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Abstract

The number of periodic points of a function depends on the context. The number of
complex periodic points and rational periodic points have been shown to be infinite
and finite, respectively, if f is a polynomial of degree at least 2. However, the number
of real periodic points can be either finite or infinite. Sharkovskys Theorem states that
if p is left of q in the “Sharkovsky ordering” and the continuous function f has a point
of period p, then f also has a point of period q. This statement becomes very powerful
when considering a function that has points of period 3, all the way to the left side
of the Sharkovsky ordering, since having a point of period 3 implies the existence of
points of all periods. We explore a continuous function with points of period 3 where
the function can be restricted to an interval containing points of period all other natural
numbers.

1 Introduction

A dynamical system represents how the state of a system changes over time. This change can
be captured as ongoing time or in intervals; that is, a dynamical system can be represented as
either continuous or discrete. A continuous representation can be modeled through calculus
and differential equations; however, a discrete representation involves iterative mappings
where the output of the previous state is used as the input to the next iteration.

For example, given the function f : R → R where f(x) = x + 5 and x0 = 3 is our starting
point, we have x0 = 3, x1 = 8, x2 = 13, . . . by using the output of one step as the input for
the next, so that f(xn) = xn+1. When this sequence repeats itself from the beginning, we
say the point x0 is periodic. Formally, a point p is a periodic point of the function f with
period m where m is the least number satisfying fm(p) = p. The notation fm represents m
iterations of the function f [4].
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In general, when this sequence eventually contains repetition, we say the point is preperi-
odic [4]. By the previous definitions, we have that all periodic points can be described as
preperiodic. When f(p) = p (the sequence is p, p, p, . . . ), we say that p is a fixed point.
Fixed points are points of period 1 (let m=1).

Current work in number theory aims to answer where these periodic points occur and what
those points look like. We look first at polynomials of degree ≥ 2. There are always infinitely
many complex periodic points for polynomials of degree ≥ 2. [1]. By Northcott in 1949, we
see that only finitely many periodic points can be rational numbers for polynomials of degree
at least 2. [8]. However, the number of real periodic points can be either finite or infinite
depending on the periods of orbits of f .

This paper uses iterations of a function f to describe the state of a dynamical system through
the lens of a specific example. First, the iterative nature of f motivates a question about
Sharkovsky’s Theorem for restricted functions. Next, the iterations of the critical point are
explored. Finally, a question is posed about the relationship between the iterations of f and
the iterations of its critical point.
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2 Background

In 1975 James Yorke and Tien-Yien Li published a paper called Period Three Implies Chaos
[3] where function f has an orbit of period three, then f also has orbits of every period n
where n ∈ N. This ordering that starts with three was further completed by Sharkovsky:

3 . 5 . 7 . 9 . · · ·
2 · 3 . 2 · 5 . 2 · 7 . 2 · 9 . · · ·

22 · 3 . 22 · 5 . 22 · 7 . 22 · 9 . · · ·
· · ·

· · · . 25 . 24 . 23 . 22 . 2 . 1.

We see that a function with an orbit of period three has profound implications, and we now
explore a particular function with period three.
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2.1 Example Function with Period 3 Orbit

Consider the following function and its graph:

f(x) = −3

2
x2 +

11

2
x− 2

This function contains an orbit of period three as seen by f(1) = 2, f(2) = 3, and
f(3) = 1. This example shows that the point 1 is a point of period three.

The graph of function f is seen above in red along with the line y = x. This line shows
fixed points of the function where the function f intercepts the line y = x at exactly two
points. By solving f(x) = x, we see the values of these points are 3

2
+

√
33
6

and 3
2
−

√
33
6

.

To find the points of period three, we solve the equation f 3(x) = x. The solutions will
intercept the line y = x. Fixed points will also intercept the graph as points of period
three because f(p) = p implies f 3(p) = p for a fixed point p. The function f 3 is added
in blue in the graph below.
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This graphing shows the blue graph of f 3 intercepting the line y = x at points 1, 2,
and 3. These points are points of period 3, meaning if the function f is iterated three
times starting with the points intercepting y = x, we can see f 3(1) = 1, f 3(2) = 2, and
f 3(3) = 3.

While Yorke and Li’s result was significant, Sharkovsky had already proven a more general
result on the other side of the Iron Curtain [9].

