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Abstract: Buildings are subjected to the indoor environment, especially in non-controlled climates.1

Temperature and humidity variations might effect or even damage materials sensitive to moisture.2

For this reason, it is important to understand the response of hygroscopic materials to variable3

indoor environmental conditions. Existing methods looked into the dynamic sorption capacity of4

materials, by analysing the impact of only humidity fluctuations, with temperature usually considered5

non-influential or non variable. However, temperature fluctuations may impact the moisture capacity6

of the materials, as materials properties might substantially vary with temperature. Moreover, in7

existing protocols the humidity variations are considered varying under square wave fluctuations,8

which may not be applicable in environments, where the indoor is influenced by daily and seasonal9

climate variations, which presents more complex fluctuation. In this study a simulation method that10

can predict the impact of environmental condition on materials under simultaneous temperature11

and humidity fluctuations was developed. Clay and gypsum plaster were analysed in the numerical12

model and results were then validated with experimental data. Materials were subjected to either13

sinusoidal and triangular temperature and RH variations and different cycle time intervals. The14

investigation of sinusoidal and triangular environmental variations pushed to a better understanding15

of materials response to different environments and to the improvement of the simplified model. The16

development of a simplified model can realistically predict the potential future impact of climate17

changes on buildings without the use of complex and memory demanding computational methods.18

Keywords: plasters; moisture buffering; indoor moisture19

1. Introduction20

To regulate temperature and humidity in buildings, it is not always possible to alter the building21

envelope or to install air conditioning systems, especially in historic buildings, such as churches.22

Consequently, indoor surfaces and hygroscopic building materials are subjected to daily and seasonal23

temperature and Relative Humidity (RH) fluctuations, which might degrade buildings [1,2]. For these24
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reasons, it is important to understand the impact of temperature and humidity on buildings, as well as25

the response of materials to climate variations [3,4].26

Indoor climate in buildings without any conditioning system is mainly determined by the outdoor27

climate and hygrothermal performance of the building enclosure [5]. The lack of heating and well28

insulated walls might generate significant daily or seasonal indoor humidity and temperature fluctuations,29

depending on the climate and location of the building [6,7]. The simultaneous variations of temperature30

and RH can produce significant variation in moisture exchange between materials and the environment31

[8].32

Moisture transport and storage capacity of interior surface materials due to varying humidity in33

the indoor air is of importance both for the humidity levels of the room itself and for the moisture34

impact on walls surface materials [9]. There have been researches [10–13], standards [14] and some35

ongoing measurements on this topic [15] that pointed out the importance to understand the impact36

of moisture to materials durability, indoor thermal comfort and health. [16] took a step further, by37

considering periodic humidity variations and by applying moisture buffering experimental results into38

simulations. However, the focus of most of the studies was mainly on the sole RH variations, while39

temperature was always considered non-variable. The observation of daily indoor climate variations in40

non-conditioned buildings suggested a simultaneous opposite and quasi-sinusoidal temperature and41

RH fluctuations [6,7,17]. Some recent results on this area [1,18] gave new analytical expressions for42

the effect of combined variations of RH and temperature. Bylund et al. [18] analysed experimentally43

the moisture uptake of wood and introduced a calculation model that took into account simultaneous44

temperature variations together with the surface resistance of the material. However, the model was45

based on a specific material and required an elevated number of material properties and experimental46

analysis.47

In a newly published study [19] a detailed analytical solution for temperature and RH square shaped48

variations was proposed. The method was developed by neglecting the surface vapour resistance and by49

considering a semi-infinite material [20]. The objective of this study was to further develop the analytical50

model from [19], by introducing triangular and sinusoidal temperature and RH variations. To validate51

the analytical method, results were compared with laboratory experimental tests on clay and gypsum52

plasters. The materials mass variations to simultaneous temperature and RH variations was observed53

and compared with simulations. The aim of this paper is to introduce new experimental approach54

to evaluate the moisture buffering capacity of materials and use experimental data to realistically55

simulate the materials behaviour. The effect of the surface resistance was implemented in the model56

and the validity of the semi-infinite approach on the moisture uptake was analysed. By improving the57

model and approximating the indoor daily variations to sinusoidal and triangular, it was possible to58

develop a reliable simulation method that is able to predict the materials response in a non-conditioned59

environment.60

2. Materials61

In this study commercially available undercoat clay and gypsum plasters were analysed, due to62

their good moisture buffering capacity. Samples were mixed and cured, as described in [21]. Clay and63

gypsum were cast in 150 mm x 150 mm x 40 mm and 150 mm x 150 mm x 20 mm moulds, respectively,64

in order to test the sensitivity of the model to the material thickness. Specimens were air dried for 2865

days, before testing. The dry density ρdry, porosity Φ(%), the dry cup water vapour resistance factor66

µ(−) and moisture capacity ξw(kg/kg) were measured, as described in [21]. Results are summarised67

in Table 1. Materials were stored in an environmental room at 60%RH and 22oC.68
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Table 1. Materials’ properties and their confidence interval

Material ρdry(kg/m3) Φ(%) µ(−) ξw(kg/kg)

