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Abstract

Abiotic stresses such as drought and nutrient availability can affect invertebrate her-

bivores feeding on plants, and potentially cascade up to impact their predators and

parasitoids. Although these two factors separately been the subject of many studies,

there are few tests of their combined effects in the context of pest species and their

natural enemies on cultivated plants. Climate change models predict an increase in

the frequency and severity of droughts, while the type and amount of fertiliser

applied to crops is more under the control of growers. Understanding how these two

abiotic factors may interact is key to utilising the potential of natural enemies to con-

trol pests under a future climate. To address this, a range of drought and fertiliser

type treatments were applied to a model Brassica system in a factorial design, and

the performance of two ubiquitous aphid species and their parasitoids was assessed.

One aphid species was a specialist on Brassicas (Brevicoryne brassicae, with parasitoid

Diaeretiella rapae) and the second a generalist aphid species (Myzus persicae, with par-

asitoid Aphidius colemani). The performance of both aphid species responded in a

similar way to the treatments, and was maximised on plants growing in organic fer-

tilisers under medium levels of drought stress. The strongest effects of drought and

fertiliser cascaded up to affect parasitoids. Parasitoid performance responded in a

broadly similar way to their aphid host performance in relation to fertiliser type.

Some of the smaller effects of fertiliser treatments on aphid performance were not

found for parasitoid performance. Aphid performance was greatest on plants under

medium drought stress, but the parasitoids only responded consistently to the high

drought stress treatment, on which their performance was reduced. Interactions

between the drought and fertiliser did not have a large effect on aphid or parasitoid

performance, compared with the strong main effects found for each treatment.

These results are discussed in the context of previous and future research on the

impacts of abiotic stresses on invertebrate herbivores and their natural enemies.
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1 | INTRODUCTION

Abiotic stresses such as water availability (Tariq, Wright, Rossiter, &

Staley, 2012), and the type and amount of nutrients supplied to a

plant (Rowen, Tooker, & Blubaugh, 2019), have been shown to sepa-

rately alter the performance and abundance of invertebrate herbi-

vores feeding on plants, and can cascade up to affect their predators

and parasitoids (Tariq, Wright, Bruce, & Staley, 2013a). In the context

of pest species feeding on cultivated plants, the nutrients and water

received by a host plant can affect populations of pests (Staley

et al., 2010; Tariq et al., 2012) and the behaviour and performance of

their natural enemies (Staley et al., 2011a; Tariq, Wright,

et al., 2013a), thereby altering the amount of damage a plant receives

and potentially also the crop yield.

Under current climate change predictions, rainfall is forecast to

become increasingly variable in many regions of the globe, resulting in

both more frequent periods of drought and more extreme precipita-

tion events (Field et al., 2014). Several hypotheses have addressed the

relationship between drought and plant–herbivore interactions. The

plant stress hypothesis predicts that herbivore performance and

populations increase under a range of “stress conditions,” including

drought, because of an increase in the availability of foliar nitrogen

(White, 1969, 1984). This hypothesis was based largely on observa-

tional studies, in which phytophagous outbreaks were shown to coin-

cide with dry, warm weather. Experimental tests of the plant stress

hypothesis have produced varying results (Bultman & Faeth, 1987;

Wheatley, Wightman, Williams, & Wheatley, 1989). Larson's modified

plant stress hypothesis (the insect performance hypothesis) predicts

that drought-stressed plants have a nonlinear relationship with herbi-

vore performance, which is likely to be maximised under medium

stress (Larsson, 1989). In the plant vigour hypothesis Price (1991) pre-

dicts that vigorous plants are more suitable hosts for herbivores than

drought stressed plants because of the higher availability of nutrients

(Cornelissen, Fernandes, & Vasconcellos-Neto, 2008; Price, 1991),

lower abscission rates (Preszler & Price, 1995) or higher osmotic

potential in vigorous shoots (Price, 2003).

Mopper and Whitham (1992) suggested that the duration of

stress application may influence a herbivore's response to host-plant

stress. Huberty and Denno (2004) built on this idea to put forward a

“pulsed stress hypothesis,” proposing that herbivores (particularly

phloem feeders) benefit from plants that are periodically drought

stressed, but perform less well on constantly stressed plants, because

the loss of turgor pressure restricts the ability of sap feeders to access

any increased nitrogen concentrations in the phloem. Tariq et al. (2012)

tested the insect performance and pulsed stress hypotheses for two

aphid species feeding on Brassica plants under drought stress treat-

ments differing in severity and duration. Their results supported the

insect performance hypothesis, but not the pulsed stress hypothesis

(Tariq et al., 2012).

