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ABSTRACT 

Contemporary industrial development and swift urbanization require 

environmentally sustainable energy sources. Ethanol made from biomass provides unique 

environmental and economic strategic benefits and can be considered a safe and clean 

liquid fuel alternative to fossil fuels. Ethanol’s significant advantages, such as low cost, 

biodegradability, and abundance, make the application of biomass for production of bio-

renewable energy favorable. However, biomass must be subjected to pretreatment 

processes to liberate the components needed for effective enzymatic hydrolysis that 

converts cellulose to sugars prior to fermentation to create biofuel. Production of value-

added co-products besides biofuels, through coordinated bio refinery processes, requires 

selectivity during pretreatment. The current work concentrates on biomass pretreatment 

technologies with an emphasis on lignin dissolution using deep eutectic solvents (DES). 

DES are new ‘green' solvents that have a high potential in biomass processing because of 

their low cost, low toxicity, biodegradability and easy recycling. The present work focuses 

on the preparation of three types of DES, pretreatment of abundantly available Loblolly 

pine needles, dissolution of lignin from the biomass and measurement of the mass yield of 

pine needles treated with different types of DES. The pretreated and raw biomass 

underwent FTIR analysis, fiber analysis and enzymatic hydrolysis to compare the 

pretreatment index of different DES on pine needles and also to investigate one of the 

applications of lignin as a natural dyeing component. 

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/biodegradability
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CHAPTER 1 

 

 

INTRODUCTION 
 

 

Contemporary industrial development and the swift pace of urbanization call for 

environmentally sustainable energy sources. Lignocelluloses are the most abundant 

biomass available on earth. Lignocellulosic biomass is comprised of biopolymers of 

cellulose, hemicellulose and lignin (Malaeke et al., 2018). Production of biofuels is quite 

possible by fermenting these polymers (polysaccharides) into ethanol, provided the 

optimization and pretreatment of biomass that is used as a raw source of polymeric 

components has occurred (Lee, 1997).The significant uses of lignocelluloses are in the pulp 

and paper industries, production of fuel alcohol and chemicals, and protein for food and 

feed using biotechnological processes. Lignin can also be used for various industrial and 

biomedical applications, including biofuels, chemicals and polymers, and the development 

of nanomaterials for drug delivery. However, these uses depend on the source, chemical 

modifications and physicochemical properties. These properties and different preparation 

methods for lignin-based nanomaterials permit their use as reinforcing agents in nano 

composites, as well as in drug delivery and gene delivery vehicles for biomedical 

applications (Figueiredo et al., 2018). In Figure 1-1, various steps involved in the 

conversion of lignocellulosic biomass into valuable products are illustrated. 

https://www.sciencedirect.com/topics/materials-science/biofuels
https://www.sciencedirect.com/topics/materials-science/nanostructured-material
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Figure 1-1 Illustration of various steps in the conversion of biomass into value added 

products 

Ethanol made from biomass provides unique environmental and economic strategic 

benefits, and it can be considered a safe and clean liquid fuel alternative to fossil fuels. 

Ethanol has significant advantages, such as low cost, biodegradability, and abundance, 

making application of biomass for production of bio-renewable energy favorable(Panwar 
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et al., 2011). Nevertheless, the biomass must be subjected to pretreatment processes to 

liberate the sugars needed for fermentation. Production of value-added co-products 

alongside of biofuels through integrated biorefinery processes creates the need for 

selectivity during pretreatment. Some exciting alternative types of solvents are called 

deep eutectic solvents (DES). DES have low volatility, non-flammability, a wide liquid 

range, nontoxicity, biocompatibility and biodegradability (Francisco et al., 2012). 

Unlike ionic liquids (ILs), they are simply prepared at high purities from readily 

obtainable materials and are inexpensive compared to ILs.  In  addition,  DES  are 

valuable in biofuel processing because they do not typically   inactivate enzymes  (Lynam 

et al., 2017).They are less sensitive to water content than ILs are, which makes their use 

more practical with the wet biomass that would be present at field sites (Francisco et al., 

2012). 

The present work targeted biomass pretreatment technologies with an emphasis on 

lignin dissolution using DES that separate a minimum of 20% of the lignin from the 

biomass. In addition, this research employed FTIR analysis, fiber analysis, enzymatic 

hydrolysis, and identified color components that could be explored for use as natural dyes. 

1.1  Lignocellulosic Materials 

Lignocellulosic biomass is a potential resource for the production of value-added 

products like glucose, ethanol, xylitol, vinegar etc. Lignocellulosic materials are formed 

by the three main biopolymeric constituents, cellulose, lignin, and hemicelluloses (Hankin 

and Sands, 1974). Figure 1-2  reveals the lignocellulosic structure, showing cellulose, 

hemicelluloses, lignin and relevant bonds (Hankin et al., 1971). 
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Figure 1-2 Structure of components present in lignocellulosic biomass 

1.2.1 Composition 

Plant cell walls are the sources of lignocellulosic materials whose structure is 

represented by the chains of cellulose molecules associated with other biopolymers to form 

linear structures of high tensile strength known as microfibrils. Layers upon layers of 

microfibrils make up the cell wall. Each microfibril is about 10 to 20 nm in diameter and 

may consist of up to 40 cellulose chains. A microfibril is a crystalline and semi-crystalline 

(amorphous) cellulose core surrounded by hemicelluloses, a branched polymer composed 

of a mix of mostly pentose sugars (eg. xylose, arabinose) and some hexoses (eg. mannose, 

galactose, or glucose). In addition to crosslinking individual microfibrils, hemicelluloses 

also form covalent associations with lignin, a high molecular weight aromatic biopolymer. 

