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Abstract 

Due to the heavy reliance of people on the limited fossil fuel as energy resources, global 

warming has increased to severe levels due to huge CO2 emission into the atmosphere. To 

mitigate this situation, a green method is presented here for the conversion of CO2/H2O into 

sustainable hydrocarbon fuels via electrolysis in eutectic molten salts ((KCl-LiCl; 41:59 

mol%), (LiOH-NaOH; 27:73 mol%), (KOH-NaOH; 50:50 mol%), (Li2CO3-Na2CO3-K2CO3; 

43.5:31.5:25 mol%)) at the conditions of 1.5–2 V and 225–475 oC depending upon molten 

electrolyte used. Gas chromatography (GC) and GC-MS techniques were employed to analyse 

the content of gaseous products. The electrolysis results in hydrocarbon production with 

maximum 59.30, 87.70 and 99% faraday efficiency in case of molten chloride, molten 

hydroxide and molten carbonate electrolytes under the temperature of 375, 275 and 425 oC 
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respectively. The Gas chromatography (GC) with FID and TCD detectors and GC-MS analysis 

confirmed that the H2 and CH4 were the main products in case of molten chlorides and 

hydroxides at 2 V applied voltage while longer hydrocarbons (>C1) were obtained only in 

molten carbonates at 1.5 V. Through this manner, electricity is transformed into chemical 

energy. The heating values obtained from the produced hydrocarbon fuels are satisfactory for 

further application. The practice of molten salts could be a promising and encouraging 

technology for further fundamental investigation for sustainable hydrocarbon fuel formation 

with more product concentrations due to its fast-electrolytic conversion rate without the use of 

catalyst. 

 

Keywords: Sustainable fuels; Molten salts; Co-electrolysis; Hydrocarbon fuels, Electrolyte 

mixture; CH4 and H2 production.  

 

Introduction 

Over the past few decades, two major issues have captured the attention of scientists and 

policymakers: global warming due to the increasing levels of carbon dioxide gas (CO2) in the 

atmosphere, and the rapid depletion of fossil fuels as an energy resource. To tackle these 

complications, two solutions were proposed 1, 2. The first solution is the use of renewable 

energy resources such as wind, solar, nuclear or geothermal energy to minimize the greenhouse 

gases’ emission. While the second solution is the consumption of CO2 to remove its excessive 

concentration from the atmosphere and to enhance energy resources by converting it into 

hydrocarbon fuels 3, 4. Renewable energy resources do not involve CO2 sequestration 5. So to 

tackle CO2 emissions 6, it was considered preferable to introduce some of the renewable energy 

resources into an existing energy infrastructure as a “drop-in” form of energy. Examples of this 

can include the synthesis of fuels or fertilizers from CO2 or biomass 7, 8. 
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At present, technologies studied for transforming CO2 include chemical, photochemical, 

electrochemical 9 and biological transformation into hydrocarbons 10, nano-carbons 11, 

nanotubes, and alcohols (methanol and ethanol) 4. However, these low-value hydrocarbons and 

methanol produced at low system efficiencies undermine the rationale of this approach. The 

process of CO2 and water co-electrolysis at low temperatures (<100 oC) in aqueous media to 

convert CO2 to CO or hydrocarbon species was employed by scientists 12, 13. However, a 

suitable catalyst is necessary for this conversion process in order to reduce energy 

consumption, improve reaction kinetics and product selectivity 14, 15. Which results in low 

hydrocarbon gas production due to the poor solubility of CO2 in aqueous media and the 

proximity of the electro-reduction potential of both water and CO2. Consequently, limiting the 

future use of this process.  

 

Using high temperature electrolysis between 800 and 1000 oC, provided both thermodynamic 

and kinetic advantages throughout the reduction of both CO2 and H2O. One thing to mention 

here is that this process not only converts CO2 into hydrocarbons but also able to produce 

hydrogen fuel by the splitting of water. Hydrogen gas has been produced by various methods 

such as plasma arc decomposition, bio-photolysis, coal gasification, dark fermentation, 

artificial photosynthesis, electrolysis etc 16. But the electrolysis has proved successful among 

all due to the good energy efficiency and low cost 17. Two types of cells were used for high 

temperature electrolysis: those with solid oxide electrolytes and with molten salts 18, 19. 

 

Recently the use of solid oxide electrolysis cells (SOEC) has gained much interest in the 

preparation of syngas (CO+H2), hydrogen or methane gas from the CO2-H2O co-electrolysis 

20, 21. However, certain limitations such as low production rate, specific electrode materials, 
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higher production costs, lower durability and high energy utilization, became the reason for 

their rejection on industrial scale implementation 22. Molten salts exhibit the same chemistry 

regarding CO2 and H2O reduction as in SOEC except that CO2 can be also reduced to carbon 

23 in addition to carbon monoxide depending on the operating conditions. Which can thereby 

affect the products. Deposited carbon on cathode can facilitate the formation of different kinds 

of hydrocarbons (rather than CO) in case of molten salt electrolysis. Because as soon as the 

fresh carbon deposit on cathode it reacts immediately with hydrogen gas produced via water 

reduction on the metal cathode surface itself, resulting in the formation of hydrocarbons 24. 

 

Molten salts are preferred over solid oxides regarding CO2-H2O co-electrolysis for a variety of 

reasons. Besides a wide electrochemical window, high electric conductivity, relatively low 

cost, reactivity with CO2 and no need of specific electrode materials (Ni-YSZ, La1-x 

SrxMnO3/YSZ) make them suitable candidates for this process. Moreover, the possibility of 

carbon or CO hydrogenation after electrolysis in molten salts is much more significant 25, 26.  

Molten salts with some limitations such as slight corrosion activity particularly at high 

temperature and relatively high energy utilisation to maintain the heat for molten salt to avoid 

the solidification 27, can still be employed to produce hydrocarbon gas or liquid fuels 28, 29. 

Recently carbon nanotubes (CN) and carbon nano-fibrils (CNF) have been produced by using 

molten chlorides 30, molten carbonates 31, 32 and molten hydroxides with sufficient conditions 

of electrolyte combinations, electrode materials, current and temperature etc. 33-35.  

