non-selective beta
blocker NSBB and such a medication has to be replaced by a selective beta
blocker SBB, and the same medication cannot be prescribed twice for the different
purposes (e.g., aspirin). We hence consider the following conflict labels Γ =
{(nsbb, ckd,−100), (asp, asp,−200)}. It is clear that we have to avoid both
label conflicts mentioned: prescribing nsbb and overdosing on aspirin. Our
solver indeed now discards traces within Afib (cf. Figure 8) that pass event a3
reducing the valid traces to four: τ3 (maximal event af3), τ6 (maximal event
af6), τ7 (maximal event af7) and τ8 (maximal event af8). Further avoiding a13

31

(prescribing aspirin twice), we are reduced to two traces: τ7 and τ8 with the
same score.

In general, our approach offers a flexible mechanism to compute all valid
traces for complex scenarios where patients with several chronic conditions have
to follow different treatment plans simultaneously.

From a computational point of view, the resulting SMT code is around
550KB, and its generation time is negligible when compared to its execution
time. The SMT solver returns a solution in less than 10 minutes on an off-the-
shelf machine.

10. Related Work

Systems are usually designed through a combination of several models, some
to capture structural aspects and some to describe more complex aspects of
behaviour. As argued in [26], modelling the complete behaviour of a component
or subsystem is difficult and error prone. Instead, it is easier to formulate
partial behaviour as scenarios in Live Sequence Charts (LSCs), UML sequence
diagrams or similar. One of the problems that arises from partial modelling is
potentially inconsistent or incomplete behaviour.

When looking at the integration of multiple model views or diagrams, Widl et
al. [46] offer a solution in the context of model versioning, and how to integrate
versions of a sequence diagram in accordance with the behaviour given in state
machines. They make direct use of SAT-solvers for detecting inconsistencies
in the (different versions of a) sequence diagram, with respect to the state
machine. Liang et al. [33] present a method of integrating sequence diagrams
based on the formalisation of sequence diagrams as typed graphs. Both these
papers focus on less complex structures. For example, they do not deal with
combined fragments, which can potentially cause substantial complexity. More
fundamentally, however, the motivation of their work is considerably different
from ours, as we are concerned with the inconsistency between different sequence
diagrams and do not assume given a complete understanding of the system
behaviour through a state machine. Bowles and Bordbar [14] present a method
of mapping a design consisting of class diagrams, OCL constraints and sequence
diagrams into a mathematical model for detecting and analysing inconsistencies.
It uses the same underlying categorical construction as done in [12] but it has
not been automated. On the other hand, Zhang et al. [50] and Rubin et al.
[43] use Alloy for the composition of class diagrams. They transform UML class
diagrams into Alloy and compose them automatically. They focus on composing
static models and the composition code is produced manually.

We used Alloy to automatically compose sequence diagrams in [13, 15]. Our
experience with Alloy has shown that it has limitations which have a direct
impact on the scalability of the approach [16]. There is an exponential growth
in time when trying to compose diagrams with an increasing number of elements,
which becomes unusable in practice. The Alloy analyzer is SAT solver-based and
SAT-solving time may increase enormously, depending on factors such as the
number of variables and the average length of the clause [24]. Z3 [34] performs

32

much better and we have used it in more recent work [16, 31, 17]. In the context
of coordination, Z3 has been used to find solutions for constraints capturing glue
code in coordination models in [40].

We are addressing inconsistent combination of behavioural models in this
paper. A SAT-based approach, such as Alloy, would allow us to detect inconsis-
tencies and highlight them, as a result of not being able to generate a solution
for the composition. When two or more scenarios combined have inconsisten-
cies, a designer benefits not only from knowing which inconsistencies there are,
but what traces of execution can bypass the inconsistencies. In practice, it is
unlikely that inconsistencies can be removed altogether, and instead we want to
find the traces that are valid, avoid the inconsistencies, and may satisfy addi-
tional criteria such as priorities. SAT solvers cannot be used in this case whereas
we have shown that SMT solvers can in another context [31]. The present pa-
per makes a novel contribution by showing how SMT solvers such as Z3 can be
used to find the best solution to a generally unsolvable problem of composing
models with known (label) inconsistencies. In other words, if there is no solu-
tion completely avoiding inconsistencies, our score approach provides a metric
allowing the user to express preferences among inconsistencies, and hence com-
pute a solution respecting such preferences. Finally, the typical combination of
SMT solvers and proof assistants is done to help finding proofs, and we bring
this combination into a completely different setting for detecting and resolving
problems in complex behaviour. Our approach provides the well known advan-
tages of theorem proving approach making it a valuable complement to other
formal methods [38].