Clay 1870± 19 24.80± 4.1 19.21± 5.2 0.007± 0.003
Gypsum 856 ±10 61.91± 1.5 8.84± 2.1 0.032± 0.001

3. Methods69

3.1. Experimental Design70

For each specimen the change in weight of the specimens was investigated, when subjected to71

triangular or sinusoidal simultaneous temperature and RH variations. Specimens were tested in an72

environmental chamber (ACS Compact Test Chambers DY110), into which a mass balance were placed73

to continuously measure the change in weight, as shown in Fig. 1. More details of the set-up can be74

seen in [8] The tests followed the general guidelines for humidity variations and test set-up of the75

NORDTEST protocol [14]. The materials were exposed before each tests to 24h pre-conditioning76

at 23oC and 54%RH, and to six cyclic humidity and temperature variations at an air speed of 0.177

m/s. Each cycle consisted of humidity variations from 75%RH (high RH) to 33%RH (low RH), and78

temperature fluctuations between 18.0◦C and 28.0◦C, which is the acceptable operating temperatures79

in buildings in the ASHRAE Standard 55 [22]. Temperature was set to follow inverse variation than80

RH, as shown in Fig. 2 and Fig. 3. For both triangular and sinusoidal fluctuation, three different81

humidification and de-humidification time intervals were defined, as shown in Table 2.82

Figure 1. Moisture buffering set up in the climatic chamber
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(a) Triangular 12/12h

(b) Triangular 8/16h

(c) Triangular 72/72
Figure 2. Triangular temperature and RH variations
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(a) Sinusoidal 12/12h

(b) Sinusoidal 8/16h

(c) Sinusoidal 72/72
Figure 3. Sinusoidal temperature and RH fluctuations
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Table 2. Summary of the performed tests and time intervals for high and low temperature and RH

Tests Temperature RH
Low High High Low

Triangular 12/12 12h 12h 12h 12h
Triangular 8/16 8h 16h 8h 16h
Triangular 72/72 72h 72h 72h 72h
Sinusoidal 12/12 12h 12h 12h 12h
Sinusoidal 8/16 8h 16h 8h 16h
Sinusoidal 72/72 72h 72h 72h 72h

In the Triangular 12/12 and Sinusoidal 12/12 tests, considering 54%RH as starting point, the83

positive section of the curve represents the humidification phase, while the section below 54% is the84

de-humidification interval. Similarly to the NORDTEST [14], the RH was gradually increased, until85

reaching its maximum 75%RH and then back to 54%RH. In the first 6 hours of the de-humidification86

from 54%RH the humidity reached the minimum 33%RH, and then again up to 54%RH, as shown in87

Fig. 2a and Fig. 3a. In the 12/12 test, the climatic chamber increased and decreased the RH every hour,88

transitioning from one step to the other by setting a "slope", which the climatic chamber automatically89

generated, to progressively increase/decrease the humidity until the next RH was achieved. In the90

Triangular 12/12, the triangular curve shape was generated by creating 24 equally distributed RH91

intervals, while the Sinusoidal 12/12 was achieved, by constructing a sinusoidal symmetrical equation.92

The temperature curve followed the same logic as the RH variations. In 12/12 test the curve started at93

23◦C, reaching the minimum temperature of 18.0◦C within the first 6 hours of the cycle. Successively,94

the temperature jumped back to 23◦C, to increase the temperature to 28.0◦C always withing the 2495

hour cycle. In the Triangular 8/16 (Fig. 2b) and the Sinusoidal 8/16 (Fig. 3b) the temperature and96

RH curves were marked by hourly interval in the humidification/cooling phase and by 2 hour intervals97

in the de-humidification/heating phase. The Triangular 72/72 (Fig. 2c) and Sinusoidal 72/72 (Fig. 3c)98

follow the same principle of the 12/12 hour fluctuations, but 6 hours intervals were applied between one99

step and the other, in order to understand if slower moisture variations influence the sorption capacity100

of the materials. A temperature and RH sensor for each specimen (Tiny Tag TV 4505) monitored the101

climate condition in the climatic chamber to observe the agreement between the target fluctuations102

and the actual measurements on both sides of the chamber. The accuracy of the sensor was ±0.5oC for103

the temperature and ±3%RH for humidity.104

3.2. Simulations105

Steady periodic variations with the time period tp (s) in RH and temperature were investigated.106

The moisture transfer took place at x = 0 of a semi-infinite domain, x > 0. There was a vapour surface107

resistance Z (s/m) at x = 0. The moisture buffering effect, i.e. the total moisture mA (kg/m2) that108

flows in and then out during a time period was of interest.109

3.2.1. Equations110

The moisture balance equation reads:111

− ∂

∂x

(
−δv

∂v

∂x

)
=
∂w

∂t
x > 0 (3.1)

Here, v (kg/m3) is the humidity by volume and w (kg/m3) is the moisture content.112

At the surface x = 0 there is:

− δv
∂v

∂x
=
vb(t)− v

Z
x = 0 (3.2)
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− δv
∂v

∂x
= 0 x = D (3.3)