 

Moreover, recent investigations also showed the production of syngas (CO, H2) and methane 

by employing molten carbonates (Li2CO3‐Na2CO3‐K2CO3) 
24, 36. There is lack of literature of 

finding suitable molten salt electrolyte for the co-electrolysis of CO2 and H2O to produce 

hydrocarbon fuels (CH4 or longer chain). To the best of our knowledge, molten hydroxides 
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((LiOH-NaOH; 27:73 mol%), (KOH-NaOH; 50:50 mol %)) and molten chlorides (LiCl-KCl; 

58.5:41.5 mol%) have never been evaluated for CO2 to methane conversion. And molten 

carbonates (Li2CO3‐Na2CO3‐K2CO3; 43.5:31.5:25 mol%) have never been studied particularly 

for higher hydrocarbon fuel (>C1) production via CO2-H2O co-electrolysis. So this study aims 

to fill the research gap in the literature.  

 

This study systematically investigates the hydrocarbon fuel production by employing CO2-H2O 

co-electrolysis by using different types of molten electrolytes: molten chloride (LiCl-KCl; 

58.5:41.5 mol%), molten hydroxide ((LiOH-NaOH; 27:73 mol%), (KOH-NaOH; 50:50 

mol%)) and molten carbonate (Li2CO3-Na2CO3-K2CO3; 43.5:31.5:25 mol%) at variable 

conditions of temperature and voltage depending upon the molten salt. Two feed gas insertion 

methods are also employed; gas flowing over the electrolyte surface (GFOE) and gas flowing 

inside the electrolyte (GFIE). The effect of different variables including; faradays efficiency, 

energy consumption and heating values at variable conditions of temperature and voltage are 

studied. Moreover, the product formation by electrolysis is confirmed by GC (using FID and 

TCD detectors) and GC-MS. 

Experimental 

Chemicals 

Lithium carbonate (Li2CO3; ≥99%), sodium carbonate (Na2CO3; ≥99.5%), potassium 

carbonate (K2CO3; ≥99%), lithium chloride (LiCl; 99%), potassium chloride (KCl; >99.9%), 

lithium hydroxide (LiOH; ≥98% powder), sodium hydroxide (NaOH; ≥98% pellets), and 

potassium hydroxide (KOH; 90% flakes) were purchased from Sigma-Aldrich, USA. Carbon 

dioxide (CO2; 99.99%) and argon (Ar; 99.99%) were procured from Air products. Labovac 10 

mineral oil was got from Jencons.  
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Electrochemical performance measurement 

The electrochemical processes were performed by using four combinations of molten salts as 

electrolytes. The key point of choosing these combinations of molten salts is due to their low 

melting points and the ability to work at operating temperatures, as low as possible, keeping 

them in liquid state to enable electrolysis and promote hydrocarbon formation. The 

composition selection of binary mixtures (LiCl-KCl, LiOH-NaOH and KOH-NaOH) was done 

on the basis of thermodynamic phase diagrams as illustrated from the Fig. S1. The ternary 

phase diagram (Fig. S2) is clearly indicating the composition selection of ternary molten salt 

mixture (Li2CO3-Na2CO3-K2CO3).  Therefore, the salts selected for this study along with their 

compositions are: LiCl-KCl (58.5: 41.5 mol%), LiOH-NaOH (27: 73 mol%), KOH-NaOH (50: 

50 mol%) and Li2CO3-Na2CO3-K2CO3 (43.5: 31.5: 25 mol%), having eutectic melting 

temperatures of 361, 218, 170 and 397 oC respectively. The electrolyte salts were dried in an 

oven at 200 oC for 4 h at atmospheric pressure before their mixing to remove any sort of water 

impurity.  

 

Then electrolytes were poured into a crucible present inside a corrosion resistant electrolyser’s 

retort. Which was built in house with a flange type cover using the 316-grade stainless steel to 

shape the reactor to provide and control the environment needed for the molten salt electrolysis. 

The dimensions of the retort were 130 mm internal diameter, 7.5 mm wall thickness and 800 

mm vertical length. On the flange cover, there were some holes drilled for the insertion of 

ceramic tubes (for anode and cathode gas collection), observation purposes and sealing. The 

retort was inserted centrally in the furnace. In the retort, a stainless-steel stand was placed and 

a refractory brick mounted on it and above its alumina crucible containing pre-melted molten 

salt electrolyte (about 100 g) was placed. The two-electrode mode experimental set-up used 

here is a continuous system with small scale for electrolysis and hydrocarbon production. The 
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electrolysis is conducted by using titanium metal (Purity: 99.99%, Good fellow Cambridge 

Ltd) as cathode and graphite (Purity: 99.99%, Advent Research Materials) as anode 37, 38.  

 

A small rate of gas (CO2; 48.4%, + H2O; 3.2% + Ar; 48.4%) flows continuously inside the 

reactor where hydrocarbons and O2 gases are produced inside the molten salts on the cathode 

and anode surfaces respectively during the electrolysis. And the products are collected at 

different time intervals. This process is done by employing the Agilent E3633A 20A/10V 

Auto-Ranging DC Power Supply and a laptop with an EXCEL add-in to collect the 

instrumentation data. Two electrode tube gas outlets were present, each connected to another 

Dreschel bottle containing the mineral oil to observe the outlet gases produced and reduce 

electrolyte contamination. Gas product samples were collected using a tedler 1 L (SKC Ltd.) 

gas bag via a connection from the cathodic gas tube. The electrolyser setup is a modified form 

of previously used setups 39.The schematic representation of experimental setup is shown in 

Fig. 1 

 

To avoid their mixing, the argon gas was used which pushed the gaseous products into their 

respective bags. Moreover, the study is carried out with two modes of feed gas insertion inside 

the reactor for each electrolyte; gas flowing over the electrolyte surface (GFOE) and gas 

flowing inside the electrolyte (GFIE) for the comparison of hydrocarbon production in both 

cases. The first method (GFOE) has been used to minimize the chances of solid material’s 

production (carbon, carbon nanotubes, graphene, carbonates solidification) 35, 40 and to produce 

gaseous hydrocarbon products preferably. The current efficiency was calculated from the Eqs. 

(1-2): 

 
Current efficiency =

Qx

QT
× 100 

(1) 
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 Qx = nNF (2) 

where Qx is the charge required for the amount of individual product produced, n is the number 

of electrons required, F is the charge of one electron which equals 96485 col and QT is the total 

charge calculated from the area under the current vs time curve. 

