
Louisiana Tech University Louisiana Tech University

Louisiana Tech Digital Commons Louisiana Tech Digital Commons

Doctoral Dissertations Graduate School

Winter 2020

A Framework of Multi-Dimensional and Multi-Scale Modeling with A Framework of Multi-Dimensional and Multi-Scale Modeling with

Applications Applications

Zilong Li

Follow this and additional works at: https://digitalcommons.latech.edu/dissertations

 Part of the Applied Mathematics Commons, Biological and Chemical Physics Commons, and the

Computer Sciences Commons

https://digitalcommons.latech.edu/
https://digitalcommons.latech.edu/dissertations
https://digitalcommons.latech.edu/graduate-school
https://digitalcommons.latech.edu/dissertations?utm_source=digitalcommons.latech.edu%2Fdissertations%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/115?utm_source=digitalcommons.latech.edu%2Fdissertations%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/196?utm_source=digitalcommons.latech.edu%2Fdissertations%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.latech.edu%2Fdissertations%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages

A FRAMEWORK FOR MULTI-DIMENSIONAL AND MULTI-SCALE

MODELING WITH APPLICATIONS

by

Zilong Li, B.S., M.S.

A Dissertation Presented in Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy of Science

COLLEGE OF ENGINEERING AND SCIENCE
LOUISIANA TECH UNIVERSITY

March 2020

GS Form 13a
(10/18)

LOUISIANA TECH UNIVERSITY

GRADUATE SCHOOL

November 14, 2019

Date of dissertation defense

We hereby recommend that the dissertation prepared by

Zilong Li, B.S. , M. S.

entitled A FRAMEWORK OF MULTI-DIMENSIONAL AND MULTI-SCALE

MODELING WITH APPLICATIONS

be accepted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Computational Analysis & Modeling

Thomas C. Bishop, Supervisor of Dissertation Research

__
Weizhong Dai,

Head of Computational Analysis & Modeling

Members of the Doctoral Committee:
Pradeep Chowriappa
Songming Hou
Galen Turner
Gergana G. Nestorova

Approved: Approved:

__________________________________ __________________________________
Hisham Hegab Ramu Ramachandran
Dean of Engineering & Science Dean of the Graduate School

ABSTRACT

In this dissertation, a framework for multi-dimensional and multi-scale modeling

is proposed. The essential idea is based on oriented space curves, which can be

represented as a 3D slender object or 1D step parameters. SMILES and Masks provide

functionalities that extend slender objects into branched and other objects. We

treat the conversion between 1D, 2D, 3D, and 4D representations as data unification.

A mathematical analysis of different methods applied to helices (a special type of

space curves) is also provided. Computational implementation utilizes Model-View-

Controller design principles to integrate data unification with graphical visualizations

to create a dashboard. Applications of multi-dimensional and multi-scale modeling

are provided to study “Magic Snake”, “Nanocar” and “Genome Dashboard”.

iii

APPROVAL FOR SCHOLARLY DISSEMINATION

The author grants to the Prescott Memorial Library of Louisiana Tech University the right to

reproduce, by appropriate methods, upon request, any or all portions of this Dissertation. It is understood

that “proper request” consists of the agreement, on the part of the requesting party, that said reproduction

is for his personal use and that subsequent reproduction will not occur without written approval of the

author of this Dissertation. Further, any portions of the Dissertation used in books, papers, and other

works must be appropriately referenced to this Dissertation.

Finally, the author of this Dissertation reserves the right to publish freely, in the literature, at

any time, any or all portions of this Dissertation.

Author _____________________________

Date _____________________________

GS Form 14
(5/03)

01/10/2020

Zilong Li

DEDICATION

I dedicate this dissertation to my parents for their unconditional love and

support, and to Aobo Jiang for going through thick and thin with me the entire Ph.D.

journey.

v

TABLE OF CONTENTS

ABSTRACT ... iii

DEDICATION.. v

LIST OF FIGURES.. x

LIST OF TABLES..xiii

ACKNOWLEDGMENTS ...xiv

CHAPTER 1 INTRODUCTION... 1

1.1 Overview ... 1

1.2 Dissertation Outline.. 2

CHAPTER 2 BACKGROUND AND PREVIOUS WORK................................. 3

2.1 Multi-dimensional Modeling.. 3

2.1.1 Space Curve... 4

2.1.2 SMILES ... 11

2.2 Multi-scale Modeling... 13

2.2.1 Masks .. 13

2.3 Conclusion... 15

CHAPTER 3 COMPARISON OF METHODS FOR STUDYING SPACE
CURVES WITH SUPER-HELIX GEOMETRY 16

3.1 Geometry of Helices .. 16

3.2 Methods .. 17

vi

vii

3.3 Analysis and Results ... 18

3.3.1 Circle ... 18

3.3.2 Shear Helix .. 29

3.3.3 Torsion Helix ... 33

3.4 Conclusions ... 37

CHAPTER 4 MULTI-DIMENSIONAL AND MULTI-SCALE MODELING
OF MAGIC SNAKE .. 38

4.1 Magic Snake Introduction ... 38

4.2 Multi-dimensional Modeling of Magic Snake .. 40

4.2.1 3D to 1D.. 40

4.2.2 1D to 3D.. 42

4.3 Multi-scale Modeling of Magic Snake.. 46

4.3.1 Line Skeleton Representation as a Mask 47

4.3.2 Embedded Wedge as a Mask ... 50

4.4 Collision detection... 52

4.4.1 Methods... 52

4.4.2 Results... 58

4.5 Conclusions ... 61

CHAPTER 5 MULTI-DIMENSIONAL AND MULTI-SCALE MODELING
OF NANOCARS .. 63

5.1 Nanocar Introduction.. 63

5.2 Multi-dimensional Modeling of Nanocars.. 65

5.2.1 Off-The-Shelf ... 65

5.3 Multi-scale Modeling of Nanocars... 67

viii

5.4 Computational Implementation .. 68

5.4.1 Data Sharing ... 68

5.4.2 Our Simulation Workflow .. 68

5.4.3 Model-View-Controller Design... 69

5.5 Results .. 73

5.5.1 Nanocar Racing Webpage.. 73

5.5.2 Analysis ... 75

5.6 Conclusions ... 76

CHAPTER 6 MULTI-DIMENSIONAL AND MULTI-SCALE MODELING
OF GENOME DASHBOARDS... 78

6.1 Genome Dashboards Introduction... 78

6.2 Multi-dimensional Modeling with Genome Dashboards............................ 81

6.3 Multi-scale Modeling with Genome Dashboards....................................... 87

6.3.1 DNA Masks ... 87

6.3.2 Collision Detection in 1D .. 90

6.4 Computational Implementation .. 94

6.5 Results .. 96

6.5.1 G-Dash Web Application... 96

6.5.2 Informatics to Physical Structure ...107

6.5.3 Physical Structure to Informatics..110

6.5.4 Performance...115

6.6 Conclusions ...116

ix

CHAPTER 7 CONCLUSIONS..120

BIBLIOGRAPHY...123

LIST OF FIGURES

Figure 2.1: Space Curve .. 4

Figure 2.2: Graphical Representation of ~Γ.. 6

Figure 2.3: Graphical Representation of ~Ω.. 7

Figure 2.4: Euler Angle Method for Space Curves.. 10

Figure 2.5: Rules for SMILES ... 11

Figure 3.1: RDE−A and RDmath of a Circle ... 19

Figure 3.2: SPE−A, SPE−R and SPmath of a Circle.. 20

Figure 3.3: SPE−A, SPE−R and SPmath of a Circle in One Period....................... 22

Figure 3.4: SPE−A, SPE−R and SPmath of a Circle in One Period, and Shift
SPmath by Half Step ... 23

Figure 3.5: Difference between SPE−A, SPE−R with SPmath of a Circle.............. 24

Figure 3.6: RDE−A, RDE−R and RDmath of a Circle .. 25

Figure 3.7: Continuous and Discrete Mid-steps .. 26

Figure 3.8: RDE−A, RDE−R and RDmath of a Circle with Twist=0 27

Figure 3.9: RDE−A, RDE−R and RDmath of a Shear Helix 30

Figure 3.10: RDE−A, RDE−R and RDmath of a Shear Helix with Step Size of 1/16 31

Figure 3.11: RDE−A, RDE−R and RDmath of a Torsion Helix 34

Figure 3.12: SPE−A with Different Step Sizes .. 35

Figure 4.1: Wedge and Magic Snake Examples... 39

x

xi

Figure 4.2: Rotations between Each Adjacent Wedges. .. 42

Figure 4.3: Assigning Director Frames to Wedges... 45

Figure 4.4: Procedure for Building a Magic Snake Wedge by Wedge. 45

Figure 4.5: Line Skeleton Representation.. 48

Figure 4.6: “Spoon” Design ... 50

Figure 4.7: Fitting Magic Snake onto a Space Curve.. 50

Figure 4.8: Embedding Structure in a Magic Snake.. 51

Figure 4.9: Expanding a Magic Snake... 52

Figure 4.10: Minkowski Difference .. 53

Figure 4.11: Checking a Point Inside or Outside a Tetrahedron............................. 55

Figure 4.12: GJK Algorithm... 57

Figure 5.1: The Original Nanocar. .. 65

Figure 5.2: Coarse-grained SMILES.. 68

Figure 5.3: The Software Associated with Model, View and Controller 70

Figure 5.4: Nanocar Racing Web Application... 72

Figure 6.1: Data Unification ... 83

Figure 6.2: Default Base Pair Step Parameters Used in G-Dash. 86

Figure 6.3: Masks Strategies. .. 89

Figure 6.4: Example of 3D Structure and 1D Informatics Representations of a
DNA Sequence. ... 90

Figure 6.5: Model-View-Controller (MVC) Design. ... 94

Figure 6.6: G-Dash Overall Layout ... 98

Figure 6.7: G-Dash Functionalities ...102

xii

Figure 6.8: Woodcock Equivalent and Distance-Distance Plot107

Figure 6.9: Informatics to Physical Structure ...109

Figure 6.10: Physical Structure to Informatics ...112

Figure 6.11: Generalized Step Parameters ..117

LIST OF TABLES

Table 3.1: RMSD Analysis for Circular DNA.. 28

Table 3.2: RMSD Analysis for Shear Helix.. 32

Table 3.3: RMSD Analysis for Torsion Helix... 36

Table 4.1: Exhausting All Possible Conformations Magic Snake with Less than
10 Wedges ... 59

Table 4.2: Timing for Collision Detection under 8 Wedges 60

Table 4.3: PC Specification.. 61

Table 4.4: CPU Specification... 61

Table 5.1: Nanocar Models from 1D to 4D. ... 66

Table 5.2: Timing for Nanocar Simulation .. 75

Table 6.1: RMSD Analysis of Generalized Step Parameters for HOXC113

Table 6.2: Performance of E-A and E-R Methods ...116

xiii

ACKNOWLEDGMENTS

We thank Joohyun Kim and Jinghua Ge of the Center for Computation

and Technology, Louisiana State University, and John Gentle of Science Gateways

Community Institute (SGCI) for assistance and advice. We thank the Schlick Lab at

NYU for sharing coordinate data for the HOXC models. We thank Professors Gergana

G. Nestorova, Pradeep Chowriappa and Galen Turner as committee members for help

with the thesis. We thank Professor Songming Hou for the supervision of the Magic

Snake research. We thank Professor Thomas C. Bishop as the advisor for overall

guidance. This work was supported by the National Institute of General Medical

Sciences of the National Institutes of Health [P20 GM103424-17]; National Science

Foundation [OIA-1541079]; and the Louisiana Board of Regents.

xiv

CHAPTER 1

INTRODUCTION

1.1 Overview

With computational power increasing exponentially, larger systems can be

simulated (e.g. scientists have created the first billion-atom biomolecular simulation

in April, 2019 [1]). These simulations may represent the movement of stars in a

galaxy or the movement of atoms in a living cell. At the same time, a lot of data

are acquired and processed with less costs (e.g. in 2003, it costs $3 billion dollars to

sequence the first Human Genome Project, and by 2017, the first $100 dollar genome

appears [2]). Today, abundant information such as DNA sequencing and chemical

informatics are provided in a variety of databases. Automated experimental workflows

are maturing for the production of this informatics data. However, physical modeling

and informatics are typically not well integrated. Informatics data, often available as

a 1D representation, may not necessarily be associated with a 3D geometric structure,

even if it describes a physical object. Meanwhile, physical modeling requires geometric

structures, which may not necessarily be related to 1D informatics data. Thus, in many

cases, informatics data sets are missing geometric constraints and physical modeling

is not fully utilizing the wealth of available informatics data. Here, we propose a

1

2

multi-dimensional and multi-scale modeling strategy that unifies 1D informatics, 2D

analyses, 3D geometries, and 4D simulations.

1.2 Dissertation Outline

In this dissertation, we first describe the mathematical and computational

background and previous work used to achieve data unification in Chapter 2. Chapter 3

provides detailed analyses of oriented space curves described in Chapter 2. Then,

three applications demonstrate the general utility of the method and include tools for

modeling and analysis: Magic Snake toys, Nanocars, and genomics in Chapter 4, 5,

and 6, respectively.

CHAPTER 2

BACKGROUND AND PREVIOUS WORK

In order to achieve the desired multi-dimensional and multi-scale modeling,

both mathematical and computational methods are needed. This chapter provides the

background on previous work of the method utilized in this dissertation. For multi-

dimensional modeling, we describe “Space Curves” and “SMILES” for data unification

of slender and branched entities, respectively. For multi-scale modeling, we describe

“Masks” for data unification through coarse-grained to all-atom to continuous models.

Adoption of methods with specific purposes for individual projects are described in

later chapters.

2.1 Multi-dimensional Modeling

There are many ways to represent a 3D object. For example, we can identify a

sphere by providing the center location and the radius, or draw on a piece of paper, or

display it in 3D with a graphical viewer. A mathematical foundation of representing

and converting data within different representations becomes essential. Here, we

propose a framework for multi-dimensional and multi-scale modeling strategies.

3

4

2.1.1 Space Curve

Mathematical Description

A space curve, Figure 2.1, is a three-dimensional curve with center line, ~r(s) =

(rxêx, ryêy, rz êz) = (~rx, ~ry, ~rz), and director frames D(s) = d̂i(s), i = 1, 2, 3, that track

the local orientation of the space curve [3].

Figure 2.1: Space Curve, where ~r(s) represents the center line, D(s) (d̂i(s), i = 1, 2, 3)
are director frames.

The combined [~r(s),d̂i(s)] representation is labeled RD(s). An equivalent

description of the space curve is based on the director frames themselves. This

description is a material reference frame description that captures the translations,

~Γ(s), and rotations, ~Ω(s), connecting adjacent director frames. ~Γ is a proper vector.

5

~Ω is a pseudovector. They can be expressed in the local reference frame as ~Γ(s) =

(Γ1d̂1,Γ2d̂2,Γ3d̂3), and ~Ω(s) = (Ω1d̂1,Ω2d̂2,Ω3d̂3). The [~Γ(s), ~Ω(s)] representation is

labeled SP(s) and is a continuous analog of the discrete step parameters (Tilt, Roll,

Twist, Shift, Slide, Rise) used to describe DNA [4] or (Pitch, Yaw, Roll, Heave,

Sway, Surge) used by navigators [5]. The RD(s) and SP(s) representations are

mathematically related by the expressions:

d~r

ds
= ~t = D~Γ (2.1)

dd̂i
ds

= D~Ω× d̂i (2.2)

~r(s1, s2) =

∫ s2

s1

~tds =

∫ s2

s1

D~Γds (2.3)

d̂i(s1, s2) =

∫ s2

s1

D~Ω× d̂ids (2.4)

Here, ~t(s) is the non-normalized tangent, and D(s) is the matrix whose columns

are the directors at position s. The Frenet-Serret Tangent-Normal-Binormal, TNB(s),

description of a space curve can be obtained from just ~r(s) [6]. Setting D = I in

Equation 2.1 equates ~Γ(s) to ~t(s). Moreover, the TNB(s) model is a shear free model

with ~t(s) = ~Γ(s). The normal n̂(s) is obtained from the second derivative of ~r(s), and

the bi-normal b̂(s) is the cross product of t̂(s) and n̂(s), but the TNB(s) directors are

not necessarily the desired director frames for a particular space curve. For example,

6

DNA is highly twisted if the director frames are aligned with base pair frames. Hence,

D(s) obtained from DNA and from TNB(s) are not the same.

In order to obtain Equations 2.1-2.4, we can study the region from s to s+ ∆s

on a space curve, as shown in Figures 2.2 and 2.3. In Figure 2.2, we can treat

this point s on the space curve located at the origin of an “imaginary” coordinate

system, such that (êx, êy, êz) = (d̂1, d̂2, d̂3). Then, the vector ~r(s) = (0, 0, 0) is in this

coordinate system. By taking the derivative of a space curve at position s (or at

the origin of this “imaginary” coordinate system), d~r(s)
ds

is ∆~r(s) in Figure 2.2, where

∆~r(s) has three components along the x, y, z axis of the “imaginary” coordinate

system (∆~rx,∆~ry,∆~rz). By the definition of ~Γ, which is the vector that captures

the translations between director frames, we have (∆~rx,∆~ry,∆~rz) = (~Γ1, ~Γ2, ~Γ3) = ~Γ.

Note that ~Γ is represented in the internal frames (can be treated at that the start of

the origin point in the “imaginary” coordinate system), so we need to apply D to it to

rotate it to the external frame (the coordinate system that the space curve belongs),

which applies to Equation 2.1.

Figure 2.2: The region from s to s+ ∆s on a space curve.

7

At the same time, ~Ω is only for the rotations. As shown in Figure 2.3, the

rotations are from the director frame at s to the director frame at s+ ∆s. Before we

apply D, director frame s is just an identity matrix (as in the “imaginary” coordinate

system). If we first study d̂1, let ~Ω = (~Ω1, ~Ω2, ~Ω3), then the rotation ~Ω1 does not affect

d̂1 because it is rotating along it; when ~Ω2 rotated along d̂2, then d̂1 will move to

the negative direction of d̂3 by the amplitude of |~Ω2|; and when ~Ω3 rotated along d̂3,

then d̂1 will move to the positive direction of d̂2 by the amplitude of |~Ω3|. As a result,

we have ∆d̂1 = (0, |~Ω3|,−|~Ω2|) = (~Ω1, ~Ω2, ~Ω3) × (1, 0, 0) = (~Ω1, ~Ω2, ~Ω3) × d̂1. In the

same way, we have ∆d̂2 = (−|~Ω3|, 0, |~Ω1|) =(~Ω1, ~Ω2, ~Ω3)× (0, 1, 0) = (~Ω1, ~Ω2, ~Ω3)× d̂2,

and ∆d̂3 = (|~Ω2|,−|~Ω1|, 0) = (~Ω1, ~Ω2, ~Ω3) × (0, 0, 1) = (~Ω1, ~Ω2, ~Ω3) × d̂3. Hence,

dd̂i
ds

= ∆d̂i = D~Ω× d̂i as shown in Equation 2.2.

Figure 2.3: Same region as shown in Figure 2.2, ∆d̂i represents the rotation from
blue to red.