Fewer studies have assessed effects of drought on the perfor-

mance or attack rates of parasitoids. Aslam, Johnson, and

Karley (2013) found parasitism of the bird cherry–oat aphid,

Rhopalosiphum padi L., was reduced on barley (Hordeum vulgare L.)

plants under drought treatments. Weldegergis, Zhu, Poelman, and

Dicke (2015) found parasitoids on Mamestra brassicae caterpillars

feeding on Brussels sprout (Brassica oleracea L. var gemmifera) were

not affected by drought treatments.

As sustainable farming practices become more widespread

(Adnan, Nordin, Bahruddin, & Tareq, 2019), interest is increasing in

the effects of the type of fertiliser applied to crops on populations of

herbivores and their natural enemies. A recent review of the effects

of animal manures on arthropod pests found evidence that the use of

animal manures, as opposed to conventional mineral fertilisers, can

reduce the performance and abundance of pest species (Rowen

et al., 2019). The use of animal manures was found to alter both bot-

tom up processes, through changes to concentrations of both macro

and micro-nutrients in plants, and to alter top down processes,

because of changes in plant volatile signals to natural enemies and the

soil surface habitat used by predators (Rowen et al., 2019).

An understanding of how drought may interact with other abiotic

factors, such as the type or amount of fertiliser supplied to crops,

would help to inform growers of the increased risks from pests which

may occur under future climate change, and potentially to plan adap-

tation such as increased irrigation or use of more drought resistant

varieties, in combination with different fertiliser types. However, to

date the majority of studies testing the responses of pest species and

their natural enemies to drought and the type of fertiliser supplied to

their host plants have looked at each abiotic factor separately

(Cividanes, Silva, Martins, & Cividanes, 2020; Stafford et al., 2012;

Staley et al., 2011b; Tariq, Rossiter, Wright, & Staley, 2013b). Assess-

ments of whether the two factors may interact to alter pest and natu-

ral enemy performance or behaviour are rare, although Griffith and

Grinath (2018) tested the interacting effects of drought and conven-

tional fertiliser on a tobacco system.

The family Brassicaceae contains several important crop species,

and includes cabbages (B. oleracea L. var. capitata, Brassicaceae: Bra-

ssicales) which are grown in many countries (Hopkins, van Dam, & van

Loon, 2009). B. oleracea var. capitata can be damaged by a wide vari-

ety of pests, including sap-sucking aphid species. Brevicoryne brassicae

L. (Hemiptera: Aphididae, a specialist on Brassica species) and Myzus

persicae Sulzer (Hemiptera: Aphididae, a generalist which feeds on a

wide range of plant species) are two of the most ubiquitous aphid

pests of B. oleracea var. capitata. Both of these aphid species have

previously responded to drought stress and the type of fertiliser sup-

plied to their host plants. For example, Cividanes et al. (2020) found

populations of both aphid species were greater on kale grown in con-

ventional fertiliser, compared with two organic fertilisers. The perfor-

mance of both species increased on B. oleracea var. capitata plants

under medium levels of drought stress, with reduced fecundity and

intrinsic rates of increase on plants subjected to high levels of drought

stress and unstressed controls (Tariq et al., 2012). In contrast, Khan,

Ulrichs, and Mewis (2010) found M. persicae abundance was more

affected by drought stress than the abundance of B. brevicoryne when

feeding on kale, perhaps because of differences between the two

crops or because only one level of drought was applied. Staley

et al. (2010) found abundance of B. brassicae was increased on
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B. oleracea var. capitata growing in organic chicken manure (CM) in a

field trial, compared with those growing in conventional ammonium

nitrate (AN) fertiliser, but that M. persicae abundance showed the

opposite pattern. An experiment on potted B. oleracea growing under

controlled conditions showed the performance of individual aphids of

the two species responded in a similar way to the treatments as their

abundance responded in the field trial (Stafford et al., 2012). These

responses may be because of effects of fertiliser on the host plant

chemistry, as B. oleracea var capitata fertilised with animal manure pro-

duced more glucosinolates, a group of chemicals which the specialist

B. brassicae is well adapted to, than those plants growing in conven-

tional AN fertiliser (Kazana et al., 2007; Staley et al., 2010).