Here, vb(t) is the time varying boundary humidity by volume. The analysis in this paper assumed113

that the temperature of the surface material always followed the chamber temperature Tb(t) without114

any delay. This was a reasonable assumption since temperature changes are much more rapid than115

moisture changes and that it is only the thin interior surface layer that is affected by variations in116

indoor cyclic moisture variations. Eq. 3.3 states that there is a moisture tight back side of the material117

at the depth D (m) representing the thickness of the material. The main part of the following assumes118

a semi-infinite material thickness, i.e. D =∞.119

3.2.2. Simplified equations120

Two simplifications were introduced. The first one is that the vapor diffusion coefficient δv (m2/s)121

is constant:122

δv = δ0
v (3.4)

The second simplification is that the slope of the sorption curve is constant. Furthermore, hysteresis123

is neglected. This is justified, as the investigated materials showed a very limited difference of the124

slope of the isotherm within the studied RH regime. The upper and lower between the adsorption and125

desperation limit is 0.8% and the lower one is 0.02%. A sensitivity analysis using this span would reveal126

an estimate of the impact. In this paper, the average slope is used. Equation 4.8 suggest a square root127

dependence of the slope on the total moisture uptake.128

∂w

∂ϕ
= ξ (3.5)

The moisture balance equation then becomes:129

δ0
v
∂2v

∂x2 = δ0
vvs(T )

∂2ϕ

∂x2 =
∂w

∂t
=
∂w

∂ϕ

∂ϕ

∂t
= ξ

∂ϕ

∂t
(3.6)

Here, vs is the humidity by volume at saturation. Introducing the vapor moisture diffusivity av130

(m2/s):131

∂2ϕ

∂x2 =
1
av

∂ϕ

∂t
av =

δ0
vvs(T )

ξ
(3.7)

The boundary condition becomes:132

− ∂ϕ

∂x
=
ϕb(t)−ϕ

dv
x = 0 (3.8)

dv = δ0
v ·Z (3.9)

The parameter dv(m) represents an equivalent thickness of the surface resistance, i.e. a material133

with this thickness gives the same resistance as Z. The boundary RH is denoted by ϕb(t)(-).134

3.2.3. Varying temperature135

Time varying temperature was considered:136

∂2ϕ

∂x2 =
1

av(t)

∂ϕ

∂t
av (t) =

δ0
vvs(T (t))

ξ
(3.10)

Here, the material temperature is equal to the boundary temperature. It is purely a function of137

time:138
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∂2ϕ

∂x2 =
1

av (t)

∂ϕ

∂t
(3.11)

A variable substitution is introduced:139

τ (t) =

t∫
0

av(t
′) dt′ (3.12)

The moisture balance equation is transformed to:140

∂2ϕ

∂x2 =
∂ϕ

∂τ
(3.13)

Here, there is an equation that is similar to the one-dimensional moisture balance equation (Eq. 3.7)141

with the diffusivity av equal to 1. The equation is linear when using this transformed time variable142

and superposition techniques can be used. Therefore, it is necessary with a basic periodic solution to143

handle complex cyclic changes in the RH.144

The problem can be solved in the τ -domain using superposition technique. First, the boundary145

values were transformed into this domain. The following general, even functions, for the boundary RH146

and temperature were assumed:147

ϕb(t) Tb(t) (3.14)

The maximum and minimum value of the boundary RH are:148

ϕb,max ϕb,min (3.15)

The τ is defined as:149

τ (t) =
δ0
v

ξ

t∫
0

vs(Tb(t
′)) dt′ (3.16)

Since the integrand is always positive an inverse function can be found:150

τ−1(τ ) = t (3.17)

The boundary RH becomes:151

ϕb(t) = ϕb(τ
−1(τ )) = ϕb,min +

(
ϕb,max −ϕb,min

)
· ϕ̃b(τ ) (3.18)

Since a periodic and even function was assume, it becomes:152

ϕ̃b(τ ) =
a0
2 +

∞∑
n=1

an · cos
(

2nπ τ
τp

)
(3.19)

Where,153

an =
2
τp

τp∫
0

ϕ̃b(τ ) · cos
(

2nπ τ
τp

)
dτ τp = τ (tp) (3.20)

This description suggested that the moisture problem, in the τ -domain, can be solved by summing154

an infinite number of solutions, one for each cosinusoidal variation using Fourier series. This solution is155

found in [10]:156
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ϕ(τ ,x)−ϕb,min
ϕb,max −ϕb,min

=
a0
2 +

∞∑
n=1

an ·Ane−x/dpv,n · cos
(

2nπ τ
τp
− x

dpv,n
− φn

)
(3.21)

dpv,n =

√
τp
nπ

φn = arctan
(

dv
dpv,n + dv

)
(3.22)

An =
1√

(1 + dv/dpv,n)
2 + (dv/dpv,n)

2
(3.23)

3.2.4. Moisture uptake157

The moisture flow g (kg/m2 · s) into the material is:158

g(t)

ϕb,max −ϕb,min
= − δ0

vvs(T (t))

ϕb,max −ϕb,min

∂ϕ

∂x

∣∣∣∣
x=0

= ξav(t)
∞∑
n=1

an ·An
√

2
dpv,n

cos
(

2nπ τ
τp

+
π

4 − φn
)
(3.24)