By obtaining these equations, we also notice that we are able to solve these

equations in both directions. That is, given RD(s), we can calculate SP(s), and given

SP(s), we can calculate RD(s). It may not be possible to have analytical solutions

8

for such equations, but with the help from numerical techniques such as 4th-order

Runge-Kutta, we are able to find numerical solutions for these equations. The problem

is that the cross product may not have an inverse or unique solution. In order to

obtain ~Ω, we can trace back to how we derived it. That is, with ∆d̂1 = (0,Ω3,−Ω2),

we can calculate ∆d̂1 by dd̂1
ds
DT first, then we already get Ω3 = ∆d̂1 · (0, 1, 0), and in

the same way, we will observe ~Ω.

Discrete Methods

From a discrete point of view, piecewise differentiation and integration can be

associated with discrete director frames. In this case the space curve can even represent

a sequentially numbered, yet otherwise unrelated, collection of points in space. In

addition to the piecewise differentiation and integration, there are two widely used

algorithms in the modeling of DNA. One is the Euler-Angle (E-A) based method [7]

used in 3DNA [8], and one is the Euler-Rodrigues (E-R) based method [9] used in

CURVES+ [10]. Both E-A and E-R methods adopt the three translations (Shift, Slide,

Rise) and three rotations (Tilt, Roll, Twist) as the representation between DNA base

pairs. Unlike the continuous differentiation described above, E-A and E-R, as methods

implement on double-stranded DNA, they need a mid-step triad to help identify the

translations and rotations from one step to the next step. With the method the values

obtained are independent of which strand of DNA is identified as the reading strand.

Below, the E-A and E-R methods are described.

9

Euler-Angle Method: Here, we provide the expressions for rotation matrices

utilized in the E-A method. A rotation matrix is a matrix that is used to accomplish

a rotation in Euclidean space. In 3D, the rotation matrices are given by:

Rx(θ) =

1 0 0

0 cos(θ) −sin(θ)

0 sin(θ) cos(θ)

Ry(θ) =

cos(θ) 0 sin(θ)

0 1 0

−sin(θ) 0 cos(θ)

Rz(θ) =

cos(θ) −sin(θ) 0

sin(θ) cos(θ) 0

0 0 1

where Rx rotates the object along the x-axis, Ry rotates the object along the y-axis,

and Rz rotates the object along the z-axis.

As shown in Figure 2.4, the E-A method utilizes an approximation with Tilt and

Roll by letting Bend =
√
Roll2 + Tilt2, so that the three rotations (Tilt, Roll, Twist)

are reduced to two rotations: Twist and Bend. φ is defined as arctan(T ilt
Roll

). By setting

up mid-step triad (mst), the E-A method first uses the rotation matrices to rotate

the director frame along d̂3 direction by Twist
2
− φ, which puts D1 = Rz(

Twist
2
− φ)Di.

Then, rotate the director frame along d̂2 direction by Bend, which is D2 = Rz(
Twist

2
−

10

φ)Ry(Bend)Di. Finally, rotate the director frame along d̂3 axis by Twist
2

+φ and we will

have Di+1 = Rz(
Twist

2
−φ)Ry(Bend)Rz(

Twist
2

+φ)Di, which completes the rotation from

step i to step i+1. In the same way, we will get Dmst = Rz(
Twist

2
−φ)Ry(

Bend
2

)Rz(φ)Di.

The translation then is r(i+ 1) = r(i) + [Shift, Slide, Rise] ·Dmst.

Figure 2.4: The Euler Angle method used to calculate director frames on space
curve.

Euler-Rodrigues Method: The E-R method utilizes the the Euler-Rodrigues

formula, Q = cos(φ)I+(1−cos(φ))kkT +sin(φ)k×, where φ is given by arccos(trQ−1
2

),

k is given by [Tilt, Roll, Twist], and k× is a matrix representation of the cross product

associated with k. Then Di+1 = QDi, and the mid-step rotation is just the square

root of Q, and r(i+ 1) = r(i) + [Shift, Slide, Rise] ·
√
Q.

11

Two applications of applying the space curve based on the properties of the

objects themselves are described in detail for Magic Snake and DNA in the next

chapters for Magic Snake and Genome Dashboards.

2.1.2 SMILES

Space curves are general enough to describe any slender body, but branched

entities such as chemical structures cannot be represented simply by space curves.

Hence, in order to represent and convert such entities, we use SMILES that are designed

to describe the structure of chemical species using short ASCII strings. SMILES is

an abbreviation for “Simplified Molecular Input Line Entry System.” There are five

general rules to convert a chemical structure into a SMILES string, Figure 2.5.

Figure 2.5: Rules for SMILES: a) A simple branch. b) A branch with sub-branches,
and different types of bonds. c) Steps for rings

12

1. Atoms and Bonds

Atoms are the symbols of elements in the periodic table, and bonds are denoted

as shown below:

• Single bond: - or none

• Double bond: =

• Triple bond: #

• Aromatic bond: *

• Disconnected structures: .

2. Simple Chains

Simple Chains are represented by combining atoms and bonds. Hydrogen atoms

are omitted when converting a structure into a SMILES string.

3. Branches

The atom from a chain that has branches appears before a parentheses, followed

by the branch between parenthesis, Figure 2.5 a). If it is connected not by a

simple bond, the bond symbol appears within the parentheses, Figure 2.5 b).

4. Rings

SMILES first breaks a ring into a chain structure, then the ring structures are

identified by using numbers to identify the opening and closing ring atom, Figure

2.5 c). Normally, a ring has different valid SMILES, and SMILES software

would output a unique SMILES string when input a valid SMILES for the same

chemical structure.

5. Charged Atoms

13

SMILES software understands the number of possible connections that an atom

can have, and charges on an atom can be used to override this information. A

charged atom is followed by brackets which enclose the charge on the atom. e.g.

CCC(=O)O{-1}

The same approach can be used as a general purpose method of identifying

a branched object. Atoms are just the symbol of names of individual points on a

branched object. Bonds are the connecting patterns, then the other rules for SMILES

follow. In this manner, a “SMILES-like” string can be defined to expand the slender

space curve into branched objects; e.g. we can define a branched object as a collection

of space curves. Each space curve has its own RD and SP. By indexing the points

on a space curve, we can have something like S1S1S1(S2S2(S3)S2)S4S4 to obtain a

“branched space curve”, which can be converted into 1D and 3D representations.

2.2 Multi-scale Modeling

2.2.1 Masks

Now, we have math-based (space curve) and rule-based (SMILES) conversions

between 1D and 3D. In order to make the models for any object, we propose the Mask

concept that works in both math-based and rule-based conditions.

Masked Space Curve

In the math-based perspective, any external agents can alter the properties

of a contiguous length of a space curve from s to s + n. We label this a Mask,

M(s, s+n). Any number of identical or unique Masks may be associated with a space

curve. In the material reference frame, the conformation of the mask is denoted as

14

[~Γ(s, s + n), ~Ω(s, s + n)] and spans n base pairs. As the name suggests, the Masks

may replace the [~Γ(s, s + n), ~Ω(s, s + n)] values associated with a space curve. If a

Mask is a rigid entity, then the components of the masks are described by fixed lists

of internal and Cartesian coordinates. The Cartesian coordinate representation of

M(s, s + n) requires only a single translation and rotation to position each rigidly

Masked element in the laboratory reference frame.

Masked SMILES

In the rule-based perspective, any naming conventions can change the com-

plexity of a 1D string for s to s+ n. We label this a Mask, M(s, s+ n). For example,

Adenosine as a Nucleobase in DNA is labeled as “A”, while Adenosine as a molecule

can be also represented by a SMILES string:

C1=NC(=C2C(=N1)N(C=N2)C3C(C(C(O3)COP(=O)(O)O)O)O)N

In this case, a DNA sequence with ACGTs can be treated as a Masked representation

of much longer SMILES string.

From a modeling point of view, we can mask any slender (or branched) entity

from s to s+ n with one single entity, such as Adenosine demonstrated above, which

can simplify the structure and display the overall structure with less items; or we can

mask a single point on this entity with any number of items related to it, which gives

us the ability of modeling an object in a more detailed structure. Thus, Masks enable

multi-scale modeling.

15

2.3 Conclusion

In this chapter, we have described the background and the previous work of

the proposed framework for Multi-dimensional and Multi-scale modeling. For Multi-

dimensional modeling, our framework utilizes space curve and SMILES to accomplish

the conversion between 1D and 3D. The definition of a space curve and the previous

work for discrete methods for studying a space curve are described. For Multi-scale

modeling, our framework utilizes the Mask concept to accomplish the conversion

between coarse-grained to all-atom to continuous models. The concept of a Mask is

described.

CHAPTER 3

COMPARISON OF METHODS FOR STUDYING SPACE
CURVES WITH SUPER-HELIX GEOMETRY

In Chapter 2 we introduced a mathematical description of the oriented space

curve by differentiation and integration, and two widely used numerical algorithms,

E-A and E-R. Some differences were observed when applying the E-A and E-R method

to DNA and chromatin as a discrete representation of the oriented space curve. There

is little research on how these methods differ [11]. The question that remains is how

these methods are related, and when they are equivalent descriptions. This chapter

utilizes mathematical expressions to study the relationship between these methods.

3.1 Geometry of Helices

A helix is a curve in 3D space, with the center line represented by:

x(s) = a cos(s)

y(s) = a sin(s)

z(s) = b s

(3.1)

The six step parameters of a helix represented in [12] are:

16

17

Sh = γsin(Twos) Ti = κsin(Twos)

Sl = γcos(Twos) Ro = κcos(Twos)

Ri = Rio Tw = Two + τ

(3.2)

Two types of Helices are defined in [12], Torsion Helix and Shear Helix. A

Torsion Helix (TH) is defined when γ = 0, and τ 6= 0 is the torsion. A Shear Helix

(SH) is defined when τ = 0 and γ 6= 0 is the shear. Note that when both γ and τ are

zero, Two 6= 0 and κ 6= 0, a helix becomes a circle. If Two 6= 0, the model is a circular

DNA.

The following analysis begins with γ = τ = 0, which is a circle, then studies

the case of TH and SH, respectively.

3.2 Methods

With the formulas of Helices for both RD(s) (Equation 3.1) and SP(s)

(Equation 3.2), we have set up three cases to study. The first is a circle, which

can be treated as a helix with no shear, γ = 0 or torsion τ = 0. We set 70 steps

per turn. In order to make it similar to a circular DNA, we added a constant Twist

(average about 32.5◦ for DNA). As we also want the circle to loop back exactly with

the director frames, we set the Twist value as 360◦×6
70
≈ 30.86◦. For the Shear helix,

there is no torsion τ = 0, and we set γ = 0.3, and set a constant Twist of 32.5◦. For

the Torsion Helix, there is no shear γ = 0, and we set τ = 0.5, and set a constant

Twist of 32.5◦. For all these three cases, we have 70 steps per turn, and we modeled

two turns to study each case.

18

By studying each case, we used Equations 3.1 and 3.2 to obtain RDmath and

SPmath. With RDmath, we use E-A and E-R methods to convert it into SP(s), which

are SPE−A and SPE−R, respectively. With SPmath, we use E-A and E-R methods to

convert it into RD(s), which are RDE−A and RDE−R, respectively. Then we analyze

the results by plotting the different between SPE−A, SPE−R with SPmath, and by

RMSD of all the atoms between RDE−A, RDE−R with RDmath.

3.3 Analysis and Results

3.3.1 Circle

With the help of mathematical formulas, we are able to obtain step parameters

(SP(s)) of 1-base-pair step, 2-base-pair steps, 1/2-base-pair steps, or any multiples

of base pair steps. We can also obtain the corresponding continuous mathematical

RD(s) of the helix.

We then converted 1-base-pair, 1/2-base-pair, 1/4-base-pair, 1/8-base-pair Step

Parameters (SPmath) into Director Frames (RD(s)) using E-A and E-R methods, and

compare with the circle calculated mathematically. Figure 3.1 shows the positions by

the E-A method (RDE−A) and the mathematical determined circle (RDmath) before

fitting. As shown in the figure, although all the “circles” start at the exact same

position, there is a deflection of the circle by the E-A method from the x-z plane that

does not exist for the mathematical determined circle. The same deflection happened

with the E-R method.

19

Figure 3.1: Center line of converted 1-base-pair, 1/2-base-pair, 1/4-base-pair, 1/8-
base-pair step parameters using E-A method (RDE−A), compare with mathematical
decided circle (RDmath).

In order to figure out why there is a deflection, we convert the RD(s) of

mathematical circle (RDmath) into SP(s) using E-A (SPE−A) and E-R (SPE−R)

methods with the step size of 1-base-pair. In Figure 3.2, we see that for Tilt and

Roll, both SPE−A (red) and SPE−R (blue) seem to fit with SPmath (black). The E-A

method also agrees with mathematics values for the Twist, Shift, Slide and Rise, but

the E-R method does not. Because SPs for a circle are just pure sine and cosine

functions or constant values, we can study only one period for better observation.

20

Figure 3.2: Step parameters by E-A method (SPE−A) (red), E-R method (SPE−R)
(blue), and mathematics (SPmath) (black) of a circular DNA.

In Figure 3.3, we see that although in Figure 3.2, E-A and E-R methods seem

to agree with the mathematics of Tilt and Roll, they actually differ. We recall that,

mathematically, SP(s) represents a continuous space curve, but E-A and E-R are

discrete, and they both use a mid-step plane to construct a space curve. Hence, the

SP(s) of E-A and E-R methods are described at the “half-step.” We shifted the

SPmath of mathematics by half steps and plotted as shown in Figure 3.4, with the

half-step shifted SPE−A mapping with SPmath exactly. We also obtained a sine and

cosine image for Shift and Slide of the E-R method with small amplitude. To verify

21

that the E-A method agrees exactly with the mathematics model, and to see how the

E-R method is different from the mathematics model, we plotted the difference of

E-A and E-R methods with the mathematics values, as shown in Figure 3.5. This

figure shows that SPE−A does agree with SPmath exactly, but the E-R method differs

at every step parameter. There is a clear pattern in this plot showing that the E-R

method converts these RD(s) for a circle to the SP(s) for a helix with shear and

torsion. As a result, if we convert the mathematical values with a phase of half steps

of SPmath for a circle to RDE−A/E−R using E-A and E-R methods, E-A would give

exactly the same circle as the mathematics one, and E-R would give a helix. Figure 3.6

shows the results agree with this conclusion, that the RMSD between the E-A method

and mathematics values is 0 without fitting, and E-R gives a RMSD of 3.48 Å. The

question arises is that why this happens. We have found the answer to this question

describes in the following context.

22

Figure 3.3: SPE−A (red), SPE−R (blue), and SPmath (black) of a circular DNA in
one period.

23

Figure 3.4: SPE−A (red), SPE−R (blue), and SPmath (black) with one period,
SPmath is shifted by half steps.

24

Figure 3.5: Difference of E-A method with mathematical values, SPE−A - SPmath

(red), and E-R method with mathematics values, SPE−R - SPmath (blue).

25

Figure 3.6: Convert SPmath to RDE−R (blue), and convert SPmath to RDE−A (red)
of a circular DNA with discrete methods and compare with RDmath (black). (The
representation in the figure are shifted along z-axis to have a more clearly visualization.)

Recalling the mid-step plane constructions by E-A and E-R methods mentioned

in Chapter 2, the E-A method first converts Tilt and Roll into bend as one rotation,

and applies the half bend and half Twist to construct the mid-step-triad; the E-R

method first calculates the rotation from the current step to the next step, and takes

a square root of this rotation as the rotation to the mid-step plane. Then consider the

case of a circle, shown in Figure 3.7. If we do not consider Twist, for the mathematics

continuous construction, the “mid-step” should be on the circle, and d3 has the

direction of the tangent to the circle, and d1 points to the center of the circle. For the

E-A and E-R methods, d3 has the same direction of the tangent at the half step point

of the circle, and d1 also points to the center of the circle, with d2 being the cross

product of d3 and d1. In this case, the D happens to be the same between discrete

26

construction and continuous construction. However, when applying the constant Twist

to this D, the E-A method takes half of the twist, so after twisting, the D is still the

same with mathematics construction; for the E-R method, it takes the square root to

the rotations from step i to step i+ 1 to calculate the mid-step plane. The rotation

from step i to step i+ 1 can be treated as a rotation along the d2 axis for Roll degrees

and a rotation along the d3 axis for the Twist degrees. By applying the Rotation

matrices mentioned in Chapter 2, we can calculate the rotation and the square root

of it. Then we can obtain that
√
Rx(Roll)Rz(Twist) 6= Rx(Roll

2
)Rz(

Twist
2

), and thus

obtain the difference between the E-R method with mathematical values.

Figure 3.7: Without considering the constant Twist applied, the mathematics step
i+0.5 (black), and the mid-step constructed by discrete methods (red).

As a result, we have two conclusions about this mid-step construction: one is

that when Twist is zero, E-A and E-R methods should agree with the mathematical

solutions, and the other is that the RDE−A and the RDmath happens to be the same

for circles, both E-A and E-R methods will give different answers compared with the

mathematical solution when applied to a helix. When Twist = 0, we convert the SP

27

to RD and obtain E-A, E-R and mathematics with exactly the same values (RMSD

is 0), as shown in Figure 3.8. The analyses for helices are described in the following

sections.

Figure 3.8: Convert SPmath to RDE−R (blue), and convert SPmath to RDE−A (red)
of a circular DNA with discrete methods at Twist = 0 and compare with RDmath

(black). (The representation in the figure are shifted along z-axis to have a more
clearly visualization.)

We also calculated the RMSD between RDE−A, RDE−R compared with

RDmath as shown in Table 3.1. We see that without the half-step phase, even

though the RMSD for center atoms are almost the same for the E-A method, the

RMSD for all atoms are different.

28

Table 3.1: RMSD between RDE−A, RDE−R compared with RDmath with different
step sizes, with and without the half-step phase, and with and without RMSD fitting
for circular DNA. Under Selection, “all” calculates the RMSD between all the atoms
RD that includes director frames, “CA” calculates center atoms ~r(s) only.

Circular DNA

Step Size RMSD Fitting Selection
With Phase Without Phase

E-A (Å) E-R (Å) E-A (Å) E-R (Å)

1

yes
all 0 1.68 0.19 1.69

CA 0 1.68 6.22 ×10−6 1.68

no
all 0 3.48 12.46 12.67

CA 0 3.48 12.46 12.66

1
2

yes
all 0 0.42 0.10 0.43

CA 0 0.42 5.29 ×10−6 0.42

no
all 0 0.87 6.24 6.22

CA 0 0.87 6.24 6.22

1
4

yes
all 0 0.11 0.05 0.12

CA 0 0.11 5.96 ×10−6 0.11

no
all 0 0.22 3.12 3.11

CA 0 0.22 3.12 3.11

1
8

yes
all 0 0.03 0.02 0.04

CA 0 0.03 6.03 ×10−6 0.03

no
all 0 0.05 1.56 1.56

CA 0 0.05 1.56 1.56

29

3.3.2 Shear Helix

By the analyses of the circles, we already know that SP for mathematics

and SP for the discrete methods have a half-step differential difference at where the

parameters are being calculated, and for the helices (the circle can be treated as a

helix with zero pitch), the SP are sine, cosine, or constant functions. Hence, from this

section, we can study the E-A and E-R methods for helices after applying the half-step

shift, and we can study the SP values in one period of sine or cosine functions.

A shear helix is the helix with τ = 0. If we analyze it like we do in Figure 3.7,

we can see that the tangent of the curve at the half step is different than the mid-step

on the chord. With the discrete method, the mid-step triad is a matter of defination

rather than observation, but as long as the method is self-consistent in both directions

(SP to RD, and RD to SP), it could be utilized to represent a 3D space curve. For

the case of the shear helix, the E-A method, E-R method, and the mathematical

method would generate different RD with the same SP. In Figure 3.9, we obtained

these differences. As the mid-step plane of the E-R method is more similar to the

mathematical values at step i+ 0.5, we obtained a smaller RMSD between the E-A

method and mathematics, which is 0.22 Å; a larger RMSD between the E-R method

and mathematics, which is 4.58 Å. RMSD reported are without fitting and with all

the atoms in both cases.