The underlying semantic model used in our composition approach is the
labelled prime event structure [49]. As mentioned before, the mathematical
simplicity of the model is well suited to our combined theorem prover/SMT
solver approach for searching for valid traces of execution. However, we could
have explored a variety of alternative models, and indeed techniques, to tackle
similar problems including for instance (weighted timed) automata [11] or other
variants of labelled transition systems. Such models are compositional, have
been studied for many years and adequately capture the semantics of design
languages and component-based approaches.

To avoid problems associated to very complex and large models, which in
model checking leads to state explosion problems, compositional verification (cf.
for instance [25] for a detailed description of assume-guarantee reasoning) ad-
dresses the complexity in the context of component-based systems by replacing
individual components we can abstract from by assumptions. A compositional
proof for the overall system will need to guarantee the consistency of the as-
sumptions associated to the individual components, but it does simplify the
verification problem considerably. Treating our individual models as compo-
nents and describing them as assumptions, for then checking their consistency
would be an alternative approach to ours when wanting to detect inconsistency
between some of our models. However, we expect that determining the assump-
tions for each component when we allow for some inconsistent labels is much
harder to express in general.

33

Coordination models and languages provide high-level abstractions and a
clean separation between individual software components, their interactions
and dynamic composition within an overall software organisation. In partic-
ular, these models and languages have made component-based systems more
amenable to verification and global analysis. Various formalisms help with ver-
ification in this setting, and are often variants of labelled transition systems
or automata-based models. One such example includes constraint automata
[4] which provide an operational semantics for the coordination language Reo
[2]. An interesting aspect of using a compositional model such as constraint
automata (mainly developed to suit Reo), and similarly for other automata,
is that we can apply techniques available for labelled transition systems, and
define powerful notions of bisimulation equivalence and simulation pre-order.
These make it possible to compare automata, and check for instance, whether
one system or component is observationally equivalent to another, and so on.
Model comparison was not, however, the focus of our present work.

11. Conclusions

Inspired by a problem from the medical domain, we have explored a novel ap-
proach to compose behavioural models and their underlying, possibly dephased,
traces of execution. Our approach detects and avoids inconsistencies of models
prior to composition, and constructs the correct composition by generating the
complete set of valid traces of execution underlying the composed model. The
traces can be fine-tuned to take into account additional requirements on the
degree of priority that one model or certain steps in a process (events in our ap-
proach) have over alternatives. Moreover, our approach is able to find the best
trace of execution with respect to these constraints, and then pushes this further
by forcing the SMT solver to yield all the possible traces sorted by optimality.
To achieve our goal, we introduced a novel solution to the technical problem of
referring to previous SMT-computed solutions within one run of the solver, and
without giving up the SMT-LIB format, which is key to the proposed approach.

Even though several formal techniques could have been picked, we opted
for the use of SMT solvers in our setting because we search for valid traces of
execution within a composed model, and generate solutions incrementally and
sorted by how optimal the traces are. As we are interested in all valid traces
for combinations of finite models of behaviour, the implicit notion of optimal
solutions given by the SMT solver is not explored, but it gives us a mechanism
to consider further. For example, we can investigate how to obtain an optimal
valid trace simultaneously under several different criteria (for instance, selected
labels, mutually exclusive selection of labels, and so on) and keep the ability of
formally proving properties of such a trace.