Characterization  

Gas chromatography (GC) (PerkinElmer Clarus 580) was used to analyse the gas products 

generated from electrolysis with detectors such as the flame ionization detector (FID) and 

thermal conductivity detector (TCD) for organic compound analysis and a wide range of both 

organic and inorganic species respectively. The gaseous product species in the sample were 

identified and quantified by comparison with two different calibration gas standards. The first 

one is the permanent gas standard with composition of H2 10%, CO2 10% and CO 40% for 

TCD detector and the second standard calibration gas contains ethene (C2H4) 0.2%, propylene 

(C3H6) 0.2%, 1-butene (C4H8) 0.2%, 1-pentene (C5H10) 0.2%, methane (CH4) 20%, ethane 

(C2H6) 10%, propane (C3H8) 5%, n-butane (C4H10) 2%, n-pentane (C5H12) 1% for the FID 

detector.  

 

The remaining composition of both gas standards was balanced with helium gas. The GC 

graphs for different calibration gas standards are shown in Fig. 2 for the comparison of 

electrolysis gaseous products. Furthermore, the samples were analysed by a different 

sophisticated GC instrument (Agilent 7890B) attached with a mass spectrometer (JEOL 

AccuTOF GCX) for longer chain hydrocarbons detection. Gas detecting tubes from GASTEC 

(ai-cbss Ltd.) were used to analyse the feed gas compositions for CO2 and H2O contents. The 

feed gas composition with CO2 (48.4%) + H2O (3.2%) + Ar (48.4%) was kept same for all the 

experiments. GASTEC 2HH is characterised to detect the higher contents of CO2 from 5 to 

40% of the feed gas, with the change in colour from orange to yellow.  
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The GASTEC30 tube can analyse water content in the range of 0–18 mg/L, and it contains 

Mg(ClO4)2. However, the colour here will change from yellowish green to purple. After the 

analysis of cathodic gas sample, the concentration of each gas compound (Mgas) was calculated 

as followed by the Eq. (3): 

 
Mgas =

Agas F̅i̇⁄

As Ms⁄
 

(3) 

where Mgas is the concentration (%) of individual gas in the sample. Ms is the concentration 

(%) of the specific standard gas in the sample. Agas is the area under the peak resulting from the 

FID analysis for the individual gas (C2-C5) in the sample. As is the area under the peak resulting 

from the analysis of the specific gas standard (CH4). Fi̅ is the response factor for each gas.  

Results and discussion  

Optimization of electrolytes  

 The selection of the molten salt is done based on the ability to generate hydrocarbon fuels from 

the co-reduction of CO2 and H2O (Eq. (4)). The combination of a hydrocarbon molecule starts 

ideally from the two known element sources: carbon (C) and hydrogen (H). Both of these 

elements can be effectively formed from electrochemical conversion via an appropriate molten 

salt.  

 xCO2 + y 2H2O⁄ → CxHy + (x + y 4⁄ )O2 (4) 

 

Generally, the presence of moisture with CO2 gas in molten salt experiments is the basis for 

generating H2 and CH4 during electrolysis in most cases and provide feasibility to the reactions 

41, 42.  



10 

 

Molten chloride electrolyte 

The attractive characteristic in the molten chloride case is the probability of producing CO or 

C directly from CO2 reduction in the presence or absence of a carbonate ion 42. Carbonate ions 

(if added externally) are used as an important additive to molten chlorides to provide the oxide 

ions required for performing CO2 reduction 43, 44. For absorbing more CO2 gas into the molten 

salt leading to increase in product yield from electrolysis, the addition of oxides or carbonate 

salts into the molten chloride is considered preferable. But one drawback exhibited by this 

process was the increase in applied voltage and working temperature of resulting molten salt 

mixture. Which is not the favourable condition for hydrocarbon production  45. So to tackle this 

problem, molten chloride electrolyte is used in this study for hydrocarbon production without 

any externally added oxide or carbonate salts. In the absence of H2O and carbonate ions, the 

reduction of CO2 to carbon or CO can be done in several steps as seen from the Eqs. (5-7) 32.  

 CO2 + 2e− → CO2
2− (5) 

 CO2
2− → CO + O2− (6) 

 CO + 2e− → C + O2− (7) 

 

In the presence of steam beside CO2 in the feed gas, the reduction of CO2 becomes more 

feasible as CO2 can react with hydroxide ions released from the primary reduction of H2O 

through to the one-electron transfer reaction. Moreover, carbonate ions can be generated even 

from molten chloride through the reaction of CO2 with oxide ions emitted in turn after the 

direct reduction of H2O to H2 gas (Eq. (9)) 46. The carbonate ions can then be electro-reduced 

in turn to carbon or CO and produce hydrocarbon by reacting with H2. The overall reaction 

occurring at electrodes can be summarised from the Eqs. (11-13). 

 H2O + e− → H + OH− (8) 
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 H2O + 2e− → H2 + O2− (9) 

 CO2 + OH− → CO3
2− + H2O (10) 

 Overall reaction 

At cathode: CO3
2− + 4OH− + 8e− → CH4 + 7O2− (11) 

 2OH− + 2e− → H2 + 2O2− (12) 

At anode: 2O2− → O2 + 2e− (13) 

 

It is preferable to perform CO2-H2O co-electrolysis at temperatures even lower than the 400 oC 

to form the hydrocarbons feasibly. For that purpose, electrolysis was performed at 375 oC and 

2V using molten chloride (LiCl-KCl; 41: 59 mol%) with two modes of gas insertion: GFOE 

and GFIE. The feed gas in GFOE mode containing H2O, CO2 and Ar, was kept flowing over 

the LiCl-KCl (41: 59 mol%) at 1.3 bar. The feed gas pressure was applied slightly over 1 atm 

to increase CO2 activity and thus the opportunity of improving reduction inside the molten 

chloride.  

 

The same experiment was performed at the above conditions using a feed gas containing H2O 

with no CO2. Both experiments in GFOE mode are performed to see the solubility of CO2 and 

thus its activity inside molten chlorides. Carrying out electrolysis at 2 V and 375 oC, it can be 

seen from Fig. 3 that there is a small difference between the two current curves resulting from 

electrolysis in both cases. However, the current was still relatively high in both cases and 

gradually decreased with time. The decline in current can be imputed generally to the drop of 

oxidant concentration (H2O, CO2) that is reduced on the cathode surface due to the 

accumulation of new products (such as H or H2 bubbles) as there is no renewal action on the 

cathode surface during electrolysis. Also, it can be noted that the current was slightly higher in 

the case where CO2 gas was absent basically due to the obstruction of CO2 gas against H2O 
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reduction on the electrode, particularly at high pressures through the possible reduction of CO2 

to CO2
2− (Eq. (5)).  

