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ABSTRACT

Behavioral disorders are disabilities characterized by an individual’s mood,
thinking, and social interactions. The commonality of behavioral disorders amongst the
United States population has increased in the last few years, with an estimated 50% of all
Americans diagnosed with a behavioral disorder at some point in their lifetime. Attention-
Deficit/Hyperactivity Disorder is one such behavioral disorder that is a severe public health
concern because of its high prevalence, incurable nature, significant impact on domestic
life, and peer relationships. Symptomatically, in theory, ADHD is characterized by
inattention, hyperactivity, and impulsivity. Access to providers who can offer diagnosis
and treat the disorder varies by location.

The ever-increasing use of social media can be effectively employed in the
diagnosis and treatment of the disorder. Study of behavior and in extension, the study of
individuals with behavioral disorders is made easier through the uninhibited setting in
which posts are created on social media platforms.

Outside the United States, diagnosis rates of the disorder are low, as it is mainly
considered to be an American disorder. This impression was reinforced by the perception
that the disorder is caused by social and cultural factors common to American society.
However, in reality, the disorder can as quickly affect people of different races and cultures
worldwide, but recognition of the disorder in the medical community has been slow. This

may be due to its adverse impact on an individual, their families, and society.



This dissertation focuses on providing clinicians with a clinical decision support
system to overcome the societal stigma associated with the disorder and to ensure the
accurate and efficient diagnosis of individuals with the disorder. The results provided in
this dissertation assist in the diagnosis of individuals with Attention Deficit Hyperactivity
Disorder. Data for individuals with the disorder is collected through posts of self-reported
diagnoses on Twitter using the Twitter API. Previous research has proved that there are
differences in behavior before and after the diagnosis of the disorder. To capitalize on this,
symptomatic differences of the disease before and after diagnosis are discovered and
evaluated. The symptoms of the disorder, namely, inattention, hyperactivity, and
impulsivity, are quantified using measures of sentiment and semantics. A separate group
of users without the disorder, the control group, are collected for validation. The analysis
poses a three-class classification problem, with the classes being pre-diagnosed, post-
diagnosed, and control groups. Decision trees are used to force all possible outcomes in the
semantic and sentiment differences in the three classes of users to create a clear delineation.
Behavioral disorders diagnosed by a clinician are based on identifying whether a patient
deviates from an identified normal. This is evaluated by answering a set list of questions
that quantify behavior. To achieve the same without manual intervention, ease in
interpretability - decision trees are chosen. Classification using a decision tree is on a tweet-
level and a user-level. Four cases are used both analyses: pre-diagnosed vs. post-diagnosed
group, pre-diagnosed vs. control group, post-diagnosed vs. control group, and pre-
diagnosed vs. post-diagnosed vs. control group.

The analysis on a user-level provides a higher degree of accuracy, with 93%

accuracy for the case post-diagnosed vs. control group. The accuracy of the cases identifies



the number of people who can be correctly classified into their respective groups. Low
accuracy for the tweet-level results fortifies the opinion that the sparsity of information in
tweet level analysis is a disadvantage. This is overcome by analyzing on a user level. The
accuracy of the classifier can be further improved upon by the addition of features such as
age and gender. The addition of these features may also be useful in predicting time to

remission and peak of the disorder in future studies.
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CHAPTER 1

INTRODUCTION

Social media are websites or applications that enable users to create/share content
or to participate in social networks. In the last few years, social media platforms such as
Facebook, Twitter, and Instagram have been widely used, providing researchers with
repositories of public data to be analyzed. The available public data may be in the form of
messages, images or videos, and can provide real-time insight into public sentiment,
general day-to-day activities, or events across the country or the world. For example,
Cheong and Cheong at RMIT university identified vital players in existing online networks
on Twitter during the 2010-2011 floods in Australia and generated new online networks to
disseminate critical information (Cheong & Cheong, 2011).

Detection and dissemination of information related to public health have relied on
social media as of late. The reason behind this is that the detection of public health threats
through disease surveillance strategies using data transmitted from healthcare facilities,
physicians has its limitations. Such data collection strategies take time, and context
information on individual cases is often lost in transmission. To overcome such limitations,
social media data has been exploited to detect, track, and disseminate health outbreaks. For
example, Paul and Dredze analyzed public tweets and discovered mentions of various
ailments such as allergies, obesity, and insomnia (Paul & Dredze, 2011). The illnesses were

analyzed by geographic region, measuring risk factors, symptoms, and medication usage.



This dissertation strives to provide clinicians with a clinical decision support system to
overcome the societal stigma associated with Attention Deficit Hyperactivity Disorder to
ensure the accurate and efficient diagnosis of individuals with the same. This is achieved
by identifying symptomatic differences in the disorder, before and after diagnosis by:

1. Establishing correlations in language and emotion by geographical prevalence of

the disorder.

2. Establishing measures of disorder to quantify human behavior in terms of sentiment

and semantics.

3. Developing a social media based clinical decision support system to aid in the

accurate and efficient diagnosis of the disorder using supervised learning.

1.1  Data Mining
Data mining is defined as the process of finding hidden patterns from abundant data
sources (Han, et al., 2000). The data can be databases, data warehouses, streaming data, or
other information repositories. A term synonymous with data mining is Knowledge

Discovery from Data (KDD). Figure 1-1 shows the iterative sequence of the steps involved

in the KDD process.

1. Data Selection: This step involves retrieving data from existing data sources. The
retrieved data may be further preprocessed to select a subset of attributes or features
that may be relevant to the task at hand.

2. Data Preprocessing: The step involves the removal of noisy data such as errors,
outliers, and inconsistent data. It may also include the integration of multiple data

sources to enhance the efficiency of data mining further.
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Figure 1-1: Knowledge discovery of data.

3. Data Transformation: This step involves the transformation and consolidation of data
into forms that are deemed appropriate for the data mining task. Sub-tasks may include
data normalization or discretization, feature construction, and data smoothing.

4. Data Mining: This step involves the application of data modeling techniques to extract
hidden patterns from the target data in step 1.

5. Evaluation: The steps involve analyzing the extracted patterns to represent knowledge
obtained from the target data successfully. Knowledge is then presented using

visualization techniques to users of the system.

The steps shown above are collectively referred to as data mining in the industry. Social

media data is per the five V's of big data:



1. Volume: Volume refers to the size of the data sets that need to be analyzed and
processed.

2. Variety: Social media data is structured as well as unstructured.

3. Velocity: Velocity refers to the frequency of incoming data.

4. Veracity: Veracity refers to the trustworthiness of the data.

5. Value: Value refers to whether the collected data can provide any hidden insights.

1.2 Linear Regression
Linear regression is a smoothing technique that involves finding the best line to fit
two attributes/variables so that one of the attributes can be used to predict the other (Han,
etal., 2000). For example, a random variable, y, called a response variable, can be modeled
as a linear function of another random variable, x, called a predictor variable, as follows:
y=wx+b Eq1l.1
where w and b are the regression coefficients. In the above equation 1.1, it is assumed that
the variance of y is constant. The regression coefficient, b, is used to specify the slope of
the y-intercept, and the regression coefficient, w, is used to specify the slope of the line.
The two coefficients can be solved by using the method of least squares. The method of
least squares minimizes the error between the estimate of the line and the actual line
separating the data.
Linear regression can be used on sparse data sets, although its applicability may be
limited. It handles skewed datasets exceptionally well, but when applied to high-

dimensional data, it is computationally intensive.



1.3 Unsupervised Learning
Unsupervised learning, or clustering, is the term used when the learning process is
unsupervised because the class labels are undefined (Han, et al., 2000). Clustering methods
can be compared using the following aspects:

1. Partitioning Criteria: Objects may be partitioned into clusters such that either no
hierarchy exists amongst the clusters; or into clusters at different semantic levels.
Clusters with a hierarchy among them are used in text mining. For example,
hierarchy is essential when performing topic detection on a corpus of documents.

2. Separation of Clusters: Objects may be partitioned into mutually exclusive
clusters, or data points may belong to multiple clusters. The latter is used when
clustering documents according to their topics, multiple topics may define a
document.

3. Similarity Measure: Similarity between clusters can be calculated based on the
distance between them; or maybe defined based on connectivity, density,
contiguity. Both similarity measures play a significant role in the design of the
clustering methods: distance-based methods use optimization techniques, and
density/continuity-based methods can find clusters with no particular shape.

4. Clustering Space: Clustering methods that look for clusters in the entire given
space are useful for low-dimensionality datasets. However, with high-dimensional
data, such clustering methods lead to irrelevant data attributes making similarity
measures unreliable. Therefore, it is advantageous to search for clusters in sub-

spaces of the dataset.



Density-Based Spatial Clustering of Applications with Noise (DBSCAN) relies on
the density-based notion of clustering to find clusters of arbitrary shape in spatial databases
with noise. The basic idea of this method is to group together data points in high-density
areas and to mark data points in low-density regions as outliers. The density at a local point
p is defined by two parameters: radius for the neighborhood of p, €, and all the points from
p within a radius €, e-neighborhood.

Nc(p) = {q in dataset D|dist(p,q) < € Eq1.2
where q is a data point within radius € of point p. In the neighborhood N(p), the minimum
number of points is MinPts. If a e-neighborhood contains at least MinPts, then the area is
a high-density area (Ester, et al., 2003).

If point p is a core point and the point q is in the e-neighborhood of point p, then
the point q is directly density-reachable from the point p. If points, p, and ¢, are commonly
density-reachable from a point o, then they are density-connected (Ester, et al., 2003).

The DBSCAN algorithm does not work well with areas of varying densities.

1.4  Supervised Learning

Supervised learning, or classification, is a term used for learning processes where
the class labels are known (Witten, et al., 2016). Classifiers predict categorical class labels.
Most classification algorithms are memory resident (a small data size). Typically, data
classification is a two-step process: a learning process and a classification process. The
learning step is where the classification model is constructed, and the classification process
is where the model is used to predict the class labels for a given dataset.

In the learning step, the algorithm builds a classifier by learning from a training set

made up of database tuples and associated class labels. The accuracy of a classifier, the



predictive accuracy of the said classifier is estimated. If the training set is used to predict
the accuracy, the classifier tends to overfit the data. Therefore, a test set (independent of
the training set) is used to predict the accuracy of the classifier. The accuracy of a classifier
is then measured by the percentage of tuples in the test set that has correctly classified by
the classification algorithm.

A decision tree is a structure that resembles a flow chart, where each non-leaf node
represents an attribute, a branch represents an outcome, and each leaf node represents a
class label. The node at the top is called the root node.

Decision trees are used for classification. If a tuple X is given, with an unknown
class label, the attribute values for the given tuple are tested against a decision tree. A path
from the root to the leaf is traced, where the leaf node holds the prediction for X. An
advantage of decision trees is that they can be converted into classification rules easily.
Other advantages of decision trees are they do not require any domain knowledge, can
handle multidimensional data, and the learning/classification steps are fast and

straightforward.