The integrated m(t) (kg/m2) moisture uptake from time zero to time t is:159

m(t) =

t∫
0

g(t′)dt′ (3.25)

The formula can be reformulated using a variable substitution, s = τ (t), and an integration160

between 0 and τp.161

m =

(
ϕb,max −ϕb,min

)
/2

2
√
π

ξ · √τp · fm (3.26)

fm = 2 ·
∞∑
n=1

an ·An

√
2
n

[
sin
(

2nπ τ
τp

+
π

4 − φn
)
− sin

(π
4 − φn

)]
(3.27)

The moisture uptake during the uptake period becomes:162

mA =

(
ϕb,max −ϕb,min

)
/2

2
√
π

ξ · √τp · fA (3.28)

fA = max(fm)−min(fm) (3.29)

In a dimensional analysis of the formula the different lengths that shows up can be observed. One
important is the periodic penetration depth [10]:

dpv =

√
τp
π

(3.30)

The following non-dimensional parameters are of importance:

dv
dpv

, D
dpv

(3.31)

On top of these two parameters, the shape of the curves for the RH and temperature boundary values,163

determining the Fourier Series coefficient an in (Eq. 3.27), is of importance.164
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4. Results165

4.1. Experimental Results166

The moisture buffering performances of clay and gypsum under triangular and sinusoidal167

temperature and RH fluctuations is shown in Table 3. The average peak to peak sorption capacity was168

calculated by considering the last three cycle of the 12h and 8h, as the changed in weight stabilised169

after the third cycle in all tests. In general, gypsum had a better moisture capacity than clay (Fig. 4170

and Fig. 5), by adsorbing two times more moisture regardless of the shape and time interval of the171

temperature and RH fluctuations. The performances of gypsum were due to its porosity and pore172

structure. As explained in [8], gypsum presented higher porosity than clay, but it also showed a173

significant presence of micro-pores that increased themoisture uptake of the material. Differences174

between the 12h and 8h curves in the triangular case either for clay and gypsum were negligible, as the175

same moisture uptake was measured. Between the Sinusoidal 12/12 and Sinusoidal 8/16 curves 11%176

and 5% variations were observed for clay and gypsum, respectively. However, differences were small and177

not significant, when compared to the differences between triangular and sinusoidal sorption responses.178

There was 18% and 20% differences between Triangular 12/12 and Sinusoidal 12/12 peak to peak179

sorption capacity, while between Triangular 8/16 and Sinusoidal 8/16 clay and gypsum presented180

10% and 13% variations, respectively. The Triangular 72/72 and Sinusoidal 72/72 tests presented the181

most significant discrepancy, as clay and gypsum adsorbed 20% and 26% more in the sinusoidal case,182

respectively. The considerable higher sorption capacity of the 72/72 tests is related to the longer time183

interval, which allowed materials to adsorb more water.184

Table 3. Sorption capacity of clay and gypsum (peak to peak) for the triangular and sinusoidal
temperature and RH variations

Material Curve Sorption [g/m2]
12h 8h 72/72

Clay Tri 26.69 26.33 76.34
Sine 32.77 29.36 95.69

Gypsum Tri 59.83 60.38 142.69
Sine 72.25 68.47 181.07
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(a) Triangular 12/12h

(b) Triangular 8/16h

(c) Triangular 72/72
Figure 4. Moisture uptake curves for clay and gypsum under triangular temperature and RH
variations
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(a) Sinusoidal 12/12h

(b) Sinusoidal 8/16h

(c) Sinusoidal 72/72
Figure 5. Moisture uptake curves for clay and gypsum under sinusoidal temperature and RH
fluctuations

As [8] also mentioned in a study on sinusoidal environmental variations, the triangular and185

sinusoidal curves presented a delayed response to the temperature and RH fluctuations (Fig. 6). The186

hygric lag varied depending on the humidification and de-humidification intervals, the length of each187

step, the material’s characteristic, but especially on the simultaneous temperature variations. Table 4188

summarises the hygric lags in all the tests, where the first value represents the time between the189

RH-peak and the moisture uptake peak, whilst the second represents the time between the lowest RH190

and the lowest moisture uptake value. In the Triangular and Sinusoidal 12/12 clay and gypsum showed191

different lags, in which clay always presented a slower response than gypsum either in the adsorption192

and desorption. Regardless of the materials differences, both plasters showed an asymmetry between193
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the humidification and de-humidification. The desorption lag was 30 minutes for clay, and 20 and194

60 minutes for gypsum in the Triangular 12/12 and Sinusoidal 12/12, respectively. The asymmetry195

indicated that in the de-humidification the response of the plasters is quicker than the adsorption,196

probably due to the effect of the air movement in the chamber that slowed the humidity uptake and197

increase the moisture release.198

An opposite pattern can be seen in the Triangular 8/16 and Sinusoidal 8/16, where materials199

presented higher hygric lags in the desorption than the adsorption. The reason could be related to the200

shorter humidification interval (8h) and longer de-humidification (16h), as shown in Table 4. Moreover,201

the the longer exposure to lower humidifies and higher temperature may slow down the moisture release.202