30

Figure 3.9: Convert SPmath to RDE−R (blue), and convert SPmath to RDE−A (red)
of a Shear Helix with discrete methods and compare with RDmath (black).

At the same time, although the three methods are different, when the step

size is getting smaller, the mid-steps between two steps of discrete methods should

converge to the mathematics at step i+ 0.5. Hence, if we reduce the step size, E-A

and E-R methods should converge to the mathematical values. In Figure 3.10, we

obtained the converge, and the RMSD is less than 0.22 for both E-A and E-R methods

compared with mathematical values.

31

Figure 3.10: Convert SPmath to RDE−R (blue), and convert SPmath to RDE−A

(red) of a Shear Helix with discrete methods and 1/16 base-pair steps and compare
with RDmath (black).

RMSD analysis for Shear Helix is shown in Table 3.2. We see that for the E-A

method, the RMSD remains the small difference with RDmath, which arises from the

difference between tangent and secant of the mid-step; for E-R method, the RMSD is

getting smaller with the step-size reduced, which is due to the reduces of the difference

between the mid-step triad of E-A and E-R methods.

32

Table 3.2: RMSD between RDE−A, RDE−R compared with RDmath with different
step sizes, with and without half-step phase, and with and without RMSD fitting for
Shear Helix. Under Selection, “all” calculates the RMSD between all the atoms RD
that include the director frames, and “CA” calculates center atoms ~r(s) only.

Shear Helix

Step Size RMSD Fitting Selection
With Phase Without Phase

E-A (Å) E-R (Å) E-A (Å) E-R (Å)

1

yes
all 0.16 2.21 0.27 2.22

CA 0.15 2.21 0.15 2.21

no
all 0.22 4.58 15.91 15.54

CA 0.21 4.57 15.92 15.55

1
2

yes
all 0.16 0.60 0.19 0.61

CA 0.15 0.60 0.15 0.60

no
all 0.22 1.21 7.95 7.76

CA 0.21 1.20 7.96 7.78

1
4

yes
all 0.16 0.23 0.17 0.06

CA 0.15 0.22 0.15 0.22

no
all 0.22 0.40 3.94 3.89

CA 0.21 0.40 3.96 3.90

1
8

yes
all 0.16 0.17 0.16 0.17

CA 0.15 0.16 0.15 0.16

no
all 0.22 0.25 1.94 1.93

CA 0.21 0.24 1.96 1.94

33

3.3.3 Torsion Helix

A Torsion helix is a helix with γ = 0 and τ 6= 0. Similar to SH, both E-A

and E-R methods are different from the mathematics; however, with the τ applied,

notice that this τ is applied at the step i for the mathematics equations, and this τ is

continuously applied even at step i+ 0.5 for the mathematics method, while for the

discrete methods, this τ is halved at the mid-step plane, so we will obtain a deflection

by applying E-A and E-R methods. In Figure 3.11, we see that both E-A and E-R

methods are deflected compared with mathematical values, and the RMSD without

fitting is 3.91 Å and 4.80 Å for E-A and E-R methods, respectively. The RMSD

after fitting is 0.64 Å and 1.43 Å for E-A and E-R methods with mathematics, which

validates that the “shape” of the curve remains a helix. RMSD reported are without

fitting and with all the atoms in both cases.

34

Figure 3.11: Convert SPmath to RDE−R (blue), and convert SPmath to RDE−A

(red) of a Torsion Helix with discrete methods and compare with RDmath (black).

We also studied the SP for SH and TH obtained from RDmath using these

methods. They all show similar patterns that both E-A and E-R methods will

obtain small torsion and shear that are different from the mathematics values. We

have provided the RD representation of how E-A and E-R methods converge to the

mathematics values in the section above. Here, we provide a SP representation of

how they converge. Figure 3.12 shows that by reducing the base pair’s step size, the

E-A method is converging to the mathematics method. (The E-R method has the

same behavior, which is not provided here.)

35

Figure 3.12: The SPE−A converted from RDmath with 1-bps, 1/2-, 1/4-, 1/8-, and
1/16-base pair steps. Less dots in the plot indicate larger base pair steps.

The RMSD analysis for Torsion Helix is shown in Table 3.3. We notice that

for Torsion Helix, RMSD does not reflect the fact that all the methods converge with

the step size getting smaller. That is because for Torsion Helix, the deflection caused

by the torsion produces more errors than the choice of the mid-step triad produced.

36

Table 3.3: RMSD between RDE−A, RDE−R compared with RDmath with different
step sizes, with and without half-step phase, and with and without RMSD fitting for
Torsion Helix. Under Selection, “all” calculates the RMSD between all the atoms RD
that include the director frames, and “CA” calculates center atoms ~r(s) only.

Torsion Helix

Step Size RMSD Fitting Selection
With Phase Without Phase

E-A (Å) E-R (Å) E-A (Å) E-R (Å)

1

yes
all 0.64 1.43 0.68 1.44

CA 0.64 1.43 0.64 1.43

no
all 3.91 4.80 16.70 16.07

CA 3.91 4.80 16.69 16.06

1
2

yes
all 0.64 0.13 0.65 0.17

CA 0.64 0.13 0.64 0.13

no
all 3.93 3.71 9.13 8.82

CA 3.92 3.71 9.12 8.82

1
4

yes
all 0.64 0.51 0.64 0.51

CA 0.64 0.51 0.64 0.51

no
all 3.93 3.85 5.76 5.67

CA 3.93 3.85 5.76 5.66

1
8

yes
all 0.64 0.61 0.64 0.61

CA 0.64 0.61 0.64 0.61

no
all 3.93 3.91 4.51 4.48

CA 3.93 3.91 4.50 4.48

37

3.4 Conclusions

In this chapter, we have analyzed the difference between discrete methods (E-A

and E-R) with the continuous mathematical description of oriented space curve that

are helical. We have found that the main difference arises from the mid-step plane,

which is applied for the construction in discrete methods but not in the continuous

description. The Step Parameters for mathematics representation are half-steps ahead

of the E-A and E-R methods, which should be kept in mind when analysing SP;

otherwise, RMSD will show the two structures are similar, but this error can be

avoided. The construction of the mid-step plane is also different between E-A and

E-R methods, so the SP cannot be exchanged, and neither can it be for the RD.

This chapter also shows that as the step becomes smaller, the three methods

will eventually converge to the mathematics representation. With this analysis, we

are then able to convert a set of sequential points to a space curve, and by applying

methods such as Fourier Transform to obtain equivalent mathematical representation,

and by integration and differentiation, we can then have a set of equations of SP

mathematically to analyze.

CHAPTER 4

MULTI-DIMENSIONAL AND MULTI-SCALE
MODELING OF MAGIC SNAKE

4.1 Magic Snake Introduction

A Magic Snake [13] is a 3D object consisting of n congruent wedges, shown

in Figure 4.1. Each wedge is a right isosceles triangular prism (half of a cube), that

contains six vertices and five faces (two square faces, two triangular faces, and a

rectangular face). Typically, a Magic Snake toy sold in stores consists of 12*n wedges

(n is an integer greater than 1), and the adjacent wedges are connected by the center

of a square face and can be rotated by integer multiples of 90 degrees around the

center axis normal to the square. By rotating the square face centers (S1c and S2c)

between each neighboring wedge, a Magic Snake can be formed into different shapes.

38

39

Figure 4.1: Left: A wedge is the basic unit of a Magic Snake. It has 6 vertices and
5 faces. We define the center of the rectangle face as Rc, the two square face center as
S1c (entry) and S2c (exit). Right: Two examples of a Magic Snake with a different
number of wedges and different structures.

Compared with the Rubik’s Cube that has been researched [14], the Magic Snake

has much more combination possibilities [15]. However, there is little research related

to the Magic Snake, or use of its properties to enlighten researchers in various fields,

such as protein folding [16, 17] and robot designing [18, 19, 20, 21, 22]. Systematic

studies of the mathematical properties and computational design of a Magic Snake

are still missing.

Some mathematical properties of a Magic Snake can be found when the rotation

is restricted to integer multiples of 90 degrees. Here, more general properties of a

Magic Snake, which is neither limited by the number of wedges, nor by the discrete

rotations, are explored. This gives us the ability to explore the infinite possibilities of

conformations for a Magic Snake.

40

In this chapter, we first provide modeling strategies that can map the 3D

structure of a Magic Snake to a 1D sequence and convert this 1D sequence to the

3D structure of a Magic Snake. Then we propose two design strategies; one is to fit

a Magic Snake to any curve in space, which not only enables gamers and hobbyists

to design a Magic Snake from any curve but also applies to the general design ideas,

such as a robot arm design. Another design strategy is to systematically expand a

complex Magic Snake to a more complex structure, which can be used to design a

Magic Snake from simple structures.

4.2 Multi-dimensional Modeling of Magic Snake

In order to model a Magic Snake, we first need to describe the conformation of

a Magic Snake in a simple notation. Naming Magic Snake conformations as “cat” or

“dog” is descriptive, but such labels are not unique and cannot be computed. Here,

we describe a Magic Snake as a sequence of rotations and then build up a 3D model

based on these rotation sequences.

4.2.1 3D to 1D

A Magic Snake is a set of wedges connected together. We define the “Degree of

the Junctions” of a Magic Snake, which is a list of the rotations between the adjacent

wedges. To define these rotations properly, we choose the square face containing S2c

of the prior wedge and rotate the next wedge counterclockwise. For simplicity, we

divide these rotation degrees by π/2 (90 degrees) then modulo 4, so that we can

get an integer for multiples of 90 degree rotations R = 0, 1, 2, 3, and R ∈ [0, 4) for

any rotations, as shown in Figure 4.2. If we record these degrees in order, we get

41

the 1D sequence seq = [R1, R2, . . . , Rn] that represents the 3D structure of a Magic

Snake. For example, the “ball” structure shown in Figure 4.1 can be represented

by seq = [1, 3, 3, 1, 3, 1, 1, 3, 1, 3, 3, 1, 3, 1, 1, 3, 1, 3, 3, 1, 3, 1, 1, (3)]. Notice that the last

rotation in this sequence is marked in parentheses; that is because the “ball” is a closed

loop (the exit of the last wedge S2c is overlapped with the entry of the first wedge

S1c, and these two square faces are in the same plane). We add an extra rotation (the

rotation taken from the last wedge to the first wedge in the Magic Snake) to describe

the closed loops.

For a n wedge Magic Snake, we obtain a 1D sequence with the length of n− 1,

and for closed loops, we have length n sequence with the “closure” rotation. Each

1D rotation sequence represents one 3D Magic Snake structure. Imagine if we are

rotating the Magic Snake from the first wedge to the last, and by rotating each wedge,

we obtain an exact number that tells how much and in which direction to rotate.

Eventually, we will always get exactly the same structure by using the same sequence.

In the same way, if the sequential path of a 3D Magic Snake is determined, we obtain

one rotation sequence. However, if the overall 3D structure of a Magic Snake is the

only consideration, we may have multiple rotation sequences to represent it. A simple

example is the reverse of the rotation sequence.

42

Figure 4.2: Rotations between each adjacent wedge. We define the “Degree of
Junctions” as the rotate angle divided by 90 degrees and modulo 4.

Some properties of how certain structures related to these 1D sequences for

integer multiples of 90-degree rotations can be found. It is useful to convert a 3D

structure into a simplified form in order to understand the properties behind it. It

is more productive if we can figure out more properties in a simplified model that

is applied to general cases. However, 1D information is not enough to reveal all the

properties of a 3D object, e.g. self-contact or loop closure. Thus, we will need to

explore both 1D and 3D properties and computationally convert between 1D and 3D.

4.2.2 1D to 3D

To analyze the mathematical properties and design a 3D structure, the location

of every vertex of the Magic Snake is required. There are numerous approaches to

43

calculate the orientation and location of all wedges in a Magic Snake. Here, we describe

a solution using rotation matrices described in Chapter 2.

As shown in the left in Figure 4.3, assume that we seek to calculate the location

of the blue wedge relative to the red wedge.

First, add a local direction frame d̂1, d̂2, d̂3, where d̂1 is the unit vector pointing

from the rectangle center (Rc) to the exit square face center (S2c); d̂2 is the unit vector

pointing from the entry square face center (S1c) to the rectangle center (Rc); and d̂3

is the cross product of d̂1 and d̂2 shown on the right of Figure 4.3. Let the edges on

the square face of all wedges be unit length, and let the initial wedge align with the

coordinate axis, let the rectangle center (Rc) of the wedge be located at the origin,

and put d̂1, d̂2, d̂3 along with x,y,z axis, as shown in Figure 4.4 a, so that the 3 by 3

director matrix is:

Da =

d̂1

d̂2

d̂3

As shown in Figure 4.4 a.

Da =

1 0 0

0 1 0

0 0 1

44

Second, rotate the initial wedge along the z axis by 90 degrees and translate

along the x axis by 1 unit, as shown in Figure 4.4 b. Regardless of the translation,

the direction frame is now

Db = Rz(π/2) ·Da (4.1)

Third, rotate the wedge along the x-axis by 180 degrees; now it is like we

put the wedge at the place where the next wedge should be when the degree of the

junction is 0, as shown in Figure 4.4 c. Then we have

Dc = (Rz(π/2) ·Rx(π)) ·Da (4.2)

Finally, rotate the wedge along the x axis by θ degrees. Now, by doing this

final rotation and translation, we obtain the location where the next wedge should

be when we rotate the next wedge by θ degrees, as shown in Figure 4.4 d. Then we

can calculate the location and orientation of it using the rotation matrices (Note that

Rx(π) ·Rx(θ) = Rx(π + θ)):

Dd = (Rz(π/2) ·Rx(π + θ)) ·Da (4.3)

That is,

D2 = (Rz(π/2) ·Rx(π + θ)) ·D1 (4.4)

45

Figure 4.3: Left: Relative positioning of adjacent wedges can be described by a
rotation and a translation. Right: Assignment of director frame to a wedge.

Figure 4.4: Procedure for building a Magic Snake wedge by wedge. a). The wedge
(Red wedge shown on the left of Figure 4.3) is located at the origin of a coordinate
system. b). Flip the initial wedge along edge 5-6, and the wedge can also be treated as
rotated along the z axis 90 degrees; then translate along x axis by 1 unit. c). Rotate
the wedge along the x axis. d). Rotate the wedge along the x axis by θ degrees (The
wedge is now at the position of the blue wedge shown on the left of Figure 4.3).

Then we consider the translation vector ~r. Let ~r1 = [0, 0, 0], the origin. As a

local translation, it travels along the x axis for 1 unit. If we add the global rotation to

it, which is just the D for the last frame, then we have

~r2 = ~r1 + [1, 0, 0] ·D1 (4.5)

46

In the same way, we have

D3 = (Rz(π/2) ·Rx(π + θ2)) ·D2 (4.6)

~r3 = ~r2 + [1, 0, 0] ·D2 (4.7)

and for wedge n:

Dn = (Rz(π/2) ·Rx(π + θn−1)) ·Dn−1 (4.8)

~rn = ~rn−1 + [1, 0, 0] ·Dn−1 (4.9)

In summary, if we know the start position of the initial wedge, which we could

put wherever we want, and the degree of the junctions between every two adjacent

wedges, we can calculate the location and orientation for every wedge in the Magic

Snake. In addition, we also obtain a matrix expression for the general Magic Snake to

explore.

4.3 Multi-scale Modeling of Magic Snake

With the ability to convert between 1D and 3D representations of a Magic

Snake, we are now able to compute the geometry of it. This enables us to design

general structures of Magic Snakes without limitations. Here, we propose two design

strategies, fitting a Magic Snake to any curve in space, and expanding one Magic

Snake conformation to another.

47

4.3.1 Line Skeleton Representation as a Mask

To fit a Magic Snake to a curve in space, a line skeleton representation of Magic

Snakes and a “Spoon” design concept are described.

Line Skeleton Representation

Magic Snakes become much more complex objects when we do not limit the

rotations to be multiples of 90 degrees. Knowing all the vertices’ locations is useful

but a simplified model of a Magic Snake is desired. Here, we describe a line skeleton

representation (LSR) of a Magic Snake to show only the skeleton of it. We ignore

collisions and the shape of the wedges, and use a line to sketch the overall structure

of a Magic Snake. This representation is easier to study even when the rotations are

arbitrary angles.

We notice that for a single wedge of Magic Snake, if we know the location of

three points – two centers for the square face (S1c, S2c) and the center for the rectangle

face (Rc) – the unique location and orientation of this wedge is determined. If we

connect the two centers of the rectangle faces (Rc) for adjacent wedges, the line will

always pass the center of one of the square faces (Sc) on both wedges. Thus, if we

have a conformation of a 3D Magic Snake structure, and we connect each rectangle

center on each adjacent wedge (ignoring the first and last wedge on a Magic Snake,

for they do not have previous or next Rc to connect to) we can identify the overall

structure of a Magic Snake and simplify the model, see Figure 4.5. Note that, similar

to rotation sequences, there are n line segments in LSR for the n wedge closed loop

Magic Snake, and n− 1 line segments in LSR for the n wedge open Magic Snake.

48

Figure 4.5: Left: Line skeleton representation (LSR) for a simple Magic Snake.
Right: An arbitrary conformation of a Magic Snake and LSR of it.

Properties of line skeleton representation

We find that there is a useful property of LSR. Every two adjacent lines in

this structure are perpendicular. If we consider the local wedges that generate these

lines, the line bending only occurs at the rectangle center within each wedge, and if

we connect “square center”(S1c) – “rectangle center”(Rc) – “square center”(S2c), it

will always form a 90-degree angle for every wedge. Thus, any two adjacent lines in

the line skeleton representation will always be perpendicular, even if the Magic Snake

is not restricted to multiple 90 degree rotations. In addition, each line segment in

LSR has equal lengths.

As a result, if we observe a piecewise curve that contains n equal length

segments, and each adjacent segment is perpendicular, then we can treat it as a LSR of

a Magic Snake and convert it back to a 3D representation of a Magic Snake. Without

considering the collision that a Magic Snake might encounter during the arbitrary

angle rotations, we can systematically construct any structure by simply designing

these LSRs. To ensure a curve is piecewisely divided into n equal length segments

49

with sufficient accuracy is straightforward, but restricting adjacent segments to be

perpendicular is not.

“Spoon” design

To solve the problem of obtaining perpendicular line segments, we construct a

“Spoon” structure as a basic unit, shown in Figure 4.6. The “Spoon” starts with a

handle e1 and ends with a tip e4. Each adjacent edge in a “Spoon” is perpendicular,

and all the edges in a “Spoon” are in the same plane. If given any two equal length

connected lines (L1, L2), shown in Figure 4.6, we can always locate the “Spoon” on

it and make the adjacent edges on the united “Spoon” structure perpendicular with

each other. That is, we first put a “Spoon” along the first line (L1 in Figure 4.6),

so that the handle in the “Spoon” overlaps with L1. Then we calculate the cross

product of the given two lines and set the tip of the second “Spoon” overlapping with

it; then this tip from the second “Spoon” must be perpendicular with the handle of

the first “Spoon” for it is perpendicular with L1. If the two given lines are in the same

line and the cross product is invalid, we can put the second “Spoon” wherever we

want. We choose the two “Spoons” in the same plane and in the same orientation for

computation. As a result, if we have n equal length line segments in a chain, we can

fit the “Spoon” on them one by one. This forms a line skeleton representation of the

Magic Snake with 4 ∗ n line segments, and then we can map this representation back

to a Magic Snake with 4 ∗ n wedges, as shown in Figure 4.7. To clarify, this strategy

does not guarantee that collision will not occur in a 3D structure of a Magic Snake.