Natural enemies of these two aphid species respond to both

drought stress and the type of fertiliser (Banfield-Zanin, Rossiter,

Wright, Leather, & Staley, 2012). Tariq, Wright, et al. (2013a) found

that two parasitoid species (Diaeretiella rapae McIntosh, Hymenop-

tera: Braconidae and Aphidius colemani Viereck, Hymenoptera: Aph-

idiidae) parasitized a smaller percentage of potential aphid hosts, had

lower percentage emergence, produced more males and had reduced

longevity when they developed in aphids feeding on highly drought

stressed plants. In contrast, Romo and Tylianakis (2013) found that

parasitism of B. brassicae by D. rapae on kale (B. oleracea L. var.

acephala) plants was positively affected by drought treatments. In

relation to fertiliser type, Pope et al. (2012) found fewer B. brassicae

were parasitized when feeding on B. oleracea var. capitata plants

growing in animal manure, compared to those growing in conventional

fertiliser. Thus, while the effects of drought stress and fertiliser type

have both been well-studied in relation to aphids feeding on

B. oleracea and their natural enemies, little is known about how the

effects of these two factors may interact, and to our knowledge there

has been no previous combined test on Brassicas and their pests.

Here, we test the combined effects of drought stress and fertiliser

type on the performance of B. brassicae and M. persicae, and the per-

formance of two parasitoid species (D. rapae and A. colemani respec-

tively). Growers may apply more fertiliser to irrigated plants.

However, in some areas including arid and semi-arid countries, water

is at times in short supply (Feng et al., 2020). As droughts increase in

both severity and frequency, the potential to compensation for

drought with increased irrigation may be limited. In this context,

understanding how pest aphid species and their parasitoids respond

to fertiliser type under drought is critical. To achieve our objective,

B. oleracea var. capitata plants were grown under three drought treat-

ments (two levels of drought and an unstressed control), and in three

types of fertiliser (including those used in conventional and organic

horticulture) and an unfertilized control. The two treatments were

applied in full factorial combination to plants growing in pots, and the

performance of aphids and parasitoids assessed under controlled envi-

ronment conditions.

Specifically, we tested the following hypotheses:

1. Performance of both aphid species will be increased when feeding

on plants under medium drought stress compared to unstressed

plants or those under high drought stress.

2. The two aphid species will respond differently to fertiliser type.

Brevicoryne brassicae performance will be increased on plants

grown in organic fertilisers, while the performance of M. persicae

will be reduced.

3. The combination of medium drought stress and organic fertiliser

type will result in the optimum performance of both B. brassicae

aphids and their parasitoids D. rapae. In addition, D. rapae perfor-

mance will be reduced under high drought stress.

4. In contrast, performance of the generalist aphid M. persicae and its

parasitoid A. colemani will be maximised on plants growing under

medium drought in conventional fertiliser. Aphidius colemani per-

formance will be reduced under high drought stress.

2 | MATERIALS AND METHODS

2.1 | Study species

Brassica oleracea L. var. capitata cv. Saint (Sunny Seeds, Lahore, Paki-

stan) were sown in peat plugs and seedlings with first true leaves

(BBCH growth stage 11; Meier, 2001) were transferred in pots

(15.5 cm diameter) with unfertilized compost (peat, loam, sand and

grit with 3:3:2:1 ratio) and were placed in a greenhouse (20 ± 5�C;

75% RH; LD 16:8 hr).

Myzus persicae and B. brassicae were collected from an infested

field of Brassica juncea L. var. raya cv Anmol. Aphid cultures were

maintained separately on B. oleracea stage 4 plants (BBCH-19;

Andaloro, Rose, Shelton, Hoy, & Becker, 1983; Meier, 2001) grown in

pots (15.5 cm diameter) with unfertilized compost containing peat,

loam, sand and grit (3:3:2:1 ratio). Both aphid species were sub-

cultured fortnightly and transferred to fresh plants. The parasitoid

species A. colemani and D. rapae were collected from the same field as

the aphids, and were reared on M. persicae and B. brassicae separately

for at least two generations before being used in the main experi-

ments, so that maternal host plant effects were avoided

(Douloumpaka & van Emden, 2003). The insect cultures were

maintained under controlled conditions (20 ± 2�C; 75% RH; LD

16:8 hr).

2.2 | Preliminary drought stress treatment trial

To assess the influence of different intensities of drought stress on

leaf water content, four drought stress treatments were applied to

B. oleracea plants, based on experience from previous studies on

drought (Tariq et al., 2012). Seedlings with first true leaves (BBCH-11;

Meier, 2001) were transferred to pots with unfertilized compost. Four

weeks after transplanting, four water regimes (100, 200, 300 and

400 ml/week) were applied to stage 2 plants with five true leaves

(BBCH-15). Plants were randomised in plastic trays on benches in a

controlled environment room (20 ± 2�C; 75% RH; LD 16:8 hr). At

stage 4 (9–12 true leaves; BBCH-19; 4 weeks of drought treatments),

the plants were tested for leaf water content using the method in
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Grace (1997). The results of this preliminary study were used to select

drought stress treatments for the main experiment. All the plants

were dead at 100 ml/week drought regime and thus this treatment

was eliminated from the main experiment; plants were highly stressed

at 200 ml/week, moderately stressed at 300 ml/week but no drought

stress was observed at 400 ml/week water level.

