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ABSTRACT: During the design and construction of efficient iron-nitrogen-carbon (Fe-N-C) 

electrocatalyst, it was difficult to avoid the formation of iron oxides along with the hierarchical carbon 

frameworks containing dispersed FeNx sites. As a result, a slow oxygen reduction reaction (ORR) 

occurred, making it difficult to improve the electrocatalytic property. Herein, we have successfully 

synthesized the Fe, N-doped hierarchically porous carbon architectures from FeTe-trapped ZIF-8 

coated with polydopamine by heat treatment. During the pyrolysis process, the evaporation of 

tellurium could inhibit the formation of iron oxides, promote the formation of more FeNx active species, 

and facilitate the formation of mesoporous structure to accelerate mass transfer and increase the 

approachability of active species. The resulting Fe, N-doped porous carbon architectures possessed 

excellent ORR catalytic performance, and the half-wave potential was 10 mV more than that of the 

precious Pt/C catalysts. Besides, the obtained catalysts present a superb methanol-tolerance and long-
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term durability compared to precious Pt/C catalysts in alkaline media. This work opens up new avenues 

for the construction of the uniformly dispersed FeNx sites catalysts for ORR. 

KEYWORDS: Electrocatalysts; Porous Carbon; Oxygen reduction reaction 

 INTRODUCTION 

As the alternative clean energy technologies, fuel cells and metal-air batteries have attracted significant 

attention 1-2. Oxygen reduction reaction (ORR) in the cathode undergoes a sluggish process which 

determines the property of fuel cells 3-8. The platinum (Pt) catalysts are usually used as cathode 

materials for ORR, but its high cost, poor methanol tolerance and durability restrict the development 

and wide use of the fuel cell technology 9-14. Therefore, the exploration of non-platinum catalysts with 

both superb activity and satisfying stability has become the most important research topic 15-21. 

Recently, inspired by the ferriporphyrin in hemoglobinase, the iron-nitrogen-carbon (Fe-N-C) 

catalysts were developed and showed great potential as an alternative of Pt 22-27. The concept of using 

Fe-N-C as the ORR catalyst was firstly developed by Jahan et al through simple loading of 

ferriporphyrin by graphene 28. However, the high price of ferriporphyrin and nonefficient electron 

transfer hinder their wide use. Subsequently, researchers found that the Fe-N-C could be embedded in 

the carbon matrix which also showed promising performance toward ORR 29-32. The primary Fe-N-C 

catalysts were prepared by pyrolyzing metal salts, nitrogen and carbon precursors at high temperature 

33-38. However, the unstable metallic compounds were easily migrated and aggregated in graphitic 

carbon shells during the uncontrolled heat treatment, resulting in lower utilization of metal species, 

decrement of FeNx active species, and thereby poor catalytic activity 39-42. Therefore, it still remains a 

challenge to rationally design and construct high-efficiency Fe-N-C catalyst. 

The remarkable Fe-N-C catalyst should have a good reaction site for oxygen-oxygen double bond 
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cleavage, appropriate geometric spatial structure for electrolyte transmission and O2 diffusion, and 

high density of active species to maintain good performance for a long time43-49. The zeolitic 

imidazolate frameworks (ZIFs) which contained adjustable ligand structures were regarded as 

favorable precursors for the fabrication of Fe-N-C catalyst. Currently, some researchers 50-54 used the 

metal iron salt to embed the cavities of ZIF-8 to obtain the Fe-ZIF and after carbonization the resulted 

Fe, N-doped porous carbon had the interconnected framework structure and ultrahigh specific surface 

area, which exhibited excellent catalytic activity. Unfortunately, the Fe-ZIF was prone to form 

superabundant iron oxides particles due to the Kirkendall effect during carbonization, thus limiting its 

catalyticactivity 55-57. Therefore, it has been a major ongoing research effort to establish the synergistic 

correlation to manifest the structure-activity relationship for ORR.  