15  Conclusion
The chapter explains data mining, supervised learning, and unsupervised learning,
touching upon the methodologies used in the chapters. The difference between supervised
learning and unsupervised learning is majorly in the class labels being known/unknown. In
this dissertation, the DBSCAN algorithm is the algorithm implemented for unsupervised
learning, and a Decision tree is an algorithm implemented for supervised learning.
DBSCAN has been implemented in Chapter 2, Neural Networks in Chapter 3, and Decision

Trees in Chapter 4.



CHAPTER 2

CORRELATIONS IN LANGUAGE AND EMOTION FOR
GEOGRAPHIC ADHD PREVALENCE

Behavioral disorders are an emotional disability that affects an individual's mood,
thinking, and social interactions (CDC - Mental Health, 2019). The commonality of
behavioral disorders amongst the United States population has increased in the last few
years, with an estimated 50% of all Americans diagnosed with a behavioral disorder at
some point in their lifetime (CDC - Data and Publications, 2018). Attention-
Deficit/Hyperactivity Disorder (ADHD) is one such behavioral disorder that is a severe
public health concern because of its high prevalence, incurable nature, significant impact
on domestic life, and peer relationships (Hulkower, 2016).

Symptomatically, in theory, ADHD is characterized by inattention, hyperactivity,
and impulsivity. In practicality, disorders such as Anxiety Disorders, Depression, and
Bipolar Disorder may be biologically, physiologically, and emotionally like ADHD or in
addition to ADHD. The severity of a person's behavioral disorder(s) determines whether
he/she may in further risk of developing other diseases; for example, a person diagnosed
with ADHD and Anxiety Disorder may have a high risk of developing diabetes.
Correlations between language and emotion have previously proven to be effective in
identifying and addressing factors that may significantly reduce the risk of developing such

diseases (Eichstaedt, et al., 2015).



This chapter explores the use of social media data, mainly Twitter, to find
correlations between language use of people diagnosed with ADHD and emotions using
regression and cross-validation. The chapter is divided into four main sections, namely,

related works, methodology, results, and conclusion.

2.1  Related Works

The use of social media to assist in learning about the personal, psychological, and
behavioral aspects of communities has been explored in the past. Social media contains
rich information in text, traits, preferences, and opinions (Volkova, et al., 2015). Durme
(2012) showed that gender could be accurately predicted from Twitter language usage;
Zamal, et al. (2012) predicted age; and Volkova, et al. (2014) predicted political views.
Social media has also been used to understand emotional and mood changes over time in
communities, for example, changes in emotional reactions over happy or sad events.

Sentiment and Semantic analysis have played a significant part in quantifying
measures to identify and understand the correlates of behavioral disorders. De Choudhury,
et al. (2013b) was one of the first to explore the use of Twitter to characterize Depression
into quantifiable behavioral measures. Google researched trends in influenza by using
search queries, successfully providing information on the onset of the ailment (Ginsberg,
et al., 2009). Similarly, Twitter has been in other studies to track Lyme disease (Seifter, et
al., 2010), HIN1 influenza (Chew & Eysenbach, 2010).

Cloninger, et al. (2006) explored the personality traits of individuals to predict
future episodes of depression. Rude, et al. (2003), and Robinson and Alloy (2003)
concluded that negative processing biases could predict depression by resolving ambiguous

language. Moreno, et al. (2011) proved that Facebook status updates could reveal
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symptoms of depressive episodes. Rude, et al. (2004) used LIWC to analyze written text
to establish cues about neurotic tendencies and psychiatric disorders. De Choudhury, et al.
(2013a) built a statistical model to examine behavioral changes in postnatal mothers by

analyzing linguistic and emotional characteristics.

2.2  Methodology

The data used for this step has been taken from two sources: a CDC survey (Data
and Statistics about ADHD, 2019) and research published by the NIH, "Psychological
language on Twitter predicts county-level heart disease mortality" (Eichstaedt, et al.,
2015). The latter explores language patterns on Twitter to identify community-level
psychological correlates of age-adjusted mortality from Atherosclerotic Heart Disease
(AHD) (Eichstaedt, et al., 2015). The former is an estimate of the state-wise prevalence of
ADHD of youth aged 4-17 in the year 2011. The CDC data has two sections: diagnosis
data and treatment data. The two sections are further subdivided into ever diagnosed,
currently diagnosed, medicated, and diagnosed and medicated.

The data acquired from the NIH research is a comprehensive county-wise list of the
relative frequency of language variables. The language variables are quantified as eight
emotions: anger, engagement, disengagement, negative emotion, positive emotion,
negative relationship, positive relationship. Additionally, it also provides a county-level
measure of socioeconomic status (income and education), demographics (percentage of
Black, Hispanic, married, and female residents) and health variables (incidence of diabetes,

obesity, smoking, and hypertension).
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221 Algorithms, Definitions, and Equations

Definition 1.1 The Pearson product-moment coefficient is a measure of the linear
correlation between two variables X and Y. It has a value between the range -1 to +1, where
1 is a positive linear coefficient, -1 is a negative linear coefficient and 0 is no linear
correlation. Given a pair of random variables (X, Y), the coefficient is

cov (X,Y)

= —= Eq2.1
Pxy Oy Oy q

where cov is the covariance; oy is the standard deviation of X, and o, is the standard
deviation of Y (Pearson Correlation Coefficient, 2019).

Definition 1.2 Leave one out cross-validation is a special case of K-fold cross-validation,
where a single instance from the original dataset is used as validation, and the remaining
instances are used as the validation data. For linear regression, the error for leave one out

cross-validation can be computed using the formula

15 G —9)°
nda (1 — hy)?

Eq 2.2
where h;; is the ith diagonal element (Witten, et al., 2016).
Definition 1.3 Linear regression is a staple method in statistics that is used to express an
outcome as a linear combination of attributes with predetermined weights:

X =wy+ wia; + wea, + -+ wiag Eq2.3
where x is the real value; a4, a,, ... a; are the attribute values and w,, wy, ..., wy are the

weights. The training data is used to calculate the weights. The predicted value for the first

instance’s real value can be written as:

k
woal + wia® 4 o+ wyal® = ija]@ Eq 2.4
=0
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where x(@ is the real-valued output; a{™,al", ...,al" are the attribute values with the

subscript indicating the first instance (Witten, et al., 2016).
Definition 1.4 Ordinary least squares (OLS) is the most common type of linear least
squares formulation for approximating unknown parameters in a regression model. The
method minimizes the sum of the squares of the residuals resulting in a closed-form
expression for the estimated value of the unknown parameter vector f3.

p= XTX)"1xT Eq2.5
where y is a vector, X is a matrix whose ij element is the ith observation of the jth
independent variable. The estimator is unbiased and consistent if the errors have finite
variance and are uncorrelated with the regressors.

E[x;g] =0 Eq2.6

where x; is the transpose of row i of the matrix X (Ordinary Least Squares, 2019).
Definition 1.5 Mean square error (MSE) is used to evaluate the success of the numeric
prediction. MSE is the average of the individual errors (the magnitude of the errors can be

ignored).
1 n
—\2
MSE = EZ(Yi— Y)) Eq2.7
i=1

where (Y; — Y;)? represents the squares of the errors; n is the number of predictions from
a sample of n data points, and Y is the vector of observed values of the variable being
predicted (Witten, et al., 2016).

Definition 1.6 t-distributed stochastic neighbor embedding is a nonlinear dimensionality
reduction technique used for embedding high dimensional data for visualization in a low

dimensional space of 2-3 dimensions (t-Distributed Stochastic Neighbor Embedding,
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2019). Given a set of N high-dimensional objects X1, ...., xn, the algorithm computes
probabilities pij, proportional to the similarity of objects xi and x;:

— I = 512
op(— 57 )
l

Puj = Tl =l Eqz.8

Siest xp(—5 )

Definition 1.7 Density-based spatial clustering of applications with noise (DBSCAN) is a
non-parametric algorithm used for data clustering. Given a set of data points in some space,
it groups together closely packed points, marking points that lie in low-density regions as
outliers (DBSCAN, 2019).

2.2.2 Pearson’s Product Moment Coefficient

Pearson's product-moment coefficient is statistically significant if the p-value is less
than the significance level (o = 0.05). If the p-value is less than the significance level, the
null hypothesis is to be rejected. The table below shows the R-values that categorize a
strong correlation:

The NIH data is two county-wise lists of the relative frequency of language
variables (emotion) and socio-economic demographic information. The two lists are
converted from county-wise lists into state-wise lists. This is done by taking the column-
wise mean of all the counties by state. The ever-diagnosed values obtained from the CDC
website are added as the column prevalence to each of the matrices. This yields two
datasets, one 50x9 matrix, and one 50x27 matrix, where the rows are the states, and the

columns are emotion or socio-economic categories and prevalence.
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Table 2-1: Correlation ranges and strength of the relationship.

Value of R Strength of Relationship
-1.0to-0.50r1.0t0 0.5 Strong
-0.5t0-0.30r0.5t00.3 Moderate
-0.3t0-0.10r0.3t00.1 Weak

-0.1t00.1 None or very weak

The two matrices are used as input to calculate the correlation values using R. R
provides the cor method, which takes as arguments the data and the type of correlation to
be performed: Pearson (default), Kendall, or Spearman. In this case, the correlation method
is the Pearson correlation. The three correlation matrices are calculated for language use
and ADHD prevalence ever diagnosed (referred to as the emotional prevalence in this
document), socio-economic status prevalence and emotion, socio-economic status
prevalence. The last correlation matrix is obtained by simply combining the state-wise
matrix for emotion and socio-economic categories and running the Pearson correlation on
the combined matrix.

2.2.3 Leave One Out Cross-Validation

Leave one out cross-validation (LOOCV) is a type of K-fold cross-validation, with
K equaling the total number of data points in the set, N. This just means that N number of
times, the function estimator is trained on all the data points except one and tested on the
data point that was left out (Schneider, 1997).

The cross-validation is executed on the combined dataset: emotion +

socioeconomic status. LOOCYV is performed using the R package, boot. The package
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provides the glm function that performs linear regression if the family parameter isn’t
passed as an argument. The function fits the model across the entire dataset. The cv.gim
function performs the LOOCV. The result is a list of four outputs: the original call function
(call), the number of folds used (K), the cross-validation estimates of prediction error
(delta), and the values of the random seed used for the function call (seed).

224 Method of Least Squares Prediction, Linear Regression

The method used for the least-squares prediction is ordinary least squares (OLS).
The method chooses the parameters of a linear function by minimizing the sum of the
squares of the differences between the observed value and the value predicted by the linear
function.

2.25 Metric of Success, Mean Square Error

The mean square error (MSE) is an assessment of the quality of a predictor that is
more sensitive to more significant errors due to the squaring of the error. It is strictly non-
negative, and lower values indicate a higher quality model.

The MSE is obtained from the result of the leave one out cross-validation. The
result of the cross-validation is a list of four outputs. The first number in delta is the test
error or the mean square error.