2.3 | Experiment treatments

Treatments were allocated randomly to B. oleracea plants. Fertiliser

treatments were applied first, through the addition of fertiliser to pot-

ting compost prior to transplanting B. oleracea seedlings into the plots.

Plants were left to grow in the allocated fertiliser treatment before

drought treatments were applied (details below).

Fertiliser treatments were selected as examples of frequently

used types of organic and conventional fertilisers (Hanafi et al., 2018;

Pope et al., 2012; Staley et al., 2010). Three types of fertiliser were

applied by adding one of the following to 1 L of potting compost:

(a) 6.67 g of CM with 4.5% nitrogen, (b) 5.88 g of spent mushroom

compost (SMAS) with 7% nitrogen, (c) 0.86 g of AN with 34.5% nitro-

gen and (d) for the unfertilized control treatment nothing was added

to the potting compost. After the fertiliser treatments were added to

the compost, a B. oleracea seedling with first true leaves (BBCH-11)

was transplanted into each pot. After transplanting, plants in pots

were placed in plastic trays on benches in a controlled environment

room (20 ± 2�C; 75% RH; LD 16:8 hr).

Three drought regimes were established on stage 2 plants with

five true leaves (BBCH-15) as described above for the preliminary

trial. The quantity of water added per pot per week was 400 ml for

unstressed control plants, 300 ml for medium drought stress and

200 ml for high drought stress. Each drought treatment was applied

in factorial combination with the four fertiliser treatments giving

12 factorial combinations of the two treatments. Each factorial com-

bination was replicated five times for each aphid species. After

4 weeks of drought stress treatments, the plants at stage 4 (9–12

true leaves; BBCH-19) were used for aphid or parasitoid perfor-

mance experiments.

2.4 | Aphid performance

Experimental drought and fertiliser treatments were randomly allo-

cated in factorial combinations to plants at the same growth stages as

described in Section 2.3, in plastic trays on benches in a controlled

environment room (conditions as above). The performance of each

aphid species was assessed using 120 B. oleracea plants: 10 replicates

of each factorial treatment combination. The 120 plants were evenly

split into two spatial blocks, with five plants per factorial treatment

combination in each block. Aphid performance was measured as

described in Stafford et al. (2012) and Tariq et al. (2012).

Three clip cages were fitted to the underside of first, second and

third fully developed leaves on each plant to give 15 clip cages per

treatment per aphid species per block. As the performance of alate

and apterae can differ (Leather, 1989; Tariq, Wright, & Staley, 2010),

the same form of aphid (apterae) was used throughout both experi-

ments. After 16 to 18 hr (overnight), all aphids were removed leaving

only one nymph per cage. For each aphid, the prereproductive time

(d) and the number of offspring produced in the subsequent days (Md)

were recorded and removed daily from each cage.

Data from both aphid species were recorded for the following

parameters:

1. the effective fecundity, by allowing the aphids to reproduce during

a period equivalent to the prereproductive time and

2. the intrinsic rate of increase rm = 0.738 (lnMd)/d (Wyatt &

White, 1977), where Md is the effective fecundity d is the pre-

reproductive time.

2.5 | Parasitoid performance experiments

Experimental drought and fertiliser treatments were randomly allo-

cated in factorial combinations to plants at the same growth stages as

described in Section 2.3, in plastic trays on benches in a controlled

environment room (conditions as above). The performance of each

parasitoid species was assessed using 60 plants: five replicates of each

factorial combination of drought and fertiliser treatments.

After 4 weeks of drought stress treatments, three clip cages were

fitted to the underside of first, second and third fully developed leaves

on each plant. Two separate batches of plants with five replicates per

treatment were used for each aphid species. Clip cages and adult

aphids were removed leaving one nymph per leaf on each treatment

for 4 weeks. After 4 weeks (12-week-old plants) of aphid treatments,

300 aphids of each species were used to measure parasitoid perfor-

mance. Extra aphids were removed from each plant. Plants infested

with B. brassicae were used to assess the response of D. rapae; those

infested with M. persicae were used with A. colemani.