 

Despite some spikes noticed in the red curve in Fig. 3, it can be seen that the drop of the curves 

in both cases was quite the same confirming the weak effect of CO2 inside the molten chloride 

in GFOE mode. So due to CO2 weak effect, the hydrocarbon could not be produced in this case 

(GFOE mode). The GFIE mode of gas feed introduction was chosen as an appropriate way to 

increase CO2 concentration and solubility (and reactivity) inside the molten chloride and collect 

the maximum rates of hydrocarbon products at atmospheric pressure. The rates of H2 and CH4 

production, collected from the cathodic tube, changed significantly after the first 30 and 60 min 

of electrolysis due to the process of carbonate ions formation as can be seen by the comparison 

of Fig. 4(a) and (b). Where the higher production rates of CH4 (0.67 µmol/h cm2) and H2 (32.00 

µmol/h cm2) with higher faraday efficiency (59.30%) were found after the first 30 min of 

electrolysis (Fig. 4(a)). While the lower production rates of CH4 (0.39 µmol/h cm2) and H2 

(19.10 µmol/h cm2) with faraday efficiency (30.50%) were obtained after 60 min of electrolysis 

(Fig. 4(b)) in molten chloride (LiCl-KCl; 41: 59 mol%).  

 

The lower faraday efficiency (30.50%) was attributed due to the higher CO3
2−ion formation 

leading to the subsequent conversion to C or CO with more energy consumption. The formation 

of a carbonate ion can be justified due to the reaction of CO2 with OH- generated in the molten 

chloride after the persistent reduction of H2O as stated previously in Eq. (10) 46. It is interesting 

to note that there is a clear increasing trend of CH4 production in both Fig. 4(a) and (b) at a 

lower current density of 20 mA/cm2, which starts dropping off beyond this limit. The increase 

in current density affects the products content. With the current density increase, the CH4 

production reached to an optimal value. After that further rise in current density results in 
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adverse effects on CH4 production, greatly exceeding the minimum energy requirement of H2 

production that keeps CH4 production at a lower level 24, 36. Deng et al.  31 stated that LiCl-KCl 

electrolyte containing Li2CO3/CaCO3 showed highest current efficiency of 80–85% at the 

current density of 25 mA/cm2, which dropped off by increasing current density for the 

conversion of CO2 to carbon.  

 

Comparing results for the two occasions as two gas samples were taken after 30 and 60 min, it 

can be noted that the production rates of both gases (CH4 and H2) were higher in the first sample 

after first 30 min of electrolysis as the electro-reduction of the carbonate ions (to carbon for 

instance) had not commenced yet. Thus, the reduction of H2O to H2 was not significantly 

affected. The reaction of CO2 with OH- can be confirmed in the molten chloride for the second 

sample as the concentration of CO2 reduced from 34.80 to 4.80% (Table 1).The hydrocarbon 

production confirmed through GC analysis (with FID and TCD detectors) is shown in Fig. 5 

where the FID signals are showing the production of methane with the peak at 2.11 retention 

time while TCD signals are clearly representing the peaks of H2, O2 and CO2. No CO can be 

detected in the molten chloride in both cases.  

 

Thus, the best product concentrations are obtained in case of LiCl-KCl (41: 59 mol%) 

electrolyte from GFIE mode at the first 30 min of electrolysis rather than prolonged electrolysis 

(60 min). This is because of the formation of carbonate ions in case of prolonged electrolysis, 

which are reduced to the C or CO gases with the consumption of more energy (Table 1). Ijije 

et al. 47 reported the CO2 conversion into carbon films or CO in LiCl‐KCl‐CaCl2‐CaCO3 molten 

salt at 520 oC. Similarly, the absorption and conversion of CO2 was also employed in molten 

chloride electrolytes (CaCl2‐CaO and LiCl‐Li2O) at 900 and 650 oC respectively 48. Jianbang 

et al. 30 has converted CO2 by electrolysis in LiCl molten salt at 650 oC.  
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Molten hydroxide electrolyte 

The molten hydroxide salt is preferred in the case of hydrogen production leading to 

hydrocarbons formation. Hydrocarbon molecules can be formed basically through a H2 

reaction with either C or CO as the same mechanism for molten chlorides 49. In most 

experiments using molten hydroxides, the conversion of CO2 was very high but the 

hydrocarbon yields were still low. This can be attributed generally to the reaction of CO2 with 

hydroxide ions 50. 

 2OH− + CO2 → CO3
2− + H2O (14) 

 

Therefore, CO2 must be diluted to lower concentrations by mixing with argon gas before 

introduction to the electrolyte, as this action can help to reduce the reactivity of CO2 with the 

salt, driving reaction (Eq. (14)) to the left side. The formation of carbonate ions need to be 

reduced to provide enough time for the prospect of electro-reduction during electrolysis. 

However, CH4 gas can be formed by another way in case of molten hydroxide electrolysis (Eq. 

(15)) 51. 

 CO2 + 4H2 → CH4 + 2H2O (15) 

 

Thus, the abundance of hydrogen gas from rapid H2O reduction in molten hydroxides can 

contribute towards driving reaction (Eq. (15)) to CH4 formation. The hydrocarbon production 

in molten hydroxide (LiOH-NaOH: 27: 73 mol%) performed in two modes: GFOE and GFIE 

at the conditions of 2 V applied voltage and 275 oC, is shown in Fig. 6 (a) and (b). The results 

indicate a distinct variation in the production rates due to the variation in gas feed modes. This 

outcome can be attributed to the weak reduction of CO2 in the salt in GFOE mode. The 

hydrocarbon production rate was significantly improved when the feed gas insertion method 

was changed from GFOE to GFIE. It can be seen from the Fig. 6 (a) to (b) that the CH4 rate 
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increased largely from 1.02 to 6.12 μmol/h cm2 by moving from GFOE to GFIE mode as CO2 

was promoted to dissolve in the salt.  

 

Therefore, the prospect of direct reduction of CO2 to CO2
2− and CO can occur in the LiOH-

NaOH salt. At the same time, the H2 rate decreased from 1142.80 µmol/h cm2 to just 185.00 

µmol/h cm2, confirming the possible transformation of CO2 or CO to hydrocarbons. 

Nevertheless, high faraday efficiency (87.70%) in the GFOE mode rather than (15.00%) in the 

GFIE mode was due to the higher H2 production rate. On the other hand, low faraday 

efficiencies in GFIE mode were obviously because of their lower production values from the 

slow reduction of CO2 to CO compared with rapid H2 production. Moreover, the optimal 

current density range found for hydrocarbon production in case of LiOH-NaOH salt was 80–

85 mA/cm2.  