2.2.6 Multicollinearity

Multicollinearity is when a multiple regression model predictor variable can be
linearly predicted from the other predictor variables. The correlation matrices for the
overall models (Emotions, SES, Emotions + SES) show multicollinearity (the values above
and below the diagonal are higher than 0.5). Multicollinearity in correlation matrices can

be visualized using heatmaps.
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Heatmaps for the three correlation matrices, the prevalence of emotion, the
prevalence of socioeconomic status, and emotion + socio-economic status are created. To
generate heatmaps for the correlation matrices, the packages seaborn is employed in
Python.

227 t-SNE and Clustering

The matrices for emotional prevalence and socio-economic prevalence are used as
input for this step. To perform t-SNE and clustering, the Scikit-learn package provided by
python is used.

The two input matrices are individually transformed using the fit transform and
standard scaler method provided by the package. The standard scaler method standardizes
the features by removing the mean and scaling to unit variance. The standard score (z) of

a training set x is calculated as:

(x —w
Z =
S

Eq2.9

where u is the mean and s is the standard deviation of the training set. The transformed
matrices are combined using the append method provided by the Numpy package, with the
axis parameter value set to 1.

Due to the high-dimensionality of the data, t-SNE is used to visualize the data. t-
SNE converts similar data points to joint probabilities, minimizing the Kullback-Leibler
divergence between the probabilities of the low-dimensional embedding and the high
dimensional data. Since the cost function of t-SNE is not convex, different initializations
(changes in the values of the parameters) yield different results. The values for the

parameters are set using experimentally determined values.
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Table 2-2: Algorithm for t-SNE and DBSCAN clustering.

Input: 50x8 matrix for emotional language (X) and 50x26 matrix socio-economic status
(Y).
Output: Geographical prevalence clusters and means.
1. Transform and standardize matrices X and Y.
2. Append matrices X and Y to matrix Z along axis 1.
3. Perform TSNE() on matrix Z with arguments perplexity 5, random_state 2.
4. Cluster results of step 3 with parameters eps 50 and min_samples 1.
5. for label in 1: unique(labels) do
Create scatter plot to visualize clusters.
end for
6. Create lists for emotion categories and prevalence categories, and states.
7. for label in 1: unique(labels) do
print mean of emotion categories and prevalence.
print states in clusters.

STOP

The parameters for this step, perplexity and random state, are set to 5 and 2, respectively.
DBSCAN clustering is performed on the data, and the fit predictive method is used to
obtain the labeling results of running the model on the data. The parameters for clustering,

eps, and min samples are set to 50 and 1. The parameter eps is the maximum distance
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between the samples for a data point to be considered in the neighborhood of another data
point. A scatter plot of the resulting DBSCAN labels is created to show the clusters.

To calculate the prevalence of the states, the means of the eight emotional
categories and prevalence are evaluated. Two lists, categories, and states are initialized.
The latter contains emotional categories and prevalence. The former is a list of the 50 states
in the US. For each of the categories, the mean is calculated using the mean method

provided by the Numpy package in Python, with the parameter axis set to 0.

2.3 Results

2.3.1 Pearson’s Product Moment Coefficient

The table below shows the result of Pearson Correlation. The columns in the tables
2-3 and 2-4 from left to right are prevalence by state, anger, anxious, disengagement,
engagement, negative emotion, positive emotion, negative relationship, positive

relationship.

Table 2-3: Correlation values for prevalence and emotion.

Prevalence Anger Anx Disegmnt Engmnt NegE PosE Neg Pos

R R
Ever 0.40 0.09 0.43 -0.37 -0.34 -025 048 034
Current 039 -0.09 0.38 -0.38 -0.33 -029 043 0.30
Medicated  0.39 0.14 0.42 -0.40 036 025 049 0.39
Medicated  0.14 0.14 0.13 -0.27 011 011 026 0.11

&
Diagnosed
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Table 2-4: P-values for prevalence and emotion.

Prevalence Anger Anx Disegmnt Engmnt NegE Pos Neg Pos
E R R

Ever 0.007 054 0.007 0.006 0.02 0.10 0.002 0.04
Current  0.003 0.56 0.002 0.007 0.02 008 0.00 0.02
Medicated  0.01 0.33 0.002 0.004 0.01 0.08 0.00 0.005

Medicated  0.32 0.29 0.36 0.06 046 0.08 0.06 047
&
Diagnosed

The results in tables 2-3 and 2-4 show a moderate relationship between ever
diagnosis, current diagnosis, medicated, and all the emotions except for anxious. The
medicated and diagnosed results show a moderate relationship with engagement, positive
emotion, and negative relationships. The results for the emotions anger and disengagement
are positively correlated with all four groups of ADHD patients, but their correlation with
medicated and diagnosed patients is weak. It is conjectured that these weak correlations
imply that patients who have been medicated for ADHD are better able to control behavior
that characterizes the disorder.

2.3.2 Method of Least Squares, Linear Regression

The scatter plots in figures 2-1 to 2-7 below show the results of linear regression
for the features: prevalence, anger, anxious, disengagement, engagement, negative
emotions, positive emotions, female population, Hispanic population, black population,
foreign-born, married male, married female, high school graduate, graduate, income,
smoker, diabetic, obese, fair poor health, physical unhealth days, mental unhealth days ,

hypertension male, hypertension female, high school/bachelor's graduate, hypertension,
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married, log income, UCD, user word total, population 2010, GINI, unemployment. Four
scatter plots are shown on each page. The linear equation, Pearson product-moment
coefficient, P-value, t-statistic, and F-statistic for the plots is given on the right of each plot.
The y-axis is the prevalence of the feature. The x-axis is the feature distribution.

The histograms in figures 2-9 to 2-15 shows the feature distribution for the
emotional prevalence and the socio-economic status prevalence. Five histograms have
been shown on each page. The features shown in the histogram are: prevalence, anger,
anxious, disengagement, engagement, negative emotions, positive emotions, female
population, Hispanic population, black population, foreign-born, married male, married
female, high school graduate, graduate, income, smoker, diabetic, obese, fair poor health,
physical unhealth days, mental unhealth days , hypertension male, hypertension female,
high school/bachelor's graduate, hypertension, married, log income, UCD, user word total,
population 2010, GINI, unemployment. Five histograms have been shown on each page.
The y-axis is the frequency of the feature and the x-axis is the distribution of the feature
across data points.

The feature distributions with the highest frequency are anxious, engagement,
positive emotions, positive relationships, Hispanic population, black population, foreign
born, married male, physical unhealth days, mental unhealth days, hypertension female,
and user word total. The feature distributions with the lowest frequency are anger, negative
relationships, high school graduate, bachelor’s degree, diabetic, obese, fair poor health,

high school/bachelor graduate, UCD, GINI, and unemployment.
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Figure 2-1: Scatter plot for feature distribution of anger, anxious, diseng
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Figure 2-2: Scatter plot for feature distribution of negative emotions, positive emotions,

negative relationships, positive relationships.
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Figure 2-4: Scatter plot for feature distribution of married female, high school graduate,

bachelor degree, income.
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Figure 2-5: Scatter plot for feature distribution of smoker, diabetic, obese, fair poor
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Figure 2-6: Scatter plot for feature distribution of physical unhealth days, mental

unhealth days, hypertension male, hypertension female.
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Figure 2-7: Scatter plot for feature distribution of high school/bachelor grad,
hypertension, married, log income.
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Figure 2-8: Scatter plot for feature distribution of UCD, user word total
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2.3.3 Metric of Success, MSE

The table 2-5 and the bar plots (figures 2-16 and 2-17) below show the features and

the MSE for the predicted prevalence and the individual features.

Table 2-5: Predicted prevalence of ADHD and emotions, SES, emotions+SES.

Feature Mean Square Error

Emotions 9.05

SES 8.24




Table 2-5: Predicted prevalence of ADHD and emotions, SES, emotions + SES.

Feature Mean Square Error
Emotions + SES 7.55
Anger 6.62
Anxious 8.30
Disengagement 6.46
Engagement 6.89
Negative Emotion 7.16
Positive Emotion 7.60
Negative Relationship 6.23
Positive Relationship 7.21
Female Population 6.03
Hispanic Population 6.86
Black Population 6.83
Foreign Born 6.08
Married Male 8.14
Married Female 7.33
High School Grad 6.64
Bachelor’s Degree 6.73
Income 6.30
Smoker 6.22
Diabetic 4.85

Obese 5.07
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Table 2-5: Predicted prevalence of ADHD and Emotions, SES, Emotions+SES.

Feature Mean Square Error
Fair Poor Health 7.02
Physical Unhealth Days 7.17
Mental Unhealth Days 7.38
Hypertension Male 5.33
Hypertension Female 5.68
High School/Bachelor Graduate 6.39
Hypertension 5.48
Married 7.76
Log Income 6.16
UCD 7.63
User Word Total 6.86
Population 2010 6.76
Unemployment 7.92

The mean square error values for the prevalence predicted by each of the emotions
show that Emotions + SES is better than the feature emotions alone. The emotions anxious,
positive emotion, negative emotion, and positive relationship are all negative factors for
ADHD patients. This reinforces the notion that people with ADHD have a hard time
controlling their emotions. Similarly, as seen in the table for ADHD prevalence predicted
by each of the socio-economic status, Emotions + SES performed better than SES alone.

The features of diabetes, hypertension (male and female), obesity are risk factors for
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ADHD. This implies that patients with ADHD are at risk for obesity, hypertension, and

diabetes.

Prevalence of ADHD and Emotions, SES, Emotions+SES

Positive Relationship
Negative Relationship
Positive Emotion
Negative Emotion
Engagement
Disengagement
Anxious

Anger
Emotions+SES

SES

Emotions

.,_
2
-
6
o

MSE

Figure 2-16: Predicted prevalence of ADHD and emotions, SES.
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Figure 2-17: Predicted prevalence of ADHD and emotions+SES, SES.



39

234 Multicollinearity

Below are the heatmaps (figures 2-18 and 2-19) for the correlation matrices:

Prevalence
0.8
Anger
Anxious =
- 0.4
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Negative Emotion
Positive Emotion

Negative Relationship

Positive Relationship

Figure 2-18: Heatmap of the correlation matrix of emotion.
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Figure 2-19: Heatmap of the correlation matrix of SES.
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20 below reports the effect size of the features.
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Effect Size
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An effect size is a calculable measure of the value of a phenomenon. The figure 2-
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Figure 2-20: Effect size of features
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A scatter plot (figure 2-21) is used to show the clusters obtained from DBSCAN.

The categories in the cluster are prevalence, anger, anxious, disengagement, engagement,

negative emotions, positive emotions, negative relationships, and positive relationships.

Each of the data points in the clusters represents one of the 50 states.

