ХИМИЯ И ТЕХНОЛОГИЯ НЕОРГАНИЧЕСКИХ МАТЕРИАЛОВ CHEMISTRY AND TECHNOLOGY OF INORGANIC MATERIALS

ISSN 2410-6593 (Print), ISSN 2686-7575 (Online) https://doi.org/10.32362/2410-6593-2020-15-3-58-69 УДК 665.656.2

CC BY

Алюмооксидный носитель для катализатора низкотемпературной изомеризации углеводородов

Н. Тагандурдыева[@], Н.В. Мальцева, Т.А. Вишневская, В.Н. Нараев, А.Ю. Постнов

Санкт-Петербургский государственный технологический институт (технический университет), Санкт-Петербург, 190013 Россия [®]Автор для переписки, e-mail: jahana_18101993@mail.ru

Цели. Определение условий получения гранулированного η-Al₂O₃-носителя, исследование его структурно-прочностных свойств и оценка активности в модельном процессе изомеризации н-бутана.

Методы. Образцы, содержащие тригидроксид алюминия байеритной структуры, синтезированы осаждением из водных растворов нитрата алюминия аммиаком в изотермических условиях при постоянном значении pH. Экструзионным методом получены образцы гранулированного носителя при варьировании состава формовочных паст: соотношения количеств байерит- и η-Al₂O₃-содержащих компонентов и введения поливинилового спирта.

Результаты. Оценено влияние условий приготовления на структурно-прочностные свойства гранул активного Al₂O₃. Образцы алюмооксидного носителя испытаны в модельной реакции низкотемпературной изомеризации н-бутана, показана их достаточно высокая селективность и перспективность при получении катализаторов низкотемпературной изомеризации углеводородов.

Выводы. Увеличение содержания поливинилового спирта в формовочной пасте от 0.4 до 1.8 масс. % сопровождается смещением преобладающих размеров мезопор в интервале 10–50 нм и пор в интервале 50–80 нм в большую сторону, что объясняет высокие значения всех регистрируемых показателей процесса изомеризации н-бутана.

Ключевые слова: изомеризация, н-алканы, носитель катализатора изомеризации, оксид алюминия, байерит.

Для цитирования: Тагандурдыева Н., Мальцева Н.В., Вишневская Т.А., Нараев В.Н., Постнов А.Ю. Алюмооксидный носитель для катализатора низкотемпературной изомеризации углеводородов. *Тонкие химические технологии*. 2020;15(3):58-69. https://doi.org/10.32362/2410-6593-2020-15-3-58-69

Aluminum oxide carrier for a catalyst for low-temperature isomerization of hydrocarbons

Nurjahan Tagandurdyyeva[@], Natalya V. Maltseva, Tatyana A. Vishnevskaya, Vyacheslav N. Narayev, Arkady Yu. Postnov

Saint-Petersburg State Institute of Technology, St. Petersburg, 190013 Russia @Corresponding author, e-mail: jahana_18101993@mail.ru

Objectives. Determine the necessary conditions for obtaining a granulated η -Al₂O₃ carrier, investigate its structural and strength properties, and evaluate its activity for the model n-butane isomerization reaction.

Methods. Samples containing bayerite structure aluminum trihydroxide were synthesized by precipitation from aqueous solutions of aluminum nitrate with ammonia under isothermal conditions at a constant pH value. The samples of the granulated carrier were obtained using an extrusion method when the composition of molding pastes was varied by tuning the ratio of bayerite- and η -Al₂O₃-containing components and introducing polyvinyl alcohol.

Results. The influence of the preparation conditions on the structural and strength properties of the active Al_2O_3 granules is evaluated. Samples of the aluminum oxide carrier were tested for a model reaction of low-temperature isomerization of n-butane, demonstrating a sufficiently high selectivity and reasonable prospects for use as catalysts for low-temperature isomerization of hydrocarbons.