 

Hydrocarbon production inside the molten hydroxide can be confirmed actually by the 

existence of CO fuel with the cathode gas product. CO can be formed from CO2 reduction as 

in molten chloride experiments. But the scarcity of CO gas found in the cathodic products in 

both electrolytes can be interpreted due to (1) a lack of CO2 direct reduction to CO but the 

formation of CH4 occurs by the reaction of CO2 with excess H2 and (2) the produced amount 

of CO during electrolysis in all cases was too little as CO can rapidly react with excess H2 to 

produce CH4. The formation of gaseous product (CH4) was confirmed from GC analysis with 

FID detector while H2, O2 and CO2 were confirmed by TCD detectors for the GFIE mode (Fig. 

7). And obtained values are presented in Table 2. The presence of very small peak of CO in 

Fig. 7 (b) is providing the indication of higher methane production rates than molten chloride 

case.  
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As the GFIE mode provided higher production values of methane in case of molten hydroxide 

so the experiment was repeated using KOH-NaOH (50:50 mol%) due to its low working 

temperature, under the conditions of 2V applied cell voltage and 225 oC with GFIE mode only. 

Although the temperature used here was slightly lower than 275 oC as used for LiOH-NaOH 

(27: 73 mol%) molten salt but the production rates of H2 (164.70 µmol/h cm2) and CH4 (6.12 

µmol/h cm2) with faradaic efficiencies (17.90%) were almost same (Fig. 6 (c)). Moreover, the 

composition and concentration (vol%) of other cathodic product gases were also same (Table 

2). But one limiting factor was the lower resulting current in the case of KOH-NaOH (50:50 

mol%) molten salt than LiOH-NaOH (27: 73 mol%) (Fig. 8). Moreover, the potentials for 

carbon deposition or carbon monoxide evolution are more positive than the deposition 

potentials of Li metal for the case of LiOH.  

 

In contrast, in the case of KOH, the potential for the formation of C or CO is more negative 

than the deposition potential of potassium. The comparison suggests that carbon/CO evolution 

leading to the formation of methane is the more preferential product in the presence of LiOH 

as also observed in the previous study 45. Therefore, the KOH-NaOH (50:50 mol%) electrolyte 

use was not preferred for hydrocarbon production. Consequently, the fuel production (H2, CH4) 

was achieved in all cases of molten hydroxide electrolytes with different product composition 

and concentration (vol%) as can be seen from Table 2 but the best results were provided by 

the LiOH-NaOH (27: 73 mol%) molten salt with GFIE mode than the other cases.  

Molten carbonate electrolyte 

The third kind of electrolyte used for hydrocarbon production is a ternary molten carbonate 

mixture (Li2CO3-Na2CO3-K2CO3; 43.5: 31.5: 25.0 mol%) that is used in this research due to its 

relatively low melting point of 394 oC. The formation of hydrocarbons can occur directly or 

indirectly in a molten carbonate through the reaction of C with H2 or CO with H2 respectively 
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which are produced primarily from the independent reductions of CO2 and H2O 28, 52. 

Subsequently, experiments conducted on this salt at a range of 400–450 oC, can be perfect 

conditions for efficient hydrocarbon formation. In the case of electrolysis applied at conditions 

of 1.5 V cell voltage and 425 oC, the maximum CH4 production rate was achieved. It can be 

seen from Fig. 9 that a significant amount of CH4 (1.10 µmol/h cm2), H2 (4.40 µmol/h cm2) 

and CO (11.70 µmol/h cm2) were obtained at the lower current density range of 4–6 mA/cm2.  

 

The relevant faraday efficiency obtained was 56.20% for the production of CH4, CO and H2, 

which were confirmed through GC analysis using FID and TCD detectors (see Fig. 10) with 

production concentration values mention in Table 3. These production results are in agreement 

with previous studies 24, 25. Wu et al. 10 provided support to the conversion of CO2 and H2O to 

methane in case of molten carbonate electrolysis. It is worth mentioning that H2 and CO were 

the predominant gases during the experiment. Moreover, the existence of CO as clearly noted 

from Fig. 9 and confirmed through GC analysis with TCD detector (see Fig. 10 (b)) in a 

relatively significant amount (in comparison to CH4), can be imputed to the individual 

reduction of CO2 to CO. Previous studies stated that CO itself cannot be expected in molten 

carbonates at temperatures below 775 oC in cases where H2O is absent 41. 

 

 However, some other authors have claimed that the formation of CO molecules can occur on 

the cathode by CO2 reduction at low temperatures (≤ 650 °C) 53. If the reduction of CO2 to CO 

is preferred, then H2 gas will also be formed according to the water gas shift reaction (WGSR) 

which occurs due to higher temperature (< 600 oC). In contrast, CO can be generated by the 

reverse water gas shift reaction (RWGS) 50. However, WGSR is more feasible at temperatures 

below 817 oC particularly in the event of high partial pressures of H2O (up to 16.1 mmHg) 

which is not the condition of present study case, so CO formation is preferred case than the H2 
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production leading to the hydrocarbon production. The only GFIE mode is presented here due 

to the same results obtained in both cases (GFOE and GFIE mode) because of the excessive 

CO3
2− ions already present in Li2CO3-Na2CO3-K2CO3 (43.5: 31.5: 25.0 mol%).  

 

The existence of CO2 gas in the cathodic gas products in all the molten electrolyte cases can be 

due to the reasons as (1) some of the absorbed CO2 from the molten carbonates can come out 

with the cathodic product gas (2) CO2 can be produced accompanying the various hydrocarbon 

species (3) The difference between the inlet and outlet amounts of CO2 cannot be ultimately 

accounted as the transferred CO2 to CO and hydrocarbon products. Some other amounts of CO2 

can be absorbed chemically in the molten salts (4) The 100 % CO2 gas conversion cannot be 

done. However, in large scale applications, the cathodic product gas with accompanied 

amounts of CO2 can be recycled repeatedly with feed gas to increase the ultimate CO2 

conversion rate. Ji et al. 36 was able to convert CO2 and H2O into CO, H2 and CH4 products at 

600 oC with the current efficiency of 51% in Li-Na-KCO3-0.3LiOH electrolyte.  