The states in cluster O (represented by the color purple) are Alabama, Arkansas,

Georgia, Kentucky, Louisiana, Mississippi, North Carolina, South Carolina, and

Tennessee. The means for cluster 0 is 14.4, 9.6x10°3 , 2.20x102 1.032x10°2, 9.042x10 4,

2.19x1073,5.00x1073, 1.62x1073, 7.39x10°3. These states have the highest prevalence, with

a mean of 14.4% that were computationally organized by t-SNE and DBSCAN.
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The states in cluster 1 (represented by the color blue) are Alaska, Colorado, Hawalii,
Idaho, lowa, Minnesota, Montana, Nebraska, New Hampshire, North Dakota, Oregon,
South Dakota, Utah, Vermont, Washington, Wisconsin, and Wyoming. The means for
cluster 1 is 10.34, 7.27x1073, 2.22x1073, 7.20x1074, 1.18x1073, 2.058x103, 5.72x1073,

1.36x10°3, 6.82x10°3,
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Figure 2-21: Scatter plot for the clusters obtained from DBSCAN

The states in cluster 2 (represented by the color green) are Arizona, California,
Florida, Nevada, New Mexico, and Texas. The means for cluster 2 is 9.78 ,8.07x1073,
1.98x1073, 8.36x107%, 9.57x107%, 1.94x1073, 4.96x103, 1.36x1073, 6.57x1073. These states
have the lowest prevalence, with a mean of 9.8% that were computationally organized by
t-SNE and DBSCAN.

The states in cluster 3 (represented by the color yellow) are Connecticut, Delaware,
Illinois, Indiana, Kansas, Maine, Maryland, Massachusetts, Michigan, Missouri, New

Jersey, New York, Ohio, Oklahoma, Pennsylvania, Rhode Island, Virginia, and West
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Virginia. The means in cluster 3 is 11.7, 9.32x107%, 2.19x103, 8.81x107, 1.01x1073,

2.26x1073, 5.22x10°3, 1.58x10°3, 7.16x10°>,

2.4 Conclusion
The results successfully establish a correlation between emotions, language use,
and the prevalence of ADHD geographically in the United States. The combination of
emotions and socio-economic statuses successively outperforms individual result sets. The
result set could be further fortified by analyzing the prevalence of ADHD geographically
by a new feature age. The nature of the behavioral disorder is such that it statistically
manifests in adolescence and peaks/subsides as user ages. The age, along with other socio-

economic factors, would further assist in identifying measures of the disorder.



CHAPTER 3

MEASURES OF BEHAVIORAL DISORDERS

Behavioral disorders are deficits in adults and children characterized by learning
disabilities and an inability to build or maintain satisfactory interpersonal relationships
(Emotional and Behavioral Disorder, 2019). Diagnosing such disorders requires the study
of behavior, making it difficult for medical professionals to diagnose them. Numerous
studies so far have categorized behavior into language use, social expressions, and
interaction.

Attention Deficit Hyperactivity Disorder (ADHD) is a behavioral disorder
characterized by significant problems with attention, impulsiveness, and hyperactivity
(Attention-deficit/hyperactivity disorder, 2019). The commonplace nature of the disorder
and the longstanding societal stigma associated with it leaves many more cases
undiagnosed. In addition, the lack of data to efficiently diagnose the disorder has proved
burdensome in providing effective treatment.

This chapter identifies two behavioral measures and an analysis of ADHD, namely,
variations in phrase structure rules, topic detection, and sentiment analysis that can be
further utilized in the development of a social media-based clinical decision support system
to effectively aid in the diagnosis of users with a predisposition for ADHD. The chapter is

organized as follows: related works, methodology, results, and conclusion.

43
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3.1 Related Works

Social media data offers many advantages, many of which lie in the diversity in the
language styles used. The diversity of language on Twitter exceeds the formal genres for
the English language, such as the Penn Treebank and the Brown Corpus, mainly because
there are fewer rules to follow, the more significant number of authors, and varied
communicative settings (Balusu, et al., 2018). These authors worked on quantifying the
impact of one form of socio-linguistic variation on the accuracy of part of speech tags.
Meftah, et al. (2018) worked on a POS tagger for social media datasets, using an end-to-
end neural model based on Transfer Learning. Kilyeni (2014) explored the use of
‘buzzwords’ that were coined on social media platforms and are now used in daily life (on
and off social media). Similarly, Qadir, et al. (2015) presented a semantic lexicon induction
approach to learn new vocabulary from social media.

Surian, et al. (2016) used topic modeling methods to measure how information
disseminates in online communities to effectively find the geographical variations in
decisions that result in poor health outcomes. Lu, et al. (2013) integrated medical-domain
specific features to analyze messages posted in online health communities.

The informal manner in which tweets are posted makes it ideal for sentiment
analysis. Wang, et al. (2011) performed a hashtag level sentiment classification to analyze
the overall sentiment polarity for a given period. Carchiolo, et al. (2015) exploited
SNOMED-CT terminology to analyze how a disease is perceived by the public. Ji, et al.

(2015) tracked an outbreak by analyzing how concerned the general population in an area
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was. Researchers also determined whether the use of sentiment words of a user with

depression differed from the general population.

3.2 Methodology

3.21 Definitions, Algorithms, and Methodology

Definition 3.2.1 Parts of speech are categories to which words are assigned in accordance
with their syntactic function. The main parts of speech are noun, pronoun, adjective,
determiner, verb, adverb, preposition, conjunction, and interjection.

Definition 3.2.2 Cosine similarity is a measure of the similarity between two non-zero
vectors of an inner product space that measures the cosine of the angle between them. The
cosine of 0 degrees is 1, and it is less than 1 for any angle in the interval (0, 1] radians.
(Han, et al., 2000) The cosine of the two non-zero vectors, A and B, can be derived using
the formula:

A.B

~ ", AB
AlLIBI|
HAITIB Jon a2 [, o

Definition 3.2.3 Recurrent neural networks are a class of neural networks that allow

similarity = cos(0) = Eq3.1

previous outputs to be used as inputs while having hidden states (Han, et al., 2000). For
each time step t, the activation a<*> and the output y<*:
a<t> = g; Wpea<t1> + W,,x<*> + b,) Eq3.2
and,
y<t> = g, (Wyaa<t> + by) Eq3.3
Definition 3.2.4 Term frequency-inverse document frequency (TF-IDF) is a numeral
statistic that reflects the importance of a word for a document in a corpus (TF-IDF, 2019).

It is a commonly used statistic in information retrieval, text mining, and user modeling.
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The value of TF-IDF is proportional to the word count in a document and is offset by how

many documents in a corpus contain the word. TF-IDF is calculated using the formula:
tfidf(t,d,D) = tf(t,d).idf (t,D) Eq 3.4

where term is represented by t, document by d and document corpus by D. The term

frequency (tf) and inverse document frequency (idf) are calculated as:

fea

tf(t,d) = 0.5+ 0.5. Eq 3.5
f&.d) max {fy 4 :t' € d} q
where f, ; denotes the raw count.
N
idf (t,D) = Eq3.6

gl deDicea)]
where N denotes the total number of documents in the corpus.
Definition 3.2.5 Non- negative matrix factorization (NMF) is a collection of algorithms in
the multivariate analysis where a matrix is factorized into two matrices W and H with the
condition that all three matrices must have no negative elements.

Definition 3.2.6 Kullback-Leibler divergence is a measure of how two probability
distributions differ from one another (Kullback-Leibler Divergence, 2019). For two

probability distributions P and Q on the same space, the divergence is calculated as:

D (PIIQ) = —Srexlog s P(x) Eq 3.7
which is equivalent to,
P(x)
Dk1, (P|1Q) = Xxex P(x)log(5= Eq3.8

Q(x)



47

3.2.2 Data Collection

The data to identify behavioral measures of ADHD is collected from Twitter using
their developer API. Data is collected for two groups of users: diagnosed and control. The
diagnosed group is composed of users with tweets of self-reported diagnosis of the
disorder. Alternatively, the control group is composed of users who have no tweets of self-
reported diagnosis of the disorder.

The process used to collect the data is similar to the one used in Coppersmith, et al.
(2014). The process has been previously validated and shows predictive power for real-
world phenomena. For the diagnosed group, self-reported diagnosis tweets are posts
containing statements such as ‘I have been diagnosed with ADHD' or ‘I was diagnosed
with ADHD'. For the control group, users are selected at random, and their public posts are
inspected to ensure there are no posts of self-reported diagnosis of a behavioral disorder.
The table 3-1 lists the total number of users, the average number of tweets per user, and
the total number of tweets after preprocessing for the diagnosed group and the control
group.

The data was collected between March 2017 to May 2017. For each user in the
diagnosed group, a time T1 was set (as show in Figure 3-1). T1 indicates the date/time a
user publicly states that they were or have been diagnosed with ADHD. Furthermore, the
data before time T1 is referred to as a pre-diagnosed group, and the data after T1 is referred

to as a post-diagnosed group.



48

Table 3-1: Data collection statistics for the diagnosed and control group.

Diagnosed Group Control Group
Total number of users 132 91
The average number of tweets per 92
user 128
Total number of tweets 12,512 11,722
T1 POST -DIAGNOSIS
| S USER. 1
PRE -DIAGNOSIS | +»| « > |
| < _TL C ‘
| - > |« — — USER 2
T1 | ‘
| "—'I < > USER 3
MARCH 2017 MAY 2017

Figure 3-1: Diagrammatic representation of time T1.

3.2.3 Behavioral Measure 1: Variations in Phrase Structure Rules

Phrase structure rules are used to describe the syntax of a language and are closely
associated with theoretical generative grammar. These rules can be categorical, rules that
expand categories into other categories, or they can be lexical, rules that expand category
labels by word.

The data transformation technique is replicated for the three groups of users,
namely, the pre-diagnosed group, the post-diagnosed group, and the control group.

The tweets collected using the Twitter API are tokenized and categorized according
to their part of speech tag using Noah's ARK by Carnegie Mellon. ARK uses the Penn
Treebank tag set for categorizing tokens according to their parts of speech. The treebank
consists of 33 parts of speech, including but not limited to adjectives, nouns, adverbs, and

verbs. Each of these broad categories is represented by multiple tags denoting fine-grained
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specifics of grammatical usage. For example, adjectives can be tagged as their base form
or based on their intensity, comparative adjectives, or superlative adjectives.

The tagged tokens are stored in arrays, yielding 33 parts of speech arrays. Pairwise
comparison of these arrays yields the cosine similarity between them. The cosine similarity
values are stored in an NxN co-occurrence matrix, where N is the number of parts of speech
tags.

A variation of the one hot matrix is used to obtain the absence or presence of a part
of speech in a tweet. A 1 indicates the presence of a part of speech, and 0 indicates the
absence of a part of speech in a tweet. This matrix is multiplied by the co-occurrence
matrix. The resulting matrix is used as input to the recursive neural network. The recursive
neural network used for this step is a stacked RNN with three layers, an embedding layer;
a long short-term memory (LSTM) layer; and a dense layer. The LSTM layer has four
components: a cell, an input gate; an output gate; and a forget gate. The three gates use a
logistic function to compute an activation. The activation function is:

S = —L - ¢ Eq 3.9
x_1+e‘x_ex+1 92

The RNN runs for four epochs for the train and test set. The complexity of the above
algorithm is O(n*h), where m is the number of hidden units, and h is the length of the
epoch. The complexity of calculating the cosine similarity is o(mn?) where m is the number
of terms that are common between two vectors, and n? is the number of iterations.

