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ABSTRACT
Towards intelligent Human-Vehicle Interaction systems and in-
novative Human-Vehicle Interaction designs, in-vehicle drivers’
physiological data has been explored as an essential data source.
However, equipping multiple biosensors is considered the limited
extent of user-friendliness and impractical during the driving proce-
dure. The lack of a proper approach to access physiological data has
hindered wider applications of advanced biosignal-driven designs
in practice (e.g. monitoring systems and etc.). Hence, the demand
for a user-friendly approach to measuring drivers’ body statuses
has become more intense.

In this Work-In-Progress, we present Face2Multi-modal, an
In-vehicle multi-modal Data Streams Predictors through facial ex-
pressions only. More specifically, we have explored the estima-
tions of Heart Rate, Skin Conductance, and Vehicle Speed of the
drivers. We believe Face2Multi-modal provides a user-friendly
alternative to acquiring drivers’ physiological status and vehicle
status, which could serve as the building block for many current
or future personalized Human-Vehicle Interaction designs. More
details and updates about the project Face2Multi-modal is online at
https://github.com/unnc-ucc/Face2Multimodal/.
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1 INTRODUCTION
With the emerging practices of autonomous vehicles, the demands
for Human-Vehicle Interaction has become more intense. With
various techniques emerging into productions, such as Voice Inter-
action and GUI-based Navigation, the focus of driving experiences
has centered on Human-Vehicle Interaction, rather than Vehicle-
assisted approaches. More interests, in terms of the next-generation
Human-Vehicle Interaction techniques, have come to explore vari-
ous novel functionalities and services such as health monitoring
assistant[20] and etc.

Reliable and user-friendly data sources of drivers’ body status
are crucial to adapt various designs into practice [1, 20]. The status
of drivers’ body refers to the measurement through a variety of
biosensors, which could be further used to examine drowsiness,
tiredness, and the emotion of drivers. Current Human-Vehicle In-
teraction Systems are facilitated with communicative and physical
actions[16]. However, with the access to drivers’ body statuses, the
designs of Human-Vehicle Interaction Systems could explore higher
dimensional perspectives during the decision-making procedure
(e.g. warning driver when the heart rate is unstable, and etc.). How-
ever, the equipment of multiple biosensors would be extremely not
user-friendly in the driving procedure, which has been considered
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as the key obstacle to access drivers’ physiological information in
practice.

To this end, we present ourWork-In-Progress Face2Multi-modal,
an in-vehicle design to estimate drivers’ multi-modal states (skin
conductance and heart rates) and driving status (vehicle speed)
through their facial expressions only. Without the burdens of mul-
tiple biosensors, our approach is more efficient and user-friendly
to acquire drivers’ physiological statues. We first brief the sys-
tem design of Face2Multi-modal in Section 2. Then we present
quantitative results from our evaluations of Face2Multi-modal
in Section 3. Finally, we discuss relevant optimization and design
spaces, within or enabled by Face2Multi-modal in Section 4.

2 METHODOLOGY
Front-end: Face Detector. To provide the data input for the
Face2Multi-modal, a camera capture need to be assembled in
the vehicle cab to record the facial video of drivers continuously.
The recorded videos will be cropped into consecutive frames, and
the input is produced by resizing the frames into 224x224px facial
images because Neural Network for image classification takes the
same size of images as input[9]. OpenCV, an external library of
Python, is used to perform these tasks[15].

Backbone: Neural Network Model. Neural Network is the back-
bone of the Face2Multi-modal. We select DenseNet as the archi-
tecture of neural network because of its strength in traditional
image classification tasks (e.g. distinguish different objects), train-
ing efficiency and hyperparameter adjustment[9]. Other neural
network models (e.g. ResNet[4], SENet[8]), that have excellent per-
formance in image classification could also be adapted in our net-
work design, further studies would find out which one fits the
driving context better.Although DenseNet has the aforementioned
advantages, in the context of predicting drivers’ status, it might not
effective as expected since the inputs are drivers’ highly similar
facial captures. Therefore, we apply some lightweight changes in
model settings to adapt to the context. We choose 100 to be the
depth of our model instead of the suggested depth from the paper
which could reduce execution time and memory storage for each
image. For the hyperparameter adjustments, after a fair number
of attempts, the initial learning rate is set to 0.1 and is divided by
10 at 50% and 75% of the total number of training epochs. More
details about the hyperparameter setting of Densenet are provided
in Table1. We use BROOK which is a public multi-modal database
with facial video records as the training and validation dataset[14].
The dataset contains 22 driver’s facial videos labeled with heart rate,
skin conductance, and vehicle speed. We split the training set, test
set, and validation set in a ratio of 8:1:1 followed the recommended
settings. The PyTorch is used for the implementation of the Neural
Network model[13].
Visualization. This component first acquires the results which are
predicted labels from the Neural Network model. All the predicted
labels are single column vectors that contain zeros and ones. To
visualize the results, predicted labels are transformed into numeri-
cal results. In the end, all the results are displayed on the screen.
OpenCV is used to perform these steps.