50

Figure 4.6: Left: “Spoon” desgin for construction of LSR. Right: The approach to
fit any two random oriented equal length connected line (Red, L1 and L2).

Figure 4.7: Left: We divide a structure of space curve into equal length line segments.
Right: Fitting the Magic Snake to this space curve.

4.3.2 Embedded Wedge as a Mask

Now that we are able to design a Magic Snake based on any curve in space,

then the question arises whether there is a way to convert or expand an existing Magic

Snake structure into some other structure.

51

Our approach is that if we look “inside” a wedge, as shown on the left side

of Figure 4.8, that is, dividing each edge into a trisection, then incise it along all

the sections, then the one shown in red can be treated as a short sequence with 1D

representation [0,0] embedded inside this wedge. Moreover, the entry square face and

the exit square face of this short sequence is overlapping the square faces of the wedge,

and sharing the same center points of the square faces. Then, for a Magic Snake

consisting of n such wedges, imagine that for each wedge, we do the same thing and

replace each wedge by “smaller wedges” inside it. Then the Magic Snake will convert

into a thinner Magic Snake with more junctions. In addition, the new structure is

self-similar to the original one, e.g. Figure 4.8 right. The conversion is as simple as

changing the 1D rotation sequence:

[
R0 R1 . . . Rn

]
=⇒

[
R0 0 0 R1 0 0 . . . Rn 0 0

]

Figure 4.8: Left: “Embedded” structure inside a wedge. Right: Using [0,0] as the
embedded sequence to expand a Magic Snake.

Notice that for now, we are just using the property of the “embedded structure”

that shares the square center and face overlapping. That means if we are using this

strategy, it is not limited to the simple [0,0] sequence. For example, the sequence

52

[1,1,2,1,0,3,2,3,3,0] in Figure 4.9 has the same property except it is longer and more

complex, but the expansion should remain the same. As shown in Figure 4.9, the

resulting structure is again self-similar. In addition, Magic Snake expansion could also

be done by n iterations.

Figure 4.9: Using [1,1,2,1,0,3,2,3,3,0] as the sequence to expand Magic Snake once
and twice.

4.4 Collision detection

4.4.1 Methods

Minkowski difference

Collision detection is also an essential task in 3D modeling. For the simplified

case of modeling a space curve, if we represent each point on a space curve as a sphere,

it is easy to identify whether two spheres are colliding. That is, for the two spheres i

and j, calculate the distance of the two centers of the spheres, dij, and compare them

with the sum of the radius of two spheres, ri + rj. If dij is larger, the two spheres are

not colliding, and if not, the two spheres are colliding.

However, for an arbitrary 3D object, it is not trivial to find out whether two

objects are colliding. This section seeks approaches of collision detection for arbitrary

objects. Here, a method named Minkowski sum and difference [23] is described,

Figure 4.10. The Minkowski sum and difference work on convex objects. For two

53

convex objects A and B, suppose the vertices on A and B are in set AV and BV , then

the formula of the Minkowski sum is

A⊕B = {a+ b|a ∈ AV, b ∈ BV },

and the Minkowski difference is

A	B = {a− b|a ∈ AV, b ∈ BV }

Some important properties of the Minkowski difference used for collision

detection are:

• The convex hull of the Minkowski sum/difference of A and B is the Minkowski

sum/difference of the convex hull of A and B.

• If the origin point is outside the convex hull formed by the Minkowski difference

of A and B, then A and B are not colliding; otherwise, they are colliding.

• The Minkowski sum/difference works for n dimension convex objects, n =

1, 2, 3, . . .

Figure 4.10: Minkowski difference: Left, two convex shape A and B, with coordinates
AV = {a1(1, 1), a2(3, 1), a3(2, 2)}, and BV = {b1(3, 2), b2(4, 2), b3(4, 3), b4(3, 3)}.
Right, the Minkowski difference convex hull (Green line) formed by subtraction
of each ai ∈ AV and bi ∈ BV . In this case, A and B are not colliding, so the origin
point is outside the convex hull of A	B.

54

The reason the Minkowski difference works is because when we are determining

whether two objects are colliding, we are determining whether these two objects have

points in common. Assume p is the point in common for the two objects A and B,

then p - p = 0 (the origin point) must be in the convex hull of the Minkowski difference

of A and B. Otherwise, if there are no points in common, the origin point will not be

in the Minkowski difference of A and B. With these properties, we can then check

whether two convex objects are colliding by calculating the Minkowski difference of

them, and check whether the origin point is inside the Minkowski difference convex

hull. A straightforward solution would be calculating the Minkowski difference exactly

according to the formula, and for two convex objects with n and m vertices, the

Minkowski difference will contain n ∗m points. Whether a point in this Minkowski

difference is inside or on the convex hull is not determined yet, if any tetrahedron

formed by 4 points from these n ∗m points of the Minkowski difference contains the

origin point, the Minkowski difference contains the origin point.

In order to check whether a point is inside a tetrahedron, we can check the

volume. Let A, B, C, D be the vertices of the tetrahedron, and O be the origin point. If

the sum of VOABC , VOABD, VOACD, VOBCD is equal to VABCD, the origin point is inside

or on the surface of the tetrahedron. Otherwise, if VOABC +VOABD+VOACD+VOBCD >

VABCD, the origin point is outside the tetrahedron, Figure 4.11. Then we have the

complete solution of checking whether two convex objects are colliding by this method.

55

Figure 4.11: The idea to prove the property of checking a point is inside or outside
a tetrahedron is that when the point is inside, the tetrahedron can be treated as the
sum of several sub-tetrahedrons divided by connecting this point with each vertex on
this tetrahedron; when the point is outside, it can be treated to calculate the volume
of the overall object formed by the point and all four vertices on the tetrahedron,
which will always contain the tetrahedron itself, so the overall volume is the sum of
the volume of tetrahedron and some extra non-zero part for any possible cases. e.g.
Left: O is inside the tetrahedron ABCD, VOABC +VOABD +VOACD +VOBCD = VABCD,
as tetrahedron ABCD is formed exactly by tetrahedron OABC, tetrahedron OABD,
tetrahedron OACD, and tetrahedron OBCD. Right: O is outside the tetrahedron
ABCD, VOABC + VOABD + VOACD + VOBCD > VABCD, as VOABC + VOABD + VOACD +
VOBCD = VABCD + VOBCD in this case, and VOBCD > 0.

For convex objects with a small number of vertices, the computation cost is

limited. However, for two convex objects with m and n vertices, the time complexity

is O ((m ∗ n)4). It is almost impossible to apply this method in real time. Hence, an

optimization of this method is desired.

Gilbert-Johnson-Keerthi algorithm

A method named Gilbert-Johnson-Keerthi (GJK) algorithm [24] is designed

for this situation. GJK uses the properties of the Minkowski difference, but it does not

need to calculate all the points in a Minkowski difference, Figure 4.12. The strategy

is, for a given direction, if a point falls on the convex hull of the Minkowski difference

of convex shape A and B, it should be using the furthest vertex in this direction of

56

A and the furthest vertex in the opposite direction of B. Then by starting with a

random direction, we can calculate a line āb formed by two vertices on the convex hull

of the Minkowski difference. Then by using this line, we can find in which direction

the origin point is to this line āb and find another point c on the convex hull based

on this direction. Now we have this triangle ∆abc, and it is not hard to find out the

direction of the origin point as to this triangle and find point d in this direction. By

finding the direction and check the origin point as to tetrahedron abcd iteratively, we

can determine whether the origin point is inside the Minkowski difference without

exhausting all the tetrahedrons, or even calculating the Minkowski difference itself.

57

Figure 4.12: Let the convex shape in this figure is a Minkowski difference. a). Given
a random direction and by finding the furthest vertex on this Minkowski difference
by this direction, we identified vertex A. Note that we can directly determine this
vertex by just using the convex shape A and B that generate this Minkowski difference
as mentioned in the context. b). Let direction -A be the new direction and identify
vertex B. c). Let the new direction perpendicular to AB and point to O, and identify
vertex C. d). In the same way, we find a new direction perpendicular to BC and point
to O, but there is no vertex that exists in this direction any more, so we know that
there is no collision between convex objects A and B.

Now, we have a solution for detecting the collision for all the convex objects,

even if a convex object has infinite vertices, i.e. m,n→∞. As to the concave objects,

we can treat them as a combination of several convex objects, and check the collisions

one by one.

58

In summary, in this chapter, we have provided a mathematical and logical

foundation, and computational implementation that can build models from slender,

branched to any objects multi-dimensional and multi-scale.

4.4.2 Results

For the study of Magic Snake, if the rotation is multiples of 90 degrees, there

is a trivial way of detecting the collisions (naming “trivial solution”). That is, the

collision only happens when two wedges are sharing the same cube, and the orientation

of the two wedges are not “opposite” (the two wedges are not forming a cube). We

have exhausted all the conformations that when the wedges of a Magic Snake is less

than 14, and without collision used this way. By doing this, we just exhausted all

the combination of [0,1,2,3], and check whether the Magic Snake colliding or not. We

have also used the GJK algorithm to check the collision and compared it with the

result produced above. We have checked all Magic Snakes with less than 10 wedges

and the results are exactly the same, as shown in Table 4.1.

59

Table 4.1: We have exhausted all the possibilities using trivial solution and GJK
algorithm to check collisions and record the number of Magic Snake that are not
colliding under 10 wedges.

Number of wedges Trivial solution GJK solution

2 4 4

3 16 16

4 64 64

5 241 241

6 920 920

7 3384 3384

8 12585 12585

9 46471 46471

We then compared the timing between Volume check and GJK algorithm based

on the results in the table above. We stored all the possible shapes of the Magic Snake

into a hdf5 file, and in checking the collisions one by one, record all the time utilized

as shown in Table 4.2. It shows that with the number of wedges and shapes increasing,

GJK algorithm remains fast and much improved the performance than the volume

check.

60

Table 4.2: Checking collision using volume check and GJK algorithm using the data
from Table 4.1. We have recorded the time for collision detection up to 7 wedges. The
PC and CPU specification is shown in Table 4.3 and Table 4.4

Number of wedges Number of shapes Volume (s) GJK (s)

2 4 0.08 0.15

3 16 2.88 0.17

4 64 27.09 0.93

5 241 173.95 4.33

6 920 1014.90 9.50

7 3384 4773.30 35.30

Note that for Table 4.1, we only compared the results of the trivial solution

with the results generated by the GJK algorithm, this is because we want to verify the

accuracy of the GJK algorithm. By doing this, we have the correct answers provided

by the trivial solution but limited to multiple of 90 degrees rotations. We can verify

the GJK algorithm by limiting the GJK algorithm to check only the multiple of 90

degrees rotations and check the results. Table 4.1 does not contain the results from

the Volume check algorithm because the Volume check algorithm will take too much

time.

At the same time, Table 4.2 is the timing comparison between the Volume check

and the GJK algorithms, it excludes the trivial solution because these two algorithms

(GJK and Volume check) have the same application(not limited by multiple of 90

degrees rotations). Although we still time the number of structures with multiples

61

of 90 degrees rotations, it is desired to compare these two algorithms with the same

application, instead of comparing them with an algorithm with a different application.

Table 4.3: The computer specification for the timing in this dissertation.

CPU Intel Xeon E5-2620 v4

GPU nVidia GP104

Chipset Intel C610/X99 series

Main Memory 64GB

OS openSUSE Leap 15.0

Table 4.4: CPU specification for the timing in this dissertation.

Number of Cores 8

Number of Thread 16

Processor base frequency 2.10 GHz

Max Turbo frequency 3.00 GHz

4.5 Conclusions

Our research on Magic Snake aims to design the conformation of Magic Snakes

computationally. This chapter first describes modeling strategies that provide both

1D and 3D descriptions of a Magic Snake. The 1D description can be used to share

exact information of a conformation of a Magic Snake with others, and 3D modeling

provides a general formula to convert any 1D sequence to the 3D structure. This

chapter then describes two design strategies. One fits a Magic Snake with 4 ∗n wedges

62

to any discrete curve with n equal length segments. This enables us to design a Magic

Snake by designing any curve in space, but the limitation is that it does not provide

collision detection. Another design strategy is to expand the n wedge Magic Snake

into a km ∗ n wedge Magic Snake, where k is the number of wedges of the embedded

Magic Snake, and m is the number of iterations. This enables us to design complex

structures of a Magic Snake starting with simple ones. Of course, design strategies for

a Magic Snake are various, and we expect more design strategies for the Magic Snake

to be developed.

According to Erno Rubik, “The snake is not a problem to be solved; it offers

infinite possibilities of combination. It is a tool to test out ideas of shape in space.

Speaking theoretically, the number of the snake’s combinations is limited. But speaking

practically, that number is limitless, and a lifetime is not sufficient to realize all of

its possibilities”[15]. For integer multiples of 90 degree rotations, a Magic Snake has

at most 4n−1 possibilities of the combination with n− 1 rotations among n wedges.

As we are extending the rotations to any degrees, we are really dealing with these

infinite possibilities. However, there are limited efforts of designing these combinations

systematically. Even without these efforts, the structure of Magic Snakes already

enlightens researchers in different areas (e.g. protein folding). With developing and

designing Magic Snakes computationally, the outputs will not only be limited to the

structures of Magic Snakes, but also provide better understanding of general slender

body or even any 3D objects.

CHAPTER 5

MULTI-DIMENSIONAL AND MULTI-SCALE
MODELING OF NANOCARS

5.1 Nanocar Introduction

With the improvement of computational performance, the simulations, such

as Molecular Dynamics, are maturing. However, there is no systematic workflow

to perform simulations, so researchers generate their own scripts to study interest

aspects. In most cases, an initial conformation must be obtained. At the same time,

chem-informatics provides a huge amount of data that can be utilized in initializing

models for simulations and validating results from simulations. Here, we demonstrate a

Nanocar Racer Web application as proof of concept to show how to support integrating

high-level simulations with chem-informatics and achieve multi-dimensional modeling

by data unification from 1D to 4D.

A nanocar is a molecule designed in 2005 at Rice University by a group headed

by Professor James Tour [25]. It is designed to have functional groups that roll

like wheels on a car, Figure 5.1. Nanocar Races are held as international scientific

competitions with the aim of testing the performance of molecular machines and

the scientific instruments used to control them. The races take place on a 100

63

64

nanometer gold surface for the first time held in Toulouse in April 2017 [26]. Nanocar

races are a gamification of technoscience, but they are also a new way to carry out

experiments [27].

From an experimental point of view, the design and testing of a Nanocar

takes a whole series of stategies [28]. From a computational point of view, Nanocar

can be designed and tested with all atom molecular dynamics simulation in real

time. This process only takes computational power. The results can be validated by

chem-informatics to inspire nanocar design and molecule mechanisms in general.

In this chapter, a general framework that unites chem-informatics and physical

modeling is described. The framework utilizes off-the-shelf (OTS) software tools to

get all the needed data and computation. A Model-View-Controller (MVC) design

principles is used to unite the items. We demonstrate a “Nanocar Racing Webpage”

that enables one to build nanocars, search chemical structures, simulate the chemical

structure diffusing on a gold surface, and sharing simulation results in a “Nanocar

Library”. Our goal is not to provide a robust Nanocar Racing web application as

a tool for general usage, but to demonstrate a framework that links pre-determined

simulations to chem-informatics, and sharing or easily maintaining the user’s Nanocar

design data.

65

Figure 5.1: The Original Nanocar.

5.2 Multi-dimensional Modeling of Nanocars

For the multi-dimensional modeling of a Nanocar, we will describe the software

needed to make a Nanocar Racing application, which is the off-the-shelf (OTS) idea

of seeking applications that will provide desired inputs. The simulation strategy is

described as a black box that computes diffusion as the race metric.

5.2.1 Off-The-Shelf

To build a “Nanocar Racing” application, we need a molecule representing a

Nanocar, a gold surface for the track, simulation tools to run the simulation, and

visualization tools to view the results. Based on these concerns, we have found the

following applications.

Data Visualization from 1D to 4D

As shown in Table 5.1, from the Nanocar point of view, a Nanocar can be

described as a 1D SMILES string, a 2D chemical structure, a 3D physical model, or

4D molecular dynamics. To visualize these descriptions, we select the OTS items as

shown below:

66

Table 5.1: Nanocar Models from 1D to 4D.

Informatics 1D: XML SMILES
2D: JSME Chemical Structure

Physical Modeling 3D: JSmol Physical Structure
4D: JSmol Molecular Dynamics

1D: A SMILES string is just text. As in our web application, it is a string embedded

in XML format so that it can be displayed on a webpage by HTML.

2D: JME is a Java-based molecule editor, and JSME [29] is the JavaScript version

of JME. We utilize JSME to provide the 2D chemical structure view to show how a

molecule is structured. It also provides the user the ability to draw molecules and

return informatics data by Molfile, SMILES, or JME String. The informatics will

provide enough information to convert these strings into a physical structure that

contains all the coordinates of each atom in a molecule.

3D and 4D: JSmol [30] is the JavaScript version of Jmol, which is a software for

molecular modeling chemical structures in 3D. With the informatics provided by

JSME, the 3D structure of a molecule can be visualized. JSmol also provides the

function of loading simulation trajectory data, which is a 4D (3D + time) visualization.

Data Conversions from 1D to 4D

1D, 2D, 3D: Open Babel is an expert chemical system mainly used to interconvert

chemical file formats. In the Nanocar case, Open Babel provides the conversions

67

between a SMILE string (1D), a mol (2D) and a PDB (3D) file format. PDB file

format is widely used by running simulations.

4D: After obtaining 3D structure by Open Babel, we selected a collection of

simulation tools for converting 3D into 4D. Several packages of AMBERTools [31] are

used in “Nanocar Racing” application. “antechamber” can be used to automatically

apply atom types, bonds, and charges for most organic molecules in a database,

where the SQM calculates to determine the charges, while “parmchk2” can be used

to check parameters, and “tleap” can be used to build structures. VMD [32] is a

Visual Molecular Dynamics tool, which can also be used to manipulate the locations

of the atoms. We use VMD to put the “Nanocar” at the center of the gold surface.

NAMD [33] is the simulation tool used to run the simulations that eventually outputs

the 4D data in the Nanocar case. Note that we used these tools instead of something

much simpler because we also want to show that we can make the computational

“Black Box” arbitrarily complex.

5.3 Multi-scale Modeling of Nanocars

For the multi-scale modeling of the Nanocar, we have described the Masked

SMILES in Chapter 2, which can be treated as a “coarse-grained” SMILES. Similar

with the example of Nucleobase (ACGT) in Chapter 2, we can then define the Nanocar

as a collection of Wheels (W), Decorations (D), and Junctions (J). As a result, the

Nanocar shown in Figure 5.1 can then be written as:

68

“WJ(D)(D)J(J(D)(D)W)J(D)(D)J(D)(D)J(J(D)(D)W)J(D)(D)W”, instead of the SMILES

containing 953 characters, as shown in Figure 5.2.