Effect of temperature and voltage 

The optimum temperature used for the selected molten hydroxides was chosen on the basis of 

the maximum CH4 production obtained as can be seen from Fig. 11. The optimum temperatures 

obtained were 375, 275, 225 and 425 oC for KCl-LiCl (58.5: 41.5 mol%), KOH-NaOH (50: 50 

mol%), LiOH-NaOH (27: 73 mol%) and Li2CO3-Na2CO3-K2CO3 (43.5: 31.5 :25 mol%) 

electrolytes respectively. The yields of hydrocarbon products (vol%) increased with the rise in 

temperature up to an optimum temperature value while after that further rise in temperature 

showed inverse effects in case of molten hydroxide and chloride salts. This was because the 

CO2 could not be transferred significantly to CO or hydrocarbon species because of the 

prospects chemisorption of CO2 in molten electrolytes at higher temperature. Ji et al. 36 
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provided the support to the obtained results by reporting that the reduction of co-electrolysis 

of CO2 and H2O decreases by increasing the temperature.  

 

While in the case of Li2CO3-Na2CO3-K2CO3, the highest CH4 production increased up to 425 

oC while after this temperature CH4 production starts decreasing which might be due to the 

increase in production values of other longer chain hydrocarbons (C2-C4) rather than CH4 only. 

This can be due to the increase in CO2 gas solubility inside molten chloride at high temperature 

(475 oC) 54.  The cell voltage is a key variable that can affect energy consumption or current 

efficiency but it can also improve the product properties at the same time 17, 55. In case of molten 

chlorides and hydroxides, the average current density increased drastically (20 to 70 mA/cm2) 

and (70 to 120 mA/cm2) by increasing cell voltage from 2V to 3V as shown in Fig. 12(a) and 

(b). Likewise, CH4 concentration (vol%) increased but with slower production rates.  

 

However, the alkali metal electrodeposition starts occurring at a high cell voltage, consequently 

affecting the current efficiencies of the products. So, at higher voltage, there is more waste of 

energy due to the solid metal accumulation than the desired products 56. Therefore, the optimum 

voltage selected for molten chlorides and hydroxides was 2V rather than 3V. To show the effect 

of increasing cell voltage in molten carbonates, Fig. 12(c) illustrates the high difference 

between the average current (4 to 25 mA/cm2) resulting from electrolysis applied at 1.5 and 2 

V. The hydrocarbon formation was confirmed only at 1.5 V while carbon deposition occurred 

due to the rise of voltage up to 2 V as also confirmed by previous studies 54, 57. Performing both 

runs at 425 oC, hydrocarbon formation at 2 V was rare and not noticeable. Consequently, the 

optimum voltage selected for molten chloride and molten hydroxide was 2 V while 1.5 V for 

molten carbonates. 
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Formation of higher hydrocarbons 

The GC analysis performed using FID detector (Fig. 10(a)) showed that along with methane 

production, various higher hydrocarbons were also detected in the case of molten carbonate 

electrolyte. Which is further confirmed by GC-MS analysis (Fig. 14). The formation of 

methane gas product can be justified due to the reaction of carbon or CO with H2 as follows: 

 

C + 2H2 → CH4 ∆G425C = −49.5 kJmol−1 (16) 

CO + 3H2 → CH4 + H2O (g) ∆G425C = −49.5 kJmol−1 (17) 

2CO + 2H2 → CH4 + CO2 (g) ∆G425C = −68.4 kJmol−1 (18) 

 

The Gibbs Energy values were determined at 425 oC (HSC Chemistry software, version 6.12; 

Outokumpu Research) as this was the temperature of the experiment. It can be seen from the 

first mechanism that the production of general hydrocarbons occurs basically from reaction in 

Eq. (16) with the fresh deposit of carbon and adsorbed atomic hydrogen (H), produced in turn 

from the individual reduction of CO2 and H2O respectively. On the other hand, the C2, C3 and 

C4 hydrocarbons, detected by GC analysis (with FID detector) are shown in Fig. 13 along with 

their production rate values (0.80, 0.50, 0.50 µmol/h.cm2) and faradays efficiency (total = 

55.20%). It is important to note that the accumulative faraday efficiency for all products (C1, 

C2, C3, C4, CO and H2) obtained in case of molten carbonates electrolysis reached to the 95% 

(Table 3). 

 

The dominant peaks were of alkene products rather than alkanes in the GC analysis when 

detected with FID detector, such as for ethene, propene, butene and pentene at 2.73, 3.06, 7.71 

and 18.11 of retention times respectively. However, GC-MS analysis are also showing the 

detection for some alkane products. The formation of alkene or alkanes can be justified due to 
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the (1) reaction of C or CO with hydrogen or (2) partial oxidation of methane in molten 

carbonate. Furthermore, in the first mechanism the CO produced in excess can react with H2 

gas to produce higher hydrocarbons (C2, C3, and C4) through two different routes. The first set 

of reactions (Eqs. (19-20)) results in H2O generation 58, 59 whereas the second set (Eqs. (21-

22)) produces CO2 instead 60. The CO2 by-product method is more feasible than the method 

with H2O formation as shown in Table 4. 

 nCO + (2n + 1)H2 → CnH2n+2 + nH2O (19) 

 nCO + 2nH2 → CnH2n + nH2O (20) 

 2nCO + (n + 1)H2 → CnH2n+2 + nCO2 (21) 

 2nCO + nH2 → CnH2n + nCO2 (22) 

 

Alkane and alkene products in general are generated primarily through the CO2 route 

particularly in media where CO2 is highly absorbed (molten carbonates). The absorption of 

some amounts of generated CO2 can be sustained in the molten salt, driving the reactions (Eqs. 

(21-22)) to the right side and increasing hydrocarbon formation. Moreover, due to the primary 

production of higher CO rates and in contrast lower H2 rates, alkene hydrocarbons were found 

in a higher proportion than the corresponding alkanes in the final cathodic product. The ∆G 

data values (Table 4) confirm that the formation of higher hydrocarbon molecules (C2-C4) was 

possible through the production of CO2 for alkanes rather than alkenes by the process of Fischer 

Tropsch reaction.  

 

Therefore, as far as adequate amounts of CO and H2 gases are produced from electrolysis, there 

is sufficient availability for combining on the cathode surface producing alkanes. While the 

justification for the formation of alkenes such as C2H4, C3H6, C4H8, rather than alkanes can be 
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provided by the partial oxidation of CH4 gas. These conditions hold true particularly at a lower 

CO2 absorption level due to the feasible partial oxidation of CH4 to C2H4 rather than C2H6. 