1.2.2 Cellulose 

Cellulose, the most abundant polysaccharide on earth, is a highly ordered polymer 

of cellobiose (D-glucopyranosyl-β-1, 4-D-glucopyranose), representing over 50% of wood 

mass. Approximately 4x1010 tons of cellulose are produced annually (Coughlan, 1985). 
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Native cellulose from wood has about 10,000 glycosyl units in linear cellulose chains that 

are stabilized by numerous strong intermolecular hydrogen bonds between hydroxyl 

groups of adjacent molecules, as well as intramolecular hydrogen bonds(Puls, 1997). The 

crystallinity of cellulose presents another challenge to efficient hydrolysis. Figure 1-3, 

illustrates the structure of cellulose with glycosidic linkages and lattice structure. The high 

degree of hydrogen bonding that occurs among the sugar subunits within and between 

cellulose chains forms a 3D lattice-like structure. The highly ordered, water-insoluble 

nature of crystalline cellulose makes access and hydrolysis of the cellulose chain difficult 

for aqueous solutions of enzymes. Amorphous cellulose lacks this high degree of hydrogen 

bonding, thus giving it a structure that is less ordered. 

 

 

                                  Figure 1-3 Structure of cellulose 

1.2.3 Hemicellulose 

In Figure 1-4, structure of hemicellulose is revealed, it is a complex, heterogenous 

mixture of sugars and sugar derivatives that form a highly branched network (Kulkarni et 
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al., 1999). The monomers that comprise hemicellulose are hexoses (glucose, galactose and 

mannose) and pentoses (arabinose and xylose). Some monomers, such as galactans, are 

based on a polymer backbone that is very often homopolymeric with β-1, 4 linkages, Xylan 

is by far the most important component because of its large quantities in most biomass. 

 

 

 

1.2.4 Lignin 

Cellulosic materials also contain lignin, a three-dimensional polymer with phenyl 

propane units shown in Figure 1-5, held together by ether and carbon-carbon bonds. When 

plants mature and their cell growth ceases, the middle lamella (the space between the 

primary walls of adjacent cells) and the secondary cell wall (inside the primary wall) have 

a large degree of lignin. The lignin strengthens the cell structures by stiffening and holding 

the fibers of  polysaccharides together (Ojumu et al., 2003). It is hydrophobic and highly 

resistant towards chemical and biological degradation. Lignin content and composition 

vary among different plant groups. Moreover, the lignin composition varies between the 

different plant tissues and cell wall layers. 

      Figure 1-4 Structure of hemicellulose 
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Other non-structural components of plant tissues include compounds that are 

extractable with organic solvents such as phenols, tannins, fats and sterols, and water-

soluble compounds like sugars, starch, proteins and inorganics (ash). These components 

usually represent less than 5% of biomass’s dry weight (Michael J. Gidley, 2001). The 

association between polysaccharide (cellulose and hemicellulose) and non-polysaccharide 

(lignin) components in the structure of plant cell walls is, in great part, responsible for its 

mechanical and biological resistance (Bon and Ferrara, 2007). 

      Figure 1-5 Structure of lignin 
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1.2  Pine Needles 

 

 

Loblolly pine, also known as southern yellow pine, has a rapid growth rate and is 

the most abundant species in the United States (Nix, 2016). It has significant commercial 

importance in the pulp and paper industry. In North America, paper production is 

declining, and recycling of paper is increasing (Miranda and Blanco, 2010). Young 

Loblolly pine trees shown in Figure 1-6, (10–15 years old) are thus in abundant supply 

throughout the southeastern United States. This biomass could be pretreated before 

shipping to biorefineries for production of   biofuels or other value-added products. 

 

 

If a technology that is both safe and green can be discovered to separate lignin 

from holocellulose, it could enhance production of other bioproducts and possibly be 

implemented at a local depot or even in the woods or fields. A cellulose- and 

hemicellulose-enriched product (holocellulose) could then be conveyed to a 

biorefinery, and the separated lignin could be sent for purification or locally used as a 

Figure 1-6 Pine needles of Loblolly pine tree 
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biofuel. These separated components can be transformed into fuels and chemicals 

using already established biotechnologies. Dissolution by means of a non-hazardous, 

green method near the harvesting site could result in the reduction of the volume of 

material that has to be transported, especially in the case of products that are denser 

than the untreated biomass. If the products are denser, carbon dioxide produced by 

transportation would also be reduced with a decrease in the volume of biomass. 

Initiating this kind of ecofriendly preprocessing method in rural areas would also 

encourage rural economies that are gifted with biomass resources. 

The most common method for the separation of cellulose and lignin in biomass 

is the Kraft process. As the level of inorganics is low in woody biomass, it has gained 

prominence. However, wood has other structural uses. The Kraft process is not 

particularly environmental-friendly, since it releases sulfur-containing volatile organic 

compounds into the atmosphere (Catalan et al., 2007). 

 Some of the solvents with an ability to separate lignocellulosic biomass are ILs. 

ILs, with their extremely low vapor pressures, have novel abilities to dissolve cellulose and 

lignin both separately and as packed in biomass (Lynam et al., 2012). However, ILs are 

expensive to produce, the synthesis of most ILs  is  not eco-friendly, and  they  are  currently 

unavailable  in large scale  quantities (Francisco et al., 2013). 

1.3 DES 

Other possible alternative types of solvents that are unlike traditional 

technologies are deep eutectic solvents (DES). DES have low volatility, wide liquid 

range, non-flammability, biocompatibility, non-toxicity and bio-degradability 

(Francisco et al., 2012). Unlike ILs, they have a straightforward preparation from 
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highly available materials that gives high purities and they are low cost compared to 

ILs. In  addition,  DES usually  do  not  inactivate enzymes,  making  them  helpful  in  

biofuel  processing  (Gorke et al., 2010). They are  less sensitive than ILs to water content, 

making their use more feasible with the wet biomass found at  field sites (Francisco et al., 

2012). Drying costs for biomass constitute a considerable portion of pretreatment costs 

and, if the biomass is not first dried, transportation costs are higher (Lamers et al., 

2015). 