Herein, we originally developed the iron tellurium (FeTe) trapped ZIF-8 coated with polydopamine 

as the precursor for preparation of Fe-, N-embedded hierarchically porous carbon architectures. Te 

would suppress the removal of Fe by forming Te-Fe bond and inhibit the formation of iron oxides 

during the pyrolysis process. When the temperature exceeded the evaporation point of Te, the dispersed 

iron bound with N increased the density of FeNx active site. Meanwhile, the mesoporous structure 

derived from evaporation of Te was able to facilitate mass transfer and enhance the approachability of 

the active site. Consequently, the Fe, N-doped porous carbon architectures possessed excellent ORR 

catalytic performance (half-wave potential was 10 mV more than the precious Pt/C catalyst) and superb 

the methanol-tolerant and long-term durability compared to precious Pt/C catalyst in alkaline media. 
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Fig 1. Schematic illustration for the synthetic procedure of FeDZ-NC catalysts. 

 EXPERIMENTAL SECTION 

Materials Preparation. Zn(NO3)2·6H2O (AR, 99%), FeCl3·6H2O (AR, 99%), 2-methyl 

imidazole (2-MeIM) (AR, 99%), Na2TeO3 (AR, 99%), CH3OH (AR, 99.5%), ethanol (CH3CH2OH) 

(AR, 99.5%) and N2H4·H2O (AR, 98%) were purchased from Sinopharm Chemical Reagent Co. Ltd. 

Dopamine hydrochloride (98%) and trimethylolamine were supplied by Aladdin Chemistry Co. 

(Shanghai, China). Nafion solution and polyvinyl pyrrolidone were provided by Sigma-Aldrich. 

Preparation of FeTe. FeCl3·6H2O (75 mM), Na2TeO3 (75 mM) and 2 g Polyvinyl Pyrrolidone 

(PVP) were dissolved into hydrazine hydrate (N2H4·H2O, 4.5 M) and distilled water to form 40 mL 

homogeneous transparent solution by ultrasonic. The solutions were poured into a 100 ml 

hydrothermal reactor. The reactor was sealed, heated 24 h at 140oC. The precipitates were washed 

several times with deionized water and CH3CH2OH. Finally, the materials were dried 12 h in a vacuum 

at 60oC 58. 

Preparation of FeZ-NC electrocatalysts. 100 mg of FeTe (the detailed synthetic method 

of FeTe was described in the Supporting Information) was uniformly dispersed in 80 mL 

CH3OH via ultrasound 1 h. 3.7 g of 2-MeIM and 1.68 g of Zn(NO3)2 • 6H2O were separately 

added to 80 mL CH3OH via ultrasound 10 min. The two solutions of equal mass were poured 
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into the FeTe solutions and mechanically stirred for 24 h. The products (denoted as FeTe@ZIF-8) 

were obtained by filtration with CH3OH. The FeTe@ZIF-8 was carbonized at 950 °C for 3 h (5 °C/min) 

under Ar. The corresponding name was FeZ-NC. 

Preparation of FeDZ-NC-x electrocatalysts. The 10 mg, 50 mg, 100 mg, 200 mg, 300 mg of 

FeTe was uniformly dispersed in 80 mL CH3OH via ultrasound 1 h, respectively. 3.7 g of 2-

MeIM and 1.68 g of Zn(NO3)2 • 6H2O were separately added to 80 mL CH3OH via ultrasound 

10 min. The two solutions of equal mass were poured into the above each FeTe solutions and 

mechanically stirred 24 h. The all products were filtered by CH3OH. The obtained five 

FeTe@ZIF-8 was separate added to the 80 mL tris-buffer media (pH=8.5) via ultrasound 30 

min. 100 mg of dopamine was poured into the five solutions, respectively. The reaction products 

(denoted as polydopamine (PDA)@FeTe@ZIF-8) were obtained by filtration with deionized 

water after magnetic stirring for 12 h. Those PDA@FeTe@ZIF-8 was carbonized at 950 °C for 

3 h (5 °C/min) in Ar. The final samples were denoted as FeDZ-NC-10, FeDZ-NC-50, FeDZ-NC-100 

(FeDZ-NC), FeDZ-NC-200, FeDZ-NC-300. 