From a computational point of view, the problem we presented combines
traits of distinct well-explored problems in combinatorial optimisation (CO).
For example, one could try to apply existing, well-known algorithms for the
trace-finding portion of our problem, and then hope to reduce the remaining
portions of the problem to well-understood problems in CO, maybe by applying

34

integer programming (IP), one of the domains of CO richest in methods and
algorithms, to the sub-problem of optimality as given by overlapping labels.
However, it is not clear how to express such a problem in terms of integer
variables and functions. More importantly, even if one finds an IP rendition of it,
that rendition cannot, in general, be assumed to be linear. This implies that we
do not have direct access to the powerful and well-developed methods of integer
linear programming (ILP), and have to deal with the more difficult approaches
available in the less developed field of non-linear programming, where typically
one has to resort to techniques (reconnecting the problem to special cases)
such as continuous relaxation, branch and bound algorithms, approximation
algorithms, ad-hoc heuristics, or fractional programming [27, 22, 3]. All these
approaches typically require significant amounts of work, add complexity to the
solutions and require assumptions about the problem specification.

By contrast, our approach avoids these issues by adopting a holistic atti-
tude, in that it expresses all the constraints and the optimality requirements
for our problem as a single stack of SMT assertions, without splitting it into
sub-problems. An additional, important advantage to this approach is that it
enables us to employ a general technique we have used in the past to obtain
correct-by-construction SMT code using the theorem prover Isabelle/HOL.

Before choosing the problem treatment presented in this paper, as explained
above in the case of IP, we reviewed many other combinatorial optimisation
sub-domains, without finding techniques able to capture all the aspects of the
problem we consider. For example, resource scheduling [42, Section 22], an
actively researched field, deals with executing a set of activities, each needing
to employ some resources, while respecting the resource capacities, temporal
constraints, and while optimising a given objective function. While this can
accommodate the concepts of nodes (as activities) and labels featured in our
problem, the focus of the constraints in resource scheduling is on the capacities
of the resources and maybe (through the objective function) on temporal opti-
misations (e.g., minimising the number of late activities). By contrast, in our
problem the optimisation focuses on the mutual interaction of resources.

We use a novel combination of the theorem prover Isabelle/HOL and SMT
solver Z3, where the theorem prover guarantees the correctness of the approach
and facilitates the interaction with the SMT solver through the SMT-LIB gen-
erator provided by Isabelle/HOL. This is important not only because writing
SMT code directly is difficult, but because existing APIs of SMT solvers have
not been formally verified. It should be noted that Isabelle’s SMT generator is
used internally as an automated deduction tool, and has not been conceived to
be exposed to the user. We showed how this feature can act as a link between
the two languages we use, and how to use the highly expressive higher-order
logic to both ease the definitions and prove the correctness of our labelled event
structure definitions in both higher-order logic and SMT code.

Indeed, in this paper we showed a two-fold application of SMT solvers: Is-
abelle’s SMT generator used for theorem proving (Section 6), and for generating
SMT code used directly for computations (Section 5). The original theorem
proving application of SMT solvers employs the capability of the latter of gen-

35

erating proofs of unsatisfiability (see e.g., [10]), but crucially imposes a final
step in which the theorem prover attempts to reconstruct the proof found by
the SMT solver: if that attempt is successful, only the theorem prover needs to
be trusted in order to rely on the overall correctness of the result. This is to
be contrasted with our approach, in which the infrastructure existing for that
original approach is employed to generate SMT code for purposes different than
(and in addition to) proof generation. For this reason, we cannot perform the
final proof reconstruction step, and have to trust both the SMT solver and the
theorem prover. In particular, we note that the Isabelle component generating
SMT code also relies on proof reconstruction. However, potential unsoundness
deriving from it is unlikely for two reasons: (1) work has specifically been done
to improve the generator and to informally prove its soundness [9, 8]; (2) possible
soundness problems are linked to the fact that higher-order logic is much richer
than SMT-LIB first-order logic [8, Section 2]. In our approach, this is issue is
greatly mitigated by the fact that we use the translator for Isabelle code which
only uses a first-order logic fragment of HOL, while the type-richer definitions
are confined to duplicate Isabelle definitions which are used for theorem proving
and which are proved equivalent, within Isabelle, to the first-order definitions
seen by the translator generating SMT code. This is the point, for example,
for introducing the duplicate definitions isLes and IsLes, as discussed at the
beginning of Section 6.