DES are a homogeneous mixture of two solid-phase chemicals that form a joint 

super-lattice at a specific molar ratio, called the eutectic composition. The joint super-

lattice melts at what is called the eutectic temperature, which is lower than the 

melting points of the individual components. DES are referred to as deep because the 

melting point curve has a deep crevice at the eutectic point, since the eutectic 

temperature is a much lower than the melting points of the pure substances. DES are 

formed by hydrogen bonding instead of the ionic bonding of ILs (Yiin et al., 2016)at 

temperatures of 130 °C or less (Francisco et al., 2012). Some safe and economically 

feasible components used to make DES are formic acid, acetic acid, lactic acid, 

betaine, and choline chloride (Perez-Sanchez et al., 2013). The safe food additives 

formic acid, lactic acid, and acetic acid can all be sustainably produced from biomass 

(Huo et al., 2015);(Yang et al., 2015). Choline chloride is made in large quantities for 

chicken feed and betaine is generated from sugar beets. (Francisco et al., 2012); 

(Perez-Sanchez et al., 2013). Work previously done on pretreatment of biomass 

reports that lignin can be separated from cellulose using DES (Hou et al., 2017); 

(Lynam et al., 2017); (Vigier et al., 2015).  
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The present work pursued the pretreatment of the biomass (Loblolly pine 

needles) with different DES solvents for separation of lignin and cellulosic 

components of the biomass, and also investigated the byproducts. In this study, mass 

yield from the pretreatment was calculated and the Fourier transform infrared 

spectroscopy (FTIR) spectra of the two solid products from the separation analyzed. 

Enzymatic hydrolysis was performed to find the glucose yield from the pretreated 

biomass. Fiber analysis was completed to find the composition of fiber remaining in 

the sample after pretreatment, using a National Renewable Energy Laboratory 

(NREL) compositional analysis procedure followed by a high-performance liquid 

chromatography (HPLC) analysis of carbohydrates and insoluble lignin analysis using 

ultraviolet-visible (UV) spectroscopy.
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CHAPTER 2 

BACKGROUND 

 

Production of bio-renewable polymers like lignocellulosic compounds for 

sustainable energy use has gained additional wide-spread importance in the fields of 

biomedical and transportation industries. Production of biofuels is achievable by 

hydrolyzing and then fermenting these polymers (polysaccharides) into ethanol, provided 

the processing and pretreatment of biomass that is used as a raw source of polymeric 

components has occurred (Lee, 1997). Significant advantages, such as low cost, 

biodegradability, and abundance, make application of biomass for production of bio-

renewable energy favorable. Contemporary industrial developments and the rapid pace of 

urbanization require environmentally sustainable energy sources. Ethanol made from 

biomass provides unique environmental and economic strategic advantages, as it can be 

considered as a safe and clean liquid fuel alternative to fossil fuels (Panwar et al., 2011). 

Lignin can be used in various types of batteries, in capacitors, and in fuel cells. The 

use of lignin in energy storage could decrease cost and toxicity to allow greener energy 

equipment. (Espinoza-Acosta et al., 2018). 

Lignin can also be used for various industrial and biomedical applications. These 

uses depend on the lignin source and how it has been modified. These properties and 

different preparation methods for lignin-based nanomaterials influence how lignin can be 

used as reinforcing agents in nanocomposites, in drug delivery, or as gene delivery systems 
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for biomedical applications (Figueiredo et al., 2018).In addition, petroleum based asphalt 

binders can be successfully replaced with 6% of lignin that was precipitated from black 

liquor for hot mix asphalt, and could be applicable in the low temperature warm mix asphalt 

process(Arafat et al., 2019). 

Lignocellulosic biomass is rich in lignin, which is a widely available under-utilized 

natural biopolymer due to its low solubility and reactivity characteristics. Despite these 

drawbacks, a very high solubility of lignin in a resorcinol-choline chloride DES when 

ultrasound irradiation was used has been reported (Malaeke et al., 2018). As cellulose is 

less soluble in some DES, lignin can be completely isolated from lignocellulosic biomass. 

Biomass can be treated with different solvents; among many others DES are used 

to separate lignin because of its biodegradability, wide liquid range, non-flammability, 

nontoxicity, biocompatibility, and low volatility (Lynam et al., 2017). 

In the field of sustainable chemistry, the study of new solvents tends to be the 

greatest challenge. DES represents the principles of green chemistry. These new types of 

chemicals are suitable for the selective removal of extractives, lignin, or polysaccharides 

from biomass (Škulcová et al., 2016). Biomass is specifically treated to separate the 

individual fractions, which following purification can provide products with high yields 

and purities. (Škulcová et al., 2016). 

According to a “Lignin Color Reactions” article (Crocker, 2005) it was reported 

that there are certain color reactions given by wood and lignified fibers. All the substances 

that gave high color test results were pure aldehydes. When some of the liquid solution was 

diluted with alcohol, phloroglucinol, or pyrrole, and a nitro aniline reagent was added, 

orange, and dark red colors were obtained. Maule reactions were done with eighteen 
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species of deciduous and coniferous woods, resulting in dark red for deciduous, and pale 

brown for coniferous species. Other chemicals like chlorine water, weak alkalis, sodium 

bicarbonate when reacted with lignin also gave color (Crocker, 2005). 

Three kinds of DES were facilely prepared in the study of Zhang et al. (2016), and 

used in the pretreatment of corncob, including monocarboxylic acid: choline chloride, 

dicarboxylic acid: choline chloride and polyalcohol: choline chloride. The enhanced 

delignification and subsequent enzymatic hydrolysis efficiency were found to be related to 

the acid amount, acid strength, and the nature of hydrogen bond acceptors. The X-ray 

diffraction, scanning electron microscope, and Fourier transform infrared spectroscopy 

(FTIR) results consistently indicated that the structures of corncob were disrupted by the 

removal of lignin and hemicellulose in the pretreatment process. In addition, the optimal 

pretreatment temperature and time were 90 °C and 24 h, respectively. Roles of various 

DES combinations were investigated, as well as pretreatment temperature and time to 

better utilize the DES in the pretreatment of lignocellulosic biomass (Zhang et al., 2016). 

The present study has built on this basic idea to utilize DES for the pretreatment of pine 

needles in the production of biofuel. 