3.24 Behavioral Measure 2: Topic Detection

The tweets collected from Twitter for the three groups of users: pre-diagnosed,
post-diagnosed, and the control group have been used for this step. The package provided

by python, sci-kit learn, has been used to convert all the tweets into their respective TF-
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IDF matrix; perform non-negative matrix factorization; and create, visualize the clusters
using T-SNE. The methodology is repeated individually for the three groups of users.

The python package provides users with a TfidfVectorizer method to convert raw
data into a matrix of tf-idf features. Two arguments are passed to the method, min_df and
max_df, both of which are frequency parameters to be ignored if higher than or lower than
the specified arguments. The resulting parameters are fit on the training set using
fit_transform. Non-negative matrix factorization (NMF) is performed on the tf-idf matrix.
The values for the arguments are set by experimentally determining the values. The
arguments passed to NMF method are the number of components, random_state, solver,
and beta_loss. Beta loss is passed to minimize the beta divergence, measuring the distance
between the input matrix X and the dot product of WH. In this case, the number of
components is set to 10, the solver is set to mu, random state is set to 7 and the beta loss is
set to kullback-leibler. The result is fit to the training set using fit_transform and stored as
W. The matrix H is set to the components of the result of NMF.

The top 10 words from each of the topics are chosen but since the result of NMF
sorts the words in ascending order, the list must be first sorted in descending order. To
visualize the clusters and to view the tweets in each cluster, TSNE and click events are
used. The dimensions of the NMF matrix are reduced using TruncatedSVD. The number
of components passed as an argument to the method is set to 50. The result is fit for the
training set and TSNE is run on it. The scatter method provided by the matplotlib python
package is used to show the clustered data points on a scatter plot. The argument s
(represents the area) is set to 15 for the pre-diagnosed and post diagnosed group. For the

control group, the argument s is set to 75.8.
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3.25 Analysis: Sentiment and Emotion

The tokenized tweets tagged in the CONLL format are categorized into their own
sentiments and emotion using the NRC word-emotion association lexicon. The lexicon
identifies two sentiments: positive and negative. It also identifies eight emotions: anger,
fear, anticipation, trust, surprise, sadness, joy, and disgust. The categorization of the tokens
according to their emotions and sentiment, would aid in the creation of a timeline of the

disorder for each user.

3.3 Results

3.3.1 Behavioral Measure 1: Variations in Phrase Structure Rules

The results of the recurrent neural network are reflective of the difference in the
language used by users with the disorder and users without the disorder. Since parts of
speech form the essential component of a sentence, the placement of a part of speech and
its type in a sentence are essential to understand an individual's speech patterns. Figures 3-
2 to 3-5 show the part of speech preferences for the three groups of users.

In the figures 3-2 to 3-5, the x-axis represents the parts of speech and the y-axis
lists the results of the RNN (represents the importance of a part of speech as compared to
the others). For the pre-diagnosed group, plural nouns (NNP) and prepositions (IN) are
more likely to be used more frequently than a singular noun (NNS).

Similarly, for the control group, prepositions and modifiers (MD) are more likely
to occur more frequently in a sentence than nouns (NN). In table 3-2, S represents an

embedded clause.
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Figure 3-2: Results of RNN for pre-diagnosed group.

An embedded clause in a sentence is a group of words that include a subject and
a verb, embedded within and dependent on the sentence’s main clause. The pre-
diagnosed group is more likely to use embedded clauses as compared to the other two

groups, post-diagnosed and control group.
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Figure 3-3: Results of RNN for post-diagnosed group.



53

0.4 m
0.3
0.2

0.1

oo/ 8 N N HH_HH:DDunuuunn uuuuuuuuuuu

SR PELPFOCLFIRESS \”qqg"'qc"‘;\ﬁ g <k Ho ‘ﬁa“q‘ﬁ’gq‘%ex ol ot

Figure 3-4: Results of RNN for control group.

Table 3-2: Formal rules for the English language.

Phrase Structure Rules

S— NP (MD) VP
NP — V (NP) (AdjP) N (PP)
VP — V (NP) (PP) (AdvP)
AdvP — Adv (AdjP)
PP—>PN
NP — N (Conj P)
VP — V (Conj P)

S — S (Conj S)

Furthermore, a logical combination of the parts of speech or group-specific phrase
structure rules can elaborate on an individual user's speech pattern. The table 3-2, lists

formal phrase structure rules for the English language. The usage of parts of speech in
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brackets are optional. Parts of speech can be substituted in the phrase structure rule that
defines it, or in another phrase structure rule.

The table 3-3 lists the phrase structure rules for the pre-diagnosed group, the post-
diagnosed group, and the control group. To better understand the rules specific to the three
groups of users, take, for example, the second rule from Table 3-2:

NP — V (NP) (AdjP) N (PP)

As mentioned before, the parts of speech in parenthesis are optional. In the case of
the pre-diagnosed group, NN (noun, basic form) and NNP (plural noun) are forms of the
noun that are both frequently used, the rule becomes:

NP — (NN/NNP) V (AdjP) (PP)
Prepositional phrases (PP) can be broken down into prepositions and nouns,
according to the fifth rule in Table 3-6:
PP—>PN
Since, prepositions and nouns are important for the group, the rule now becomes:
NP — (NN/NNP) V (AdjP) (PP)
Similarly, since verbs and adjectives aren’t frequently used, the rule now becomes:
NP — (NN/NNP) (PP)
For the control group, the parts of speech NN (noun, basic form) and NNS (singular
noun) are the forms of the noun that are frequently used. Therefore, the rule becomes:
NP — (NN/NNS) (PP)

The breakdown of the prepositional phrases (PP) remains the same in all cases.
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Table 3-3: Phrase structure rules for the pre-diagnosed, post-diagnosed, and control
group.

Pre-diagnosed Group Post-diagnosed Group Control Group
S—> NPVP S— NPVP S— NPVP
NP — (NN/NNP) (PP) NP — (NN/NNP) (PP) NP — (NNS/NNP) (PP)
VP — V (RB) VP — VB (RB) (NP) VP — V (IN)
AdjP — Adj (AdvP) AdjP — Adj (AdvP) AdjP — Adj (AdvP)
AdvP — Adv (AdjP) AdvP — Adv (AdjP)
PP—-PN PP—-PN
3.3.2 Behavioral Measure 2: Topic Detection

The following are the clusters for the three groups of users: the green clusters are
for the pre-diagnosed group; the blue clusters are for the post-diagnosed group, and the red
clusters are for the control group. The clusters are based on the results of t-SNE. There are
128 pre-diagnosed clusters, 128 post-diagnosed clusters, and 72 control group clusters.
Each data point in the cluster represents a tweet. The scatter plot (figure 3-5) has been
obtained with the t-SNE perplexity set to 10. Since there is no natural separation of the
data, a supervised approach in chapter 4 is the best approach in finding the differences
between the three groups of users.

Since Twitter is an informal platform, a separation in the users based on the topics
is hard to achieve. On a finer level, such as parts of speech or sentiment, separation is

possible and has been shown in this chapter.
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Figure 3-5: Scatter plot for topic detection.

The following (tables 3-4 to 3-6) are the top ten topics for the three groups of users.

Table 3-4: Top ten topics for the pre-diagnosed group.

Topic Pre-diagnosed Group
1 all,at,an,because,we,ll,could,or,up,out
2 cbd,via,anyone,best,help,new,from,high,or,does
3 what,do,know,fuck,even,did,say,about,dont,name
4 oh,did,shirotwt,fucking,as,thank,right,yeah,well,lol

5 one,he,been,no,by,has,got,had,out,now
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Table 3-4: Top ten topics for the pre-diagnosed group.

Topic Pre-diagnosed Group
6 about,how,know,really,feel,think,no,much,make,too
7 love,im,too,back,go,much,ok;its,koutameoshi,your
8 get,good,at,do,also,they,need,some,look,anewrecipeh
9 don,am,got,need,want,adhd,here,any,game,some
10 do,when,kingwilliamiv3,typicalgamer,samararedway,couldnotag

ree,as,your,lol,them

One of the top ten topics for the pre-diagnosed group consists of items related to drugs.

This is indicative of their inclination towards using drugs. Both the pre-diagnosed and post-

diagnosed groups of users have items related to ADHD as one of their top ten topics (#8

for the pre-diagnosed group in table 3-4 and #2 for the post-diagnosed group in table 3-5).

Table 3-5: Top ten topics for the post-diagnosed group.

Topic Post-diagnosed Group
1 at,we,by,from,as,amp,lol,need,make,out
2 im,its,gonna,back,dante,see,off,hate, life,cant
3 good,an,day,adhd,aspie,again,night,myself,am,got
4 love,more,much,too,avi_kaplan,as,great,happy,beautiful,amazing
5 don,want,anyone,they,even,because,does,or,about,re
6 up,he,fuck,from,look,cute,shit,nice,him,dante
7 get,who,his,he,armyofkek,buy,him,wants,please,come
8 how,no,am,now,oh,thank,right,feel,god,graysondolan
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Table 3-5: Top ten topics for the post-diagnosed group.

Topic Post-diagnosed Group
9 about,at,time,been,one,has,ve, first,best,found
10 when,know,fucking,had,people,dont,man,ass,out,looks

One of the top ten topics for the pre-diagnosed group consists of items related to drugs.
This is indicative of their inclination towards using drugs. Both the pre-diagnosed and post-
diagnosed groups of users have items related to ADHD as one of their top ten topics (#8

for the pre-diagnosed group in table 3-4 and #2 for the post-diagnosed group in table 3-5).

Table 3-6: Top ten topics for the control group.

Topic Post-diagnosed Group
1 at,we,by,from,as,amp,lol,need,make,out
2 im,its,gonna,back,dante,see,off,hate, life,cant
3 good,an,day,adhd,aspie,again,night,myself,am,got
4 love,more,much,too,avi_kaplan,as,great,happy,beautiful,amazing
5 don,want,anyone,they,even,because,does,or,about,re
6 up,he,fuck,from,look,cute,shit,nice,him,dante
7 get,who,his,he,armyofkek,buy,him,wants,please,come
8 how,no,am,now,oh,thank,right,feel,god,graysondolan
9 about,at,time,been,one,has,ve,first,best,found

10 when,know,fucking,had,people,dont,man,ass,out,looks
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In contrast, the top ten topic lists for the control group contains items probably
related to topics that are or were the news. The emotions expressed, whether negative or
positive, are concerning the news items.

3.3.3 Analysis: Sentiment and Emotion

The result set for the pre-diagnosed users in figure 3-6 shows that their expressed
sentiments are more negative. Similarly, the emotions most commonly expressed by pre-

diagnosed users are anger and sadness.

Emotions and Sentiment

m Positive m Negative = Anger m Anticipation = Disgust = Fear m Joy m Sadness ® Surprise ® Trust

Figure 3-6: Emotion and sentiment for the pre-diagnosed group.

The result set for the post-diagnosed group of users in figure 3-7 shows that the

sentiment for their posts is more positive, and the emotions expressed are trust and fear.
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Emotions and Sentiment

m Positive m Negative = Anger m Anticipation = Disgust = Fear m Joy m Sadness m Surprise m Trust

Figure 3-7: Emotion and sentiment for the post-diagnosed group.

