
A Novel Method for Computations of Ratios of Jet Cross
Sections in Perturbative Quantum Chromodynamics

Connor Waits

May 13, 2020

Project Advisor: Dr. Markus Wobisch

Abstract

The strong interaction is the force responsible for binding quarks to form hadrons, such
as protons and neutrons, and also for binding protons and neutrons to form the nuclei
of atoms. The properties of the strong interaction can be studied in particle collisions
from measurements of the production rates of collimated sprays of particles, called
jets. In particular, the ratio of the number of collisions that produce three jets over
the number of collisions that produce two jets is a direct measure of the strength of
the strong interaction. This strength is quantified by the strong coupling constant, αs.
Determinations of αs from particle collider data require theoretical calculations. In this
paper, a new approach for the theoretical calculations is investigated that differs from
the commonly used approach. Computations of the results are presented for different
ratio measurements performed at the CERN Large Hadron Collider and the Fermilab
Tevatron Collider. The results of the two different approaches are compared to each
other and to the results of the experimental measurements. It is discussed in which
kinematical regions the two approaches agree and where they differ.

1 Introduction

1.1 Particle Accelerators and Detectors

In high energy physics (HEP), particle accelerators are used to collide elementary particles
together to investigate quantum effects of fundamental forces. Of interest in this paper are
proton on proton collisions from the ATLAS detector at the CERN LHC and the D∅ detector
at the Fermilab Tevatron. In both accelerators, protons are accelerated in an underground
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Figure 1: The Large Hadron Collider at CERN, left, and the Tevatron Collider at Fermilab
right. Both accelerators collide protons on protons at 13 and 1 TeV energy, respectively.
LHC image source: home.cern; Tevatron image source: fnal.gov

Figure 2: The ATLAS detector left and the D∅ detector right. ATLAS image source: at-
las.cern; D∅ image source: Brad Abbott, OU HEP group

loop and then collided together in a particle detector. The above detectors are made out of
a series of magnets that track the path of particles produced in a proton-on-proton collision
as well as calorimeters to measure their energy.

1.2 Particle Jet Production

Under the standard model, protons are made up of three elementary particles, two up quarks
and one down quark. These quarks interact with each other and gluons, the force carrying
particle of the strong nuclear force. When protons are collided together at high energies, the
quarks and gluons that make up the individual protons interact to form new particles.

In the above figure, two quarks collide to produce a Quark\anti-quark pair. These quarks
will break down into other particles inside the detector in a process called hadronization.
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Figure 3: Quark\anti-quark production from proton\proton collision. Image source: Thomas
G. Mccarthy and cms.cern

The data collected from these collisions are jets, and the rate at which a certain process
occurs is used to determine the cross-section for that process experimentally.

1.3 Cross Sections

The strong coupling constant, αs, paramaterizes the strength of the strong interaction, and
acts at each vertex in the below diagrams.

Figure 4: Diagrams for three and two jet processes. Image source: Markus Wobisch,
Louisiana Tech HEP group
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In the top diagram, three jets are produced, and in the bottom, two jets are produced. So,
the three jet cross section would be experimentally found by adding the number of events
that produced three jets and dividing by the total number of events. Often, ratios of cross
sections are taken because uncertainties in measurements that are due to the detector; such
as luminosity, energy calibrations, and resolution; are the same for each cross section, and
cancel upon taking the ratio.

1.4 Perturbative Expansion in αs

Because the strong coupling constant is much less than one (αs ≈ .11), the cross section for
a process can be written in a perturbative expansion in αs. The cross sections for the three
and two jet processes, for example, can be written as:

σ3j = c1α
3
s + c2α

4
s + c3α

5
s + ...

and

σ2j = c1α
2
s + c2α

3
s + c3α

4
s + ... (1)

where the constants in the sum are given by the S-matrix elements for the interaction.
Currently, these values are only known only at next-to-leading order (NLO) so the NLO
cross section is written as a leading order (LO) result plus a NLO correction:

σ3−jet = σ3LO + σ3NLO +H.O.

and

σ2−jet = σ2LO + σ2NLO +H.O. (2)

For the 3-jet cross-section, the individual terms are given by

σ3LO = α3
sC3L

and

σ3NLO = α4
sC3N (3)

and for the 2-jet cross-section

σ2LO = α2
sC2L

and

σ2NLO = α3
sC2N (4)

2 Method

At NLO, the ratio of any two cross sections is typically found by simply dividing the two
cross sections. For example: R3/2 =

σ3−jet

σ2−jet
.[2] Instead of taking the ratio of two perturbative
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expansions, a new method for computing ratios of jet cross sections can be found by taking
the perturbative expansion of the ratio at NLO. At NLO, the old method is found by:

R3/2 =
α3
sC3L + α4

sC3N

α2
sC2L + α3

sC2N

(5)

The new method is found from the old result by:

R3/2 =
α3
sC3L + α4

sC3N

α2
sC2L

1

1 + αs
C2N

C2L

(6)

This factorization was done so that the last term can expanded in a Taylor series

1

1 + x
= 1− x+ x2 − x3 + x4 − ...

with

x = αs
C2N

C2L

(7)

Which gives

R3/2 =
α3
sC3L + α4

sC3N

α2
sC2L

[1− αs
C2N

C2L

+ α2
s(
C2N

C2L

)2 + ...] (8)

= [αs
C3L

C2L

+ α2
s

C3N

C2L

][1− αs
C2N

C2L

+ α2
s(
C2N

C2L

)2 + ...] (9)