2CH4 + O2 → C2H4 + 2H2O ∆G425C = −297 kJmol−1 (23) 

2CH4 + 1 2⁄ O2 → C2H6 + H2O ∆G425C = −138 kJmol−1 (24) 

 

The oxidation of CH4 can be performed in two ways. Firstly, CH4 gas can react directly with 

O2 formed at the anode during the co-electrolysis of CO2 and H2O (Eqs. (23-24)) or also can 

react with O2 absorbed inside the molten salt for a short time prior to passing through the anode 

ceramic tube or being eluted with the cathodic gas product by the draft of feed gas. Secondly, 

the absorbed O2 can be transferred to a more reactive oxide anion like peroxide (diatomic O2
2- 

or monoatomic O-), playing a significant role in the methane oxidation mechanism particularly 

in the case of low CO2 concentration levels. It can also be seen from Table 4 that the formation 

of higher molecular weight hydrocarbons (>C2) will be more feasible (resulting in a more 

negative ∆G) by this mechanism with the priority on alkenes rather than alkanes.  

 

The formation of C2H6, C3H8 and C4H10 was relatively small compared with the corresponding 

alkenes as also seen by GC-MS analysis (Fig. 14) as the peaks 57, 43 and 29 stands for the 

mass of fragments lost from C4H10 (CH3CH2CH2CH3), C3H8 (CH3CH2CH3) and C2H6 

(CH3CH3) respectively. The last peaks (43 and 29) are produced from the further fragmentation 

of C3H8 and C4H10. Peaks 55 and 41 stands for the mass of fragments lost from 1-C4H8 (for 

instance) and C3H6 respectively. Peak 15 is showing the mass fragment (methyl) lost from 

C4H10, C3H8 and C2H6. Branco et al. 61, 62 also stated the higher hydrocarbon production (C2-

C4) through partial oxidation of methane in molten salt electrolytes.  
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Energy consumption and heating values  

The energy required for the conversion of CO2 to carbon/hydrocarbons will be that needed to 

carry out the electrolysis and heating up of the molten salt 32. If the heating values or energy 

supplied from the produced fuels are able to compensate some or all the energy consumed 

while performing electrolysis, the process feasibility increases63. This is because the yield of 

heat generated from the produced hydrocarbon fuel can compensate or substitute some of the 

normal electricity employed in large scale industrial applications. In the case of molten chloride 

(KCl-LiCl; 41–59 mol%) electrolyte, the heating value obtained is 162 J from the produced 

fuel (H2 and CH4) with the energy consumption of 278 J. While the heating values obtained 

are 136 and 170 J from the produced fuels (H2 and CH4) by using KOH-NaOH (50: 50 mol%) 

and LiOH-NaOH (27:73 mol%) respectively. And with the energy consumption of 1200 and 

1000 J in KOH-NaOH (50: 50 mol%) and LiOH-NaOH (27:73 mol%) electrolysis respectively 

(see Table 2).  

 

The greater the production of higher hydrocarbons (C1-C4), the greater the faraday efficiency 

and subsequent energy profit attained due to their ability to produce more heating energy 

(Table 3).  It is very interesting to note that the energy obtained from the summation of heating 

values of cathodic products in Li2CO3-Na2CO3-K2CO3 (43.5 : 31.5 : 25 mol%) case was 94.6 J 

while the total consumed energy was 114.2 J with about 100% of faraday efficiency (Table 3). 

The higher total efficiency results in significantly lower energy consumption of 114 J for the 

total fuel produced or just 0.157 kWh per mole of fuel. This value is apparently less than the 

energy consumed for an optimum deposit carbon operation of 0.456 kWh per mole of carbon 

64. As in all the cases, the produced hydrocarbon fuels are able to provide sufficient heating 

values so the CO2-H2O co-electrolysis processes are considered successful. Tang et al. 54 has 



24 

 

optimized energy consumption for producing 1 kg of carbon from CO2 as low as 35.59 kW h 

with a current efficiency of 87.86% under a constant cell voltage of 3.5 V in molten carbonates.  

Conclusions 

This study presents a new method of CO2-H2O conversion into hydrocarbon fuel via molten 

salts electrolysis at relatively low temperature that is a dire need of hydrocarbon production. 

The synthesis method generated methane and hydrogen gases by a direct simultaneous splitting 

of CO2 and H2O in LiCl-KCl (58.5: 41.5 mol%), LiOH-NaOH (27: 73 mol%), KOH-NaOH 

(50 : 50 mol%) and Li2CO3-Na2CO3-K2CO3 (43.5 : 31.5 : 25 mol%) electrolyte mixtures. The 

optimization of each electrolyte was done in the gas feed introduction method (GFOE and 

GFIE) for obtaining more fuel production. In the case of KCl-LiCl (41: 59 mol%), CH4 (0.67 

µmol/h.cm2) and H2 (32 µmol/h.cm2) were produced with GFIE mode at atmospheric pressure. 

While in  molten hydroxide (LiOH-NaOH; 27: 73 mol %), the H2 was the predominant gas due 

to H2O electrolysis which contributed majorly to the production of CH4 by reacting with CO2. 

The hydrocarbon production rate increased (CH4: 1.02 to 6.12 µmol h/cm2) by changing the 

feed gas insertion mode from GFOE to GFIE by using a ceramic tube. In case of molten 

carbonate, the production rate of CO (11.70 µmol/h.cm2) was significantly higher than H2 (4.40 

µmol/h.cm2) in cathodic gas product. Along with H2 and CO, other hydrocarbon species such 

as CH4 and olefins were also produced in molten carbonate case with 99 % of faraday efficiency 

while other being 59.30% and 87.70% in molten chloride and molten hydroxides respectively. 

Moreover, the suitable conditions at which the fuel production was achievable are 375 oC, 275 

oC and 475 oC for molten chlorides, molten hydroxides and molten carbonates under the cell 

voltage of 2V, 2V and 1.5 V respectively. The proposed technique holds promise as a method 

for converting electrical energy produced from renewable power sources into conventional 

fuel, this should be used in future with increased production concentrations.  
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Fig. 1. A schematic representation of the experimental setup.
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Fig. 2. The gas chromatography analysis of calibration gas standards as reference for the comparison with other electrolysis gaseous products by 

(a) FID detector (b) TCD detector. 
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Fig. 3. Current-time curves resulting from electrolysis performed in molten chloride with and 

without CO2 at 2V and 375 oC in GFOE mode.  
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Fig. 4. The faraday efficiency and production rates of gaseous products at 2 V and 375 oC under 

different current density in case of molten chloride electrolysis during GFIE mode after (a) 30 

min (b) 60 min. 
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Fig. 5. The gas chromatography analysis of gaseous products in case of molten chloride electrolysis at 375 oC and 2 V by (a) FID detector (b) 