The Triangular 8/16 the plasters had the same lag in the humidification, but in the desorption clay’s203

delay increased significantly. In the Sinusoidal 8/16, clay and gypsum uptake curves had similar lags,204

which is in line with [8] test on the same gypsum sample.205

The 72/72 test showed the biggest hygric lag, probably due to the longer steps, which allowed the206

materials to adsorb more moisture. In Triangular 72/72 and Sinusoidal 72/72 it was possible to see207

substantial difference between clay and gypsum. Clay was slower to adsorb water than gypsum, and it208

took more time to respond to the change of humidity in the air, due to its lower sorption capacity and209

water vapour permeability. Another important factor that might contribute to the slower response of210

clay was the different thicknesses of the materials. Clay was 20 mm thicker than gypsum, which means211

had more moisture storage capacity of gypsum with its 20 mm thickness. This is less noticeable for the212

12h and 8h due to the quicker humidity variations, whilst in the 72/72 tests the specimens have got213

more time to adsorb water from the environment. As [23] investigated, the amount of moisture that214

can be adsorbed by materials is strongly dependent on their thickness and penetration depth. The215

penetration depth depends on the material characteristics and it determines the moisture buffering216

potential of materials. When the thickness of a material is smaller than its penetration depths, materials217

can buffer less moisture that what they potentially could adsorb.218



Version 28th October 2020 submitted to Appl. Sci. 14 of 25

(a) Triangular 12/12h (b) Sinusoidal 12/12h

(c) Triangular 12/12h (d) Sinusoidal 12/12h

Figure 6. Hygric lag of the uptake curves for clay and gypsum under triangular (a) and sinusoidal
(b) temperature and RH fluctuations, with RH as reference, and the corresponding with the vapour
pressure as reference (c,d)

Table 4. Sorption hygric lag [hours]

Triangular Sinusoidal
12h 8h 72h 12h 8h 72h

Clay 4.00/3.50 2.83/4.17 18.33/21.33 3.50/3.00 2.80/4.53 21.17/21.17
Gypsum 3.00/2.67 2.83/3.33 10.67/14.17 3.33/2.67 2.80/4.80 14.17/19.83

To compare the experimental results to simulation, an uncertainty analysis was performed, to219

check the variability of the moisture uptake, due to experimental error. The size of the specimens and220

the variability of the moisture uptake were considered. The uncertainty of the single measurements were221

first analysed and than combined to calculate the overall variations of the moisture uptake. Table 5222

shows the results of the analysis. Four measurements for each dimension were considered for the223

calculation of the surface area of the specimens, while three repeated moisture buffering tests were used224

for the climatic chamber and mass balance uncertainty calculation. Delays in the signal transmission225

between the mass balance and data logger were not detected.226



Version 28th October 2020 submitted to Appl. Sci. 15 of 25

Table 5. Uncertainty measurements

Clay GypsumUncertainty Average Uncertainty Average Uncertainty

Width mm 149.71 ±0.407 150.42 ± 0.016
Length mm 150.62 ±0.795 150.41 ± 0.003Dimension
Thickness mm 40.36 ±0.008 20.94 ±0.027

Area m2 0.023 ±0.00018 0.023 ±0.00018

Lows ±0.01 ±0.03Weight Peaks g 576.88 ±0.03 448.87 ±0.07

Moisture Uptake g/m2 42.05 ± 0.75 67.82 ±1.82

The temperature and RH monitoring in the climatic chamber showed a good agreement between227

the actual climate conditions with the targeted curves both for the triangular and sinusoidal curves.228

The Triangular tests are presented in Fig. 7. In Fig. 7a the RH presented on average 2%RH variations229

from target, up to 5.6%RH during the de-humidification. whilst temperature showed 0.43oC variations230

up to 1.40oC. In the symmetric test (Fig. 7a) there was a better match between the actual and target231

climate. Temperature and RH presented an average variation of 0.17oC and 1.50%RH, respectively, up232

to 0.79oC and 3.5%RH always during the de-humidification. The temperature and RH fluctuations233

had smaller amplitudes than the target curves (10oC and 42%RH), as shown in Table 6. In Fig. 7b234

it was also observed a delay of 1 h of RH in the de-humidification phase that was than zeroed in the235

humidification. The reduced RH fluctuation may produce small variations of the moisture buffering236

results of the two materials. Similar consideration can be done for the sinusoidal variations, as [8]237

explained, and as shown in Table 6.238
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(a) Triangular 8/16h

(b) Triangular 12/12h
Figure 7. Monitored temperature and RH into the chamber the triangular tests

Table 6. Temperature and RH amplitude

Temperature RH

Tri 8/16 9.65 36.9
Tri 12/12 9.93 38.1
Tri 72/72 9.92 39.7
Sine 8/16 9.86 37.9
Sine 12/12 9.90 39.1
Sine 72/72 9.77 39.7
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4.2. Simulation results239

4.2.1. Triangular 12h/12h variation for gypsum240

In this section a demonstration of the application of the method is shown. As exemplification,241

gypsum material exposed to Triangular 12h/12h variation in the boundary temperature and RH-values242

is presented, but the analysis was performed on all cases. The following data was assumed for the243

vapour diffusion coefficient and the slope of the sorption isotherm:244

δ0
v = 2.828 · 10−6 m2/s ξ = 27.39 kg/m3 (4.1)

The time period, tp (s) of the process is 24 h. The RH is be highest when the temperature is lowest245

and vice-verse. The variations are symmetrical around the average value of both the temperature and246

RH. The following boundary values are assumed:247

ϕb,max = 0.75 ϕb,min = 0.33 (4.2)

Tb,max = 28 ◦C Tb,min = 18 ◦C (4.3)

Table 7 shows the amplitude parameterfA (Eq. 3.28 and Eq. 3.29).248

Table 7. The amplitude parameterfA for the determination of the total moisture uptake during
a half cycle, case triangular 12/12h. The third column shows the reduction in moisture buffering
capacity due to the surface resistance.