Preparation of FeL-NC catalyst. The synthesis step was the same as the synthesis FeDZ-NC 

step. The FeCl3·6H2O was replaced with the same mole of iron as 100 mg FeTe. The product obtained 

after carbonization was denoted as FeL-NC. 

Preparation of N-C electrocatalysts. The synthesis step was the same as the synthesis FeDZ-

NC, but no FeTe was added. The product obtained after carbonization was denoted as N-C. 

Preparation of the electrode. For the electrode, the catalyst (5 mg) or commercial Pt/C (5 mg) 

was dispersed in CH3CH2OH (100 µL), deionized water (300 µL) and 5% Nafion solution (100 µL) 

to sonicate to form a uniform solution, respectively. Then 8 mL solution was applied to the shiny glassy 
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carbon electrode and dried it. 

Material Characterizations. The morphologies feature of the materials was observed by SEM 

(SU8000), TEM (JEOL JEM-200CX) and HRTEM (FEI Tecnai G2 F20). The crystalline composition 

of as-obtained materials was investigated by powder X-ray diffraction (XRD) (Rigaku 3KW 

D/MAX2200V PC, Kα radiation) over the range 10-90° (2θ). X-ray photoelectron spectroscopic (XPS) 

measurements were recorded by the (Mg Ka (1253.6 eV) radiation) Perkin-Elmer PHI 5000C ESCA 

system. N2-adsorption/desorption measurements were conducted in a MicroActive ASAP 2460 

analyzer instrument under 77 K. The specific surface area (SSA) of the materials was estimated by the 

Multi-point BET method. The pore size distribution for the materials was recorded by the Density 

Functional Theory (DFT) method. 

Electrochemical measurements. All the electrochemical characterizations were carried out 

on CHI 760E electrochemical workstation (Shanghai Chenhua Instrument Co.) with the three 

electrodes system. A rotating disc of glassy carbon electrode (D ¼ 5 mm) represented the working 

electrode. A Pt foil represented counter electrode and an Ag/AgCl electrode represented reference 

electrode. In 0.1 mol L-1 O2 or N2 saturated KOH aqueous media, the Cyclic voltammetry (CV) curves 

were measured in 100 mV/s. Linear Sweep Voltammetry (LSV) was tested in 0.1 mol L-1 O2 saturated 

KOH media under different revolutions with 10 mV/s. The long-term stability was tested using 

chronoamperometry by recording ORR current for 12 h at -0.25 V and 400 rpm. The methanol-tolerant 

were investigated in 0.1 mol L-1 O2 saturated KOH aqueous media, and 5 mL CH3OH was added and 

rotated for 1h. Moreover, the current was recorded at -0.25V and 1600 rpm. The RRDE was tested by 

using the rotating ring disk electrode with platinum ring. The diameter of glassy carbon disk was 5.4 

mm. 
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Kinetic current density was recorded by Koutecky-Levich equation at 0.2 V, 0.3 V, 0.4 V, 0.5 V and 

0.6 V potentials 59 (A1): 

                                         
1

J
=

1

Bω0.5
+

1

𝐽𝐾
                    (A1) 

where JK stands for the kinetic current, ω stands for the electrode rotation rate. B stands for the slope 

of the Koutecky-Levich equation 60 (A2): 

B = 0.2nFυ−
1

6Co2(Do2)
−
2

3              (A2) 

The n stands for the electron transfer capability, F stands for the Faraday’s constant (F=96485 C mol-

1), υ stands for the dynamic viscosity of 0.1 mol L-1 KOH (υ=0.01 cm2 s-1), Co2 stands for the 

concentration of oxygen (1.2×10-3 mol L-1), Do2 stands for the diffusion coefficient of oxygen (1.9×10-

5 cm s-1). The constant for the rotating speed (rpm) is 0.2. 