= αs[
C3L

C2L

] + α2
s[
C3N

C2L

− C3LC2N

C2
2L

] + α3
s[
C3LC

2
2N

C3
2L

− C3NC2N

C2
2L

] + ... (10)

Because the first two terms are first and second order in αs, they are the leading order result
and next-to-leading correction for R3/2

R3/2LO = αs[
C3L

C2L

] (11)

and

R3/2NLO = α2
s[
C3N

C2L

− C3LC2N

C2
2L

] (12)

The NLO correction can be rewritten as

R3/2NLO = αs[
C3N

C3L

]αs[
C3L

C2L

]− αs[
C2N

C2L

]αs[
C3L

C2L

] (13)
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A k-factor is defined to be the ratio of the NLO and LO cross-sections for a given process.[3]
The k-factors for the 2-jet and 3-jet processes are

k2 =
α2
sC2L + α3

sC2N

α2
sC2L

and

k3 =
α3
sC3L + α4

sC3N

α3
sC3L

(14)

For the old method, the NLO correction is given in terms of k-factors by:

RNLO =
k3

k2

RLO (15)

The NLO correction for the new method is given by:

R3/2NLO = (1 + k3 − k2)R3/2LO (16)

Both methods of computing R3/2 are equal if the sum is taken to infinity. However, of interest
is the difference in the two ratios, which is found by summing over all the terms of order 3
or higher. The term that contributes most to this sum is the term that is of order 3 in αs,
which appears in Eq. 10

α3
s[
C3LC

2
2N

C3
2L

− C3NC2N

C2
2L

] (17)

= αs
C3L

C2L

α2
s

C2
2N

C2
2L

− α2
s

C3N

C2L

αs
C2N

C2L

(18)

= R3/2LO(k2 − 1)2 − α2
s

C3NC3L

C2LC3L

(k2 − 1) (19)

= R3/2LO(k2 − 1)(k2 − k3) (20)

This term goes to zero as k2 goes to 1 or when k2 = k3. When either of these conditions are
met, the two approaches for computing R3/2 agree at NLO.

3 Results

3.1 Definition of Ratios

The results for both methods will now be compared to data collected at ATLAS and D∅ for
the R∆φ, R∆R, and R3/2 measurements.
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The quantity φdijet gives the angle in the azimuthal plane between the two most energetic
jets. Due to conservation of momentum requirements, for a strictly dijet event, φdijet = π.
[4]However, smaller amounts of radiation may also be produced in the collision, which could
lower φdijet, called azimuthal decorrelations. The ratio R∆φ measures the fraction of dijet
events that have an azimuthal decorrelation less than some chosen value, ∆φmax and is given
by:

R∆φ =
σdijet(∆φdijet < ∆φmax)

σdijet
(21)

for a specified range of rapidity.[1]

The quantity R∆R is ensemble average over the number of neighbor jets withing a region of
rapidty, ∆R, that a jet with transverse momentum PT has,

And, R3/2 is again defined by:

R3/2 =
σ3−jet

σ2−jet
(22)

3.2 R∆φ

In all ratio plots, the solid red line is the old method of computing the ratio and the blue
dotted line is the new method of computing the ratio. The markers for the below two plots
indicate the value of ∆φmax for those data points. For rapidity 0 < y < .5 and .5 < y < 1,

Figure 5: Measurement of R∆φ(HT , y
∗,∆φmax) as a function of HT in three regions of y∗

and for three choices of ∆φmax compared to theory predictions. Top plot: arXiv 1805.04691
[hep-ex], Bottom plot: arXiv 1212.1842 [hep-ex]

both methods have close agreement, and in general, fit the data. In the 1 < y < 2 region,



8

in the D∅, the last points have much uncertainty, and the old method trails up to follow it
while the new method more accurately fits the overall trend of the data. This data points
from this rapidity region were excluded from the data set used to make the determination
of αs because there was not good agreement between the data and theory. However, if the
new method had been used as well, the D collaboration may have decided to included these
points.

3.3 R∆R

In the R∆R measurement, we see the closest agreement with the two methods. Both describe
the data well by visual inspection. The difference between the two methods can be taken as

Figure 6: Measurement of R∆R as a function of PT in three regions of ∆R and for four
choices of PTmin compared to theory predictions. arXiv:1207.4957 [hep-ex]

a rough estimate of the amount of theory uncertainty there is for a particular measurement.
Because the two methods are not very different from each other in the above plot, this
suggests that there is little theory uncertainty for this ratio.
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3.4 R3/2

The new method for computing ratios performed the worst for the R3/2 measurement, par-
ticularly for low choices of PTmin, indicating substantial theory uncertainty.

Figure 7: Measurement of R3/2 as a function of PTmax and PTmin for four choices of PTmin
and compared to theory predictions. arXiv:1209.1140 [hep-ex]

4 Summary

A new method was presented for computing ratios of jet cross sections that consists of taking
the perturbative expansion in αs of a ratio instead of taking the ratio of two perturbative
expansions. When both methods are taken to all orders, there are equivalent, but as finite
series, their difference can be used as an additional estimate of theory uncertainty for a
certain measurement.

5 Future Work

Another determination of αs, this time with data points that both methods describe, would
be one possible interesting continuation of this idea. Another would be to investigate in
more detail what is causing the difference between the two methods to be so large for the
R3/2 data.
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