Z [s/m] fA
fA

fA(Z=0)

0 2.2745 1
60 2.2203 0.98
360 1.9737 0.87
103 1.5708 0.69
104 0.3684 0.16
105 0.0416 0.02

From the table it is clear that for gypsum without any coating, represented by a default Z value249

of 360 s/m, reduces the moisture buffering capacity with 13%. In the results presented below a value of250

195 s/m is used based on a assumed air velocity of 0.1 m/s and a convection surface coefficient based251

on forced convection [10].252

The actual moisture buffering uptake is given by Eq. 3.28. For the case of zero surface resistance
we have:

mA =
(0.75− 0.33)/2

2
√
π

27.39 · 0.0136 · 2.2745 = 50.2 g/m2 (4.4)

4.2.2. Simulation results for all cases, semi-infinite thickness253

The periodic penetration depth (Eq. 3.30) is of interest. It must be much smaller than the thickness254

of the material in order to satisfy the general assumption of semi-infinite material. For gypsum and a255

time period of 24h:256 √
τp
π

= 0.0077 m=7.7 mm (4.5)

For a six days time period the penetration depth is 18.8 mm. The corresponding values for clay are257

7.5 and 18.5 mm for the 12h and 72h test, respectively. It means that for diurnal variations, both258

the thickness 20 mm and 40 mm should be applicable for the semi-infinity analysis. However, it is259
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questionable if the thickness of 20 mm (gypsum case) would work for the six days variation. For the260

thickness 40 mm (clay case) it would be acceptable.261

Table 8 and Table 9 show the simulated vales for the moisture buffering uptake and the time lag.262

The first value for the time lag represents the time between the RH-peak and the moisture uptake263

peak. The second one represents the time between the lowest RH and the lowest moisture uptake value.264

The difference in these values clearly show the asymmetry and non-linearity of the problem. As also265

shown in the experimental test (Table 4), the longer lag during the de-humidification in the 8/16h tests,266

compared to the humidification can be also explained by analysing Eq. 4.8. However, the time lags in267

Table 9 also justify the models assumption that the surface temperature follows the room temperature.268

The time delay for the change in temperature in the boards, due to a room temperature change, is269

around 1200 s for the 20 mm thick gypsum board and 1600s for the 40 mm thick clay board. This is270

roughly 1/3 of an hour. For diurnal variations the ratio between this time delay and the time period is271

of the order 10−2. For the six days period the ratio is almost one order less and can further justify the272

approximation.273

Table 8. Simulated results for sorption capacity of clay and gypsum (peak to peak) for the triangular
and sinusoidal temperature and RH variations

Material Curve Sorption [g/m2]
12h 8h 72h

Clay Tri 22.72 21.77 56.88
Sine 27.97 26.40 69.90

Gypsum Tri 46.50 44.45 119.25
Sine 57.40 54.05 146.73

Table 9. Simulation results for sorption hygric lag [hours]

Hygric
Lag

Triangular Sinusoidal
12h 8h 72h 12h 8h 72h

Clay 2.7/2.2 2.0/2.4 15.4/12.6 3.4/2.9 2.4/3.4 19.8/16.9
Gypsum 2.9/2.3 2.2/2.6 15.9/12.9 3.5/3.0 2.5/3.5 20.0/17.2

Fig. 8 and Fig. 9 show the moisture uptake function m as a function of t/tp. Time zero corresponds274

to the time of the RH peak, and the start time of integration, i.e. we assume the uptake of moisture275

being zero at time zero, which is an arbitrary choice of level. Consequently, it is possible to follow276

the accumulation and the drying out of moisture of the specimens during the time period. The two277

curves with the largest amplitude represent the case with a six days variation. It is clear that the278

diurnal variations do not significantly differ between 12/12h and 8/16h cases. As also shown in the279

experimental test (Table 4), the longer lag during the de-humidification in the 8/16h tests, compared to280

the humidification can be explained by analysing Eq. 4.8. If a 8/8 hours period was analysed, instead281

of the 8/16, the time tp period would correspond to 16 hours. For the 16/16h test would be i.e. 32282

hours. The difference in uptake mA would then differ between the 8/8 and 16/16h approximately of283 √
32/16 =

√
2, which correspond to 40% difference. For the time delay, a pure sinusoidal variation284

suggests that the lag is directly proportional to the time period, which corresponds to a doubled time285

delay. The time delay ratio in the mixed case (8/16) in Fig. 9 is 1.17-1.62. Therefore, the asymmetry286

is reasonable as the delay ratio is in between 1 and 2, in line with the 8/8 and 16/16 ratio.287
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Figure 8. The moisture uptake function m (g/m2) for the Sinusoidal variations as a function of
t/tp. The full drawn black curves represent Gypsum while the dashed ones represent Clay. The
two curves with the largest amplitude represent the case with a six days variation (72/72h). The
smoother and more sinusoidal like curve represents 12/12h and the other 8/12h, respectively.