Conclusions. Increasing the content of the polyvinyl alcohol in the molding paste from 0.4 to 1.8 wt % is accompanied by an increase in the predominant sizes of the mesopores in the range of 10-50 nm and pores in the range of 50-80 nm, explaining the high values of all recorded parameters for the process of isomerization of n-butane.

Keywords: isomerization, n-alkanes, the carrier of the catalyst for isomerization, aluminum oxide, bayerite.

For citation: Tagandurdyyeva N., Maltseva N.V., Vishnevskaya T.A., Narayev V.N., Postnov A.Yu. Aluminum oxide carrier for a catalyst for low-temperature isomerization of hydrocarbons. *Tonk. Khim. Tekhnol. = Fine Chem. Technol.* 2020;15(3):58-69 (in Russ.). https://doi.org/10.32362/2410-6593-2020-15-3-58-69

введение

Процесс изомеризации линейных алканов в производстве автомобильных топлив является ключевой стадией, обеспечивающей превращение низкооктановых неразветвленных парафинов в высокооктановые разветвленные молекулы. Поэтому данный процесс может рассматриваться как эффективный и экономически приемлемый способ увеличения октанового числа моторного бензина с маловероятным образованием ароматических соединений [1].

Процесс изомеризации протекает на кислотных катализаторах и может инициироваться сильными кислотами Льюиса, катализаторами Фриделя-Крафтса, при относительно низких температурах, существенным недостатком которых является их нестабильность и корродирующее действие [2, 3]. Поэтому в промышленных процессах изомеризации в качестве катализаторов обычно используют твердые кислоты с нанесенной платиной [4, 5]. Платина, нанесенная на хлорированный оксид алюминия или цеолит, является наиболее часто используемой каталитической системой для рассматриваемого процесса [6]. Цеолиты менее кислотны, чем хлорированные оксиды алюминия, и, как следствие, для протекания реакции изомеризации требуют высоких температур (250–400 °C), что менее благоприятно для получения разветвленных изомеров [3, 7].

Наиболее активными катализаторами из предлагаемых в настоящее время для процесса изомеризации являются хлорированные алюмоплатиновые катализаторы (Pt/Al₂O₃-Cl). Повышенная активность данных катализаторов позволяет вести изомеризацию при низких температурах 120–180 °C с высокой степенью превращения (X = 28%) и селективностью (S = 98%) по целевому продукту [7, 8].

В качестве носителей для алюмоплатиновых катализаторов широко используется оксид алюминия, в частности его модификации: γ - и η -Al₂O₃. Однако оксид η -Al₂O₃ в ряде случаев обладает преимуществами

по сравнению с γ -Al₂O₃. Гранулированный оксид η -Al₂O₃ характеризуется как высокой удельной поверхностью ($S_{y\pi} = 300-400 \text{ м}^2/\Gamma$), так и наличием объема крупных мезопор с размером более 25 нм ($V_{\text{мезопор}} = 0.10-0.25 \text{ см}^3/\Gamma$), а также повышенной Льюисовской кислотностью [2].

Оксид η-Al₂O₂ получают преимущественно термической обработкой тригидроксида алюминия байеритной структуры. Наиболее распространенным методом получения байерита является его осаждение из водных растворов солей алюминия растворами аммиака или щелочей [9]. Осаждение гидроксида алюминия проводят при значении pH = 10-11, при котором байерит выпадает в виде крупных, малогидратированных и рыхлоупакованных кристаллов, промежутки между которыми заполнены коллоидно-связанной водой. Однако связь ее в байерите, в отличие от псевдобемита, менее прочна. Поэтому осадки байерита значительно более тиксотропны и под воздействием сдвиговых нагрузок, имеющих место при приготовлении формовочных паст и их экструдировании, резко разжижаются, а при снижении сдвиговых нагрузок так же резко структурируются. Это значительно усложняет процесс формования рассматриваемого тригидроксида [10]. Обнаружено, что это свойство проявляется в значительно большей мере у формовочных паст из байерита, осаждаемого из солей алюминия аммиаком, по сравнению с таковым, полученным с использованием гидроксида натрия в качестве осадителя. Однако в последнем случае требуется тщательная отмывка осадка ввиду существования жестких ограничений по примеси натрия (не более 0.02 масс. %) для носителей катализаторов изомеризации [11]. Поэтому приоритетным является осаждение байерита аммиаком, при этом высокая структурированность паст, получаемых из гидроксида, осложняет процесс их экструдирования и ставит задачу нахождения условий приготовления гранулированного оксида η-Al₂O₃, соответствующего требованиям пригодности для катализатора изомеризации углеводородов, в том числе по примеси натрия.