The yield of hydrogen peroxide (H2O2%) is obtained by the rotating ring disk electrode in ORR 

equipment and CHI 760E electrochemical workstation. The yield of H2O2 and the electron transfer 

capability (n) were recorded with the two equations 61, 62 (A3) (A4): 

                        H2O2(%) =
200IR
N

ID+
IR
N

                 (A3) 

                             n =
4ID

ID+
IR
N

                   (A4) 

The IR and ID stand for ring current and disk current, and N stands for the ring collection efficiency 

(37%). 

 RESULTS AND DISCUSSION 

The characterization of catalysts 

The preparation of the FeDZ-NC catalysts with hierarchical structure was illustrated in Fig 1. 

The FeTe (Fig S1) 58 were synthesized by the hydrothermal method, serving as a sacrificial 
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template trapped in the cavities of ZIF-8 to form the FeTe@ZIF-8 complexes. As presented the 

Figure S2a-b, the as-prepared FeTe@ZIF-8 shared the similar morphology with the ZIF-8, 

which was not affected by the introduction of FeTe. Besides morphology, the bulk crystal 

structure of FeTe@ZIF-8 also remained the same as the ZIF-8 by XRD 63,64. Simultaneously, 

the characteristic peak of FeTe was identified in the XRD patterns of FeTe@ZIF-863,64, 

indicating that FeTe was dispersed in ZIF-8. Subsequently, the polydopamine (PDA) 

membrane was coated over the surface of the FeTe@ZIF-8 by self-assembly of dopamine.  

The morphology structures of pyrolyzed materials were investigated using SEM and TEM. 

As was shown in the Fig. 2a-c, the SEM and TEM images of the FeDZ-NC displayed pseudo-

octahedral structure with hollow mesoporous structure. The average size of the particle was 

about 56 nm with inner diameter (Fig. S2 d). The outer carbon layer exhibited amorphous 

structure with thickness of 8 nm compared to the FeL-NC materials (Fig. S3 a-b). It revealed 

that both the evaporation of Zn and Te could etch the carbon frameworks to form more voids 

inside MOFs during the pyrolysis process. However, without the dopamine coating, the FeZ-

NC materials derived from carbonization of FeTe@ZIF-8 collapsed (Fig. S4). This is because 

the dopamine coating on the surface of the ZIF-8 could form highly graphitic carbon layer to 

retain the original structure after the carbonization. The FeDZ-NC materials was further 

characterized by HRTEM (Fig. 2c). No nanoparticles of iron were detected, indicating that no 

agglomeration of iron. Additionally, the energy-dispersive X-ray spectroscopy (EDS) mapping 

of the FeDZ-NC materials (Fig. 2d) showed the Fe, N, C elements were uniform distributed in 

the carbon frameworks.  

The crystal structure of as-obtained materials was investigated by XRD. As shown in Fig. 
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3a, the only hump peaks at 25° and 43° correspond to the amorphous carbon structure 65,66 and 

indicated the totally removal of Te which was in consistent with HRTEM results. At the same 

time, the XPS spectrum of for the FeDZ-NC and FeZ-NC before pyrolysis show obvious zinc 

and tellurium peaks, but the carbonized samples do not show zinc and tellurium peaks (Fig. S5 

and Table S1). When FeTe was replaced by FeCl3, peaks indexed to Fe, Fe3C, and Fe3O4 were 

found in Fig. 3a. Moreover, the Fe3C would emerge without extra N providing by dopamine. It 

was worthwhile that FeTe could only decompose and released Fe at high temperature (Fig. S6 

c). This was consistent with the HRTEM images that no iron agglomeration was formed. This 

proved that the evaporation of Te was conducive to the formation of the uniformly dispersed 

FeNx sites, thus inhibiting the formation of iron oxide. In addition, the relative diffraction  

 

Fig 2. (a) SEM, (b) TEM, (c) HRTEM, (d) HAADF/STEM images and the corresponding EDS elemental mapping (C, N 
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and Fe) of FeDZ-NC. 

intensity of the Fe3C peak increased with the increased Fe content in the FeDZ-NC materials 

(Fig. S6 b, Fig.S7). This is because the excessive Fe made it difficult for C atoms inside the 

nanocrystals to diffuse to the outer surface, hence forming more Fe3C phases 67-69.  