Figure 9. The moisture uptake function m (g/m2) for the Triangular variations as a function of
t/tp. The full drawn black curves represents Gypsum while the dashed ones represent Clay. The
two curves with the largest amplitude represent the case with a six days variation (72/72h). The
smoother and more sinusoidal like curve represents 12/12h and the other 8/12h, respectively.
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The comparisons with the measured data shows that the simulations systematically underestimates288

the moisture buffering effect by 11-37%. The largest error for the case of clay is 37% (Sinusoidal 72/72 )289

and lowest 11% (Sinusoidal 8/16 ). For gypsum the differences are 36% (Triangular 8/16 ) and 12%290

(Sinusoidal 8/16 ). Fig. 10 shows a comparison between measured and simulated moisture uptake for291

gypsum and Triangular 12h/12h cycles.292

Figure 10. Comparison between measured (blue) and simulated (red) moisture uptake for Gypsum
and triangular 12h/12h cycles.

4.2.3. Analysis of the simulation results293

The difference between the measured and simulated results can depend on material properties,294

simplifications in the model, insufficient depth of samples and the assumption of the that the temperature295

in the material is following the boundary temperature.296

Looking at the expected material dependence, from Eq. 3.28 it was obtained:

mA =

(
ϕb,max −ϕb,min

)
/2

2
√
π

ξ · √τp · fA ∝ ξ ·

√
δ0
v

ξ

√∫ tp

0
vs(T (t)) dt · fA (4.6)

=
√
δ0
vξ

√∫ tp

0
vs(T (t)) dt · fA (4.7)

= bv
√
tp
√
vs · fA bv =

√
δ0
vξ (4.8)

Here, bv =
√
δ0
vξ is the moisture vapour effusivity.297

The formula shows that the slope of the sorption curve and the diffusion coefficient play an equal298

role for the moisture uptake. The factor fA calculated previously for all cases is not significant, as299

it appears to depend weakly on the RH boundary function. The same consideration applies to the300

square root of the integrated humidity at saturation over the time period. The previous calculation for301

gypsum showed that the measured value would fit if either of the parameters are increased by 66%.302

Considering the expression for the effusivity, it also means that a good fit happens when both material303

properties are increased by
√

1.66 = 1.29 i.e. 29% increase. Fig. 11 shows the comparison between the304
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experimental Triangular 12/12h case, when this increase of the material properties is applied in the305

simulation.306

The error estimates in relation to effusivity value gives a maximum of 13.5% higher value, not307

fully support a 29% higher simulation value required for a good fit. By increasing the effusivity by308

66% the peak value of the experimental moisture uptake was still higher than the simulated one. The309

measurement uncertainty is estimated to be less than 3% which would not explain the differences310

between the measurement and simulations. Another potential uncertainty lies in the surface resistance311

value. The surface resistance value is specially important for the diurnal variations since the equivalent312

surface resistance thickness and the periodic penetration depth is closer in magnitude. For gypsum it is313

round 0.5 mm. The previous calculation shows that for a zero surface resistance, the moisture buffering314

effect increases by 8%.315

Figure 11. Comparison between measured and modified simulated moisture uptake for Gypsum
and triangular 12h/12h cycles.

The only material specific part of Eq. 4.8 that gives the amplitude of the moisture uptake is the316

vapour effusivity bv. By applying the same environmental variations to clay and gypsum by doubling317

bv, the moisture uptake doubled. On fact, it can be observed that the ratio between the case of gypsum318

and clay is constant for the same load profile, following the ratio of the effusivity. The measurement319

give the ratio 0.45 to 0.53 while the simulations 0.48-0.49 for all cases. The variations in the simulation320

values are due to the small variations in fA.321

In Eq. 4.8 the term that contains the humidity at saturation depends only on the temperature322

variation. For a certain load profile (Tri or Sine) and time schedule (12/12h and 72/72h) this is constant.323

The ratio basically only depends on the square roots of the time period. Consequently, it can be324

expected
√

6 = 2.4494 times greater moisture buffering effect for the 72/72h period compared to the325

12/12h variation. The experimental ratio of the moisture uptake between the six days variations and326

12/12h was 2.38-2.92 while simulations gave 2.50-2.56. The variations in the simulation values is due to327

the small variations in fA.328
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4.2.4. Comparison of analytical and numerical results329

In order to understand the impact of thicknesses that are close to the periodic penetration depth,330

numerical solutions for the equations (Eq. 3.10,Eq. 3.11 and Eq. 3.14) are presented. Only the case of331

gypsum was analysed. The Matlab pdepe-solver were used with a space resolution of around 0.1 mm.332

From the results it can see that the semi-infinite analytical solution is verified by the numerical333

simulation and that it also works well for diurnal variations as long as the thickness is 20 mm or more334

(Table 10). For thinner material thicknesses the moisture buffering effect can be over or under estimated335

while the time lag becomes overestimated. It can also be observed that there is a maximum buffering336

effect for material thickness similar to the periodic penetration depth, which is result well known from337

the heat transfer area investigating effect of thermal mass on energy demand [24].338

Table 10. Numerical simulation results for gypsum and varying thickness D, diurnal variations.
The surface resistance Z = 195 s/m. Results from the analytical model is also inserted for the case
of infinite thickness.