When Hou et al., (2017) treated rice straw with DES, both hydrogen bond acceptors 

(HBAs) and hydrogen bond donors (HBDs) proved to be important for DES pretreatment 

efficiency (Hou et al., 2017). DES containing lots of hydroxyl or amino groups with a high 

intermolecular hydrogen-bond (H-bond) strength exhibited weak biomass deconstruction 

abilities. The presence of strong electron-withdrawing groups in DES furthered xylan 

removal, thus delivering higher cellulose digestibility. The relationships between the 

properties of DES, xylan removal, and cellulose digestibility of pretreated biomass were 
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established. It was found that xylan removal was negatively correlated with the pKa values 

of HBDs. The enzymatic cellulose digestibility of the residues was linearly and positively 

related to xylan removal, instead of to delignification. These results provided a roadmap 

for rational design of novel DES for biomass pretreatment (Hou et al., 2017). In another 

study by Zulke et al, (2017), DES were used as a pretreatment solvent on oil palm 

trunk (OPT) fibers in order to disorder the crystalline cellulose before enzymatic 

hydrolysis. Of the DES investigated, ethyl ammonium chloride: ethylene glycol 

(EAC:EG) was found to be the best solvent for the pretreatment of OPT fibers. 

Zulke et al, (2017) reported that 42% of lignin and 83%of hemicelluloses were 

removed by EAC:EG after heating at 100°C for 48h (Zulke et al., 2017). 

DES obtained from various hydrogen bond donors and acceptors can be used to 

evaluate the dissolving ability of lignin from biomass. Among various DES, lactic acid: 

choline chloride showed the optimal lignin extraction  ability, since it could dissolve 95% 

of lignin from biomass at 120°C in 6h(Chen et al., 2019). Another study found a DES-

lignin of 95.4% purity was extractable from willow after pretreatment with a 10:1 molar 

ratio of lactic acid: choline chloride at 120 °C for 18 h (Lyu et al., 2018). Loblolly pine, 

one of the most abundant trees in the United States, has commercial importance in the 

paper and pulp industry and has been treated with DES. It was observed that DES can 

dissolve lignin without inactivating enzymes, a property that makes them valuable in 

biofuel production (Lynam et al., 2017). From the above inferences it was understood that, 

DES can be used for the separation of lignin from the biomass. As Loblolly pine is 

abundant, pine needles can be utilized as byproduct of harvesting the pine in the process of 

biofuel production. 
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CHAPTER 3 

 

MATERIALS AND METHODS 
 

3.1 Raw Materials and Chemicals 

Loblolly pine needles were collected from the branches of 28-year-old Loblolly 

pine trees that had been harvested in Ruston LA with the help of Weyerhauser, Inc, 

employees and then refrigerated. Choline chloride powder  (BioReagent, suitable for cell 

culture, ≥98%), formic acid (reagent grade, ≥95%), acetic acid (reagent grade, ≥99.7%), 

lactic acid solution (reagent grade, ≥85%), sulfuric acid (reagent grade, 95-98, cellulase 

(powder) from Trichoderma reesei ATCC 26921,  hemicellulase (powder) from 

Aspergillus niger, and cellobiase (liquid) from Aspergillus niger, were purchased from 

Millipore Sigma (St.Louis, MO, USA). Sodium azide, 99% min, and sodium citrate 

dehydrate, 99.0% min, were purchased from Alfa Aesar (Ward Hill, MA, USA). Denatured 

ethanol (90.5%) was purchased from Duda Energy (Decatur, AL, USA). Nylon membrane 

discs size 0.45 μm were bought from Foxx Life Sciences (Salem, NH, USA). 

3.2 Synthesis of DES 

Three types of DES solvents were prepared for pretreatment of pine needle 

biomass. These were chosen on the basis of their nontoxicity and likelihood for 

effectiveness in pretreatment. FA:CC was prepared by mixing the formic acid (hydrogen 

bond donor) and choline chloride(hydrogen bond acceptor) in the mole ratio of 2:1; LA:CC 
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was prepared by mixing lactic acid with choline chloride in the mole ratio of 10:1; and 

AA:CC in the mole ratio of 2:1 (Table 3-1). After mixing the two components, mixtures of 

the solvents were placed in an orbital shaker at 200 RPM at 60°C for 20 min, and were 

kept for 20 min more if necessary, until a clear solution was seen. The clear DES solvents 

were then stored at room temperature and remained transparent for several weeks until they 

were used. In addition, the pHs of the three DES were measured by diluting them with DI 

water as the acids in the neat solvents gave very low pH values (Table 3-1).These values 

suggest that the activity of the DES in biomass processing was high, particularly for 

FA:CC. 

Table 3-1 Mole ratio of components in the DES mixtures and pH of DES. 

Hydrogen 

bond 

donor 

Hydrogen 

bond 

acceptor 

Molar 

ratio of 

DES 

pH of DES pH of DES 

diluted 10% 

with water 

pH of DES 

diluted 90% 

with water 

Formic 

acid 

Choline 

chloride 

2:1 -0.92 0.70 1.24 

Lactic 

acid 

Choline 

chloride 

10:1 -0.60 0.54 1.91 

Acetic 

acid 

Choline  

chloride 

2:1 0.47 1.01 1.84 
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3.3 Preparation of Biomass for Pretreatment 

Pine needles were dried at 60 °C for 24 h and ground. Ground biomass was sieved 

with numbers 14 and 25 mesh filters to obtain the appropriate size (~1 mm diameter 

particles) for pretreatment and stored in a closed plastic bag until use. 

3.4 Pretreatment of Pine Needles Using DES 

Dried and sieved biomass of weight 3 grams was mixed with 30 grams of each of 

the three types of DES: FA:CC(2:1 ratio), LA:CC( 10:1 ratio), AA:CC(2:1ratio) in separate 

flasks with a magnetic stirrer for continuous stirring and kept in the preheated oil bath for 

1 hour at 125°C. The flask with this solution mixture was connected to a condenser to 

collect liquid from the vapor of the slightly volatile DES in order to maintain the solvent 

volume constant. Standard errors for the results were found from triplicates of the samples 

that were done at 125 °C for 1 hour. 