TCD detector. 
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Fig. 6. The faraday efficiency and production rates of gaseous products at 2 V under different 

current density after electrolysis in; (a) LiOH-NaOH with GFOE mode at 275 oC(b) LiOH-

NaOH with GFIE mode at 275 oC (c) KOH-NaOH with GFIE mode at 225oC.  
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Fig. 7. The gas chromatography analysis of gaseous products in case of molten hydroxide (LiOH-NaOH) electrolysis by (a) FID detector (b) TCD 

detector.  
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Fig. 8. Current-time curves resulting from electrolysis performed in two different molten 

hydroxides at 2V. 
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Fig. 9. The faraday efficiency and production rate of gaseous products at 1.5 V and 425 oC 

under different current density in molten carbonate electrolyte. 
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Fig. 10. The gas chromatography analysis of gaseous products in case of molten carbonate electrolysis by (a) FID detector (b) TCD detector. 
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Fig. 11. The selection of optimum temperatures for all electrolytes on the basis of CH4 

production. 
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Fig. 12. The current density vs time plot at different voltages for three types of electrolytes; (a) 

molten chloride, (b) molten hydroxide and (c) molten carbonate. 

  

20

40

60

80

100

30

60

90

120

150

0 10 20 30 40 50 60

0

5

10

15

20

25

30
(c)

(b)

 2 V

 3V 

 

 

 

 

(a)

 2 V

 3 V

 

 

C
u

rr
e

n
t 

D
e

n
s

it
y
 (

m
A

/c
m

2
)

 1.5 V

 2 V

  

Time (min)



42 

 

 

 

Fig. 13. The faraday efficiency and production rates of higher hydrocarbons at 1.5 V and 425 

oC in case of molten carbonate electrolysis. 
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Fig. 14. The mass spectrum of compounds showing hydrocarbon after electrolysis in molten 

carbonate electrolyte under 1.5 V at 425 ℃.
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List of Tables 

Table 1.Specification of cathodic gas products in molten chloride salt with GFIE mode of electrolysis at 2V and 375 oC by using GC analysis. 

 

Products 

 

Gas product composition 

(vol. %) 

Uncertainty of gas 

composition 

Faraday efficiency 

(%) 

Energy consumption 

(J) 

(30 min) (60 min) (30 min) (60 min) (30 min) (60 min) (30 min) (60 min) 

H2 2.40 2.48 ±0.10 ± 0.10 54.80 28.20  

 

278.00 

 

 

 

311.00 

 

CH4 0.05 0.05 ±0.005 ±0.005 4.50 2.30 

CO 0.00 0.00 0.00 0.00 0.00 0.00 

CO2 34.80 4.84 – – – – 

H2O 2.00 2.00 – – – – 

Ar 60.70 90.60 – – – – 
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 Table 2. Specification of cathodic gas products during electrolysis in molten hydroxide (LiOH-NaOH) at 275 oC and (KOH-NaOH) at 225 oC 

under 2V applied voltage using GC analysis. 

* After electrolysis with GFOE mode    

** After electrolysis with GFIE mode 

 

 

 

Products 
 

Gas product composition 

(vol. %) 

 

Uncertainty of gas 

composition 

 

Faraday efficiency 

(%) 

 

Heating values 

(J) 

 

Energy 

consumption 

(J) 
 

 

*LiOH-

NaOH 

 

**LiOH-

NaOH  

 

**KOH- 

NaOH 

 

*LiOH-

NaOH  

 

**LiOH-

NaOH  

 

**KOH

-NaOH  

 

*LiOH-

NaOH  

 

**LiOH

-NaOH  

 

**KOH

-NaOH  

 

**LiOH-

NaOH  

 

**KOH-

NaOH 

 

**LiOH-

NaOH 

 

**KOH-

NaOH  

H2 27.3 4.44 3.94 ± 0.90 ± 0.10 ± 0.10 87.30 13.00 15.60 130.00 116.00 
 

 

 

 

1200.00 

 

 

 

 

1000.00 

 

CH4 0.03 0.15 0.15 ± 0.004 ± 0.01 ± 0.01 0.40 2.00 2.30 14.00 12.00 

CO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

CO2 0.480 0.750 0.580 – – – – – – – – 

H2O 0.00 0.00 0.00 – – – – – – – – 

Ar 72.20 94.70 95.30 – – – – – – – – 
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Table 3. Specification of cathodic gas products after electrolysis in molten carbonate at 1.5 V and 425 oC by using GC and mass spectrometric 

analysis. 

Product Gas product composition 

(vol. %) 

Uncertainty of gas 

composition 

Faraday efficiency 

 (%) 

Heating value 

(J) 

Energy consumption  

(J) 

H2 0.22 ±0.04 11.90 11.40  

 

 

114.20 

CH4 0.06 ±0.005 12.50 10.40 

C2H4 0.04 ±0.003 13.20 12.00 

C3H6 0.03 ±0.005 12.70 11.00 

C4H8 0.03 ±0.002 17.00 14.50 

CO 0.58 ±0.09 31.80 35.30 

CO2 52.70 – – – 

H2O 2.40 – – – 

Ar 44.00 – – – 
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Table 4. List of ∆G and ∆H for the generation of hydrocarbon products from the Fischer-Tropsch reaction (through CO2 and water formation) and 

partial oxidation of methane at 425 oC. 

 Fischer-Tropsch Reaction CH4 partial oxidation 

 

Products 

∆G (kJ/mol) ∆H (kJ/mol) ∆G (kJ/mol) ∆H (kJ/mol) 

CO2 

formed 

H2O 

formed 

CO2 

formed 

H2O 

formed 

  

CH4 -61.41 -48.37 -257.70 -220.10 – – 

C2H6 -52.03 -25.94 -445.90 -369.90 -138.20 -175.90 

C2H4 -2.10 23.98 -303.40 -227.40 -297.20 -278.90 

C3H8 -39.60 -0.47 -549.30 -435.30 -273.30 -267.10 

C3H6 -5.69 33.44 -423.70 -309.70 -448.30 -387.00 

C4H10 -43.31 8.86 -722.60 -570.60 -424.50 -428.10 

C4H8 -18.62 33.55 -710.60 -558.70 -608.80 -661.70 
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Graphical Abstract 

The co-electrolysis of CO2 and H2O in molten chloride, molten hydroxides and molten 

carbonates was performed at moderate temperatures for sustainable hydrocarbons formation.  
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