Five paired parasitoids (one pair of female and male parasitoids

per 60 aphids; Jarošík & Lapchin, 2001; Tariq, Wright, et al., 2013a)

were released per replicate under ventilated bell cloches. After 24 hr,

the parasitoids were removed and the remaining aphids were allowed

to develop for 10 to 14 days to allow mummy formation (Tariq,

Wright, et al., 2013a; van Emden & Kifle, 2002). Mummified aphids

were collected in individual gelatine capsules and percent parasitism,

percent emergence, sex ratio (proportion of males) and female hind

tibiae length (Blande, Pickett, & Poppy, 2004; Tariq, Wright,

et al., 2013a) were recorded.

2.6 | Statistical analyses

Within each aphid and parasitoid species, the effect of drought stress

and fertiliser treatments and their interaction were analysed using

two way factorial ANOVA. Prior to analysis, data for aphid perfor-

mance (effective fecundity and intrinsic rate of increase) and
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parasitoid performance (percentage emergence and female tibia

length) were log root transformed. Least significant difference (LSD)

tests were used to compare mean aphid and parasitoid performance

between levels in a factor, to test the hypotheses above. These statis-

tical analyses were carried out using SPSS statistical software ver-

sion 16.

3 | RESULTS

3.1 | Preliminary drought stress trial: B. oleracea
leaf relative water content

Leaf relative water content (mean ± SEM) per drought stress treat-

ment was: 0.862 ± 0.018 for B. oleracea plants watered 400 ml/week;

0.767 ± 0.014 for plants watered 300 ml/week; 0.597 ± 0.016 for

plants watered 200 ml/week and 0.492 ± 0.018 for those watered

100 ml/week. All plants watered with 100 ml water/week were dead

or dying by the end of the trial, so this treatment was not used in the

main experiments.

3.2 | Aphid performance

3.2.1 | Effective fecundity

There were significant differences in fecundity of B. brassicae for both

drought stress (F2,108 = 274.38, p < .001) and fertiliser treatments

(F3,108 = 53.72, p < .001; Figure 1). Fecundity of B. brassicae was

greatest at medium drought stress, compared with both unstressed

plants and those with high levels of drought stress (LSD, p < .05).

Fecundity was intermediate on plants grown under high drought

stress treatments, and was significantly different from unstressed

plants (LSD, p < .05). The fecundity of B. brassicae was greater feeding

on plants growing in each of the three fertilisers, compared with the

unfertilised control plants (LSD, p < .05). B. brassicae fecundity was

greatest on plants in CM and SMAS, and intermediate on plants in AN

on which it differed significantly from both control and the two

organic fertilisers (LSD, p < .05; Figure 1). The effective fecundity of

B. brassicae was also significantly affected by a weak interaction

between drought stress and fertiliser treatments (F6,108 = 3.47,

p < .01). This indicated that difference in overall fecundity because of

drought stress depended on the particular fertiliser type. Overall, the

fecundity of B. brassicae was greatest on plants with medium drought

stress containing CM and SMAS fertilisers compared with the other

drought and fertiliser treatments (LSD, p < .05; Figure 1).

There were significant differences in fecundity of M. persicae

dependent upon both drought stress (F2,108 = 317.29, p < .001) and

fertiliser treatments (F3,108 = 105.39, p < .001). Fecundity of M. per-

sicae was significantly greater at medium drought stress compared

with unstressed plants. Fecundity was intermediate for those on

plants under the high drought stress treatment, and differed signifi-

cantly from both the other two treatments (LSD, p < .05). The

fecundity of M. persicae was greater on all three fertiliser treatments,

compared to the unfertilized control plants, and also differed signifi-

cantly between each of the three fertiliser treatments. M. persicae

fecundity was greatest on plants growing in CM fertiliser, followed by

SMAS, then AN and lowest on unfertilized control plants (LSD,

p < .05; Figure 1). There was no significant interaction between the

effects of drought stress and fertiliser on the fecundity of M. persicae.

3.2.2 | Intrinsic rate of increase

Intrinsic rate of increase for both aphid species followed a similar pattern

to aphid fecundity. There were significant differences in intrinsic rate of

increase for B. brassicae that depended upon both drought stress

(F2,108 = 294.94, p < .001) and fertiliser treatments (F3,108 = 59.37,

p < .001). Unlike for fecundity, the intrinsic rate of increase for

B. brevicoryne feeding on plants growing in AN did not differ significantly

from unfertilized control plants (Figure 2). The rate of increase for

B. brassicae was also significantly affected by an interaction between

drought stress and fertiliser treatments, but the interaction effect was

small compared to the main effects (F6,108 = 3.47, p < .01). Similar to

B. brevicoryne, there were significant differences in intrinsic rate of

increase for M. persicae of both the drought stress (F2,108 = 308.99,

p < .001) and fertiliser treatments (F3,108 = 98.34, p < .001).