3.5 Separation of Biomass and DES 

3.5.1 Filtration 

Once the pretreated biomass was cooled, biomass was separated from the DES 

solution using nylon membrane filters (0.44 mm) and a mesh filter membrane. Initially, 

nylon membrane filters and mesh filters were dried in a drying oven for 30 min and stored 

in a desiccator. A filtration unit was set up by connecting a Buchner funnel with a filter 

and a filtration flask to a vacuum pump. Pretreated biomass with the solvent was allowed 

to pass through the mesh filter; filter cake (filtride) from the filtration was rinsed with 25 

ml of ethyl alcohol to wash away any remaining DES on the residues by magnetically 

stirring for 20 min and filtering with the same mesh filter. 
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The filtride (biomass) from the above filtration was rinsed with 75 ml of deionized 

water by magnetically stirring at 50 °C for 20 min. Rinsing with deionized water was done 

three times to make sure no DES was left in the biomass. Finally rinsing with deionized 

water was repeated for another 24 h at 50 °C to obtain the clean biomass without any DES. 

A 0.44 mm nylon filter was used to separate the rinsed biomass with deionized water using 

a vacuum pump. Filtered biomass was dried at 105 °C for 24 h prior to weighing. 

3.5.2 Lignin Precipitation 

Filtrate from the vacuum filtration, which was expected to have lignin, DES, and 

ethyl alcohol was collected into a flask, then 175 ml of deionized water was added to 

precipitate lignin and separate it from DES, ethyl alcohol and deionized water. Precipitated 

biomass was separated using a nylon membrane filter and a vacuum pump. After 

separation, precipitate was dried at 105 °C for 24 h prior to weighing. All the procedures 

were repeated three times to get triplicates to overcome any lapse in experiments and 

provide details on measurement error. 

3.6 Fourier Transform Infrared Spectroscopy (FTIR) 

A Mattson Genesis II FTIR (Mattson Technology, Fremont, Ca, USA) was used to 

obtain the spectra of pretreated biomass samples. These are the third-generation infrared 

spectrometers with significantly higher signal to noise ratio, high accuracy for wave 

numbers and an error range less than 0.01 cm-1. As the standard method to prepare solid 

samples for FTIR spectrometry is to use KBr pellets, 1 mg of sample was mixed with 100 

mg of KBr and a pellet was made with a pellet holder press by applying pressure.  Single 

beam spectra of the samples were collected by running 32 scans with resolution 2 cm-1 

from wave number 3000 to 800 cm-1. FTIR analysis was performed on both the raw 
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biomass and pretreated biomass, and precipitated biomass as well. Data analysis of 

obtained spectra was done using OMNIC software that allows accessing the spectra and 

calculating peak areas. Table 3-2 shows the vibrations specifically used to evaluate 

cellulose and lignin content of the samples. Cellulose vibrations used were 1160 cm-1 and 

1425 cm-1 for type I/type II amorphous stretching and crystalline cellulose, respectively. 

The lignin vibration used was at 1515 cm-1. 

 

Table 3-2 Wavenumber vibration assignments and references                    

3.7 Enzymatic Hydrolysis    

        NREL’s enzymatic saccharification of lignocellulosic biomass LAP 009 protocol 

(Selig et al., 2008) was followed to understand the saccharification of cellulose from 

pretreated biomass in order to determine the maximum digestibility possible. Biomass after 

pretreatment was dried at 105°Cin a drying oven for 24 h. A sample of 0.1 gram of ground 

biomass was mixed with 5ml of sodium citrate buffer of pH 5.05, and l of 2% sodium 

azide solution. The total volume was brought to 10 ml by adding an appropriate amount of 

deionized water as described in the NREL protocol. Subsequently, cellulase, hemicellulase, 

Wavenumber (cm-1) Band assignment Reference 

1160 Amorphous stretching of cellulose type I 

and type II 

(Shi and Li, 2012) 

1425 Crystalline cellulose (Raj et al., 2015) 

1515 Lignin aromatic ring skeletal sketch (Raj et al., 2015) 
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and cellobiase were added at a concentration of 5, 14 and 50 units per 0.1 gram of sample, 

respectively. The mixture of biomass, buffer, sodium azide and enzyme cocktail was kept 

in the orbital shaker at 200 RPM at 50°C. Samples were collected at 24 h, 48 h and 72 h 

prior to filtering through a 0.45 m syringe filter and stored in the refrigerator at 4 °C prior 

to HPLC analysis. Glucose yield is calculated as a fraction of cellulose present in biomass 

that was recovered as glucose. The glucose yield was obtained using equation 1. 

% glucose yield = 

0.9∗10𝑚𝐿 𝑣𝑜𝑙𝑢𝑚𝑒 ℎ𝑦𝑑𝑟𝑜𝑙𝑦𝑠𝑖𝑠∗𝑔𝑙𝑢𝑐𝑜𝑠𝑒 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 
𝑔

𝑚𝑙 
(𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 𝑤𝑖𝑡ℎ 𝑏𝑙𝑎𝑛𝑘𝑠)

𝑔 𝑝𝑟𝑒𝑡𝑟𝑒𝑎𝑡𝑒𝑑 𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒∗  𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑐𝑒𝑙𝑙𝑢𝑙𝑜𝑠𝑒 𝑖𝑛 𝑝𝑖𝑛𝑒∗ 𝑚𝑎𝑠𝑠 𝑦𝑖𝑒𝑙𝑑 𝑝𝑟𝑒𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡  
            (1) 

The correction factor that accounts for the conversion from the biopolymer 

cellulose to the monomer glucose is 0.9. 