D [mm] mA [g/m2] tdelay,max [hour] tdelay,min [hour]

5 52.0 1.67 1.08
10 64.7 3.37 2.69
20 56.7 3.57 3.05
40 57.8 3.53 3.03
100 58.1 3.48 3.05
∞ 57.4 3.5 3.0

For 72/72 variations the semi-infinite analytical solution works well as long as the thickness is339

40 mm or more (Table 11). For thinner material thicknesses the moisture buffering effect can be over340

or under estimated while the time lag becomes overestimated. The moisture buffering goes up with341

14% for the 72/72 simulation with the thickness 20 mm instead of infinite thickness. This reduces the342

difference between experimental and simulation result.343

The time lags is reduced between with 3.8 and 5.0 hours, when thickness is reduced down to 20344

mm for infinity. The match between this simulation and the measurement becomes better for the top345

peak time delay but there is a larger lag for the bottom peak. Overall, it can be stated that either in the346

experimental and simulations temperature is a significant factor that delays the response of materials347

to buffer humidity. This is further justified in [8], in which the response of materials to constant and348

variable temperature were compared, showing that variable temperatures generate a significant lag349

compared to the case at constant temperature.350

Table 11. Numerical simulation results for gypsum and varying thickness D, 72/72 variations. The
surface resistance Z = 195 s/m. Results from the analytical model is also inserted for the case of
infinite thickness.

D [mm] mA [g/m2] tdelay,max[hours] tdelay,min [hours]

5 57.0 1.7 1.2
10 110.5 6.3 3.9
20 167.0 16.2 12.2
40 147.7 20.6 17.7
100 146.4 20.1 17.2
∞ 146.7 20.0 17.2

5. Conclusions351

Clay and gypsum coatings were experimentally tested to investigate the moisture buffering capacity352

of the materials under simultaneous temperature and RH fluctuations. The dynamic sorption capacity of353

plasters were observed when environmental variations follow either sinusoidal and triangular variations354
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and different interval for the humidification/de-humidification were applied (12/12h, 8/16h, 72/72h).355

In this way, it was possible to better understand the influence of temperature and humidity on the356

moisture uptake of construction materials. The experimental results were compared with a novel357

simulation method that considers the impact of the surface resistance in the calculation of the material358

moisture uptake under variable environmental conditions. The model approach to consider materials as359

semi-infinite bodies was also verified with the analytical results.360

The simulation model supported by the experimental results demonstrated clay and gypsum361

responded differently to the simultaneous temperature and RH fluctuations, due to the different362

material properties and pore structure. However, the environmental signal has a significant role in363

the moisture buffering capacity of materials. Both the RH and temperature signal (triangular and364

sinusoidal) and time intervals impact the way plasters adsorb moisture from the indoor. Differences365

were found when different time frames were applied. When materials were subjected to daily cycles366

(12/12 h and 8/16h), there were not significant differences between the sinusoidal and triangular test367

and also between the 12/12 h and 8/16h in terms of peak to peak sorption capacity. However, when368

temperature and RH were slowly varied over six days, clay and gypsum stored and released more369

moisture, showing also differences between the sinusoidal and triangular test. The slower increase and370

decrease of the environmental conditions allowed the plasters to store more moisture.371

The difference between the 72h tests is linked to the different materials thickness and penetration372

depth. The penetration depth not only depends on the material property, but it also varies depending373

on the environmental conditions. For gypsum, which thickness was 20 mm, its moisture buffering374

performances increased in the 72h test, due to the deeper penetration of moisture into the plaster, and375

due to the longer exposure to high and low environmental conditions. Another observation was the lag376

of both plasters when exposed to simultaneous temperature and RH variations. Simulations showed a377

delay of few hours in the daily variations and up to 20 hours in the 72h test. The lag is attributed378

to temperature variations that delays the response of materials. Moreover, the continuous variations379

of the environmental conditions did not allow the material to stabilise and to response quickly to the380

humidity variations.381

In conclusion, explicit analytical formulas applied in the model were derived to calculate the382

moisture distribution inside a material that is exposed to cyclic variations in RH and temperature. The383

semi-infinite analytical solution was verified, confirming the formula can be used to estimate the uptake384

and release of moisture to an exposed material surface as long as the periodic penetration depth is less385

than half the thickness of the material.386

The analytical method showed a great resemblance with the measured values, and together to the387

novel experimental approach of testing the sorption capacity of material will quantify more accurately388

the capacity of hygroscopic materials to moderate the indoor humidity and improve the hygrothermal389

comfort and health of people in buildings.390
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