Intrinsic rate of increase for both aphid species was significantly

greatest at medium drought stress, compared with plants in the

F IGURE 1 Effective fecundity of Brevicoryne brassicae and Myzus
persicae (mean ± LSD) feeding on Brassica oleracea L. var. capitata cv.
Saint plants under different levels of drought stress (unstressed,
medium and high) and fertiliser treatments (AN, ammonium nitrate; C,
control without fertiliser; CM, chicken manure; SMAS, spent
mushroom compost)
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unstressed treatment. Intrinsic rate of increase was intermediate on

plants under high drought stress treatments, and significantly different

from the medium drought stress and unstressed treatments (LSD,

p < .05). Intrinsic rate of increase of M. persicae differed significantly

between all four fertiliser treatments, and was greatest on plants

growing in CM, followed by SMAS, AN and lowest on unfertilized

control plants (LSD, p < .05). Intrinsic rate of increase for M. persicae

was significantly affected by the interaction between drought stress

and fertiliser treatments (F6,108 = 3.21, p < .01); on control plants in

the unstressed treatment, there was no significant difference in intrin-

sic rate of increase of M. persicae on plants growing in CM or SMAS.

3.3 | Parasitoid performance

3.3.1 | Percentage parasitism

Percentage parasitism of B. brassicae by D. rapae was significantly dif-

ferent depending upon the drought stress (F2,48 = 65.21, p < .001)

and fertiliser treatment (F3,48 = 17.23, p < .001). The percentage para-

sitism by D. rapae differed significantly between each drought stress

treatment (LSD, p < .05), and was greatest at medium drought stress,

followed by unstressed plants and lowest under high drought stress

treatments. Percentage parasitism by D. rapae was greatest on aphids

feeding on plants growing in either CM or SMAS, compared with both

control plants and those fertilised with AN (LSD, p < .05; Figure 3a).

Percentage parasitism of M. persicae by A. colemani differed sig-

nificantly with both the drought stress (F2,48 = 92.27, p < .001) and

fertiliser treatments (F3,48 = 27.30, p < .001). The percentage parasit-

ism by A. colemani was significantly lower at high drought stress com-

pared with both medium drought stress and unstressed plants (LSD,

p < .05), but did not differ between plants under medium drought

stress and unstressed plants (Figure 4a). Percentage parasitism was

highest on plants growing in CM or SMAS, compared with unfertilised

control plants or those growing in AN (LSD, p < .05; Figure 4a).

3.3.2 | Percentage emergence

Percentage emergence of D. rapae was significantly affected by

drought stress (F2,48 = 74.58, p < .001) and fertiliser treatment

(F3,48 = 29.75, p < .001). Percentage emergence of D. rapae was signif-

icantly greater at both medium drought stress and unstressed treat-

ments compared with high drought stress (LSD, p < .05), but there

was no significant difference in parasitoid emergence between

medium drought stress and unstressed plants. Percentage emergence

of D. rapae was maximised from aphids on plants growing in CM and

SMAS, and significantly lower from aphids on plants that were

unfertilised controls or growing in AN treatments (LSD, p < .05;

Figure 3b).

Percentage emergence of A. colemani was dependent upon the

drought stress (F2,48 = 27.74, p < .001) and fertiliser treatments

(F3,48 = 16.25, p < .001). Percentage emergence of A. colemani was

significantly higher on medium drought stress and unstressed plants

compared with high drought stress (LSD, p < .05; Figure 4b). Percent-

age parasitism differed significantly between each of the four fertiliser

treatments, and was highest on plants growing in CM, followed by

SMAS, AN and lowest on the unfertilised control plants. There was no

interaction between the effects of drought stress and fertiliser treat-

ments on percentage emergence for either parasitoid species.

3.3.3 | Sex ratio

The main effects of drought stress (F2,48 = 88.82, p < .001) and fer-

tiliser types (F3,48 = 11.87, p < .001) were significant for the sex ratio

of D. rapae. The proportion of males was significantly greater at high

drought stress compared with unstressed plants and high drought

stress (LSD, p < .05; Figure 3c). In relation to fertiliser, the lowest male

proportion of D. rapae was observed on plants growing in CM and

SMAS, compared with control and AN (LSD, p < .05). The main effects

of drought stress (F2,48 = 231.65, p < .001) and fertiliser types

(F3,48 = 16.01, p < .001) also had a significant effect on the sex ratio

of A. colemani. The proportion of males was significantly greater at

high drought stress compared with unstressed plants and medium

drought stress (LSD, p < .05; Figure 4c). The lowest male proportion

of A. colemani was observed on plants in CM, followed by SMAS, com-

pared with both AN and unfertilised control plants (LSD, p < .05).