Emotions and Sentiment

>

m Positive m Negative = Anger m Anticipation = Disgust = Fear m Joy m Sadness m Surprise m Trust

Figure 3-8: Emotion and sentiment for the control group.

The result set for the control group in figure 3-8 shows that users in the group tend
to be more positive in their outlook, and the emotions most commonly expressed by them

are anger and trust.
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3.4  Conclusion
In conclusion, the two measures and the analysis show a stark contrast in three
groups of users, pre-diagnosed, post-diagnosed, and control group. These measures and
analyses can be further exploited to identify critical points in the timeline of the disorder:

the peak and time to remission.
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CHAPTER 4

CLINICAL DECISION SUPPORT SYSTEM FOR ADHD

The United States alone reports three million cases of ADHD every year (Data and
Statistics about ADHD, 2019). The commonplace nature of the disorder and the
longstanding societal stigma associated with it leaves many more cases undiagnosed. The
ability to use social media to identify users with ADHD can assist clinicians in diagnosing
patients in remote areas or areas with a deep understanding of the disorder. It has the
potential to improve the specificity and sensitivity of ADHD detection. An effective
clinical decision support system can allow monitoring of patient’s adherence to prescribed
treatment options. It can also establish a hypothesis for future clinical and research
investigations in the future.

This chapter focuses on a clinical decision support system for the disorder using a
classification algorithm, decision trees. The chapter is organized as follows: related works,

definitions, equations and algorithms, methodology, results, and conclusion.

4.1  Related Works
Recently, there has been an increase in research using language to identify people
with mental illnesses and quantify its progression. De Choudhury, et al. (2013b) worked
on identifying and helping people who suffered from depression. Cloninger, et al. (1993)
evaluated the personality traits that made people vulnerable to depression. Rude, et al.

(2003) successfully hypothesized that negative processing biases in resolving verbal cues
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could predict future episodes of depression. Brown, et al. (1990) found that the lack of
support from peers and low self-esteem leads to higher incidences of depression. Paul and
Dredze were able to learn more about diseases from posts obtained from Twitter (Paul &
Dredze, 2011). Kotikalapudi, et al. (2012) hypothesized that an analysis of web activity of
college students could identify users with depression. Moreno, et al. (2011) proved that
updates on Facebook could reveal symptoms of depression.

Coppersmith, et al. (2014) researched methods to identify people with post-
traumatic stress disorder. Disease surveillance on social media was explored by
Brownstein, et al. (2009). The ample data available on social media was explored by Paul

and Dredze (2011).

4.2  Methodology

The analysis for this chapter is on a user-level and a tweet-level. The data used for
this analysis is the same as the Twitter user posts used in Chapters 2 and 3. There are four
main categories for the features used for this analysis: TF-IDF; topic detection clusters,
parts of speech, and sentiment, and emotion. The methodology to obtain the features is
repeated for the three groups of users: pre-diagnosed, post-diagnosed, and the control
group. A decision tree is used to predict classes (pre-diagnosed, post-diagnosed, and the
control group) for the test set.

421 Definitions, Equations, and Algorithms

Definition 4.2.1 Decision Tree is a tree-like model of decisions and possible consequences,
commonly used in decision analysis and operations research. A decision tree consists of

three types of nodes: decision nodes, chance nodes, and end nodes (Witten, et al., 2016).
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Definition 4.2.2 Entropy is a measure of the disorder (Witten, et al., 2016). The formula

for entropy is:

c

E(S) = z —p;log, p; Eq4.1

i=1
where p; is the frequentist probability of a class in the data set.
Definition 4.2.3 F1 Score is a measure of the accuracy of a test (Witten, et al., 2016). It
considers precision (p) and recall (r) of the test to compute the score. The traditional

formula for the test is:

( 2 ) precision.recall
1 p—

= 2. Eq 4.2
recall™' + precision™! precision + recall q

4.2.2 TE-IDF

The statistic TF-IDF is calculated using the sci-kit learn package in Python. For the
users and tweets, their tweets are fed as input to the Tfidfvectorizer method provided by
the package. The arguments for the method, min_df, and max_df are set to 0.01 and 1,
respectively. The argument binary is set to true. The initial parameters are fit on the data
set and transformed using the fit_transform method provided by the same package. Since
the resulting matrix is a sparse matrix, the todense method is used to return a dense
representation of the matrix. The final array is collapsed into a 1D array. This results in a
132x14027 matrix for the pre-diagnosed group, a 132x16384 matrix for the post-diagnosed
group, and a 91x2400 matrix for the control group.

423 Topic Detection Clusters

The tfidf matrix is used as input to the non-negative matrix factorization algorithm,
provided by the NMF package provided by Scikit-learn. The arguments for the methods

are assigned experimentally validated values. The arguments for the NMF method,
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random_state, beta_loss, solver are set to 7, kullback-leibler and mu, respectively. The
initial parameters are fit on the data set and transformed using the fit_transform package
provided by the package, resulting in the matrix W. The components from the result are
saved as matrix H. The indices of the maximum values along axis 0 in matrix X are saved
and used for the decision tree. This results in a 132x1350 matrix for the pre-diagnosed
group, a 132x16384 matrix for the post-diagnosed group, and a 91x6753 matrix for the
control group.

424 Parts of Speech

The parts of speech categories used for this step are from the Penn Tree Bank.
Thirty-three parts of speech are considered. To categorize tokens according to their parts
of speech, the NOAH's ARK by Carnegie Mellon is used. For each of the users in the three
groups, the total count for each part of speech is calculated. This results in a 132x32 matrix
for the pre-diagnosed and post-diagnosed group and 91x32 matrix for the control group.

425 Sentiment and Emotion

The NRC emotion lexicon is used to categorize user tweets into two sentiments and
eight emotions. The syuzhet package in R is used to categorize the tweets. This results in
a 132x10 matrix for the pre-diagnosed and post-diagnosed group, and a 91x10 matrix for

the control group.

Table 4-1: Algorithm for calculating sentiment and emotion.

Algorithm: Sentiment and emotion for pre-diagnosed, post-diagnosed and the
control group.

Input: User tweets for pre-diagnosed, post-diagnosed, and control group.
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Output: Total count of sentiment and emotion for each user in the pre-

diagnosed, post-diagnosed and control group.

1. FORiin list of user files
Read data for file i
nrc_data = get_nrc_sentiment(data)
Save/Append data to csv file.
ENDFOR

End

4.2.6 Decision Tree
The decision tree is implemented in Python using the Scikit-learn package. The

decision tree algorithm uses the GINI index to build the tree:

Gini =1 — z (p))?
i=1

where p; denotes the probability of the classes.

The input to the decision tree is an aggregation of the matrices for the four features,
tfidf, topic detection clusters, parts of speech, and sentiment and emotion. There are three
classes for this classification algorithm, pre-diagnosed (0), post-diagnosed (1), and the
control group (2). The first column for the matrix for the pre-diagnosed group is set to 0,
the post-diagnosed group is set to 1, and the control group is set to 2. Four cases are
considered, pre-diagnosed vs. post-diagnosed, pre-diagnosed vs. control, post-diagnosed

vs. control, pre-diagnosed vs. post-diagnosed vs. control.
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Table 4-2: Decision tree classifier for pre-diagnosed, post-diagnosed, and control Group.

Algorithm: Decision tree classifier for pre-diagnosed, post-diagnosed and
control group.

Input: Matrices for the user groups (pre-diagnosed + post-diagnosed, pre-
diagnosed + control + post-diagnosed + control, pre-diagnosed + post-diagnosed +
control).

Output: Predicted values for classifying data by group.

1. Concatenate matrices for user groups and save as matrix X.
2. Shape matrices into 2D arrays and save as matrix Y.
3. Split X and Y into train and test set using a 70/30 split. Set a random state to

100.

4. Run the decision classifier with argument criterion = “entropy”, random_state
= 10, max_depth = 3, min_samples_leaf = 5. Save as cli_entropy.

5. Fit X_train, Y_train on cli_entropy.

6. Predict class values for X_test.

7. End

For the first three cases, the matrices are loaded two at a time. The matrices are
concatenated (matrix X), and an array is created from X (matrix Y). The matrices X and
Y are randomly split into train and test sets, X_train, Y_train, X_test, and Y_test. This is
accomplished using the train_test_split method provided by the Scikit-Learn package. The

arguments for the method, test_size, random_state are set to 0.3 and 100, respectively.
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The train test size method splits the dataset into 70% train and 30% test. The random
state argument randomly selects the values to split into train and test sets. The decision tree
classifier method provided by the same package is used to construct the decision tree. The
arguments for the method criterion, random_state, max_depth, and min_samples_leaf are
set to entropy, 10, 3 and 5, respectively. The final matrix is obtained by fitting the X_train
and Y _train matrix on the result of the decision tree classifier. The predictions for X_test
can be obtained by using the predict method.

4.3  User-Level Results

43.1 Pre-diagnosed group vs. Post-diagnosed group

The decision tree in figure 4-1 lists the class separation for the pre-diagnosed group
and the post-diagnosed group. The dependent variable of the decision tree (the root) has
140 observations and two classes, true or false. Entropy is the measure of impurity,
disorder, or uncertainty in the samples. It controls how the decision tree splits the data. The
highest feature is feature 18243 in the dataset. This corresponds to the emotion ‘joy’.
Similarly, the feature 18236 is ‘Uzllmedim," the feature 18253 is ‘foreign word’, the feature
18260 is ‘singular noun’, the feature 18246 is ‘trust’, the feature 18239 is ‘anger’. The F1

of the decision tree is 80%.
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X[18243] <= 1.5
entropy = 1.0
samples = 179

value = [91, 88]

T111:/

\Iialse

X[18246] <= 25.5
entropy = 0.058
samples = 100
value = [83. 17]

X[18246] <= 2.5
enfropy = 0.473

X[18255] <= 2.5
entropy = 0.371
samples = 84

X[18236] <= 5.5
entropy = 0.896
samples = 16

samples = 79

value = [8, 71]

X[18253] <= 5.5
entropy = 0.25
samples = 72

4
entropy = 0.863
samples = 7
value =[5, 2]

value = [3, 69]

RN

X[18239] <= 38.0
entropy = 0.811
samples = 12
value = [3, 9]

value = [78, 6]

e

X[18260] <= 1.5 X[18246] <= 19.0
entropy = 0.98 entropy = 0.106
samples = 12 samples = 72
value = [7, 5] value = [71, 1]

value =[5, 11]

N\

entropy = 0.991
gamples = 9
value = [3, 4]

enfropy = 0.0
samples = 60
value = [0, 60]

entropy = 0.0
samples = 7
value = [0, 7]

Figure 4-1: Decision tree for pre-diagnosed vs post-diagnosed group.
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Figure 4-2: Histogram of the highest feature for pre-diagnosed vs. post-diagnosed
group.
In figure 4-2, A represents the pre-diagnosed group, and B represents the post-
diagnosed group. The histogram for the pre-diagnosed vs. post-diagnosed group is skewed
right and therefore is asymmetrical. The graph shows a higher number of occurrences for

the highest feature in the pre-diagnosed group.
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Figure 4-3: Violin plot of highest feature for pre-diagnosed vs. post-diagnosed group.