Theorem 1. (Sharkovsky [7]) If f : I → I is a continuous map that has a cycle of period
m, then f has cycles of every period m′ such that m . m′ (read:“m is left of m prime”),
where

3 . 5 . 7 . 9 . · · ·
2 · 3 . 2 · 5 . 2 · 7 . 2 · 9 . · · ·

22 · 3 . 22 · 5 . 22 · 7 . 22 · 9 . · · ·
· · ·

· · · . 25 . 24 . 23 . 22 . 2 . 1.

This ordering of the natural numbers can describe the periodic points for every polynomial
with degree ≥ 2. The odd numbers starting at 3 come first, followed by the odd numbers
times two and then the odd numbers times 22. The pattern continues, and the ordering ends
with decreasing powers of 2. This ordering includes all of the natural numbers.

Looking at our previous example through the lens of Sharkovsky, we see that our cycle of
period three implies that there are cycles of period five, period seven, and so on, until we
have a cycle of period one (a fixed point). Our main conjecture questions whether or not
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these cycles are found within nested intervals as the ordering is traversed. We restrict the
function to these intervals as we traverse the ordering and use the following notation for
restricted functions:

Definition 1. ( [6]) Let D, R, and S be sets with R ⊆ D and let f : D → S be a function.
The restriction of the function f to R, denoted f |R, is defined by f |R(x) := f(x) for all
x ∈ R.

3 Main Result

The converse of Sharkovsky’s theorem (also attributed to Sharkovsky) says that a function
exists at every cut in this ordering. That is, given the conditions on the function, there exists
a function with periodic points of period 5, but no points of period 3. Sharkovsky’s theorem
considers functions that map into the same interval. Shrinking that interval over iterations
leads us to a question.

Motivating Question 1. For all continuous polynomial function with degree ≤ 2, suppose
function f has points of period three. Then there exists an interval I such that:

• f |I has period five

• f |I does not have period three

• f(x) ∈ I for all x ∈ I.

The final condition comes from Definition 1 and is necessary when we consider iterating the
function f . The output of f must be used as the input for the next iteration; thus, the
function f must map into itself.

We start with an interval I3 that contains the orbit of period 3. From our previous example,
where

f(x) = −3

2
x2 +

11

2
x− 2,

we can choose I3 := [1, 3]. We want to show that there exists a function f |I5 that when
restricted to the interval I5 ⊂ I3, the interval I5 contains points of period 5, but does not
contain points of period 3.

Let I5 := [1.09, 2.98]. This interval satisfies the conditions as the only points of period three
are 1, 2, and 3. The numerical analysis below shows an orbit within the interval I5.

f(1.6177566779425313968 . . . ) = 2.9719567251424398062 . . .

f(2.9719567251424398062 . . . ) = 1.0969718241043556767 . . .

f(1.0969718241043556767 . . . ) = 2.2283242582557000468 . . .

f(2.2283242582557000468 . . . ) = 2.8076399205101265602 . . .

f(2.8076399205101265602 . . . ) = 1.6177566779425313968 . . .
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Each of the five inputs above are points of period 5 that are contained in the interval I5.
This pattern continues to follow the Sharkovsky Ordering for cycles of period seven, six, four,
two, and one. However, this interval does not satisfy the final condition of our conjecture.

Counterexample: Consider the point at x = 11
6

. This point is the critical point of the function
f , and f(11

6
) describes the highest value of the curve f . However, x = 11

6
exists inside of

both I3 and I5 where f(11
6

) 6∈ I3 and f(11
6

) 6∈ I5. Therefore, any interval I must have an
upper bound of at least f(11

6
) to map f back into itself for the next iteration. �

Iterations of the Critical Point

Through the example above, we note a significance of the critical point in relation to the
position of the periodic points. The periodic points are bounded above by f(11

6
), but

the existence of a lower bound is uncertain. We see below how f(c) becomes a critical
point for the function f 2.

The original function f (red) and the line y = x (green) are illustrated above. The
second iteration of f is seen above in blue. The horizontal lines show the iterations of
the critical point where y = f(11

6
) (purple) and y = f(f(11

6
)) (black).



Seaton 7

The iterations of the critical point continue to bound the function in higher iterations
as well. The fourth iteration of f can be seen in blue below.

4 Concluding Remarks

This work disproved a conjecture made about Sharkovsky’s Theorem and restricted functions.
The disproof consisted of a single counterexample that showed where the restricted function
would not map back into the interval where it is defined. Our proof illustrated the importance
of the critical point, and further research is needed to define the significance of the iterations
of the critical point.
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