3.8 Carbohydrate Analysis Using HPLC 

The cellulose, hemicellulose, and lignin content of all the raw and pretreated 

samples were determined by quantitative saccharification with acid hydrolysis and 

subsequent HPLC analysis, using  NREL protocols LAP/TP-510-426 18 through 22 

(Sluiter et al., 2008). For raw biomass, ethanol extraction was carried out to remove the 

non-structural components of the biomass prior to acid hydrolysis and thus the biomass 

fraction regarded as extractives was removed from the raw biomass. For pretreated 

samples, it was assumed that the extractives component had been removed during the 

pretreatment process, so that these samples directly progressed to acid hydrolysis for 

compositional analysis. 

 The concentrations of glucose, xylose, arabinose, galactose, and mannose were 

quantified using an HPLC (ThermoFisher Scientific, Waltham, MA, USA) equipped with 

file:///C:/Users/Sai%20Nethra_PC/Desktop/n.folder/Rice%20hull%20and%20bagasse%20pretreatment%20using%20DES.docx%23_bookmark24
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refractive index detector and an Aminex HPX-87P column 300x7.8 mm, from Bio-Rad. 

The column temperature was maintained at 80 ˚C and the flow rate was 0.6 ml min-1 (DI 

water). Each experiment was performed in triplicate. Total cellulose release upon acid 

hydrolysis was determined as the sum of cellobiose and glucose and the total hemicellulose 

release was determined as the sum of xylose, galactose, arabinose, and mannose. The sum 

of acid insoluble and acid soluble lignin was represented as total lignin content available 

in each sample. 

3.9 UV Visible Spectroscopy 

UV Visible spectroscopy is a quantitative technique to determine the analyte 

concentration in the sample by absorption of light at a desired wavelength. The sample is 

dispensed into a quartz cuvette and placed in the path between a light source and a detector. 

From the Beer Lambert law, the concentration of the compound can be measured from the 

light absorbed at a desired wavelength with a constant light path length and a known 

absorption coefficient. The NREL fiber analysis procedure was followed to measure acid 

soluble lignin from the biomass after acid hydrolysis (Sluiter et al., 2010). A UV-2401PC 

spectrophotometer was used to analyze acid soluble lignin in the biomass. Once the 

biomass was pretreated it was hydrolyzed with 70% H2 SO4   and, with the hydrolysis, 

lignin in the sample was dissolved. Subsequently, 3000 l of this sample was measured 

and diluted 10 times with deionized water. With deionized water as a blank, analytes 

(lignin) in the sample was measured by absorbance at wavelength 260 nm. 

3.10  Soxhlet Extraction 

Nonstructural materials from the biomass must be removed from the biomass prior 

to compositional analysis to prevent any obstructions in later analytical procedures. Water 
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soluble and ethanol soluble extractives in the biomass can be removed by soxhlet 

extraction. Biomass of weight 3 grams was placed in a thimble and 200 ml of ethyl alcohol 

transferred into a conical flask. In Figure 3-1, a picture was taken when the soxhlet 

extraction setup was made, the thimble with biomass was inserted carefully into a Soxhlet 

siphon tube and kept above the conical flask with ethyl alcohol. 

The whole setup was kept in an oil bath at 80 °C for 24 h, and after 24 h biomass 

from the thimble was taken out and the loss of biomass measured. The percentage of 

extractives removed was then calculated. 

 

                                        

Figure 3-1 Soxhlet extraction setup 
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CHAPTER 4 

                            

                                  RESULTS AND DISCUSSION 
 

4.1 Mass Yield from DES Pretreatment 

When loblolly pine needles were treated with AA:CC, the percentage of mass yield 

for the biomass was 61.25%, with a standard error of 2.63 %.This mass yield was high 

when compared to the biomass yields for pretreatment with LA:CC and FA:CC. Average 

mass yield with LA:CC was lower than FA:CC at 49.55%, however the standard error for 

LA:CC was 8.32%, so no difference can be confirmed. Table 4-1 represents the mass yield 

percentages obtained with different DESs solvents and their standard errors. Mass yield for 

FA:CC was low because the mass of the precipitate from the filtrate was high. Heat 

required was 0.31 kW-h for the pretreatment process, which is relatively low as more 

energy can be produced with resultant glucose concentration (Kumar et al., 2019). 

 

Table 4-1 Biomass mass yield obtained with 3 types of DES 

DES solvent Mass yield % Standard error % 

FA:CC 43.65 1.25 

LA:CC 49.55 8.32 

AA:CC 61.25 2.63 
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When the biomass was treated with glycerol as a control, no reaction was observed 

and the biomass remained the same as raw biomass. This result made it clear that the heat 

treatment alone (1 hour at 125 °C) had no effects on biomass unlike the pretreatment with 

DES. Interestingly, an intense dark pink color of (#911137 from https://www.color-

hex.com/color/911137) was seen when pine needle biomass was treated with LA:CC at 

125 °C, 145 °C, 150 °C for 45 min, 1 h and 2 h at these respective temperatures. Further 

investigation was done to identify the cause of the color by removing the precipitated lignin 

by centrifugation at 200 RPM giving a decrease in the intensity of the color after the 

extraction of lignin. Extractives in the biomass were removed using the Soxhlet extraction 

procedure from NREL and were found to be about 26.10 % of raw biomass. The color was 

assumed to be due to a modification of lignin compounds in the pine needles. In Figure 4-

1, mass yield of the biomass pretreated with three types of DES and precipitated biomass 

was compared, where FA: CC showed more precipitate when compared to LA: CC and 

AA: CC. 

 

     Figure 4-1 Mass yield and precipitated biomass with 3 types of DES 
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After the separation of biomass filtrate was precipitated by the addition of deionized 

water, the mass of precipitated biomass (lignin precipitate) shown in Table 4-2, was higher 

when the biomass was treated with FA:CC, at 31.56% with a standard error of 1.75%. It 

was 20% with a standard error of 2.87% in the case of LA:CC and 17.51% with a standard 

error of 0.76% with AA:CC. 