While this paper focused on the semantics of the underlying behavioural
models, we are also developing mechanisms to visualise the solutions obtained
back to the designer. We have used Graphviz in our earlier work in [13, 15]
to show the composition solution obtained with Alloy. In future work we want
to explore visualisations that work directly on the modelling approaches used
by designers, and in particular in the case of inconsistencies, can show them
more effectively; thus we also aim at achieving an increased adoption of our ap-
proach by designers, which in turn is needed to test and validate our techniques
on realistic application problems. To this end, it would be ideal to prelimi-
narily modularise the work we presented here in a way similar to what we did
elsewhere [20], to facilitate the addition of components taking care of input,
output, conversion to and from specification formats, etc. Work is in progress
to generalize the time representation to allow the duration of an event to be a
range, rather than a specific amount of time units. Future work will also tackle
the issue of finding a way to accommodate infinite loops and non-terminating
behaviours, possibly present in given models.

Finally, our verification mechanism for SMT code provides the freedom to
experiment with SMT code to find provably equivalent forms resulting in better
performance from the SMT solver: we discussed some concrete applications of
this possibility with respect to formula (2) from Section 5.1 and in Section 6.
Currently, however, such modifications to the SMT code are found empirically.
Indeed, further research is needed to make this idea more systematic, and to
complement alternative approaches aiming at improving solver performance [5].

36

References

[1] Araújo, J., Whittle, J., Kim, D., 2004. Modeling and composing scenario-
based requirements with aspects. In: Requirements Engineering (RE 2004).
IEEE Computer Society Press, pp. 58–67.

[2] Arbab, F., 2004. Reo: A channel-based coordination model for component
composition. Mathematical Structures in Computer Science 14, 1–38.

[3] Avriel, M., Diewert, W. E., Schaible, S., Zang, I., 2010. Generalized con-
cavity. Vol. 63 of Classics for Applied Mathematics. Siam.

[4] Baier, C., Sirjani, M., Arbab, F., Rutten, J., 2006. Modeling component
connectors in reo by constraint automata. Science of Computer Program-
ming 61, 75–113.

[5] Balunovic, M., Bielik, P., Vechev, M., 2018. Learning to solve SMT formu-
las. In: Bengio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi,
N., Garnett, R. (Eds.), Advances in Neural Information Processing Systems
31 (NIPS 2018). Curran Associates, Inc., pp. 10317–10328.

[6] Barrett, C., Stump, A., Tinelli, C., 2010. The SMT-LIB Standard: Version
2.0. In: Gupta, A., Kroening, D. (Eds.), Proceedings of the 8th Interna-
tional Workshop on Satisfiability Modulo Theories (Edinburgh, UK).

[7] Bjørner, N., Phan, A.-D., Fleckenstein, L., 2015. νz-an optimizing smt
solver. In: Tools and Algorithms for the Construction and Analysis of Sys-
tems (TACAS 2015). Vol. 9035 of LNCS. Springer, pp. 194–199.

[8] Blanchette, J. C., Böhme, S., Paulson, L. C., 2013. Extending Sledgeham-
mer with SMT solvers. Journal of automated reasoning 51 (1), 109–128.

[9] Blanchette, J. C., Böhme, S., Popescu, A., Smallbone, N., 2013. Encod-
ing monomorphic and polymorphic types. In: International Conference
on Tools and Algorithms for the Construction and Analysis of Systems.
Springer, pp. 493–507.

[10] Böhme, S., Weber, T., 2010. Fast LCF-style proof reconstruction for Z3.
In: International Conference on Interactive Theorem Proving. Vol. 6172 of
LNCS. Springer, pp. 179–194.

[11] Bouyer, P., 2006. Weighted timed automata: Model-checking and games.
Electronic Notes in Theoretical Computer Science 158, 3–17.

[12] Bowles, J., 2006. Decomposing Interactions. In: Johnson, M., Vene, V.
(Eds.), Algebraic Methodology and Software Technology (AMAST 2006).
Vol. 4019 of LNCS. Springer, pp. 189–203.

37

[13] Bowles, J., Alwanain, M., Bordbar, B., Chen, Y., 2015. Matching and
merging scenarios automatically with Alloy. In: et al., S. H. (Ed.), Model-
Driven Engineering and Software Development. Vol. 506 of CCIS. Springer,
pp. 100–116.