Figure 5.2: Coarse-grained SMILES. Left: the SMILES for the Nanocar as shown in
Figure 5.1. Right: the coarse-grained “SMILES” for the same structure.

5.4 Computational Implementation

5.4.1 Data Sharing

All the necessary OTS items for multi-dimensional modeling of a Nanocar

are obtained, which will process and generate simulation data for researchers to

analyze. It is essential to have a solution for maintaining and sharing these data.

TMB-Library [34] utilizes iBiOMES-Lite [35] to generate html pages to maintain and

share data. Nanocar Racing also use iBiOMES-Lite to provide simple deployment of

data sharing.

5.4.2 Our Simulation Workflow

With the help of the OTS items provided above, we design an initial molecule

by JSmol, JSME or type in a SMILES string. JSmol and JSME provide a mol file.

Both mol file and SMILES string can be converted into a pdb file using Open Babel.

Then, we use antechamber to assign atom types, bonds and charges. We use parmchk2

69

to check molecular mechanics modeling parameters and tleap to build topology. In

order to put the Nanocar at the center of the gold surface, we calculated the center of

mass of the Nanocar and the center of mass of the gold surface, then moved the car

center to the gold surface center and shifted a constant value in z direction, such that

the Nanocar does not overlap with the gold surface. Finally, we run a pre-determined

molecular dynamics simulation using NAMD.

We point out that this is a general simulation that is treated as a “Black-Box”

from the Nanocar’s point of view. Here, we just provide set-ups for our simulation.

Tools such as CHARMM-GUI [36] and QwikMD [37] provide simplier solutions.

However our goal here is not to identify the most efficient solution but rather the

demonstrate that the black box can be arbitrarily complex.

5.4.3 Model-View-Controller Design

The idea of integrating modeling and informatics is shown in Figure 5.3. We

are utilizing the idea of Model-View-Controller (MVC). MVC is an implementation of

the Separation of Concerns (SoC) design principle in which a computer program is

separated into distinct features that overlap as little as possible [38]. An MVC design

enables one to separate the informatics and physical data (models), the user interface

(views), and the logic that connects them (controller). To achieve integrate modeling

and informatics, we concentrate on developing the controller part as a “black-box”

which connects models and views from different researchers.

70

Figure 5.3: The software associated with the different components (Models, Views,
Controller) are listed above.

Model

Different researchers utilize different physical and data models. The idea is

to encapsulate these models in a “black-box” such that when specified inputs are

provided, the model will automatically calculate and report relevant observable. In

the case of the Nanocar Racing application, as shown in Table 5.1, the models could

have conversions between informatics (chemical structure) and physics 3D structures

71

where 3D structures are necessary for MD simulations, and Chemical Structure are

necessary for informatics analysis (e.g. PubChem search).

View

View displays all the desired data in 1D to 4D, as shown in Figure 5.4. Besides

the model that converts between these representations, users can also search in a

database to get the informatics and display them on a webpage, and type in a SMILES

string as a 1D view in Nanocar’s case, build a 2D chemical structure on JSME panel,

load up a xyz/pdb file as 3D physical models, and load xyz frames as a 4D view.

Nanocar Library also provides a view of the database and the analyses.

72

Figure 5.4: A) The Nanocar Racing Webpage, the upper components provides
the representation of 2D chemical structure in JSME, 3D molecule in JSmol, and
1D SMILES in text. The lower components are generated after the click “Simulate”
button, which provide a 4D view of the simulation in JSmol, and a sample analysis
showing the RMSD of the Nanocar of each simulation frame to the first frame. The
analysis indicates how far the Nanocar has traveled. B) “Search on PubChem” button
in A) will open a PubChem page that redirect to the chemical structure created by the
user. C) “Nanocar Library” button in A) will submit the simulation to the Nanocar
Library. If no simulation has been done, it will redirect to the homepage of Nanocar
Library in D) that can browse the simulations done by others.

Controller

The controller manages the exchange of data between model and view. In the

Nanocar example, we can run simple simulation on our own server, and open the

PubChem page to search informatics data as shown in Figure 5.4. They are all done by

posting data through javascript and PHP, so that the model side knows which model

to make and which parameters to use, and the view side knows which model to display.

For example, for a typical usage of Nanocar Racing Web application, we first draw

any chemical structure with embedded JSME. JSME is a javascript application itself,

73

and by the embedded commands jme. getSmiles() or jme. getMol(), it will return a

JSON (JavaScript Object Notation) string with SMILES or MOL format. Then, by

the functionalities of jQuery [39], a javascript module, these JSON strings can be

posted to PHP. PHP is server-side language which is able to write these JSON strings

into files and run unix commands on the server side. As a result, for any researchers

who have their own simulation scripts, PHP can be used to execute these scripts on

the server-side.

In our case, PHP first writes the JSON string into a smi(SMILES) or a mol file,

then executed a tcsh script that first called for Open babel to convert this file into a

pdb format file, and do everything mentioned in Section 5.4.2. After this is done, PHP

will notify the javascript side that posting is done, and on the javascript side, it can

arrange html elements such as update the JSmol to load the xyz file just generated on

the server side, thus accomplishing the whole procedure of communicating between

the Model and the View. Of course, this is not the only way of doing these. Web

application frameworks such as Django [40] and MERN can also achieve what has

been mentioned in this section with proper setups.

5.5 Results

5.5.1 Nanocar Racing Webpage

Based on the methods provided above, we have developed a Nanocar Racing

Webpage as a web application as shown in Figure 5.4. A user is able to type in 1D

SMILES string in the text box, draw 2D chemical structures in JSME or upload 3D

molecules in JSmol. Nanocar Racing Webpage will generate all three representations

74

(1D, 2D, 3D) when any one representation is provided. The pre-defined simulation is

in “black box” and can be done by simply clicking the “Simulation” button. After the

simulation, Nanocar Racing Web application will output the result of the simulation as

an animation shown in JSmol, and a sample analysis described below indicates how far

the Nanocar has traveled. The Nanocar Racing Webpage also enables web searching

for the structure in PubChem, which associates with any chem-informatics and

experimental data. Nanocar Library utilizes iBiOMES-lite [35] to manage simulation

data, which was also utilizes in TMB Library [34].

We have recorded the time for our simulation workflow in Section 5.4.2,

Table 5.2. It shows that for our workflow, building the structure and running the

simulation does not take much time. Assigning atom types, bonds and charges is time

consuming, and increases with more atoms and more complex structures. The charge

assignment uses SQM to construct a semi-empirical quantum mechanics electron

density calculation. Such QM calculations do not scale well and are cost prohibitive

for large systems (typically less than 100 to 1000 atoms).

75

Table 5.2: Timing for our Nanocar simulation workflow mainly include three parts:
use antechamber to assign atom types, bond and charges; use tleap to build structure;
and use NAMD to run the simulation. The PC and CPU specification is shown in
Table 4.3 and Table 4.4

Molecular Formula Assign attributes (s) Build structure (s) Run simulation (s)

C3H6 0.090 0.026 5.409

C4H8 1.104 0.027 5.740

C5H10 3.360 0.026 5.688

C6H12 2.047 0.026 5.853

C6H6 4.586 0.021 5.868

C6H10 17.026 0.033 5.794

C7H12 17.914 0.027 5.842

C38H50 687.463 0.025 9.579

C40H70 991.691 0.031 8.667

5.5.2 Analysis

Nanocar Racing Web application provide a simple analysis accomplished by a

VMD script. The script selects atoms in the first frame that are not gold, which is all

the atoms in the molecule in the Nanocar, as the reference atoms. Then among all

the frames generated by the simulation, we select atoms in the same way, then we

can calculate RMSD (Root Mean Square Deviation) between these atoms with the

reference atoms (without any fitting). We record these RMSD values as a function of

time and plot it along the frames. As a result, we have this RMSD plot that reflects

the distance and orientation a Nanocar travels vs time. As shown in Figure 5.4-A,

76

the Nanocar is not travelling straight. Instead, it is tumbling around. This can be

observed in this RMSD plot without watching the whole series of animations. The

Nanocar is not going in a straight line because we do not apply any type of external

force, so it moves only due to the attractive force between the molecule and the gold

surface.

As a sample analysis, this demonstrates how easy it is to integrate analyses

with our framework. Researchers with specific simulations and analyses could easily

adopt this idea and take advantage of the framework.

5.6 Conclusions

We have developed a Nanocar Racing Web application as a generic web tool

for integrating chem-informatics, physical modeling and simulation. It provides a

computational platform to test Nanocar molecules racing on a gold surface. It is also

a gamified application that introduces Nanocar to one that may have no knowledge

about either nano-technique or computational simulation.

We emphsize that we are not planning to host the Nanocar Racing Webpage as a

tool for general usage, but use it as a template for any multi-dimensional applications.

The current Nanocar Racing web application is simplified and does not provide

electrical impulses and electron transfer as in real Nanocar Racing. The OTS items

for simulation in our workflow is too much for applying simple simulations, so it runs

slow even on small molecules. However, this idea can be adopted to setup simulations

properly, and the OTS items are replaceable. There is no common workflow for

77

simulations in individual labs [41], but each individual is a “black box” to our means

of usage that can be applied to our framework.

In this manner, the “Nanocar” can be replaced by any multi-dimensional

modeling objects, and build applications computationally follows the MVC framework.

It is not even required the knowledge to convert the desired object into different

data representations as long as the OTS items exist. The Nanocar Library, which is

also a replaceable OTS item, provides data accessibility. This enables researchers get

advantage of the application with the knowledge of certain data representation. As a

result, computational implementation proposed in this dissertation not only provides

the “communication” between different data representations, but also provides the

“communication” between researchers from different area of expertise.

CHAPTER 6

MULTI-DIMENSIONAL AND MULTI-SCALE
MODELING OF GENOME DASHBOARDS

6.1 Genome Dashboards Introduction

Genomics is a sequence-based informatics science and a 3D structure-based

material science. Here, we describe a framework for developing genome dashboards

specifically designed to unify informatics data with structure and dynamics data. The

framework describes not a single tool but a novel class of computational tools. The

framework is based on the mathematical representation of geometrically exact rods

and the generalization of DNA base pair step parameters. A Model-View-Controller

software design approach is proposed as an efficient means of implementing a genome

dashboard as a finite state machines as either a desktop or web based application.

Two examples are demonstrated using our minimal genome dashboard called G-Dash.

The data unification achieved with a genome dashboard supports the bi-directional

exchange of data between informatics and structure. Thus, any experimentally or

theoretically determined sequence based informatics track can inform DNA, nucleosome

or chromatin modeling (e.g. nucleosome positions) and structure features extracted

from a computational model or experimentally determined structure can be analyzed

78

79

as informatics tracks in a genome browser (e.g. DNA base pair step parameters: Roll,

Tilt, Twist). Here, the framework is applied to chromatin, but genome dashboards are

broadly applicable. Genome dashboards are a novel means of investigating structure-

function relationships for genomes that range from base pairs to entire chromosomes

and for generating, validating, and testing mechanistic hypotheses.

Chromatin is the biomaterial that contains the genome in all higher organisms.

There is no consensus on the structure of chromatin [42], but there is a wealth of

informatics and structure data available. From an informatics point of view, efforts such

as the 1000 Genomes [43], ENCODE [44] and the 4D Nucleome [45] projects provided

sequence based reference data. Coupling the reference data with Next Generation

Sequencing (NGS) and informatics analysis pipelines enables individual labs to conduct

Genome Wide Association (GWA) studies that link chromatin reprogramming with

disease and altered gene expression as described, for example, in [46, 47]. Hi-C [48, 49],

Micro-C [50], and other chromosome conformation capture methods [51, 52] provide

distance constraints as a measure of the large scale organization of chromatin structure.

Super resolution microscopy [53, 54] provides optical visualization of 3D structure

at nanometer scale resolution, while electron microscopy [55], NMR [56], and X-

ray crystallography [57] provide ångström scale resolution of individual nucleosomes

and nucleosome arrays. Strategies for modeling chromatin structure are rapidly

maturing [58, 59, 60]. The desire to merge computational and experimental approaches

is recognized [61, 62], but a significant challenge in chromatin structural biology is

unifying these diverse data sets to advance our understanding of structure-function

relationships and to validate genomic mechanisms of action.

80

Here, we categorize data according to the method typically used to display

and analyse the data. Sequence based informatics is a 1D representation. Contact

and distant constraints are 2D representations. X-ray, NMR and super-resolution

microscopy are 3D representations. Molecular modeling and dynamics are 4D

representations. There exists a growing collection of computational tools that convert

2D data to 3D structures of chromatin [63], and computational models can promote 3D

structures to dynamics or sampling data (4D). However, there remain a few tools, other

than ICM-Web [64], that directly link sequence (1D) with chromatin structure (3D)

or dynamics (4D). Thus, researchers utilizing 1D sequence based methods are missing

3D and 4D structure and dynamics data including steric and geometric constraints in

their analyses, and researchers utilizing 3D and 4D computational and experimental

methods are missing the wealth of informatics data available in sequence based data

sets.

A genome dashboard, like an automobile dashboard or airplane cockpit,

integrates a console for managing data with controllers for navigating a physical world

that appears in a window. A “genome dashboard” unifies informatics (1D), contact and

two-angle representations (2D) [65], structure (3D), and dynamics (4D) data describing

DNA, nucleosomes and chromatin. For the purpose of developing such genome

dashboards, we have identified a framework that unifies 1D and 3D representations

and a general method for implementing it that supports data visualization and

manipulation. The framework is bi-directional, i.e. it can map 3D representations to

1D and 1D representations to 3D.

81

The framework is based on mathematical representations of geometrically exact

rods [3], presented below as “The Model”, followed by “Design Considerations” for

implementing it using Model-View-Controller software development principles. This

approach enables a commodity-off-the-shelf (COTS) approach for assembling genome

dashboards that is both extensible and portable. Two examples are then presented

to demonstrate that G-Dash, a minimal web based implementation of a genome

dashboard, can function in real time in both directions to convert informatics data

into physical structures and physical structures into informatics data.

6.2 Multi-dimensional Modeling with Genome Dashboards

From the genome dashboard perspective, informatics (1D) is any data that

maps to a DNA sequence. Generally speaking, NGS relies on aligning experimental

data with chromosome coordinates and information theory for analysis. Physical

structures include computational models and direct imagining by experiment. For

the computational models, energy functions and physical laws are employed for

analysis. The energy functions are typically grouped into external and internal

energies. U = Uext + Uint, where Uext captures through space interactions and Uint

captures local conformation and dynamical properties. Both types of energy functions

require knowledge of material properties and geometry. Material properties such as

van der Waals radii, dielectric properties, partial charge distributions, moments of

inertia, mass, stiffness parameters, bond angles, etc. are all parameters associated

with a specific physical model or force field. The model itself may employ atomic,

coarse-grained or even continuum approximations. In all cases, the physical structure

82

may be expressed in a laboratory (external) or material (internal) reference frame.

The structure itself may be obtained from theoretical or experimental techniques.

Our strategy for unification (merging data from different sources) is based on

the idea that DNA is the common thread in chromatin structural biology. Unification is

achieved through laboratory (Cartesian coordinate) and material (internal coordinate)

representations of DNA as an oriented space curve or just ribbon for simplicity,

Figure 6.1. Since unification is based on geometric considerations, our strategy is

independent of the parameters associated with a specific physical model. Associating

an energy landscape with a physical structure requires one to choose a physical

model, but an experimentally determined structure can be compared to informatics

data without recourse to any such physical model applied. Our framework does not

provide a model, but it also does not restrict the user’s choice of the model. Various

implementations of the genome dashboard concept may support one or many models

or rely solely on experimental determined structure data.

83

Figure 6.1: Unification is the process of merging data from different sources. Physical
models and informatics data are unified by mathematical representations of an oriented
space curve in laboratory [~r(s),D(s)] and material [~Γ(s), ~Ω(s)] reference frames. The
conformation of a physical model C(s) is associated with the laboratory frame, and
informatics data T (s) is associated with the material frame. Masks M(s) alter the
material properties of DNA. Exchanging data between laboratory and material frames
unifies the physical model and informatics.

In a laboratory reference frame, a continuous ribbon has a centerline ~r(s) and

unit length directors d̂i embedded in the ribbon that capture the local orientation

of the ribbon. The directors can be represented by a director frame matrix D =

{d̂1(s), d̂2(s), d̂3(s)} [66]. This matrix also serves to transform a representation in the

material (internal) frame to a representation in the laboratory (Cartesian coordinate)

frame.

An equivalent description of the ribbon is based on the director frames

themselves. This description is a material reference frame description that captures the

translations and rotations connecting one director frame to the next, represented here

by [~Γ(s), ~Ω(s)]. The two representations [~r(s),D(s)] and [~Γ(s), ~Ω(s)] are equivalent

descriptions of the conformation of an oriented space curve, denoted simply as C(s)

84

for the Cartesian coordinate representation and T (s) when expressed in the material

frame and interpreted as informatics tracks.

Converting between the [~Γ(s), ~Ω(s)] and [~r(s),D(s)] representations requires

either a differentiation or an integration as expressed by the following equations:

d~r

ds
≡ ~t = D~Γ

dd̂i
ds

= D~Ω× d̂i (6.1)

~r(s1, s2) =

∫ s2

s1

D~Γds d̂i(s1, s2) =

∫ s2

s1

D~Ω× d̂ids (6.2)

Here, ~t(s) is recognized as the unnormalized tangent to the ribbon expressed

in the laboratory frame. ~Γ(s) is the same vector expressed in the internal frame.

D~Ω(s) is recognized as the vector corresponding to the instantaneous axis of rotation

of the director frames located along the ribbon at position s, as represented in the

laboratory coordinate frame. Discrete approximations to Equation 6.1 and piecewise

integration as expressed in Equation 6.2 can be employed to obtain a collection of

discrete director frames. Different models may require different numerical algorithms

to achieve the required discretization. Numerical methods suitable for DNA are

discussed below. They are reading strand invariant. Together, the material (internal)

and laboratory (Cartesian coordinate) representations provide a basis for unifying

informatics ([~Γ(s), ~Ω(s)]) and structure ([~r(s),D(s)]) data.

DNA conformation C(s) is at best a base pair discrete approximation to a

continuous oriented space curve [67, 68]. Base pair step parameters [4, 69] and

associated algorithms provide established methods for describing double and single

85

stranded DNA as a discrete oriented space curve at atomic resolution. A sequence

specific di-nucleotide accurate model of dsDNA in the [~Γ(s), ~Ω(s)] (base pair step

parameter) representation can be obtained from x-ray [70] or molecular dynamics [71,

72] studies. A [~r(s),D(s)] description is obtained by integrating [~Γ(s), ~Ω(s)]. There

are two widely used tools for base pair step parameter analysis. 3DNA [8] uses a Euler

Angle (E-A) based method and employs a “RollTilt” approximation [7]. Curves+ [10]

uses a Euler-Rodrigues (E-R) based method [9], Figure 6.2. Both methods utilize a

mid-step plane construction to ensure that the computed parameter values are not

affected by the choice of reading strand. Mathematically, one must invert the sign of

Tilt and Shift upon strand reversal to preserve the alignment of the director frames

with the DNA major and minor groove [73].

86

Figure 6.2: Values of the base pair step parameters obtained from an Euler-Rodrigues
(CURVES) and an Euler-Angle (3DNA) analysis of the director frames indicated on
the right. The Director Frames are an oriented space curve or ribbon representation
of the “AATTAGTCTGCACCGGA” model shown in Figure 6.4.