 

Table 4-2 Lignin precipitated with addition of DI water 

Type of DES solvent Lignin precipitate % Standard error % 

FA:CC 31.56 1.75 

LA:CC 20.14 2.87 

AA:CC 17.51 0.76 

 

             

 Thus, larger amounts of lignin can be separated from the biomass when it is 

pretreated with FA:CC and LA:CC compared to AA: CC. The images in Figure 4-2 confirm 

that the pine needles treated with FA:CC and LA:CC show a greater extent of biomass 

breakdown compared to AA:CC. 
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4.2 FTIR Analysis of Pretreated Loblolly Pine Needles and Precipitate from 

Deionized Water 

FTIR analysis of raw and pretreated biomass elucidated the transformation in 

biomass composition and structure in the process of DES pretreatment. FTIR spectra of 

raw and pretreated biomass and precipitated lignin samples are shown in Figure 4-4, and 

Figures 4-5. It can be seen from Figure 4-4  that all the pretreated samples showed a FTIR 

vibration at 1425 cm-1  (native type 1 cellulose) and 1160 cm-1  (amorphous stretching of 

cellulose type I and type II ) indicating the pretreated biomass still contains considerable 

amount of crystalline and disordered cellulose. These findings confirm that the structure of 

the pretreated biomass was obviously changed, resulting in improved enzymatic 

saccharification.  

Figure 4-2 Digital microscopic images of biomass with 500x magnification (a) Before 

pretreatment, (b) After pretreatment with FA:CC, (c) After pretreatment with LA:CC, (d) 

After pretreatment with AA:CC 
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                               CL ratio = 
𝑃𝑒𝑎𝑘1425+ 𝑃𝑒𝑎𝑘1160

𝑃𝑒𝑎𝑘1515
                                                              (2) 

CL ratio is the cellulose to lignin ratio as found from FTIR. Peak1425 is the intensity of the 

vibration at 1425 cm-1. Similarly, Peak1160 is the intensity of the vibration at 1160 cm-1 and 

Peak1515 is the intensity of the vibration at 1515 cm-1, from the lignin aromatic ring skeletal 

stretch. The results are shown in Figure 4-3. 

Figure 4-3 Cellulose to lignin ratio of raw pine needles and DES pretreated pine needles 

 

 Figure 4-3, calculated from FTIR spectra (equation 2), shows the ratios of 

intensities of vibrations resulting from cellulose compared to the most prominent lignin 

vibration. The raw biomass had a low cellulose to lignin ratio. Biomass pretreated with 

FA:CC and LA:CC had high cellulose to lignin ratios, indicating much more cellulose than 

lignin after pretreatment. Precipitated lignin from the FA:CC showed align in related 

characteristics peaks and a low cellulose to lignin ratio, indicating little cellulose compared 

to lignin. Similarly, precipitated lignin from the LA:CC had a low CL ratio, indicating little 

cellulose. AA:CC showed less effectiveness in pretreatment when quantified with these 

FTIR vibrations intensities. Figures 4-4 and 4-5 show sample FTIR spectra for the raw 
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biomass and the products from DES pretreatment. 

An additional method to evaluate the effectiveness of DES pretreatment was chosen 

using the ratios of the combined areas of relevant cellulose vibrations (1160 cm-1 and 1425 

cm-1) to that related to lignin (1515 cm-1) for both raw and pretreated samples. 

Figure 4-4 FTIR transmission spectra of raw and FA:CC, LA:CC and AA:CC pretreated 

biomass 

 

Figure 4-5 FTIR transmission spectra of raw and FA:CC, LA:CC and AA:CC 

precipitated biomass 
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Pretreatment Index was calculated using the following equation: 

PI = 
𝐶𝐼 𝑟𝑎𝑡𝑖𝑜𝑝𝑟𝑒𝑡𝑟𝑒𝑎𝑡𝑒𝑑 𝑠𝑎𝑚𝑝𝑙𝑒

𝐶𝐼 𝑟𝑎𝑡𝑖𝑜𝑟𝑎𝑤 𝑝𝑖𝑛𝑒 𝑛𝑒𝑒𝑑𝑙𝑒𝑠
                                                                    (3) 

CI ratio is the cellulose to lignin ratio as found from the selected FTIR vibrational area of 

(1425 cm-1+ 1160 cm-1)/ 1515 cm-1. 

The calculated pretreatment indexes (PI) in Figure 4-6 clearly show that the 

biomass treated with FA:CC and LA:CC gave high PIs indicating high cellulose to lignin 

ratios compared to the PI of the raw biomass. This analysis method also confirmed that 

lignin in pine needle samples was removed by the DES pretreatment using FA:CC and 

LA:CC, but to a lesser extent by AA:CC. The low PIs shown from the lignin precipitate by 

these FA:CC and LA:CC reveal a high lignin content.  

 

    These findings confirm the mass yield data above for three DES, which showed 

reduced mass yield by these two DES, but higher mass yield after AA:CC pretreatment. 

FA:CC pretreated pine needles showed the most pronounced lignin peaks, and also resulted 

in the highest glucose yield after enzymatic hydrolysis, as discussed in the next section. 

 

Figure 4-6 Pretreatment index of DES pretreated pine needles 



31 

 

 
 

4.3 Enzymatic Hydrolysis 

To evaluate the efficiency of the DES pretreatment to enhance the cellulose 

accessibility to hydrolytic enzymes, the rates of conversion of cellulose into glucose during 

enzymatic hydrolysis of raw and pretreated biomass were measured. The glucose yields 

(the ratio of glucose liberated by enzymatic hydrolysis to glucose that exists as cellulose in 

the raw or pretreated biomass) as a function of hydrolysis time for pine needles are shown 

in Figure 4-7. 

Figure 4-7 shows glucose yield versus enzymatic hydrolysis time, after 

pretreatment in various DES at 1 hour at 125 °C, as well as for raw biomass. As shown in 

Figure 4-7, a very low concentration of glucose was liberated for the pine needles that did 

not undergo DES pretreatments. This result indicates the necessity of pretreatment 

preceding enzymatic hydrolysis to change some structural characteristics of pine needles 

and to increase cellulose accessibility to hydrolytic enzymes in order to provide high sugar 

yield, due to the recalcitrant lignocellulosic structure of the biomass. The liberated glucose 

yield for FA:CC pretreated pine needles was the highest after 72 h. The glucose yield for 

the rest of the samples lie below the FA:CC pretreated sample.  