There was no interaction between the effects of drought stress and

F IGURE 2 Intrinsic rate of increase of Brevicoryne brassicae and
Myzus persicae (mean ± LSD) feeding on Brassica oleracea L. var.
capitata cv. Saint plants under different levels of drought stress
(unstressed, medium and high) and fertiliser treatments (AN,
ammonium nitrate; C, control without fertiliser; CM, chicken manure;
SMAS, spent mushroom compost)
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fertiliser treatments on percentage emergence for either parasitoid

species.

3.3.4 | Female tibia length

The impacts of drought stress (F2,348 = 23.20, p < .001) and fertiliser

treatment (F3,348 = 8.70, p < .001) were also significant for the tibia

length of female D. rapae. Female tibia length of D. rapae was longest

at medium drought stress compared with the other two drought

treatments, intermediate on unstressed plants and shortest on plants

under high drought stress (all three levels of drought treatment dif-

fered significantly, LSD, p < .05; Figure 3d). Female tibia length was

longest on the CM and SMAS treatments, which differed from the

control and AN (LSD, p < .05; Figure 3d). The interaction between

drought stress and fertiliser treatment (F6,348 = 5.38, p < .001) on

female tibia length of D. rapae was significant.

Both drought stress (F2,348 = 35.75, p < .001) and fertiliser treat-

ments (F3,348 = 50.02, p < .001) had significant effects on the tibia

length of female A. colemani. Female tibia length was longest at

F IGURE 3 Performance of the
parasitoid Diaeretiella rapae
(mean ± LSD) of Brevicoryne brassicae
reared on Brassica oleracea L. var.
capitata cv. Saint plants under
different levels of drought stress
(unstressed, medium and high) and
fertiliser treatments (AN, ammonium
nitrate; C, control without fertiliser;

CM, chicken manure; SMAS, spent
mushroom compost). (a) Percentage
parasitism, (b) percentage emergence,
(c) sex ratio and (d) female tibia length
(mm). A high sex ratio indicates a high
proportion of male parasitoids

F IGURE 4 Performance of

parasitoid Aphidius colemani
(mean ± LSD) of Myzus persicae
reared on Brassica oleracea L. var.
capitata cv. Saint plants under
different levels of drought stress
(unstressed, medium and high) and
fertiliser treatments (AN, ammonium
nitrate; C, control without fertiliser;
CM, chicken manure; SMAS, spent
mushroom compost). (a) Percentage
parasitism, (b) percentage emergence,
(c) sex ratio and (d) female tibia length
(mm). A high sex ratio indicates a high
proportion of male parasitoids

SHEHZAD ET AL. 7



medium drought stress, intermediate on unstressed plants and

shortest under the high drought stress treatments (LSD, p < .05;

Figure 4d). Female tibia length was also greatest on CM and SMAS,

which differed significantly from shorter tibia lengths under both con-

trol and AN treatments (LSD, p < .05; Figure 4d). Female tibia length

of A. colemani was significantly affected by an interaction between

drought stress and fertiliser treatment (F6,348 = 3.24, p < .001).

4 | DISCUSSION

The effects of drought stress and fertiliser were broadly similar for the

two aphid species. Performance of individual aphids of both species,

in terms of their fecundity and intrinsic rate of increase, was greatest

at medium drought stress, intermediate at high drought stress and

lowest on plants that were not subjected to drought stress, as found

previously by Tariq et al. (2012). These results support our first

hypothesis above, that performance of both aphid species will be

increased when feeding on plants under medium drought stress. More

broadly, our results also provide support for Larsson's (1989) insect

performance hypothesis.

In relation to the type of fertiliser supplied to their host plant, per-

formance of both aphid species was overall greatest on the two

organic fertilisers (CM and SMAS), lowest on the unfertilized control

plants and intermediate on plants fertilised with conventional AN fer-

tiliser. There were minor variations in this general pattern, in that for

B. brassicae the intrinsic rate of increase did not differ significantly

between unfertilized host plants and those growing in AN. For

M. persicae, the intrinsic rate of increase also differed significantly

between the two types of organic fertiliser (greatest on CM). This sim-

ilar response shown by the two aphid species to the type of fertiliser

is different to previous studies, in which M. persicae abundance

(Staley et al., 2010) and performance (Stafford et al., 2012) were both

greater on plants growing in AN than those in CM, but B. brassicae

showed the reverse pattern. This difference may be because of vary-

ing composition of different sources of organic fertiliser, or variation

in the response of B. brassicae populations from different countries to

plant glucosinolate and nitrogen content. Given this previous work,

the broadly similar response of the aphid species to fertiliser type was

unexpected, and leads to the rejection of our second hypothesis

which predicted the two aphid species would respond differently to

fertiliser type.