Base pair step parameter values obtained from the same DNA structure using

the 3DNA and Curves+ methods are known to differ [11]. (Figure 6.4 shows the

default base pair step parameters used in G-Dash as in CURVES+ or 3DNA values.)

Differences may arise from at least three sources. The assignment of director frames

to the base pairs may differ. However, the methods for assigning director frames

are well-defined for ideal pairing [69], so these differences typically occur only for

significant deviations from ideal geometries. The other source of differences is method

87

dependent. These differences have not been well studied. Base pair step parameter

values obtained from 3DNA and from Curves+ differ even when the director frames

used for the calculations are identical, i.e. even when the first problem is eliminated.

Thus, values obtained from one method should not in general be interchanged with

the other. Finally, differences arise from implementation and usage, e.g. numerical

precision during file read and write operations may differ. Nonetheless, these two

methods work well for all-atom representations of the pairing and stacking of base

pairs in double stranded DNA with the caveat that neither provides information about

the DNA backbone. Recent efforts now support proper reconstruction of the DNA

backbone [74].

6.3 Multi-scale Modeling with Genome Dashboards

6.3.1 DNA Masks

Chromatin, for our purposes, is a biomolecular structure composed of DNA

and external agents, such as histones, that alter the material properties (conformation,

dynamics, flexibility, energetics, chemical properties) of a contiguous length of DNA

from s to s + n. We label any such external agent, including histones, as a Mask,

M(s, s + n). Any number of identical or unique Masks (Mi(si, si + ni)) may be

associated with a sequence of DNA (si to si + ni). With this approach, chromatin

folding is an informatics problem of managing an inventory of Masks. A geometric

description of structure requires only knowledge of how Masks alter conformation.

More generally, a Mask may alter the parameters associated with the energy functions

for a specific physical model.

88

There are two strategies for activating structural changes associated with a Mask.

The first is achieved in the material reference frame with the conformation of the masked

DNA denoted by a list of internal coordinates M(s, s+n) = [[~ΓM (s), ~ΩM (s)], ..., [~ΓM (s+

n), ~ΩM (s+ n)]] that spans n base pairs. As the name suggests, the Mask replaces the

[[~Γ(s), ~Ω(s)], ..., [~Γ(s + n), ~Ω(s + n)]] values associated with DNA. We can calculate

C(s) from Equations 6.2, as discussed above. The second approach is achieved in

the laboratory reference frame with the conformation of DNA described as a rigid

entity with M(s, s + n) = [[~rM(s),DM(s)], ..., [~rM(s + n),DM(s + n)]]. The Mask

consists of Cartesian coordinates and director frames which can be converted to T (s)

using Equations 6.1 as discussed above. The Cartesian coordinate representation of

M(s, s + n) requires only a single translation and rotation to position each rigidly

masked element in the laboratory reference frame.

In terms of Masks, a nucleosome is a DNA superhelix and histones. Depending

on the modeling strategy, the histones can be represented independently of the DNA as

a single entity (sphere, cylinder, ellipsoid), a collection of beads, or an all-atom model.

Alternatively, the DNA and histones can be included in the nucleosome Mask as a

single entity, Figure 6.3. Docking individual histones or the complete histone octamer

to a superhelix or placing entire nucleosomes between linkers can be achieved with

the same methods and tools used for describing the relative rotations and translations

of base pairs. However, the “RollTilt” small angle approximation is no longer valid.

89

Figure 6.3: Various strategies can be employed to represent Masks. For an all atom
model (left), one can prescribe a fixed set of base pair step parameters and dock an
all atom representation of the histone core to the superhelix. Coarse-grain strategies
may seek to explicitly represent the path of the DNA while reducing the histone
representation (middle) or may represent the entire nucleosome as a single entity to
which DNA linkers are attached (right). The genome dashboard framework can be
applied to all of these structures, but it does not provide the physical model (energy
functions) for any of them.

The above Masking strategy for nucleosomes can be applied to any protein-

DNA complex. Linker DNA connecting Masks is often assumed to be free DNA,

Figure 6.4, but in general, even linker DNA may be described by Masks, e.g. bent or

less flexible linkers. Likewise, chemical modification of the DNA, e.g. methylation,

which does not change the sequence but the physical-chemical properties of DNA, is a

Mask.

90

Figure 6.4: 3D structure and 1D informatics representations of the sequence
“AATTAGTCTGCACCGGA” which contains all 16 possible base pair steps. This
figure summarizes the structure and informatics data associated with any unmasked
region of DNA in G-Dash.

In the context of a genome dashboard, chromatin folding is an informatics

problem of describing the unique Masks and tracking their locations along a sequence

of DNA. These Masks can be developed and manipulated based on informatics or

physical analyses. In this manner, genome dashboards are designed to enable users to

define and navigate chromatin folding landscapes efficiently.

6.3.2 Collision Detection in 1D

One problem occurs when a Mask is applied to a space curve with a certain

strategy in one of the projects, G-Dash. The problem can be described as given a

91

number of fixed length Masks, and assign values to each point on a space curve, and

then find the minimal sum of the value of the point at the start of applied Masks such

that all the Masks on the space curve do not overlap.

Inputs: Number of Masks, length of Masks, a list of values ([v1, v2, v3, . . .])

represent the assigned values on a space curve.

Output: The occupancy of the start of the Masks ([M1,M2,M3, . . .]), where

the value donated as vMi
, such that the sum of vMi

is minimized.

Greedy algorithm

A straight-forward strategy is using the greedy algorithm, that is:

For i in the number of Masks, find the minimum position of the list of values,

and check if putting a Mask at this position overlaps with previous ones. If not, set

this position as a desired Mask position, and set this value as inf.

Algorithm 1 Greedy Algorithm for 1D Collision detection

1: i← 0
2: Mask index← []
3: while i < # of Masks do
4: index← vmin

5: if Check overlap(index,Mask index) == False then
6: Mask index←Mask index.append(index)
7: vindex ← inf
8: i← i+ 1
9: else
10: vindex ← inf
11: end if
12: end while=0

This algorithm will return a local minimum of the solution. While it is quite

fast, the time complexity is only O(n), so it does not necessarily provide the global

minimum. It is not easy to find a global minimum, and in some cases, even the

92

maximum value in [vi] could be in the minimum set of the Masks’ positions. So, an

exhaustive searching of possible solutions, the time complexity would be O(nm), where

m is the number of Masks.

Zero-One integer programming

In order to solve this problem, we have converted it into a zero-one integer

programming problem. The zero-one integer programming is a NP-complete problem

that uses a series of binary (1 and 0) answers to arrive at a solution when there

are two mutually exclusive options. The mathematical model of a zero-one integer

programming problem is described as

Target Function: (Max/Min)z = c1x1 + c2x2 + + cnxn

Condition Functions:

a11x1 + a12x2 + + a1nxn ≥ (≤)b1

a21x1 + a22x2 + + a2nxn ≥ (≤)b2

. . .

am1x1 + am2x2 + + amnxn ≥ (≤)bm

where x1, x2, . . . , xn = 0 or 1

In the case of putting Masks on the space curve, let the xi = 1 at the position

i of the space curve where the Masks are located, and xj = 0 where j is the position

of Masks that are not located. Then the functions are:

Target Function: (Min)z = v1x1 + v2x2 + + vnxn

Condition Functions:

x1 + x2 + + xk ≤ 1

93

x2 + x3 + + xk+1 ≤ 1

. . .

xn−k+1 + xn−k+2 + + xn ≤ 1

x1 + x2 + ...+ xn = num of Masks

where x1, x2, . . . , xn = 0 or 1, and k is the length of a Mask.

The zero-one integer programming problem could be solved by branch and

bound algorithm, which defines the problem as P (x1, x2, , xn), and the optimized

solution is f(x1, x2, , xn). Then this problem could be treat as two sub-problems:

P1(0, x2, , xn) and P2(1, x2, , xn), and the minimum of f1 and f2 is the solution of P ,

and by recursively applying this operation, a global minimum can be found.

Algorithm 2 Zero one integer programming

0: function Mask Position(Maski(Boolean), val, # of Masks)
1: if # of Masks == 0 then
2: return
3: else
4: return min(vMaski + Mask Position (0,val, # of Masks-1), Mask Position (1,val,

of Masks))
5: end if
5: end function=0

Meanwhile, there are robust algorithms that exist to solve zero-one integer

programming problems, such as intlinprog in Matlab. After we have set up the Target

Function and Condition Functions, we can pass the coefficients to intlinprog in Matlab

and get the solutions.

94

6.4 Computational Implementation

A genome dashboard is a finite state machine that can be efficiently developed

using Model-View-Controller (MVC) design principles [38], Figure 6.5. This approach

ensures that a dashboard’s components are independent, replaceable, and extensible.

Figure 6.5: Model-View-Controller (MVC) Design. Model: Laboratory frame

[~r(s),D(s)] and material frame [~Γ(s), ~Ω(s)] descriptions of DNA as the common thread,
an inventory of Masks M(s), and procedures for converting between representations.
View: a Molecular Visualization (MV) displays C(s), a Genome Browser (GB) displays
T (s) and a Control Panel (CP) provides a graphical interface to the controller. G-
Dash uses JSmol and Biodalliance for the MV and GB components, respectively. A
commodity-off-the-shelf (COTS) approach enables a genome dashboard to use any
desired MVs and GBs. Controller: manages the exchange of data between Model and
Views.

The “Model” in the MVC schema is the data and related logic. For a genome

dashboard, the Model includes the [~r,D] and [~Γ, ~Ω] representations of DNA as a

discrete (or even continuous [75, 76]) oriented space curve, the inventory of Masks,

95

Mi(si, si +ni), any associated track data, T (s), and procedures for converting between

representations. In general, the rotations and translations associated with a Mask

may be large. If a Mask is a rigid entity, this information can be leveraged to improve

performance. For example, representing all 147 base pairs of DNA and eight histones

in a nucleosome as a single director frame along with a large deformation of the path

of DNA reduces computational and data costs by approximately n ∗ 146, where n is

the number of nucleosomes containing 147 base pairs.

The “View” in the MVC schema provides the user interface and renders data.

A genome dashboard includes a 3D/4D Molecular Visualization (MV) for rendering

[~r,D], a Genome Browser (GB) for rendering [~Γ, ~Ω], and a Control Panel (CP) as

a graphical user interface to the Controller. A genome dashboard can be designed

as a web application or a stand alone application. For web applications, javascript

based MVs such as JSmol [30] and NGL Viewer [77] are optimal. For stand alone

applications, MVs such as VMD [32] and PyMOL [78] are optimal. Likewise, for web

applications, the GB should be javascript based, like Biodalliance [79]. For stand alone

applications, JBrowse [80] or other modern genome browsers may provide advantages.

The “Controller” in the MVC schema manages the exchange of data between

the View and the Model. For a given genome dashboard, the MV and GB can be

COTS elements, but the Control Panel and Controller are application specific. We

expect that different instances of the genome dashboard concept will target different

users and utilize different physical models, or in the case of purely experimental data

not even include a physical model. The Controller enables the user to manage the

96

physical models and different strategies for managing the MV, GB, and CP will likely

emerge, but the underlying Model remains as described above.

6.5 Results

6.5.1 G-Dash Web Application

Overview: G-Dash is a prototype of the genome dashboard concept, Figure 6.6.

It is a web application that uses HTML5, JavaScript and JSON(JavaScript Object

Notation) for HTML functions and for embedding Biodalliance and JSmol in a single

page, and PHP to pass data between modeling units. Bigwig [89] and 2bit formats

are utilized to exchange and manage track data. The modeling units in the G-Dash

prototype have evolved over time without selective pressure and are a collection of

Unix and VMD scripts, FORTRAN, Python, and C tools. The G-Dash prototype is

self-contained. Any user can install G-Dash on a computer with an Apache2 HTTP

server configured to allow access to a user’s “public html” folder. However, there

are a number of additional software packages that must be installed and configured.

Interested users should contact the authors. A Python based implementation of the

Model as an integrated compute kernel is under development. It will provide an API

that can function as a command line tool independently of the graphical user interface

and HTTP server. It will thus be suitable for automated workflows. This Python

implementation of the Model will be publicly available via bitbucket.

Usage: In G-Dash, all-atom models are generated with 3DNA and parameterized

with AMBER’s tleap [31] modules. The atomic models include parmtop, crd and

97

pdb formatted files that can be downloaded by the user to initiate modeling on their

own computing resources. JSmol displays the pdb file using cartoon style by default.

Coarse-grained models are stored in an xyz formatted file. The DNA space curve has

Center Atoms, CA, director frame end points as H1, H2, H3 atoms, and octasome

cores as OC atoms. We have applied the following rules for representing coarse-grained

models in JSmol. DNA is represented by small beads and nucleosomes by large beads.

A small green bead represents the start of the structure, and small yellow beads

represent intermediate base pairs. Nucleosomes are represented by large blue beads,

unless a steric class is detected. Then the beads are colored red to indicate a clash.

Steric clash is only monitored for systems containing less than 30,000 base pairs in

order to maintain the interactive nature of G-Dash. For all models, JSmol is fully

functional so users can save files, change colors or representation schemes, measure

distances etc., using the functions provided by JSmol. As embedded in G-Dash,

Biodalliance allows users to choose between Human, Mouse, Yeast, and Pig genomes.

G-Dash can be configured to use other public or private genome assemblies. For any

genome, users enter the chromosome coordinates of interest or a search term to jump

to a desired location. For example, entering CHA1 for the sacCer3 assembly jumps to

chromosome coordinate III:5,798..26,880. Alternatively, users select a specific DNA

sequence for modeling using the sequence selector (a yellow bar) in the top track of

the genome browser.

In a genome browser, all data are displayed as tracks. In G-Dash, default

tracks representing structural-informatics obtained from the Model are pre-selected

and are automatically updated whenever a model is built, see also the Analyze section

98

below. Biodalliance, like any modern genome browser, allows users to add tracks

from numerous public or private resources. Users can manipulate the style, color, and

max/min values associated with any track.

For the Control Panel, a tab based graphical user interface has been developed.

The tabs correspond to familiar modeling tasks: start a session, build a model, simulate

and analyze. The tabs are labelled accordingly and are described below. The G-Dash

prototype demonstrates that established data and language standards can be exploited

to achieve bi-directional exchange of data between informatics and structure so that

any informatics track can inform a molecular structure and structural features can be

extracted as informatics tracks.

Figure 6.6: G-Dash contains an embedded genome browser, Biodalliance, (bottom
left), a Control Panel(top), and a Molecular Viewer, JSmol, (bottom right). See text
for additional descriptions of Control Panel elements.

Session

The “Session” tab is used to initiate or restore a session. For each session,

G-Dash provides a unique session ID, which can be used to return to a previous session

99

using the submit button. Users start a new session by selecting the desired species

and the chromosome coordinate to be modeled either by key-word search or selection

with the yellow bar. A description of the current model is provided whenever a model

is built. An externally developed 3D structure can also be associated with a genome

assembly using “Choose Files” and the “submit” button. Currently, only DiscoTech

[85] based pdb models are allowed. However, any model for which [~Γ(s), ~Ω(s)] data can

be computed should be supported. If the model explicitly contains [~r,D] information

or if the director frames can be systematically extracted from the model, then the

algorithms described in Methods can be used to compute structure tracks. If, as is

the case with the DiscoTech based models, only ~r(s) data is available, the director

frames must be determined from a TNB analysis. The DiscoTech based models pose

the additional challenge that there are nine base pairs per bead. The TNB approach

is used to generate missing data with the assumptions that the DNA curve is shear

free and has uniform twist.

The DiscoTech based models also lack sequence. Thus, the user chooses a

starting location with the sequence selector (yellow bar) to associate the model with

chromosome coordinates. Uploading DiscoTech based models thus demonstrates an

important proof of concept of how to associate an external structure with the Model

in a genome dashboard. Hi-C derived models can also be imported with this technique.

This usage modality is a powerful tool for unifying externally developed models with

the wealth of sequence data that is publicly available.

100

Build

The “Build” tab provides all the functionalities of ICM [64]. The “Global

Variables” apply to all models under “Build”, “K/X” represents the stiffness(K),

and free DNA geometry(X) (Here, X is shorthand notation for [~Γ(s), ~Ω(s)]); “T” is

the temperature in Kelvin and determines the amount of thermal variation to be

added to the helical parameters for regions of free DNA. The default value is zero,

which means the sequence specific average values of [~Γ(s), ~Ω(s)] as observed in [72]

are used. Only DNA that is not Masked is subject to thermal variations. As we

reported previously [12], random thermal fluctuations added to the nucleosomal DNA

helical parameters are sufficient to destroy the nucleosome superhelix. For this reason,

thermal variations are not added to any region of DNA that is masked. Options

“All-Atom”(under 2,000 base pairs), “Coarse-Grained”(between 2,000 to 30,000 base

pairs), “Super Coarse-Grained”(over 30,000 base pairs) are provided and automatically

highlighted according to the length of sequence selected.

DNA: As with ICM, all-atom or coarse-grained models of DNA require only a

sequence and temperature to be specified. G-Dash reads DNA sequence information

directly from Biodalliance. Users select the sequence using the sequence selector

(yellow bar in genome browser window), and the chromosome coordinates of the

selected sequence appear above the genome browser as the Model coordinates. G-Dash

will generate a single 3D structure or an ensemble containing ten different sequence

specific thermal variants by choosing one or ten frames.

101

Uniform: The Uniform option provides a uniform linker length between Masks, and

all Masks correspond to 1KX5. As in ICM, the user can control the phase and linker

length. The default value is a phase of 0 and linker length is 19 base pairs. The first

nucleosome is placed at the start of the DNA sequence or shifted by the phase value.

All successive nucleosomes are spaced 19 base pairs from the end of the previous one.

This produces a regular chromatin fiber structure. As shown in Figure 6.7 E, the

uniform chromatin fiber is not necessarily straight even when the temperature is zero

because the linker possesses sequence specific conformation properties. Figure 6.8 also

includes two uniform models with very short linker lengths.

102

Figure 6.7: G-Dash Modeling: A) A single sequence specific coarse-grained or all-
atom model of DNA or ensemble of conformations representing thermal variations can
be generated and displayed. B) Different conformations of the nucleosome superfamily
of states can be assigned to specific locations using informatics tracks or the Nucleosome
Widget. C) An all-atom model for any single nucleosome can also be generated. D)
The default coloring of coarse-grained nucleosome models uses small yellow beads for
DNA and large blue beads for the histones. Steric clash is indicated by red nucleosomes
and may be resolved with a short minimization. Tracks from the genome browser
can be mapped on the coarse-grained models. E) Options for generating structures
associated with various distributions of nucleosomes along the DNA are provided and
can be converted to all-atom models.

Track: With this option, any single informatics track can be used to position

nucleosomes. By uploading nucleosome positions as a track in the genome browser,

a user can overlay a desired chromatin folding motif on any segment of DNA. The

chosen track may be experimentally or theoretically determined nucleosome positions

or any combination of data uploaded by the user as a track. To achieve this method

of chromatin folding, the user selects “Track” in the “Build” tab and clicks the desired

track name. The selected track will show up so that users can verify the selection.

Clicking “Build Model” will build the model.

103

Auto: The auto option automatically places nucleosomes in the Nucleosome Energy

Landscape, E1D, utilizing the same method developed for ICM. The default is 70%

occupancy of the maximum number of allowed nucleosomes and a minimum linker

length of 19 base pairs, Figure 6.7 E. Varying the minimum linker length determines

how extended or condensed this non-uniform model will be. In general, any track can

be used as the energy landscape, thus opening possibilities for arbitrarily complex

knowledge based potentials for nucleosome positioning.