[14] Bowles, J., Bordbar, B., 2007. A formal model for integrating multiple
views. In: Application of Concurrency to System Design (ACSD 2007).
IEEE Computer Society Press, pp. 71–79.

[15] Bowles, J., Bordbar, B., Alwanain, M., 2015. A logical approach for be-
havioural composition of scenario-based models. In: M. Butler, S. C., Zäıdi,
F. (Eds.), Formal Methods and Software Engineering: 17th International
Conference on Formal Engineering Methods. Vol. 9407 of LNCS. Springer,
pp. 252–269.

[16] Bowles, J., Bordbar, B., Alwanain, M., June 2016. Weaving true-concurrent
aspects using constraint solvers. In: Application of Concurrency to System
Design (ACSD 2016). IEEE Computer Society Press, pp. 35–44.

[17] Bowles, J., Caminati, M., 2016. Mind the gap: addressing behavioural
inconsistencies with formal methods. In: 23rd Asia-Pacific Software Engi-
neering Conference (APSEC). IEEE Computer Society, pp. 313–320.

[18] Bowles, J., Caminati, M., 2017. Correct composition of dephased be-
havioural models. In: Proença, J., Lumpe, M. (Eds.), Formal Aspects of
Component Software (FACS 2017). Vol. 10487 of LNCS. Springer, pp. 233–
250.

[19] Bowles, J., Caminati, M., 2017. A verified algorithm enumerating event
structures. In: Geuvers, H., England, M., Hasan, O., Rabe, F., Teschke,
O. (Eds.), Intelligent Computer Mathematics (CICM 2017). Vol. 10383 of
LNCS. Springer, pp. 239–254.

[20] Bowles, J., Caminati, M., Cha, S., Mendoza, J., 2019. A framework for
automated conflict detection and resolution in medical guidelines. Science
of Computer Programming.

[21] Brosch, P., Kappel, G., Langer, P., Seidl, M., Wieland, K., Wimmer, M.,
2011. The Past, Present, and Future of Model Versioning. IGI Global,
Ch. 15, pp. 410–443.

[22] Burer, S., Letchford, A. N., 2012. Non-convex mixed-integer nonlinear pro-
gramming: A survey. Surveys in Operations Research and Management
Science 17 (2), 97–106.

[23] Caminati, M., Kerber, M., Lange, C., Rowat, C., 2015. Sound auction
specification and implementation. In: 16th ACM Conference on Economics
and Computation (EC 2015). ACM, pp. 547–564.

38

[24] D’Ippolito, N. N., Frias, M., Galeotti, J., Lanzarotti, E., Mera, S., 2010.
Alloy+hotcore: A fast approximation to unsat core. In: Abstract State
Machines, Alloy, B and Z. Vol. 5977 of LNCS. Springer, pp. 160–173.

[25] Giannakopoulou, D., Namjoshi, K. S., Pǎsǎreanu, C. S., 2018. Composi-
tional reasoning. In: Clarke, E. M., Henzinger, T. A., Veith, H., Bloem, R.
(Eds.), Handbook of Model Checking. Springer, Cham, Ch. 12, pp. 345–
383.

[26] Harel, D., Marelly, R., 2003. Come, Let’s Play: Scenario-based Program-
ming Using LSCs and the Play-Engine. Springer.

[27] Hemmecke, R., Köppe, M., Lee, J., Weismantel, R., 2010. Nonlinear integer
programming. In: 50 Years of Integer Programming 1958-2008. Springer,
pp. 561–618.

[28] Jackson, D., 2006. Software Abstractions: logic, language and analysis.
MIT Press.

[29] Kaufmann, P., Kronegger, M., Pfandler, A., Seidl, M., Widl, M., 2014.
A sat-based debugging tool for state machines and sequence diagrams. In:
SLE 2014: Software Language Engineering. Vol. 8706 of LNCS. pp. 21–40.

[30] Klein, J., Hélouët, L., Jézéquel, J., 2006. Semantic-based weaving of sce-
narios. In: AOSD’06. ACM, pp. 27–38.

[31] Kovalov, A., Bowles, J., 2016. Avoiding medication conflicts for patients
with multimorbidities. In: 12th International Conference on Integrated For-
mal Methods (iFM 2016). Vol. 9681 of LNCS. Springer, pp. 376–392.