The Raman spectrum was also used to characterize the graphitic level of the pyrolyzed 

materials. The bands of D and G represent the degrees of graphitization and disorder or defects 

of the material structure respectively 70-71. The intensity ratio of ID/IG was positively related to 

the defect degree of the graphitized carbon 72-73. The integral area values of D peak and G peak 

were displayed in Table S2.  The Raman spectra of the FeDZ-NC materials showed a higher 

disorder degree with a higher ID/IG (1.85) than those of the FeZ-NC and FeL-NC materials (Fig. 

3b, Fig. S8, Table S2). Obviously, the evaporation of Te led to more plentiful defects.  

The evaporation of Te also gave rise to porous structure which was also investigated by N2-

adsorption/desorption measurements (Fig. 3c, Fig. S9 a). Typical IV isotherms were found for 

FeDZ-NC, FeZ-NC and FeL-NC showing a combination of both micropores and mesopores. The 

specific surface area (SSA) of the materials was estimated by the Multi-point BET method. 

The textural characteristics of the materials were showed in Table S3. The specific surface area 

of FeDZ-NC was higher than those of the FeL-NC, FeZ-NC (Fig. 3d), which was mainly 

attributed to the preservation of the ZIF-derived porous frameworks and polydopamine-derived 

mesopore structure. The high surface area could facilitate the dispersion of active species and 

promote catalytic performance. However, the specific surface area of the FeDZ-NC materials 

tended to decrease with the increase of Fe content, which was caused by the accumulation of 

excessive Fe3C during pyrolysis. The pore size distribution for the materials (Fig. S9 b) was 



11 

 

analyzed by the DFT method. The pore diameter and porosity of FeDZ-NC represented the 

micro-mesoporous structures (Fig. S10). The highest total pore volume dominating with 

mesopore volume was found for FeDZ-NC which could provide a buffer for the electrolytes. 

The N2 sorption results showed that FeDZ-NC owned hierarchically porous structure with large 

surface area which enabled the well exposure of active species and effective electrolytes 

diffusion.  

 

Fig 3. (a) XRD patterns, (b) Raman spectra, (c) N2 adsorption-desorption isotherms, and (d) Plots of BET surface area and 

pore volume of various Fe-N-C materials. 

The XPS was used to measure element compositions and chemical valence states of the 

pyrolyzed materials. The atomic ratio of element signals of different materials was shown in 

Table S4 and the 0.2%, 0.59%, and 0.57% Fe was found for FeZ-NC, FeDZ-NC, and FeL-NC, 
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respectively. The iron content was further tested by ICP, and the results are shown in Table S5 

From the obtained spectrum, elements signal of Fe, N and C could be clearly observed on FeDZ-

NC materials, which was also consistent with element mapping results. The C 1s spectrum in 

the materials was divided into four types (C-C (~284.5 eV), C-N (~285.8 eV), C=N (~287.2 

eV), C=O (~287.9eV)) by the peak-differentiating and imitating (Fig. 4a, Fig. S11 a, Fig. S12 

b). The C-C peaks represented the graphitized carbon. The C-N and C=N peaks suggested that 

the N atoms were inserted into the basal plane of graphitic carbon. The incorporation of N 

dopants had a higher electronegativity with the adjacent C atoms, which facilitated the 

adsorption and reduction of O2, thereby improving the ORR catalytic performance 74-76. High 

resolution N 1s spectrum (Fig. 4b, Fig. S11 b, Fig. S12 b) of the materials revealed the existence 

of pyridinic N (N-6 at ~398.6 eV), Fe-N (~399.4 eV), pyrrolic N (N-5 at ~400.1 eV), graphitic 