Simulate

The “Simulate” tab is designed to provide a gateway to models and compute

engines developed by others. A Nucleosome Widget has been developed for manip-

ulating and manually positioning nucleosomes in the one dimensional Nucleosome

Energy Landscape, E1D. G-Dash currently supports a generation of all-atom models

of individual nucleosomes and a method for quickly relaxing steric clashes in coarse-

grained chromatin models. We expect to provide gateway support for various coarse-

grained models of DNA, nucleosomes and chromatin as G-Dash continues to evolve.

Nucleosome: Here, G-Dash is configured to make an all-atom mono-nucleosome

model for any nucleosome selected from the Nucleosome Energy Landscape by clicking

the “All Atom” button in the “Simulate” tab, Figure 6.6 C. The models are based on

the 1KX5 x-ray structure [90] and include AMBER formatted parmtop, crd, and pdb

files that can be downloaded for computational studies by the user. For these models,

a DNA superhelix is constructed for the selected sequence of DNA and docked onto

1KX5’s histone octamer.

104

Chromatin: Chromatin modeling is achieved by assembling linker (free) DNA

interspersed with nucleosome Masks M(s). The Nucleosome Widget represents and

controls the location and type of nucleosomes in a Nucleosome Energy Landscape. A

Mask Widget is the general purpose solution for managing inventories of numerous

Masks. Such a widget should also allow the user to define and edit Masks. In the

G-Dash prototype, users are able to add, delete, move, or alter nucleosome types using

the Nucleosome Widget by clicking on the corresponding block in the Nucleosome

Energy Landscape. Collectively, these tools provide a novel means of investigating

structure-function relationships.

Minimization: As a gateway, the Simulation tab in the G-Dash prototype is limited

to providing access only to short minimizations that run on the G-Dash web server.

Steric clashes or knotting may occur for any model assembled in the material reference

frame. When these problems occur, as indicated by red nucleosomes, users should

click the “Minimize” button to relax the model. G-Dash utilizes LAMMPS [91] to

relax G-Dash structures represented in the laboratory reference frame using a minimal

coarse-grained model. This model utilizes harmonic bonds and angles to preserve local

geometry and a soft pair repulsion to push apart overlapping beads. No effort is made

to capture electrostatic or van der Waals interactions in this model. The purpose of

the LAMMPS compute engine is only to solve steric clashes and knotting as rapidly

as possible without causing significant variation from the initial structure. It is not

intended for thermodynamic sampling. In this regard, relaxation is a necessary first

step in creating inputs to be used for more extensive sampling with external compute

105

engines. The genome dashboard framework supports generating atomic, coarse-grained

and super-coarse grained models of chromatin as shown in Figure 6.3. If the problems

can be resolved with a short minimization, the user may assume the indicated 3D

conformation can be physically realized and continue with more sophisticated models,

such as [92, 93]. If the problems are not solved by the minimizer, the model is likely

not physically realizable. The “Minimize” button will appear under “Chromatin” in

the “Simulate” tab only after a “coarse-grained” model has been built.

Analyze

Structural Informatics: A unique feature of genome dashboards is the idea of

structural-informatics. Genome dashboards unify the 3D structure and 1D informatics

descriptors such that any sequence data can be mapped onto a 3D structure. Likewise,

the structure data can be extracted from a 3D model and presented as 1D informatics

tracks. Whenever a model is imported or built in G-Dash structural informatics

tracks [~Γ(s), ~Ω(s)] are generated and automatically updated in the genome browser.

These tracks are highlighted in green in G-Dash and include helical parameter data,

such as “Roll”, “Slide”, “Twist”, energy from the nucleosome energy landscape, and

nucleosome occupancy data. The complete set of structural-informatics tracks appear

under the Modeling Data tab in Biodalliance’s track management tools. Each of these

tracks can be downloaded for analysis against any other track data in an informatics

workflow.

It is also useful in the analysis of structure-function relationships to map

informatics data onto a 3D model, Figure 6.7 D. G-Dash provides two methods of

106

doing this. Individual nucleosomes can be selected in the Nucleosome Widget and

assigned specific colors, or an informatics track can be utilized to color the DNA in a

model at base pair resolution. Selecting a track and using the “trackcolor” button

in the control panel pushes informatics data onto the 3D model. The “trackcolor”

button will appear under the 3D model only when a coarse-grained model is built.

JSmol’s command console is fully functional so it can also be used to modify the

display and extract structural data. However, it does not currently have direct access

to informatics data in the genome browser or the Model.

The “Analyze” tab is intended to provide a collection of analysis metrics. In G-

Dash, two metrics are automatically updated every time a model is built: a α− β plot

and a distance-distance matrix, Figure 6.8. The α− β plot is a Woodcock Equivalent

(WE) Model, that measures α, the angle between the centers of 3 nucleosomes, and

β, the dihedral angle between the centers of 4 nucleosomes[65, 86]. For this analysis,

the reported α and β values are computed as if the linkers were straight even if they

are not. For this reason they are termed “equivalent” plots. The distance-distance

matrix reports the center to center distance between each nucleosome. In the future,

additional metric will be added to the standard analysis library such as Linking

Number (Lk), Twist (Tw), and Writhe (Wr)[94, 95]. These topological descriptors

underscore the ability of genome dashboards to unify data from diverse perspectives.

107

Figure 6.8: Woodcock Equivalent and Distance-Distance Plots: (Left) Woodcock
Equivalent Plots provide a two angle representation of the model. (Center) Nucleosome
based distance-distance matrices. (Right) 3D models. (Top to bottom): Uniform
model with 4 base pairs long linkers, uniform model with 25 base pairs long linkers,
and “auto” model with nucleosome positioned at minimal in the Nucleosome Energy
Landscape.

Based on the framework proposed above, we have developed a minimal genome

dashboard named “G-Dash”. Here, we demonstrate two examples using G-Dash to

show how genome dashboards contribute to our understanding of biological function

by the unification of informatics and physical structures.

6.5.2 Informatics to Physical Structure

A hormone response element (HRE) is a specific sequence of DNA representing

15 base pairs. Selective binding of an activated hormone receptor (HR) to the HRE is

a critical component of the hormone response mechanism, see Figure 1-41 of [81]. A

variant of this gene regulatory mechanism is employed to control numerous physiologic

functions in all higher organisms. To demonstrate the power of data unification

108

achieved with our G-Dash application, we have identified estrogen response elements

(ERE) using ERE-Finder [82]. This informatics data is displayed as the ERE Track

in Figure 6.9. All experimentally determined nucleosome positions for the human

genome [83] are also displayed in Figure 6.9 as the Nuc-Pos Track. These Tracks provide

locations for EREs and nucleosomes. The 1D representation in the genome browser

is insufficient to determine whether or not the locations are physically realizable.

Nonetheless, these tracks are sufficient to identify several regions of interest. One

of them is associated with chromosome 6 and coordinate location 168, 131, 722 to

168, 132, 130. Here, we find three overlapping nucleosomes and an ERE that appears

to function as a classic switching mechanism. We explore this hypothesis with G-Dash

by generating physical structures.

109

Figure 6.9: Black boxes: C(s) and T (s) representations of two allowed states. Upper
boxes are T (s) representations of nucleosome positions (blue bars) and an ERE (red
bar). Lower boxes are C(s) representations (small beads represent 5 base pairs large
beads represent histone octamers). Red ellipses: The corresponding all-atom structures
with the estrogen receptor DNA-binding domain docked to the DNA as in PDB entry
1HCQ. a) The ERE is located within a nucleosome with the major groove facing inward.
The receptor is prohibited from binding. b). The ERE is located in a nucleosome free
region. Docking 1HCQ indicates that the ERE is physically accessible.

We first selected the single nucleosome shown in the bottom of the Nuc-Pos

Track in Figure 6.9 and generated a coarse-grained representation in G-Dash with

the compute tools that also drive ICM Web [64]. Mapping the ERE location onto a

coarse-grained physical structure, an informatics problem, provided the ERE’s location,

but without knowledge of major groove orientation, one can still not determine the

accessibility of the ERE site for ER binding. We constructed an all-atom model using

the base pair step parameter data generated by the ICM Web compute tools in G-Dash.

With the all-atom model, we see that the major groove is actually facing towards

110

the histones. This prevents the estrogen receptor DNA-binding domain (1HCQ) from

binding to this region of the DNA major groove. To bind 1HCQ to the all-atom

model, we downloaded the all-atom model from G-Dash, then loaded it and the 1HCQ

into VMD. A simple VMD script fits the DNA in 1HCQ to the DNA in the G-Dash

all-atom model.

We used the same approach to model the two nucleosomes shown in the top of

the Nuc-Pos Track in Figure 6.9. Mapping the ERE location to the coarse-grained

model suggests the ERE may be accessible to ER. Using the same procedure and script

as before, we find that 1HCQ can physically access this ERE with the nucleosome

present. We point out that 1HCQ is only the DNA binding domain of the estrogen

receptor. There exist steric conflicts between the ER-DBD and the histones so this is

not the complete story; but it strongly suggests this site as a candidate for a genetic

switching mechanism.

With this example, we demonstrate with G-Dash how informatics is used to

construct a physical structure that extends and validates the interpretation of the

informatics data. We emphasize that any informatics track or combination of tracks

can be used to inform the physical structure. All-atom and coarse grained molecular

mechanics can be used to further explore this structure. The choice of physical model

depends on the exact question being posed.

6.5.3 Physical Structure to Informatics

Models of chromatin are rapidly maturing. As the models develop, there is

increasing demand to capture biologic realism, including DNA sequence, experimentally

111

determined nucleosome positions, states of chemical modification etc. Without a

genome dashboard, manually curating informatics data to build a “biologically inspired”

model is a time-consuming and tedious task that informs the initial model but does

not necessarily support the interpretation of modeling results. Genome dashboards

enable any available informatics data to be easily associated with an existing physical

model or experimentally determined structure to achieve a meaningful biological

interpretation. Here, we import a HOXC Mesoscale model generated by the Schlick

lab [84] into G-Dash to demonstrate how informatics can be overlayed onto an existing

physical model or structure.

In G-Dash we provide an upload function that is specific for DiscoTech based

models [85]. We upload and convert the HOXC Mesoscale model into C(s) and T (s)

representations, Figure 6.10. The HOXC model utilizes a 9 base pair per bead model

that includes both the location and orientation of each bead and each DiscoTech based

nucleosome, i.e. ~r(s) and D(s) are provided for both the ribbon and the Masks. The

DiscoTech nucleosomes are represented as Masks consisting of a single director frame

and center atom. We calculate [~Γ(s), ~Ω(s)] based on the [~r(s),D(s)] data provided

for DNA beads and Masks. The [~Γ(s), ~Ω(s)] values computed are no longer DNA

base pair step parameters; however, they still represent an oriented space curve or

ribbon. We refer to them as generalized step parameters (GSP) and utilize the same

naming conventions as for the DNA parameters: Tilt, Roll, Twist, Shift, Slide and

Rise, and display them as informatics tracks in the genome browser. Twist and Rise

are displayed as green structural informatics tracks in Figure 6.10-d. Our generalized

112

parameter values differ significantly from those associated with DNA. Small angle

approximations are no longer valid.

Figure 6.10: a) HOXC coarse-grained model of chromatin containing approximately
55 k base pairs of DNA and 284 nucleosomes. Uploading the HOXC model to
G-Dash generates: b) a two-angle representation of the HOXC model, c) a distance-
distance matrix based on nucleosome centers of mass, and d) structural informatics
data. “Generalized Helical Parameter” (“Twist” and “Rise”) and nucleosome position
(“Nucleosomes”) data are displayed alongside experimentally determined nucleosome
positions (“Nuc-Pos”) and other informatics data (“Gencode”).

To determine if either of the E-R or E-A algorithms is suitable for our GSPs, we

have converted all six HOXC models reported in [84] from the C(s) to the T (s) and back

to the C(s) representations. Each G-Dash converted model contains approximately

1779 discrete points, represents 55,000 base pairs and 284 nucleosomes and has a

unique conformation. The RMSD between the initial and final C(s) structures are

113

computed using VMD’s RMSD functions. The E-R approach yields RMSD values

ranging from 0.03 Å to 0.15 Å after alignment, and the E-A approach yields RMSD

values ranging from 0.002 Å to 0.003 Å after alignment, Table 6.1. Our experience is

that both the E-A and E-R methods are acceptable algorithms for implementing “The

Model” even when thermal fluctuations or deformations associated with nucleosomes

and chromatin, or even generalized step parameters, are modeled.

Table 6.1: RMSD values associated with converting the original C(s) representations
of each HOXC model [84] to “generalized step parameters” and then converting back
to a C(s) structure using the Euler-Rodrigues (E-R) and Euler-Angle(E-A) methods
as described in the text:

Model Methods

E-R E-A

(Å) (Å)

HOXC 0.153 0.002

Life-like 0.154 0.002

Life-like-Ac 0.118 0.002

Life-like-LH 0.050 0.002

uniformNFR 0.059 0.003

uniformNRL 0.028 0.003

The HOXC model was constructed for a specific sequence of DNA: HOXC10 of

the annotated human genome assembly 38 that begins at chr12:53,985,065. However,

HOXC models provided do not contain sequence information because the model

itself is sequence independent. Thus, whenever a DiscoTech model is uploaded into

114

G-Dash, it must be aligned with a sequence using the yellow sequence selection bar,

Figure 6.10. If the sequence information is included in the model, the model can be

automatically aligned to the data in a genome browser. Once aligned, the structural

informatics tracks enable us to compare the nucleosome positions used in the uploaded

model (green Nucleosomes Track in Figure 6.10) to experimentally determined the

nucleosome positions (blue Nuc-Pos Track in Figure 6.10). It is clear that the two

tracks differ. Resolving these differences promises to advance our understanding of

both the experimental and modeling data.

To complete our multi-dimensional representation of chromatin folding, we

have incorporated 2D representations into G-Dash. Figure 6.10-b is a two-angle plot

and Figure 6.10-c is a distance-distance matrix plot. As with the structure tracks,

these representations are automatically generated for structures containing sufficiently

many (more than 3) nucleosomes. The two-angle plot is a Woodcock Equivalent (WE)

Plot [65, 86]. On these plots, α is the angle between the centers of three adjacent

nucleosomes, and β is the dihedral rotation angle obtained from the centers of four

adjacent nucleosomes. For this analysis, the reported α and β values are computed

as if the linkers were straight, even if the linkers are not. For this reason, we have

adopted the label “Woodcock Equivalent” Plot. The distance-distance matrix reports

the center-to-center distance between all nucleosomes. Unlike the exchange of data

between the informatics (1D) and physical structures (3D), the WE Plot data and

distance-distance maps are one directional. The 2D representations are obtained from

the 3D model but cannot be used to generate 3D structures. Methods exist for this

purpose [63] but have not yet been implemented in G-Dash.

115

6.5.4 Performance

We have implemented both E-A and E-R methods in python, and record the

time to convert n base pairs of SP to RD, as shown in Table 6.2. We can see that

both timing of E-A and E-R methods are linearly increasing with more number of base

pairs. The E-A method is faster than the E-R method for it does not require a solution

to the square root of the matrix. Both methods are fast and can be optimized with

either parallel computing or the choice of programming language (e.g. FORTRAN).

116

Table 6.2: Timing of E-A and E-R methods. The PC and CPU specification is
shown in table 4.3 and table 4.4

Number of base pairs E-A (s) E-R (s)

50 0.0036 0.048

100 0.0072 0.052

200 0.015 0.098

500 0.037 0.25

1000 0.072 0.51

2000 0.15 0.96

5000 0.35 2.44

10000 0.76 5.01

20000 1.47 9.50

50000 3.6 24.78

100000 7.45 50.35

200000 14.45 98.82

500000 36.45 242.64

1000000 80.54 490.07

6.6 Conclusions

As a working example of a genome dashboard, G-Dash demonstrates that infor-

matics and physical structures can be unified in a web based application in real time.

Our tests demonstrate that interactive usage can be achieved for systems containing

10,000 to 50,000 base pairs or coarse-grained beads. The algorithms for converting

117

informatics to physical structures and physical structures to informatics work in

both directions for base pair resolution structures using either the Euler-Rodrigues

(Curves+) or Euler-Angle (3DNA) based method. We believe our application to

the HOXC model is the first demonstration that both the Euler-Rodrigues and the

Euler-Angle algorithms can also be applied to coarse-grained models discretized well

beyond the base pair level, Figure 6.11. We label the internal coordinates “generalized

step parameters” in this case.

Figure 6.11: Demonstration of “Generalized Step Parameters” (GSP) as a means of
reducing 16 base pair steps to 8, 4, 2, or 1 generalized steps. The ribbon represented
corresponds to the “AATTAGTCTGCACCGGA” model shown in Figure 6.4, but
generalized step parameters can be used to describe any ordered collection of the
director frames.

G-Dash also demonstrates that a commodity-off-the-shelf approach coupled

with Model-View-Controller principles can be employed to efficiently develop genome

dashboards that are customizable, extensible and portable. G-Dash can generate

atomic or coarse-grained models of DNA, nucleosomes, and chromatin by combining

118

any experimentally or theoretically determined informatics data. Coupling G-Dash’s

atomic modeling capabilities with high-performance, high-throughput workflows, and

our TMB Library of nucleosome simulations [34] provides a software ecosystem for

overnight comparative molecular dynamics simulations of nucleosomes [87]. Such

models are necessary for developing designer nucleosomes and assessing protein-DNA

interactions in their native context [88].

The genome dashboard framework achieves unification of informatics and

physical structures; the challenge is data representation. Genomics data has well-

defined data formats, but there are numerous data formats for Cartesian coordinate

data and no established conventions for representing the director frame data or

step parameters. We have demonstrated that the E-R and E-A algorithms can

support multi-scale and multi-dimensional modeling of DNA as the common thread

in chromatin using generalized helical parameters. We deliberately avoided energetic

considerations and focused on structure. The genome dashboard user or developer

must decide which energy model is most appropriate for their particular application.

We thus expect many genome dashboards to be developed, each tailored for a specific

use.

As described here, genome dashboards are designed to work with chromatin

folding, but the concept and framework are not limited to chromatin, eukaryotes

or even DNA. The informatics data can be any data associated with a 1D indexing

system, e.g. protein sequence or a SMILES string. The structure data can be a slender

body or an ordered collection of points in space that are linked to form an oriented

space curve. The latter includes observations of nucleosomes with super-resolution

119

microscopy. If the sequence ordering of nucleosomes in a microscopy image can be

determined and the director frames assigned to each nucleosome, it will be possible to

unify 1D, 2D, 3D, and 4D representations of chromatin as shown in Figure 6.10.

CHAPTER 7

CONCLUSIONS

Multi-dimensional and multi-scale modeling have been studied in this disser-

tation. Mathematically, the idea of oriented space curve is the essential concept

that connecting a 1D internal frame with 3D external frame. We have provided the

mathematical integration and differentiation of these conversion, and two discrete

method E-A and E-R that can be used to compute the conversions bi-directional.

A space curve is at best represents a slender object. SMILES and Masks provide

functionalities of extended slender objects into branched objects and any objects.

Computationally, we have proposed a framework that unites these representations

together by the Model-View-Controller (MVC) concept. Two algorithms aiming to

solve problems occur at applying Masks and collision detecting are also described. The

zero-one integer programming is seeking for the solution of a NP-complete problem,

that placing Masks at the minimal of given informatics with restrict of the length of

the Mask and they cannot overlap. This solution gives us a way to identify the global

minimal/maximum of this type of problem. Zero-one integer programming statistically

increased the accuracy. The GJK algorithm provides a solution for identify collisions

of any 3D objects, which computationally reduce the time complexity.