The mass yield results showed that FA:CC pretreated pine needles had the lowest 

mass yield compared to the other samples, indicating that increased biomass components 

removal allowed more enzyme accessibility, and as a result a higher sugar yield was 

obtained. Among the three pretreated samples AA:CC had the highest mass yield, and all 

the three DES pretreated samples shows constant hydrolysis glucose yield for 24 h and 48 

h that then increased slightly when hydrolyzed for 72 h. 
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In Figure 4-7, standard error bars are shown. The chromatogram from HPLC of the 

analyzed sugars from enzymatic hydrolysis (Figure 4-8) illustrates the increased sugar 

concentration in pretreated biomass. Figure 4-9 illustrates the chromatogram obtained with 

precipitated biomass showing less sugar in biomass treated with FA:CC indicating 

increased lignin concentration in the precipitated biomass and increased concentration of 

sugar in the pretreated biomass (the scales for these graphs are different). The precipitated 

biomass with AA:CC pretreatment exhibits a higher sugar concentration as it is less lignin-

concentrated when compared to precipitated biomass from FA:CC and LA:CC. Thus, the 

chromatograms of pretreated and precipitated biomass suggest that sugar concentration in 

the pretreated biomass was increased due to separation of lignin from the biomass with 

DES pretreatment. When compared to raw biomass, all the pretreated pine needle samples 

showed an increase in glucose yield indicating that the pretreatment of pine needles was 

Figure 4-7 Glucose yield of Loblolly pine needles treated with 3 types of DES 



33 

 

 
 

beneficial in the separation. AA:CC was the least efficient, while FA:CC was the most 

efficient DES for obtaining higher glucose yields during hydrolysis. 

 

 

4.4 Fiber Analysis 

Structural compositions of the samples that were treated with DES were 

Figure 4-8 Chromatogram of pretreated biomass 

Figure 4-9 Chromatogram of precipitated biomass 
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characterized with a fiber analysis process from NREL, as described above. Raw biomass 

and biomass pretreated with DES were compared using data obtained from fiber analysis. 

It was clearly understood from the data that biomass that was pretreated with DES biomass 

was more cellulosic, and less concentrated in lignin when compared to raw biomass. In the 

case of AA:CC composition of the pretreated biomass showed negligible change when 

compared to the respective raw biomass, indicating that no specific biomass fraction was 

removed selectively during pretreatment. This explains why there was little improvement 

observed in the enzymatic saccharification of AA:CC pretreated pine needles, when 

compared to the respective raw biomass sample. In other DES pretreated biomass samples, 

lignin and hemicellulose concentration decreased, indicating a corresponding increase of 

the relative cellulose concentration. 

When analyzing the composition of pretreated biomass, it was found that the 

highest change in cellulose and lignin components was observed in biomass pretreated with 

FA:CC. This result explains the faster enzymatic saccharification obtained. LA:CC 

pretreated biomass showed improved cellulose and lignin separation compared to biomass 

treated with AA:CC. Glucose yield obtained after enzymatic hydrolysis would  be expected 

for FA:CC and LA:CC  pretreated biomass compared to AA:CC pretreated biomass as 

FA:CC and LA:CC are more effective than AA:CC. 

From the above findings it can be seen that DES solvents can be used for 

pretreatment of pine needle biomass, resulting in more cellulosic biomass and increased 

enzymatic saccharification. Regardless of the type of DES, pretreatment does affect 

enzymatic saccharification. In Figure 4-10, UV visible spectra show the concentration of 

acid soluble lignin that was expected to dissolve with the acid treatment. The AA:CC 
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pretreated sample exhibits the highest lignin absorbance, indicating that less lignin was 

removed. 

 

Figure 4-10 UV-Visible spectra of acid soluble lignin 

 

In the pretreated samples ash content was increased compared to relevant raw 

biomass. It has been reported that these inorganics play a significant role as catalyst in the 

process, disrupting hydrogen bonds between crystalline cellulose biomacromolecules 

(Yang H 2014 ).



 

 

36 

 

 

CHAPTER 5 

        

                                CONCLUSIONS AND FUTURE WORK 
 

5.1 Conclusions 

In the present study three different kinds of DES were synthesized and pretreatment 

efficacy investigated for each type of DES with Loblolly pine needles. Despite its recalcitrance, 

pine needle biomass had the potential to act as a substrate for pretreatment with significant DES. 

From the mass yields obtained it was clear that some portion of lignin was removed from the 

sample efficiently with one of the DES, FA:CC. Enzymatic hydrolysis data showed that DES 

pretreatment enhanced the glucose yields significantly after enzymatic saccharification. FTIR 

analysis of DES-pretreated biomass samples indicated that the enhanced glucose yield was due to 

removal of lignin during pretreatment, so that the pretreated biomass was rich in cellulosic content. 

FTIR analysis also confirmed the precipitated lignin was of high purity. Based on the results shown 

in this study, among the three types of DES, FA:CC pretreatment had the potential to serve as an 

alternative to existing technologies for biomass pretreatment. FA:CC pretreatment of Loblolly pine 

needles has potential to enhance the production of biofuels from glucose and also to separate lignin, 

which has wide range of applications. 
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5.2 Future Work 

An integrated process of pretreatment with DES should be developed, considering the 

complexity of biomass composition and copious availability of forest residues. Such work could 

significantly increase the conversion of lignocellulosic biomass to high value products. Various 

conditions for optimum pretreatment of lignocellulosic biomass should be verified with a range of 

DES to increase the saccharification and lignin separation for industrial application. Investigation 

of the application of a lignin component in pine needle modified when treated with DES for use 

as a color dispersing or coloring agent could introduce new applications for using lignin as a natural 

dye. 
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