N (N-G at ~401.2 eV) and oxidized N (N-O at ~402.1 eV) nitrogen species. The doping of 

nitrogen in carbon materials had a variety of configurations, and the different doping 

configurations had different effects on the catalytic performance77-78. Graphitic N was the N 

atom linked to three sp2 carbon atoms, which was favorable to exalting the limiting current 

density. The area ratio of N species of the materials was summarized in Table S6. The nitrogen 

content of FeDZ-NC reached 6.22% with a graphitic N content of 2.45%, which was 

significantly higher than others. The high content of graphite N was favorable for 

electrocatalysis. Simultaneously, the content of Fe-N species in the FeDZ-NC material was 

higher than those of other Fe-N-C materials. This suggested that the FeDZ-NC material could 

form more FeNx active species. In addition, the relative composition of the high-resolution Fe 

2p spectrum were Fe (0), Fe 2p3/2, Fe 2p1/2 in the materials (Fig. S13). The peak at 708 eV 
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corresponded to Fe (0) which could not be found in FeDZ-NC materials. The noticeable peaks 

at 712.6 and 725.0 eV corresponded to Fe (III) species 79-84. The peaks at 710.3 eV and 723.1 

eV corresponded to Fe (II) species 85-87. The Fe ions with different valence states contributed 

to the formation of FeNx active species in the FeDZ-NC materials, which was beneficial to the 

electrocatalysis.  

 

Fig 4. (a) C 1s spectra and (b) N 1s spectra of various Fe-N-C materials. 

Electrochemical property of catalysts for ORR 

The ORR catalytic property of the catalytic materials was firstly tested by CV curves in 0.1 M 

KOH media (Fig. 5a, Fig. S14). The redox peak of CV curves was not observed in N2-saturated 

conditions, while the cathodic redox peak potentials were observed in O2-saturated conditions. 

The FeDZ-NC catalyst revealed the highest peak potential (~0.72V), which indicated a more 

positive ORR performance than any other catalysts. The ORR performances of the materials 

were further observed by LSV tests using RDE at a sweep rate of 10 mV/s (Fig. 5b). The FeDZ-

NC displayed more positive ORR property with the onset potential of 0.98 V. The half-wave 
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potential was 0.863 V with limit current density of 6.23 mA/cm2, which was superior to the 

Pt/C and previously reported Fe-N-C materials (Fig. 5c, Table S7). Moreover, it could be 

calculated that the Tafel slope (Fig. 5d) of FeDZ-NC was 72 mV /dec, which was lower than 

that of precious Pt/C (96 mV/dec). In addition, compared  

 

Fig 5. (a) CV curves in N2 (dotted line) or O2 (solid line) saturated 0.1 M KOH solution (b) LSV curves for various Fe-N-

C materials; (c) Plots of current density (J) and half wave potential (E1/2) for various catalysts; (d) Tafel plots of various 

Fe-N-C materials and Pt/C. 

to the FeZ-NC materials, the FeDZ-NC materials had the PDA and ZIF-8-derived porous 

structure to form the higher surface area and more appropriately interconnected 3D network 

pore structure, which could effectively facilitate the mass transfer capability of the electrolyte, 

shorten the ion diffusion paths. Furthermore, the electrocatalytic properties of the materials in 
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0.5 M H2SO4 solution and the effect of Fe content were also investigated in alkaline media by 

the LSV tests. In Fig. S15, the Fe-NC materials exhibited better electrocatalytic performance 

in alkaline media than the acidic media. When the content of iron was low, the ability of the 

active site in the material was insufficient and provided higher initial potential and half wave 

potential, so that the limit current was difficult to achieve equilibrium. However, the higher Fe 

content would lead to a decline in catalytic performance, possibly due to the aggregation of 

Fe3C. 

The performance of various Fe-N-C materials and precious Pt/C catalysts were further 

investigated by RDE measurements at 400 to 2500 rpm rotation rates. The electron transfer 

capability (n) were calculated at different rotation rates by the Koutecky-Levich (K-L) equation. 

LSV curves and K-L plots of all materials at 400 to 2500 rpm rotation rates were shown in Fig. 