120

121

The mathematical analyses of the differences between continuous and discrete

construction of oriented space curves are also described. The methods appears for

decades, but not much effort has been applied to study the differences between them.

However, even though E-A, and E-R methods are robust tools for constructions of

DNA, we do identify some properties that E-A or E-R method does not catch with

their own set-ups. Particularly, they do not distinguish Shear Helix and Torsion Helix,

which mathematically have clear patterns.

Based on this space curve concept and related algorithm, a toy named “Magic

Snake” has been studied. We simplified the 1D internal frames into one rotation

sequence. With this rotation sequence, we have proven some mathematical properties

of the Magic Snake. Together with the idea of line skeleton representation of a

Magic Snake, we also designed the Magic Snake to fit into any space curve, and

expended a Magic Snake into more complex shapes. Then by applying the SMILES

and MVC design strategy, we designed a Nanocar racing web application, that

connecting 1D chem-informatics, 2D chemical structure, 3D molecular model, and 4D

simulation. It also connected simulations with initial data access, to set ups, to result

analyses, to data maintaining and sharing as a whole workflow. G-Dash applies all

the related mathematical foundation and computational implementation that unifies

the physical structures with bio-informatics, and the genome dashboard framework is

then developed. It provides not only the abilities of modeling through a single base

pair of DNA to the entire chromatin of coarse-grained and all-atom models, but also

provides the interaction between computational modeling with biological informatics.

122

Recall the purpose for this dissertation is that the bridging between numerous

amount of 1D informatics data and 3D physical modeling can be simulated with expo-

nential increasing computation power. We have achieved this by multi-dimensional and

multi-scale modeling that unifies different representations of data. We demonstrated

the usefulness of our research mathematically with the example of “Magic Snake”,

computationally with the example of “Nanocar Racing Web application”, and combined

both mathematical and computational into the example of “Genome Dashboard”. As

a result, from a mathematical point of view, this research is capable of modeling any

object and representing the object into multi-dimensions (1D, 2D, 3D, and 4D), and

make coarse-grained or all-atom models multi-scale. From a computational point of

view, this research is capable of implementing any such multi-dimensional and multi-

scale models into a portable and extensible dashboard, which enables the unification of

data representations, as well as the communication between researchers from different

research areas.

In summary, we have contributions to:

1. Design a framework to achieve multi-dimensional and multi-scale modeling with

space curves, SMILES, and Masks.

2. Evaluate methods (continuous and discrete) for studying space curves.

3. Applications of this framework to study Magic Snake toys, Nanocar Racing, and

Genomics.

4. Evaluate algorithms for collision detection in both 1D and 3D.

BIBLIOGRAPHY

[1] Jung J., Nishima W. and et al. (2019) Scaling molecular dynamics beyond 100,000
processor cores for largescale biophysical simulations. J. Comput. Chem., 40,
1919-1930.

[2] Shiva Singh (2018) The hundred-dollar genome: a health care cart before the
genomic horse. CMAJ., 190(16), E514.

[3] Simo J.C., Marsden J.E. and Krishnaprasad P.S. (1988) The Hamiltonian
structure of nonlinear elasticity: the material and convective representations
of solids, rods, and plates. Arch. Ration. Mech. Anal., 104(2), 125-183.

[4] Dickerson R.E. (1989) Definitions and nomenclature of nucleic acid structure
component. Nucleic Acids Res., 17, 1797-1803.

[5] Society of Naval Architects and Marine Engineers (1989) Section 3 - Ship
Responses to Regular Waves. Principles of Naval Architecture., III, 41.

[6] Struik D. J. (1988) Lectures on Classical Differential Geometry: Second Edition
Dover Publications.

[7] el Hassan M.A. and Calladine C.R. (1995) The assessment of the geometry of
dinucleotide steps in double-helical DNA; a new local calculation scheme. J Mol
Biol., 251, 648-64.

[8] Lu Xiang-Jun and Olson Wilma K (2003) 3DNA: a software package for the
analysis, rebuilding and visualization of three-dimensional nucleic acid structures.
Nucleic Acids Res., 31, 5108-5121.

[9] Gonzalez O., Petkeviciute D. and Maddocks J.H. (2013) A sequence-dependent
rigid-base model of DNA. J Chem Phys., 138, 055102.

[10] Lavery R., Moakher M. and et al. (2009) Conformational analysis of nucleic acids
revisited: Curves+. Nucleic Acids Res., 37, 5917-5929.

[11] Babcock M.S., Pednault E.P. and Olson W.K. (1994) Nucleic acid structure
analysis. Mathematics for local Cartesian and helical structure parameters that
are truly comparable between structures. J Mol Biol., 237, 125-156.

123

124

[12] Bishop T.C. (2008) Geometry of the Nucleosomal DNA Superhelix. Biophys J.,
95(3), 1007-1017.

[13] Albie Fiore (1981) Shaping rubik’s snake. Penguin Books.

[14] Zeng D., Li M. and et al. (2018) Overview of Rubiks cube and reflections on its
application in mechanism. Chinese Journal of Mechanical Engineering (English
Edition), 31(4).

[15] Charles Fenyvesi (1981) Rubik’s snake of “infinite possibilities” The Washington
Post.

[16] Iguchi Kazumoto (1998) A toy model for understanding the conceptual framework
of protein folding: Rubik’s Magic Snake Model. Modern Physics Letters B, 12(13),
499-506.

[17] Iguchi Kazumoto (1999) Exactly solvable model of protein folding: Rubik’s magic
snake model. International Journal of Modern Physics B, 13(4), 325-361.

[18] Ding Xilun, Lu Shengnan and et al (2011) Configuration Transformation Theory
from a Chain-type Reconfigurable Modular Mechanism-Rubik’s Snake. The 13th
World Congress in Mechanism and Machine Science.

[19] Ding Xilun and Lu Shengnan (2013) Fundamental reconfiguration theory of
chain-type modular reconfigurable mechanisms. Mechanism and Machine Theory,
70, 487-507.

[20] Zhang X. and Liu J. (2016) Prototype design of a rubik snake robot. Mechanisms
and Machine Science, 36, 581-591.

[21] Liu J. and Zhang X. and et al. (2019) Configuration analysis of a reconfigurable
Rubik’s snake robot. Proceedings of the Institution of Mechanical Engineers, Part
C: Journal of Mechanical Engineering Science, 233(9), 3137-3154.

[22] White P. J. and Revzen S. and et al. (2011) A general stiffness model for
programmable matter and modular robotic structures. Robotica, 29(1), 103-121.

[23] H. Hadwiger (1950) Minkowskische Addition und Subtraktion beliebiger Punkt-
mengen und die Theoreme von Erhard Schmidt. Mathematische Zeitschrift, 53(3),
210-218.

[24] E. G. Gilbert, D. W. Johnson, and S. S. Keerthi. (1988) A fast procedure for
computing the distance between complex objects in three-dimensional space.
IEEE Journal of Robotics and Automation, 4, 193203.

[25] Shirai Y., Osgood A. J. and et al. (2005) Directional control in thermally driven
single-molecule nanocars. Nano Letters, 5(11), 2330-2334.

125

[26] Rapenne G. and Joachim C. (2017) The first nanocar race. Nature Reviews
Materials, 2.

[27] Loeve S. (2019) What’s new in the world of molecular machines? The incredible
adventure of nanocars. Philosophia Scientiae, 23(1), 73-98.

[28] Shirai Y., Minami K. and et al. (2016) Driving nanocars and nanomachines at
interfaces: From concept of nanoarchitectonics to actual use in world wide race
and hand operation. Japanese Journal of Applied Physics, 55(11).

[29] B. Bienfait and P. Ertl (2013) JSME: a free molecule editor in JavaScript. J.
Cheminformatics, 5(24).

[30] Angel Herraez. (2006) Biomolecules in the computer: Jmol to the rescue. Biochem.
Mol. Biol. Educ., 34(4), 255-261.

[31] D.A. Case, I.Y. Ben-Shalom and et al. (2018) AMBER 2018. University of
California, San Francisco.

[32] Humphrey W., Dalke A. and Schulten K. (1996) VMD - Visual Molecular
Dynamics. J. Molec. Graphics, 14, 33-38.

[33] J.C. Phillips, R. Braun, and et al. (2005) Scalable molecular dynamics with
NAMD. J. Comput. Chem, 26, 1781-1802.

[34] Sun R., Li Z. and Bishop T. C. (2019) The TMB Library: A Library of Nucleosome
Simulations of DNA Sequence Effects. J. Chem. Inf. Model., 59(10), 4289-4299.

[35] Thibault Julien C., Cheatham Thomas E. and Facelli Julio C. (2014) iBIOMES
Lite: Summarizing Biomolecular Simulation Data in Limited Settings. J. Chem.
Inf. Model., 54, 1810-1819.

[36] S. Jo, T. Kim, V.G. Iyer, and W. Im (2008) CHARMM-GUI: A Web-based
Graphical User Interface for CHARMM. J. Comput. Chem. , 29, 1859-1865.

[37] Ribeiro JV, et al. (2016) QwikMD-integrative molecular dynamics toolkit for
novices and experts. Sci Rep , 6, 26536.

[38] E. W. Dijkstra (1974) Programming as a discipline of mathematical nature. Am.
Math. Monthly, 81(6), 608-612.

[39] Chaffer Jonathan and Swedberg Karl (2007) jQuery Reference Guide: A
Comprehensive Exploration of the Popular JavaScript Library. Packt Publishing.

[40] Burch Carl (2010) Django, a Web Framework Using Python: Tutorial Presentation.
J. Comput. Sci. Coll. , 25(5), 154-155.

126

[41] Andrio P., Hospital A., Conejero J. and et al. (2019) BioExcel Building Blocks, a
software library for interoperable biomolecular simulation workflows. Sci Data, 6,
169.

[42] Fussner E., Ching R.W. and Bazett-Jones D.P. (2011) Living without 30 nm
chromatin fibers. Trends Biochem Sci., 36, 1-6.

[43] Auton A., Brooks L.D. and et al. (2015) A global reference for human genetic
variation. Nature., 526, 68-74.

[44] Consortium E.P. (2012) An integrated encyclopedia of DNA elements in the
human genome. Nature., 489, 57-74.

[45] Dekker J., Belmont A.S. and et al. (2017) The 4D nucleome project. Nature.,
549, 219-226.

[46] Cowper-Sallari R., Zhang X. and et al. (2012) Breast cancer risk-associated SNPs
modulate the affinity of chromatin for FOXA1 and alter gene expression. Nat.
Genet., 44, 1191-1198.

[47] Sadlon T., Brown C.Y. and et al. (2018) Unravelling the molecular basis for
regulatory T-cell plasticity and loss of function in disease. Clin Transl Immunology.,
7, e1011.

[48] Belton J.M., McCord R.P. and et al. (2012) Hi-C: a comprehensive technique to
capture the conformation of genomes. Methods., 58, 268-276.

[49] Belaghzal H., Dekker J. and Gibcus J.H. 2017 Hi-C 2.0: An optimized Hi-C
procedure for high-resolution genome-wide mapping of chromosome conformation.
Methods., 123, 56-65.

[50] Hsieh T.S., Fudenberg G. and et al. (2016) Micro-C XL: assaying chromosome
conformation from the nucleosome to the entire genome. Nat Methods., 13,
1009-1011.

[51] Dekker J., Rippe K. and et al. (2002) Capturing chromosome conformation.
Science., 295, 1306-1311.

[52] Sati S. and Cavalli G. (2017) Chromosome conformation capture technologies
and their impact in understanding genome function. Chromosoma, 126, 33-44.

[53] Duim W.C., Jiang Y. and et al. (2014) Super-resolution fluorescence of huntingtin
reveals growth of globular species into short fibers and coexistence of distinct
aggregates. ACS Chem. Biol., 9, 2767-2778.

127

[54] Ricci M.A., Cosma M.P. and Lakadamyali M. (2017) Super resolution imaging of
chromatin in pluripotency, differentiation, and reprogramming. Current opinion
in genetics & development, 46, 186-193.

[55] Wilson M.D. and Costa A. (2017) Cryo-electron microscopy of chromatin biology.
Acta crystallographica. Section D, Structural biology, 73, 541-548.

[56] Mlynárik V. (2017) Introduction to nuclear magnetic resonance. Anal. Biochem.,
529, 4-9.

[57] Tan S. and Davey C.A. (2011) Nucleosome structural studies. Curr. Opin. Struct.
Biol., 21, 128-136.

[58] Schlick T., Hayes J. and Grigoryev S. (2012) Toward convergence of experimental
studies and theoretical modeling of the chromatin fiber. J Biol Chem., 287,
5183-5191.

[59] Perǐsić O. and Schlick T. (2016) Computational strategies to address chromatin
structure problems. Phys Biol., 13, 035006.

[60] Portillo-Ledesma S. and Schlick T. (2019) Bridging chromatin structure and
function over a range of experimental spatial and temporal scales by molecular
modeling. WIREs Comput. Mol. Sci., e1434.

[61] Ozer G., Luque A. and Schlick T. (2015) The chromatin fiber: multiscale problems
and approaches. Curr Opin Struct Biol., 31, 124-39.

[62] Perkel J.M. (2017) Plot a course through the genome. Nature., 549, 117-118.

[63] 4DN Software, available at https://www.4dnucleome.org/software.html/

[64] Stolz R.C. and Bishop T.C. (2010) ICM web: the interactive chromatin modeling
web server. Nucleic Acids Res., 38, W254-61.

[65] Woodcock C.L., Grigoryev S.A. and et al. (2015) A chromatin folding model that
incorporates linker variability generates fibers resembling the native structures.
Proc. Natl. Acad. Sci. U.S.A., 90, 9021-9025.

[66] Simo J.C. and Vu-Quoc L. (1991) A geometrically-exact rod model incorporating
shear and torsion-warping deformation. Int J Solids Struct., 27, 371-393.

[67] Calladine C.R. and Drew H.R. (1986) Principles of sequence-dependent flexure of
DNA. J Mol Biol., 192, 907-918.

[68] Fathizadeh A., Eslami-Mossallam B. and Ejtehadi M.R. (2012) Definition of the
persistence length in the coarse-grained models of DNA elasticity. Phys Rev E
Stat Nonlin Soft Matter Phys., 86, 051907.

128

[69] Olson W.K., Bansal M. and et al. (2001) A standard reference frame for the
description of nucleic acid base-pair geometry. J Mol Biol., 313, 229-37.

[70] Olson W.K., Gorin A.A. and et al. (1998) DNA sequence-dependent deformability
deduced from protein-DNA crystal complexes. Proc Natl Acad Sci U S A., 95,
11163-11168.

[71] Lavery R., Zakrzewska K. and et al. (2010) A systematic molecular dynamics
study of nearest-neighbor effects on base pair and base pair step conformations
and fluctuations in b-dna. Nucleic Acids Res., 38, 299-313.

[72] Pasi M., Maddocks H. and et al. (2014) µABC: a systematic microsecond molecular
dynamics study of tetranucleotide sequence effects in B-DNA. Nucleic Acids Res.,
42, 12272-83.

[73] Diekmann S. (1989) Definitions and nomenclature of nucleic acid structure
parameters. J Mol Biol., 205(4), 787-791.

[74] Petkevic̆iūtė,D., Pasi,M., Gonzalez,O. and Maddocks,J.H. (2014) cgDNA: a
software package for the prediction of sequence-dependent coarse-grain free
energies of B-form DNA. Nucleic Acids Res., 42,e153.

[75] Bishop T.C. (2009) VDNA: the virtual DNA plug-in for VMD. Bioinformatics,
25, 3187-3188.

[76] Bishop T.C. and Hearst J.E. (1998) Potential Function Describing the Folding of
the 30 nm Fiber. The Journal of Physical Chemistry B, 102(33), 6433-6439.

[77] Alexander S.R. and Peter W.H. (2015) NGL Viewer: a web application for
molecular visualization. Nucleic Acids Res., 43(W1), W576-W579.

[78] Schrodinger LLC. (2015) The PyMOL Molecular Graphics System, Version 1.8

[79] Down T.A., Matias P. and Tim J.P.H. (2011) Dalliance: Interactive Genome
Viewing on the Web. Bioinformatics, 27(6), 889-890.

[80] Skinner M.E., Uzilov A.V. and et al. (2009) JBrowse: A next-generation genome
browser Genome Res., 19(9), 1630-1638.

[81] Anthony W. N. and Gerald L. (1997) Hormones. Academic Press.

[82] Andrew P.A. and Adam G.J. (2019) erefinder: Genome-wide detection of oestrogen
response elements. Mol Ecol Resour.,

[83] Yongbing Z., Jinyue W. and et al. (2018) NucMap: a database of genome-
wide nucleosome positioning map across species. Nucleic Acids Res., 47(D1),
D163-D169.

129

[84] Bascom G.D., Myers C.G. and Schlick T. (2019) Mesoscale modeling reveals
formation of an epigenetically driven HOXC gene hub. Proc Natl Acad Sci U S
A., 116(11), 4955-4962.

[85] Zhang Q., Beard D.A. and Schlick T. (2003) Constructing irregular surfaces
to enclose macromolecular complexes for mesoscale modeling using the discrete
surface charge optimization (DISCO) algorithm. J Comput Chem., 24, 2063-2074.

[86] Helmut S., William M. G. and Robijn B. (2001) DNA Folding: Structural and
Mechanical Properties of the Two-Angle Model for Chromatin. Biophys. J., 80(4),
1940-1956.

[87] Smith J.A., Romanus M. and et al. (2013) Scalable online comparative genomics
of mononucleosomes: a BigJob. Proceedings of the Conference on Extreme Science
and Engineering Discovery Environment: Gateway to Discovery, 13, 23:1–23:8.

[88] Bishop T.C., Kosztin D. and Schulten K. (1997) How hormone receptor-DNA
binding affects nucleosomal DNA: the role of symmetry. Biophys J., 72, 2056-2067.

[89] Kent W J, Zweig A S and et al. (2010) BigWig and BigBed: enabling browsing
of large distributed datasets. Biophys J., 26, 2204-2207.

[90] Davey Curt A, Sargent David F and et al. (2002) Solvent mediated interactions
in the structure of the nucleosome core particle at 1.9 a resolution. J. Mol. Biol.,
319(5), 10971113.

[91] Plimpton S. (1995) Fast Parallel Algorithms for Short-Range Molecular Dynamics.
J. Comput. Phys., 117, 1-19.

[92] Nikolay Korolev, Alexander P. Lyubartsev and Lars Nordenskiold (2010) Cation-
induced polyelectrolyte–polyelectrolyte attraction in solutions of DNA and
nucleosome core particles. Adv. Colloid Interface Sci., 158(1-2), 32-47.

[93] Nikolay Korolev, Yongqian Zhao and et al (2012) The effect of salt on oligocation-
induced chromatin condensation. Biochem. Biophys. Res. Commun., 418(2),
205-210.

[94] Fuller F B (1971) The writhing number of a space curve. Proc. Natl. Acad. Sci.
U.S.A., 68, 815-819.

[95] White J H and Bauer W R (1986) Calculation of the twist and the writhe for
representative models of DNA. J. Mol. Biol., 189, 329-341.

	A Framework of Multi-Dimensional and Multi-Scale Modeling with Applications
	tmp.1591823130.pdf.cCCuq