In figure 4-3, the violin plot shows the value of the highest feature. The median
value (represented by the white dot in the middle) for the pre-diagnosed group is 0, and the
post-diagnosed group is 10. The black bar is the interquartile range. The broader sections
of the plot represent the occurrences of the highest feature in the pre-diagnosed group and
the post-diagnosed group. From the above graph, almost all the occurrences of pre-
diagnosed users are concentrated around the median.

4.3.2 Pre-diagnosed group vs. Control Group

The decision tree in figure 4-4 shows the class separation between the pre-
diagnosed group and the control group. The dependent variable of the decision tree (the
root) has 140 observations and two classes, true or false. The highest feature is feature
11505 in the dataset. This corresponds to the part of the speech ‘singular noun’. Similarly,
feature 11502 is ‘superlative adjective’, feature 11495 is ‘determiner,’ feature 11507 is
‘predeterminer’, feature 11481 is ‘lzerinden’, feature 11506 is ‘plural noun’. The F1 score

of the decision tree is 79%.
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The standard label in figure 4-5 represents the control group. The histogram for the
pre-diagnosed vs. control group is skewed right and therefore is asymmetrical. The graph
shows a higher number of occurrences for the highest feature in the control group.

In figure 4-6, the standard label in the violin plot represents the control group. The
above violin plot shows the value of the highest feature. The median value (represented by
the white dot in the middle) for the control group is 0, and the pre-diagnosed group is in
the range 0 to 100. The black bar is the interquartile range. The broader sections of the plot
represent the occurrences of the highest feature in the pre-diagnosed group and the post-
diagnosed group. From the above graph, almost all the occurrences of control group users

are concentrated around the median.

N[11505] <= 15.5
entropy = 0.921
samples = 140
value = [93, 47]

Tme/ Yﬂlse

!

X[11502] == 12.5
entropy = 0.984
samples = 75
value = [32, 43]

X[11495] <= 68.5
entropy = 0.334
samples = 65
value = [61, 4]

X[11505]==1.5
entropy = .998
samples = 61
value = [32, 20]

<

I

entropy = 0.0
samples = 14

value = [0, 14]

entropy = 0.0
samples = 42
value = [42, 0]

L\

X[11481] <= 4.5
entropy = 0.684
samples = 22
value = [4. 18]

X[11506] <= 4.5
entropy = 0.858
samples = 39
value = [28, 11]

y

X[11507] == 50.5
entropy = 0.667
samples = 23
value = [19, 4]

VRN

entropy = 0.722
samples = 5
value = [1, 4]

entropy = 0.0
samples = 10
value = [0, 10]

entropy = 0.918
samples = 12
value = [4, §]

entropy = 0.734
samples = 34
value = [27, 7]

entropy = 0.722
samples = 5
value = [1, 4]

Figure 4-4: Decision tree for pre-diagnosed group vs. control group.

entropy = 4.0
samples = 18
value = [18, 0]
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Figure 4-5: Histogram of the highest feature for pre-diagnosed group vs. control
group.

The standard label in figure 4-5 represents the control group. The histogram for the
pre-diagnosed vs. control group is skewed right and therefore is asymmetrical. The graph
shows a higher number of occurrences for the highest feature in the control group.

In figure 4-6, the standard label in the violin plot represents the control group. The
above violin plot shows the value of the highest feature. The median value (represented by
the white dot in the middle) for the control group is 0, and the pre-diagnosed group is in
the range 0 to 100. The black bar is the interquartile range. The broader sections of the plot
represent the occurrences of the highest feature in the pre-diagnosed group and the post-
diagnosed group. From the above graph, almost all the occurrences of control group users

are concentrated around the median.
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Figure 4-6: Violin plot of highest feature for pre-diagnosed group vs control group.

4.3.3 Post-diagnosed group vs. Control Group

The decision tree in figure 4-7 shows the class separation between the post-
diagnosed group and the control group. The dependent variable of the decision tree (the
root) has 140 observations and two classes, true or false. The highest feature is feature
15477 in the dataset. This feature corresponds to the emotion ‘sadness’. The feature 15493
corresponds to the part of speech ‘singular noun’. Similarly, the feature 15494 is “plural
noun’, the feature 15479 is ‘trust’, the feature 15503 is ‘superlative adverb’. The F1 Score
for the decision tree is 93%.

In figure 4-8, the normal label in the histogram represents the control group. The
histogram for the pre-diagnosed vs. control group is skewed right and therefore is

asymmetrical. The graph shows a density for the highest feature in the control group.



X[15477] == 0.5
entropy = 0 D21
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entropy = 0.0
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entropy = 0.0
samples = 63

value = [63, 0]

enfropy = 0.0
samples = 30
value = [0, 30]

X[15483] <=
entropy = 0.65
gamples = 18
value = [3, 15]

N

enfropy = 0.0
gamples = 13
value = [13, 0]

enfropy = 0.971
gamples = 5
value = [3, 2]

entropy = 0.971
samples = 5

entropy = 0.0
samples = 13
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value = [0, 13]

value = [3, 2]

Figure 4-7: Decision tree for post-diagnosed group vs. control group.
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Figure 4-8: Histogram for the highest feature for post-diagnosed group vs control
group.
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Figure 4-9: Violin plot for the highest feature for post-diagnosed group vs. control
group.

In figure 4-9, the normal label in the violin plot represents the control group. The
above violin plot shows the value of the highest feature. The median value (represented by
the white dot in the middle) for the control group is 0, and the post-diagnosed group is in
the range 0 to 20. The black bar is the interquartile range. The broader sections of the plot
represent the occurrences of the highest feature in the pre-diagnosed group and the post-
diagnosed group. From the above graph, almost all the occurrences of control group users
are concentrated around the median.

434 Pre-diagnosed group vs Post-diagnosed group vs Control Group

The decision tree in figure 4-10 shows the class separation between the pre-
diagnosed group, post-diagnosed group, and the control group. The dependent variable of
the decision tree (the root) has 229 observations and two classes, true or false. The highest
feature is feature 15478 in the dataset. This corresponds to the word 'seaham’ in the tfidf
matrix. Similarly, the feature 15493 is ‘sebbdavies’, the feature 15479 is ‘seahorses’, the

feature 15477 is ‘seagal’, the feature 15506 is ‘seda_ozen’, the feature 15490 is ‘seatbelt’,
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the feature 15481 is ‘sedativeboy’, the feature 15490 is ‘sealed’. The F1 Score of the

decision tree is 70%.

N[15478] <= 5.3
enfropy = 1.543
samples = 229

value = [91, 86, 52]

Tm’e/ \F‘alse
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samples = 154 samples =75

value = [84, 19, 51] value = [7, 67,1]

a N

X[15477]<= 0.5
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samples =79
value = [23, 6, 48]

X[15479] <= 21.0
entropy = 0.896
samples = 75
value = [39, 13, 3]

X[15306] <= 1.5
enfropy = 1.09
samples = 71
value = [20, 3, 48]

Density

.

entropy = 0.971
samples = 5
value =13, 2, 0]
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entropy = 0.954
samples = §

value =13, 3, 0]

X[15490] <= 53.3
entropy = 0.242
samples = 50
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samples = 25
value=[11, 13, 1]

X[15477]<=12.5
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samples =70
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Figure 4-10: Decision tree for pre-diagnosed group vs. post-diagnosed group vs
control group.

Figure 4-11: Histogram of highest feature for pre-diagnosed group vs post-diagnosed
group vs control group.
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In the figure 4-11, the normal label in the histogram represents the control group.
The histogram for the pre-diagnosed vs. control group is skewed right and therefore is

asymmetrical. The graph shows a higher density for the highest feature in the control group.
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Figure 4-12: Violin plot of highest feature for pre-diagnosed group vs. post-diagnosed
group vs. control group.

In figure 4-12, the normal label in the violin plot represents the control group. The
above violin plot shows the values of the highest feature. The median value (represented
by the white dot in the middle) for the control group and the pre-diagnosed group is 0, and
the post-diagnosed group is in the range 0 to 50. The black bar is the interquartile range.
The broader sections of the plot represent the occurrences of the highest feature in the pre-
diagnosed group and the post-diagnosed group. From the above graph, almost all the
occurrences of the control group and pre-diagnosed group users are concentrated around

the median.
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4.4 Tweet-Level Results

441 Pre-diagnosed group vs. Post-diagnosed group

The decision tree in figure 4-13 shows the tweet-level class separation between the
pre-diagnosed group and the post-diagnosed group. The dependent variable of the decision
tree (the root) has 17624 observations and two classes, true or false. The highest feature is
feature 22683 in the dataset. This corresponds to the part of the speech ‘adjective’.
Similarly, the feature 22688 is ‘singular noun, the feature 22685 is *superlative adjective’,
feature 22672 is ‘sadness’, the feature 22670 is ‘trust’, feature 22684 is ‘comparative
adjective’, feature 22702 is ‘verb’, feature 22701 is ‘interjection’, feature 22689 is ‘plural

noun’, feature 22690 is ‘predeterminer’, feature 22693 is ’personal pronoun’, feature

22673 is ‘joy’. The F1 Score of the decision tree is 76%.
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samiples = 6040 samples = 10684
vale = [1973, 4967] vilue = [4364, 6120]

N[L268] <= 03

enfropy = 0.765
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value = [1063. 3717]

.
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vilue = (908, 1250]

/ \
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LN

X[22675] <= 0.5
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N
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value = [71. 5]
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valne = [2714, 3374]

X[22690] <= 0.3
entropy = 0.994
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Figure 4-13: Tweet-level decision tree for pre-diagnosed group vs post-diagnosed

group.
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Figure 4-15: Tweet-level histogram of highest feature for pre-diagnosed group vs. post-
diagnosed group.
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Figure 4-14: Tweet-level violin plot of highest feature for pre-diagnosed group vs
post-diagnosed group.

In figure 4-14, the histogram for the pre-diagnosed vs. post-diagnosed group on a

tweet level is skewed right and therefore is asymmetrical. The graph shows an equivalent
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density for the pre-diagnosed and post-diagnosed group if the feature value is 0. For feature
values higher than 0, the pre-diagnosed group has a higher density.

In figure 4-15, the violin plot shows the density of data at different values. The
median value (represented by the white dot in the middle) for the control group and the
pre-diagnosed and post-diagnosed group is greater than 0. The black bar is the interquartile
range. The broader sections of the plot represent the occurrences of the highest feature in
the pre-diagnosed group and the post-diagnosed group.

4.4.2 Pre-diagnosed group vs Control group

The decision tree in figure 4-16 shows the tweet-level class separation between the
pre-diagnosed group and the control group. The dependent variable of the decision tree
(the root) has 10903 observations and two classes, true or false. The highest feature is
feature 19666 in the dataset. This corresponds to the part of the speech ‘superlative
adjective’. Similarly, the feature 19669 is ‘singular noun‘, feature 19655 is ‘disgust. The
F1 Score of the decision tree is 72%.