[32] Küster-Filipe, J., 2006. Modelling concurrent interactions. Theoretical
Computer Science 351, 203–220.

[33] Liang, H., Diskin, Z., Dingel, J., Posse, E., 2008. A general approach for
scenario integration. In: MoDELS 2008. Vol. 5301 of LNCS. Springer, pp.
204–218.

[34] Moura, L. D., Bjørner, N., 2008. Z3: An efficient SMT solver. In: TACAS
2008. Vol. 4963 of LNCS. Springer, pp. 337–340.

[35] Nielsen, M., Plotkin, G., Winskel, G., 1981. Petri nets, event structures
and domains, part i. TCS 13, 85–108.

[36] Nipkow, T., Paulson, L. C., Wenzel, M., 2002. Isabelle/HOL — A Proof
Assistant for Higher-Order Logic. Vol. 2283 of LNCS. Springer.

[37] OMG, 2011. UML: Superstructure. Version 2.4.1. OMG,
http://www.omg.org, document id: formal/2011-08-06.

39

[38] Ouimet, M., Lundqvist, K., March 2007. Formal software verification:
Model checking and theorem proving. Tech. rep., Mälardalen University,
Sweden.

[39] Polypharmacy Model of Care Group, 2018. Polypharmacy Guidance: Re-
alistic Prescribing, 3rd Edition. Scottish Government.

[40] Proença, J., Clarke, D., 2013. Data abstraction in coordination constraints.
In: ESOCC 2013: Advances in Service-Oriented and Cloud Computing.
Vol. 393 of CCIS. pp. 159–173.

[41] Reddy, R., Solberg, A., France, R., Ghosh, S., 2006. Composing sequence
models using tags. In: Proc. of MoDELS Workshop on Aspect Oriented
Modeling.

[42] Rossi, F., Van Beek, P., Walsh, T., 2006. Handbook of constraint program-
ming. Elsevier.

[43] Rubin, J., Chechik, M., Easterbrook, S., 2008. Declarative approach for
model composition. In: Proceedings of the 2008 international workshop on
Models in Software Engineering. ACM, pp. 7–14.

[44] Uchitel, S., Brunet, G., Chechik, M., 2009. Synthesis of partial behavior
models from properties and scenarios. IEEE Transactions on Software En-
gineering 35 (3), 384–406.

[45] Whittle, J., Araújo, J., Moreira, A., 2006. Composing aspect models with
graph transformations. In: Proceedings of the 2006 international workshop
on Early aspects at ICSE. ACM, pp. 59–65.

[46] Widl, M., Biere, A., Brosch, P., Egly, U., Heule, M., Kappel, G., Seidl,
M., Tompits, H., 2014. Guided merging of sequence diagrams. In: Software
Language Engineering (SLE 2012). Vol. 7745 of LNCS. pp. 164–183.

[47] Wilk, S., Michalowski, M., Michalowski, W., Rosu, D., Carrier, M.,
Kezadri-Hamiaz, M., 2017. Comprehensive mitigation framework for con-
current application of multiple clinical practice guidelines. Journal of
Biomedical Informatics 66, 52–71.

[48] Winskel, G., 1982. Event structure semantics for CCS and related lan-
guages. In: Nielsen, M., Schmidt, E. (Eds.), Automata, Languages, and
Programming. Vol. 140 of LNCS. Springer, pp. 561–576.

[49] Winskel, G., Nielsen, M., 1995. Models for Concurrency. In: Abramsky, S.,
Gabbay, D., Maibaum, T. (Eds.), Handbook of Logic in Computer Science,
Vol. 4, Semantic Modelling. Oxford Science Publications, pp. 1–148.

[50] Zhang, D., Li, S., Liu, X., 2009. An approach for model composition and
verification. In: Fifth International Joint Conference on INC, IMS and IDC,
2009. IEEE Computer Society Press, pp. 1102–1107.

40

	Introduction
	Context and Contribution
	Formal Model
	Isabelle Implementation and Verification
	SMT Implementation
	Trace Calculation
	Using for Trace Selection
	Example

	Verification
	Completeness
	Relations between Optimisations and Verification
	Clinical example
	Related Work
	Conclusions