S16-24. The linearity and parallelism of the K-L plots revealed a first-order reaction kinetics 

88-89. The n values of FeDZ-NC were close to 4 in the potential ranges from 0.2 to 0.6 V RHE, 

which was superior to n values of the series of synthetic materials, signifying an optimum four-

electron ORR transfer pathway. Simultaneously, the electron transfer numbers were also 

investigated by the rotating ring-disk electrode (RRDE) measurement. As shown in Fig. 6a and 

Fig. S25, the n value of the FeDZ-NC catalyst was close to 4 in the voltage ranges from 0.2 to 

0.6 V RHE, and the yield of H2O2 was below 3% (Fig. 6b), which were both superior to the Pt/C 

catalyst and other Fe-NC catalysts. The calculated results coincided with those of K-L equation, 

verifying an optimum four-electron ORR transfer pathway.  

The methanol-tolerant and long-term durability of materials were also quite important in the 

ORR property. The methanol-tolerant and long-term durability were investigated via the 
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current versus time (I-t) chronoamperometric measurements. As shown in Fig. 6c and Fig. S26, 

when 5 mL CH3OH was injected into the 0.1 mol L-1 O2-saturated KOH media at 400 s, the 

FeDZ-NC and other materials showed a slight current movement. In contrast, the precious Pt/C 

catalyst showed an abrupt drop in current density. This suggested that FeDZ-NC had a better 

performance for the ORR with the methanol poisoning. In addition, the FeDZ-NC catalyst 

exhibited an excellent stability in the 0.1 mol L-1 O2-saturated KOH media at 0.7 V RHE. After 

the 12 h test, the FeDZ-NC catalyst could still maintain 97% of its initial current density, whereas 

the Pt/C catalyst lost its current density  

 

Fig 6. (a) Plots of electron transfer numbers for various Fe-N-C materials in the RRDE measurement in the 0.1 mol L-1 O2-

saturated KOH media and 1600 rpm; (b) plots of H2O2 yield of various Fe-N-C materials in the RRDE measurement in the 
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0.1 mol L-1 O2-saturated KOH media and 1600 rpm; (c) methanol tolerance curves of FeDZ-NC materials and Pt/C in the 

0.1 mol L-1 O2-saturated KOH media at 0.7 V RHE and 1600 rpm; and (d) current versus time (I–t) chronoamperometric 

curves of FeDZ-NC materials and Pt/C in the 0.1 mol L-1 O2-saturated KOH media at 0.7 V RHE and 400 rpm. 

by 16% due to severe degradation (Fig. 6d, Fig. S27.). The excellent stability of FeDZ-NC could 

be attributed to the FeNx active species being embedded into carbon matrix and covered with 

highly graphitic layer, which could provide dual-protection for active species. All the above-

mentioned properties demonstrated that the FeDZ-NC material was an ideal electrocatalyst for 

ORR in alkaline media. 

 CONCLUSION 

In summary, we have successfully synthesized the Fe, N-doped porous carbon architectures 

from FeTe-trapped ZIF-8 coated with polydopamine by heat treatment. During the 

carbonization process, the evaporation of Te could inhibit the formation of iron oxides, promote 

the formation of more FeNx active species, and facilitate the formation of mesoporous structure 

to accelerate mass transfer and improve the approachability of active species. Simultaneously, 

the mixture of ZIF-8 and the extra N resource PDA were carbonized to get abundant graphitic 

N to raise the ORR catalytic performance. The newly synthesized FeDZ-NC catalyst exhibited 

the excellent ORR activity among various Fe-N-C materials. Remarkably, the methanol-

tolerant and long-term durability of FeDZ-NC were even better than the precious Pt/C catalyst. 

Hence, the study has proposed a new method to improve mass transfer in the Fe-N-C catalysis 

system by using metal tellurides to break the microcavity of ZIF-8 to create rich mesoporous 

structure, and opened new avenues for the design of the highly uniformly dispersed non-noble 

metal-nitrogen sites catalysts for ORR. 
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