In figure 4-17, the label normal in the histogram represents the control group. The
histogram for the pre-diagnosed vs. control group on a tweet level is skewed right and
therefore is asymmetrical. The graph shows a higher density for pre-diagnosed if the
feature value is 0. The density for the pre-diagnosed and control group is almost the same
for feature values close to 1.25. For feature values higher than 1.25, the control group has

a higher feature value.
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X[19666] <= 1.3
enfropy = 0.968
saniples = 10903
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X[19669] <= 0.5 X[19669] <= 0.5

enfropy = 0.569 entropy =0.87
samples = §173 samples = 2730

value = [3708, 1373] value =794, 1936]

.

X[19666] <= 2.3
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X[19666) <= 0.3 X[19669] <= 1.3 X[19635] <= 0.5
enfropy = 0.983 enfropy = 0.684 enfropy = 0.716 entropy = 1.0
samples = 3667 sanples = 4506 samples = 1833 saniples = §77
vahe = [2112, 1555) value = 3686, 820] vahe = [363, 1485 valie = [429, 443]
enfropy = 0.979 enfropy = 0.799 enfropy = 0.513 entropy = 0.668 etfropy = 0,892 enfropy = 0.936 enfropy = 0.921
samples = 2126 samples = 1772 sanples = 81 samples = 431 samples = 46
vale =309, 1463] | | vale=1[56,25] | | vale=[279,152] | | value=[150, 206]

enfropy =093
samples = 2459 samples = 1208 samples = 2380
value =[1610, 849] | | value= [302, 706] value = 1883, 243]

Figure 4-16: Tweet-level decision tree for pre-diagnosed group vs control group.
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Figure 4-17: Tweet-level histogram of highest feature for pre-diagnosed group vs.

control group.
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Figure 4-18: Tweet-level violin plot of highest feature for pre-diagnosed group vs.
control group.

In figure 4-18, the violin plot shows the density of data at different values. The median
value (represented by the white dot in the middle) for the control group is greater than 0
and is 0 for the pre-diagnosed group. The black bar is the interquartile range. The broader
sections of the plot represent the occurrences of the highest feature in the pre-diagnosed
group and the post-diagnosed group.

4.4.3 Post-diagnosed group vs. Control group

The decision tree in figure 4-19 shows the tweet-level class separation between the
post-diagnosed group and the control group. The dependent variable of the decision tree
(the root) has 15379 observations and two classes, true or false. The highest feature is
feature 24778 in the dataset. This corresponds to the part of the speech ‘superlative
adjective’. Similarly, the feature 24767 is ‘disgust’, feature 24781 is ‘singular noun’. The

F1 Score of the decision tree is 69%.
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Figure 4-19: Tweet-level decision tree for post-diagnosed group vs. control group.

In figure 4-20, the label normal in the histogram represents the control group. The

histogram for the post-diagnosed vs. control group on a tweet level is skewed right and

therefore is asymmetrical. The graph shows a higher density for post-diagnosed if the

feature value is 0. The control group has a higher density for values greater than 0 and less

than 7.5. The density for the post-diagnosed group for feature values between 5 and 7.5 is

0.

Figure 4-21 shows the values of the highest feature. The median value (represented

by the white dot in the middle) for the control group is greater than 0 and is O for the post-

diagnosed group. The black bar is the interquartile range. The broader sections of the plot

represent the occurrences of the highest feature in the pre-diagnosed group and the post-

diagnosed group.
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Figure 4-20: Tweet-level histogram of highest feature for post-diagnosed group vs.
control group.

Violin Plot of Highest Feature in DT

17.5 +

15.0 A

12.5 4

10.0 A

7.5 4

Occurrences

5.0 4
2.5 4 I
0.0 4

Post MNormal
Group

Figure 4-21: Tweet-level violin plot of highest feature for post-diagnosed group vs.
control group.
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444 Pre-diagnosed group vs Post-diagnosed group vs Control group
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Figure 4-22: Decision tree for pre-diagnosed group vs post-diagnosed group vs. control
group.

The train test size for this analysis is 60/40, and the argument average for the f1-
score is. This was done to obtain the best possible accuracy.

The decision tree in figure 4-22 shows the tweet-level class separation between the
pre-diagnosed group, the post-diagnosed group, and the control group. The dependent
variable of the decision tree (the root) has 12545 observations and two classes, true or false.
The highest feature is feature 29520 in the dataset. This corresponds to the part of the
speech 'superlative adjective’. Similarly, the feature 29523 is ‘singular noun, feature
29509 is ‘disgust. The F1 Score of the decision tree is 54%.

In figure 4-23, the label normal in the histogram represents the control group. The
histogram for the post-diagnosed vs. control group on a tweet level is skewed right and
therefore is asymmetrical. The graph shows a higher density for post-diagnosed and pre-
diagnosed if the feature value is 0. If the feature value is between 0 and 2.5, control and
pre-diagnosed have fared better. The control group has a higher density for values higher

than 2.5 and less than 7.5.
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Figure 4-23: Tweet-level histogram of highest feature for pre-diagnosed group vs. post-
diagnosed group vs. control group.
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Figure 4-24: Tweet-level violin plot of highest feature for pre-diagnosed group vs.
post-diagnosed group vs. control group.

In figure 4-24, the violin plot shows the values of the highest feature. The median

value (represented by the white dot in the middle) for the control group is greater than 0
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and is 0 for the pre-diagnosed and post-diagnosed group. The black bar is the interquartile
range. The broader sections of the plot represent the occurrences of the highest feature in

the pre-diagnosed group and the post-diagnosed group.

4.5 F1-Score

The table 4-3 lists the f1-score for the user-level analysis and the table 4-4 lists the f1-score
for the user-level analysis:

Table 4-3: F1-score for user-level analysis.

Case F1-Score
Pre-diagnosed vs. Post-diagnosed 0.80
Pre-diagnosed vs. Control 0.79
Post-diagnosed vs. Control 0.93
Pre-diagnosed vs. Post-diagnosed 0.70
vs. Control

Table 4-4: Fl-score for tweet-level analysis.

Case F1-Score
Pre-diagnosed vs. Post-diagnosed 0.76
Pre-diagnosed vs. Control 0.72
Post-diagnosed vs. Control 0.69
Pre-diagnosed vs. Post-diagnosed 0.54

vs. Control
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46  Conclusion
The chapter explores the development of a clinical decision support system for
behavioral disorders. The use of the decision tree is successfully able to distinguish
between users in each of the groups. The decision trees in the four cases show the highest
feature and its associated density. Similarly, the final accuracy of the classifier is dependent

on how often it can clearly distinguish between an ADHD patient and a non-ADHD patient.
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CHAPTER 5

CONCLUSION AND FUTURE WORK

The goal of this dissertation was the development of a clinical decision support
system to assist in the diagnosis of individuals with Attention Deficit Hyperactivity
Disorder. The clinical decision support system is based on three behavioral measures for
the disorder. These measures are based on sentiment and semantics: variations in phrase
structure rules, topic detection, sentiment, and emotion. Three groups of users, namely, the
pre-diagnosed group, the post-diagnosed group, and the control group, form the classes to
show differences in users before diagnosis and after.

The overarching objective was to support clinical decision making using a
computational framework. To attain this, regression, unsupervised, and supervised
approaches to the model locality were employed. That allowed us to uncover previously
unknown and potentially useful information and finally support diagnosis automatedly by
accessing social media. The supervised learning performed better than unsupervised
learning for topic detection.

The clinical decision support system’s applicability is generic and may apply to
other behavioral disorders. With the help of the support system, the diagnosis and treatment

of the disorder outside the United States may be made possible.



90

5.1 Conclusions

5.1.1 Correlations in lanqguage and emotion by the geographical prevalence

The correlations in language and emotion by geographic prevalence are established
by using regression and cross-validation. The incidence of emotion, socio-economic status
and emotion, and socio-economic status are calculated using Pearson product momentum
correlation. Emotion and Socio-economic status outperform all other features. T-SNE and
DBSCAN are used to cluster the three groups by geographical prevalence. The categories
used for clustering are prevalence, anger, anxious, disengagement, engagement, negative
emotions, positive emotions, negative relationships, and positive relationships.

5.1.2 Behavioral measures of Attention Deficit Hyperactivity Disorder

The symptoms of Attention Deficit Hyperactivity Disorder, inactivity;
hyperactivity; and impulsivity have been quantified using three behavioral measures, as
mentioned above: variations in phrase structure rules, topic detection, sentiment, and
emotion. To establish variations in phrase structure rules, the collected tweets are broken
down into their respective parts of speech. The elements of speech tags are based on the
tag categories from the PennTree Bank. Rules are constructed for the three groups of users
to show variations in speech.

The second behavioral measure, topic detection, have been found using Term
frequency-inverse document frequency (TF-IDF) matrices and non-negative matrix
factorization. The top ten topics for each of the three groups have been listed in chapter 3.
The last behavioral measure contains the sentiments and emotions most commonly
expressed by users of the three groups. The categories for the sentiments and emotions are

based on NRC Emoticon.
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The three behavioral measures are consistent with the symptoms and characteristics
of the disorder. The sentiment most expressed by the pre-diagnosed group is negative as
compared to the post-diagnosed group and control group, where the sentiment most
expressed is positive. The sentiment for the pre-diagnosed group highlights a user's
tendency to be easily excited (hyper) and argue their part. The nature of behavioral
disorders also leaves individuals with feelings of resentment and social inadequacy. The
parts of speech most commonly used by the three groups of users reflect the use of singular
nouns for the pre-diagnosed and post-diagnosed group, and a plural noun or singular noun
for the control group. The usage of singular nouns by users in the diagnosed group is
symptomatic with their ability to only focus on a person, event, or thing at a time. The
results for the behavioral measures can be translated into a questionnaire as a first step
screening process in diagnosing individuals with Attention Deficit Hyperactivity Disorder.

5.1.3 Clinical decision support system for behavioral disorders

The classification of a user into one of the three classes provides the clinical
decision support, making it the need of the hour. It provides a clinician with the information
to be able to support their end decision regarding whether a patient has ADHD or not. The
use of social media in this approach may help clinicians reach areas where ADHD is not
considered to be a mental disorder.

The three behavioral measures are used as input for a decision tree classifier. The
classification is on a tweet level and a user level. Four cases are of classification are
considered: pre-diagnosed vs. post-diagnosed, pre-diagnosed vs. control group, post-

diagnosed vs. control group, and pre-diagnosed vs. post-diagnosed vs. control group. The
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accuracy of the classifier is better for the user-level analysis. The accuracy for the first case

is 80%, the second is 79%, the third is 93%, and the last case is 70%.

5.2  Future Work
Future applications of the decision support classifier include its applicability to other
behavioral disorders. It has the potential to answer questions related to the disorder, such
as time to remission, the peak of the disorder, the type of the disorder. The type of disorder

is the weight of inattention, hyperactivity, and impulsivity.
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