Performance of the two parasitoid species also showed broadly

similar responses to both the drought stress and fertiliser treatments.

Parasitoid performance in relation to drought treatments was reduced

most under high drought, for all four variables tested. Some perfor-

mance variables (% parasitism of D. rapae; sex ratio of A. colemani and

female tibia length for both species) were greatest under medium

drought stress, while the majority of parasitoid performance variables

did not differ significantly between medium drought stress and

unstressed control plants. While the effects of all three levels of

drought treatment significantly affected aphid performance, only the

high drought stress treatment cascaded up to consistently reduce

parasitoid performance. Tariq, Wright, et al. (2013a) also found perfor-

mance of these two parasitoid species was reduced under high

drought stress compared with unstressed control plants, in line with

the results here, but did not assess the effects of medium drought

stress. Tariq et al. (2012) found glucosinolate concentrations were

increased under drought stress and greatest under high drought

stress, using the same plant and aphid species as the current study.

B. brassicae can sequester glucosinolates from their host plants and

use them in defence against natural enemies (Pope et al., 2012), so it

is possible D. rapae performance was reduced on high drought stress

plants because of increased availability of glucosinolates for seques-

tration. However, M. persicae is not thought to sequester

glucosinolates, so this cannot be the mechanism by which the perfor-

mance of A. colemani is reduced under high drought stress.

Performance of both parasitoid species was better on plants

growing in the two organic fertiliser types, compared with both the

unfertilized plants and those growing in conventional (AN) fertiliser.

There were some minor additional results to this broad pattern, in that

% emergence of A. colemani also differed significantly across all the

four fertiliser types, and sex ratio was slightly greater on plants in CM

than SMAS. As for the drought treatments, the largest effects of fer-

tiliser type found to affect aphid performance (organic fertiliser

vs. conventional or unfertilized) also altered the performance of their

parasitoids, in a similar way for the two parasitoid species. However,

the smaller fertiliser effects on aphid performance (between AN fer-

tiliser and unfertilized controls) were not consistently found for per-

formance of the two parasitoid species. This shows that while large

effects of abiotic treatments on herbivore performance may alter their

quality to affect parasitoid performance, not all the smaller effects

cascade up to the next trophic level. Pope et al. (2012) found a lower

rate of parasitism by D. rapae on B. brevicoryne feeding on Brassica

plants grown in CM, when compared with those growing in a conven-

tional John Innes fertiliser. This appears broadly in contrast with

results in the current study, perhaps because of differences in fer-

tiliser composition, although the two studies are not directly compara-

ble as the current study did not include John Innes fertiliser.

The third hypothesis above predicted that performance of

B. brevicoryne and its parasitoid D. rapae would be maximised on

plants growing in organic fertiliser under medium drought stress, and

that is supported by our results. However, as discussed in relation to

aphid performance, for M. persicae we predicted performance would

be greater on plants in conventional than organic fertiliser, and that

this pattern would be similar for its parasitoid A. colemani (hypothesis

4). Our results show the two aphid species and two parasitoid species

have broadly similar responses to both the fertiliser type and drought

stress treatments, so the fourth hypothesis is rejected.

Significant interactions between fertiliser and drought stress

treatments were found for most of the aphid performance variables,

but the interaction effects were much smaller than the main effects,

with interaction F values typically between 10 and 80 times smaller

than those of the main treatments. Where interactions were found,

generally they showed that differences between fertiliser type were

not apparent for one of the three levels of drought stress treatment,
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rather than indicating opposing effects. Fewer interaction effects

were found for parasitoid performance than for performance of their

aphid hosts. Broadly, interactions between these two types of abiotic

stress do not appear to be as important for the performance of these

aphid species and their parasitoids as the separate effects of drought

and fertiliser type.

To our knowledge, no previous study has addressed the effects

of drought stress and fertiliser type on aphids and their parasitoids in

a Brassica system. Griffith and Grinath (2018) assessed the effects of

drought and fertiliser amount on an aphid and a caterpillar species on

tobacco plants. Both a caterpillar and an aphid species were found to

be more responsive to drought than to the amount of fertiliser,

although results differed slightly with the tobacco variety (Griffith &

Grinath, 2018). Further studies on the interaction between water and

nutrient availability on pest species and their natural enemies are

needed across a range of crop species, and in field trial conditions, to

understand if the patterns found here may be more broadly applicable

under a future climate.
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