Parameters Value
Depth/Layers 100
Growth Rate 12
Dense Blocks 4

Compression Factor 0.5
Batch Size 128

Initial Learning Rate 0.1
Training Epochs 50

Figure 1: The pivotal Parameters of DenseNet for Face2Multi-
modal in details.

Figure 2: The estimating process of the current Face2Multi-
modal. The SkinCon is referred to skin conductance.

3 RESULTS
Figure 2 which displays three predicted results is an auxiliary un-
derstanding for the basic functionalities of three models. After the
initial hyperparameter adjustment and optimization, the accuracy
for estimating skin conductance, vehicle speed and heart rate are
83.78%, 59.89%, and 58.60% respectively. Estimating drivers’ skin
conductance is the most accurate one in this case, the reason for
it might be that the skin conductance changes slightly during the
whole driving procedure. The details of the test accuracy of three
models for each training epoch are illustrated in Figure 3.

The accuracy of the Face2Multi-modal might not reach the
level of commercial use, but it does show a promising way to ac-
quire drivers’ multi-modal status. There are several reasons for
these results: first, the input of the Neural Network is unprocessed
224x224px facial captures. If more features were extracted and input
to the Neural Network (e.g. temporal information), the accuracy
would reach a higher level[2]. Correspondingly, the Neural Net-
work model should be modified to take the temporal information,
for example, applying a Recurrent Neural Network (RNN) layer[12].
Second, illumination variance in the BROOK database could harm
the accuracy of the model[3]. Both spatial and temporal illumina-
tion variance has occurred in the BROOK database which would
result in the faulty allocation of pixel values of the skin. Although
an approach that takes the background region of each picture as a
reference is widely used to reduce the effects, illumination variance
is still an obstacle for estimating status by facial captures[10].
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Figure 3: An Overview of the Test Accuracy between
skin conductance(blue), heart rates(green) and Vehicle
Speed(orange).

The training process contains 50 epochs. This is because from
epoch 40 to 50 which has highlighted as phase 2 in Figure 3, the test
accuracy has stopped increasing. Another reason for this is that too
much training would result in overfitting[19]. Overfitting means
that the Neural Network model is over-trained, it reaches very high
accuracy in the train set and relatively low accuracy in the test
set. We mainly consider the accuracy of the test set, because in the
context of the application, the train set is never used. In addition,
the curve of test accuracy does not rise steadily all the time (e.g.
during phase 1 highlighted in Figure 3, the test accuracy would rise
sharply in several epochs). Further training would find out how
many epochs are suitable for each status.

4 DISCUSSIONS
While monitoring systems such as Holter monitors or mobile poly-
graphs can be used in research projects, the application of biosignal
monitoring in production cars is limited by the lack of practical and
user-friendly solutions for integration of biosensors in vehicle[6].
Face2Multi-modal is aiming to solve this problem by releasing
the burden of wearing multiple sensors. It could be the alternative
data source for the personalized innovative user-friendly Human-
Vehicle Interaction system in which equipping multiple biosensors
is not user-friendly for driving tasks.

There are many applications for biosignals, not only could these
applications determine drivers’ stress level, but it could also ensure
that the driver is at a stable state to perform the driving tasks[5,
7, 17]. Besides, Face2Multi-modal has gone beyond predicting
biosignals, it could also predict the vehicle speed. We believe that
this is related to the minor changes in drivers’ facial expressions in
different velocity conditions.

In the application level, the Face2Multi-modal is trained on an
existing database by PC. In real-life driving conditions, the cockpit
would not have enough space to integrate the hardware, therefore
task-specific hardware should be designed to meet the require-
ments.

In the security aspects, the use of the Face2Multi-modalmight
raise several privacy concerns. A webcam is assembled to capture

drivers’ facial expressions, the estimated multi-modal status would
be sent to the HVI system for further uses. Both facial images and
status could have potential leaks. Typical approaches to protecting
driver’s privacy include blacking out or blurring driver’s faces[11].
These approaches would make a trade-off between the level of
protection and accuracy of the system.

5 CONCLUSION & FUTUREWORK
In this paper, we present a Work-In-Progress driver’s multi-modal
status estimator Face2Multi-modal. This prototype shows a promis-
ing way to estimate drivers’ heart rate, skin conductance, and ve-
hicle speed through facial expressions only. The system details
and the evaluation of the estimation are provided simultaneously.
Eventually, We also discussed the limitations of the prototype and
approaches to improve it.

Our future work would aim to increase the accuracy of the
Face2Multi-modal from several aspects. Currently, the training
data is collected on simulated driving tasks rather than real-world
driving tasks. Hence, creating a more realistic driving scenario
would make drivers’ facial reactions more authentic, combining
with the algorithm to reduce the effect of illumination variance
would create a database with higher quality[18]. Additionally, even
though DenseNet shows its effectiveness, exploring more a sophis-
ticated Neural Network model or applying different layers to the
current model and trying to input temporal data are promising
ways to improve accuracy.

We hope Face2Multi-modal could inspire new ideas and stimu-
late more outstanding contributions to the field of Computer Vision
and Human-Vehicle Interaction. Not only that, we believe that
Face2Multi-modal has application prospects in our daily life.
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