Перспективным способом регулирования свойств формовочных паст в технологии гранулированных носителей на основе оксида алюминия является изменение свойств как дисперсной фазы путем введения в качестве гетерогенной добавки порошка оксида алюминия [12], так и дисперсионной среды путем введения в качестве ПАВ водорастворимого органического полимера – поливинилового спирта (ПВС). При этом важным фактором является содержание дисперсной фазы в системе [13].

Цель настоящей работы состояла в определении условий получения гранулированного η-Al₂O₃-носителя,

исследовании его структурно-прочностных свойств и оценке активности в модельном процессе изомеризации *н*-бутана.

МАТЕРИАЛЫ И МЕТОДЫ

Получение экспериментальных байеритсодержащих образцов методом осаждения

Образцы, содержащие тригидроксид алюминия байеритной структуры, получали путем осаждения из раствора соли алюминия раствором аммиака. В качестве исходного реактива для приготовления раствора соли концентрацией 5 моль/л был использован 9-водный нитрат алюминия Al(NO₃)₃·9H₂O (ГОСТ 3757-75, партия 25, *ООО «НеваРеактив»*, Россия, чистота 97%). Для приготовления раствора аммиака концентрацией 5 моль/л использовался 25% раствор аммиака NH₃·H₂O (ГОСТ 3760-79, партия 49, *ООО «НеваРеактив»*, Россия, чистота 25%). Нижеприведенные условия приготовления байеритсодержащих образцов обоснованы результатами исследований, изложенными в [14].

Смешение растворов осуществляли в стеклянном реакторе, содержащем буферный аммиачный раствор с pH = 10.3-10.5 при постоянном перемешивании (скорость вращения мешалки ~ 300 об/мин). Одновременную подачу растворов нитрата алюминия и аммиака в реактор осуществляли перистальтическим насосом с расходом 1 и 5 мл/мин, соответственно. Постоянное значение pH = 10.5 ± 0.1 реакционной среды контролировали с интервалом 30 минут. Заданное значение pH создавали за счет 5-кратного избытка аммиака относительно стехиометрии реакции:

$$Al(NO_3)_3 + 3NH_4OH = Al(OH)_3 \downarrow + 3NH_4NO_3$$

Температуру реакционной среды при ее значении (20 ± 1) °С поддерживали при помощи термостата. В изотермических условиях продолжительность процесса осаждения составляла 2 ч, а продолжительность процесса старения полученного осадка – 24 ч.

Полученный осадок отделяли на воронке Бюхнера и промывали до нейтральной реакции среды. Осадок высушивали при температуре 100–110 °C до постоянной массы. Содержание байерита в синтезированном осадке гидроксида составило (85 ± 2) масс. % [14].

Получение систем, содержащих *η*-Al₂O₃

В ходе работы, экструзионным методом были получены серии носителей (табл. 1), различающиеся между собой соотношением количеств вводимых байерит- и η-Al₂O₃-содержащих компонентов.

Для получения гранул носителей были приготовлены формовочные пасты с использованием порошкообразных компонентов: байеритсодержащего гидроксида (далее байерит), высушенного при 110 °C; η-Al₂O₃-содержащего оксида алюминия

№ образца Sample No.	Байерит Bayerite масс. % (по wt % (according	η-Al ₂ O ₃ Al ₂ O ₃) g to Al ₂ O ₃)	Влажность,* масс. % Humidity,* wt %	ПВС, масс. % (по отношению к байериту) PVA**, wt % (in relation to bayerite)
1	20	80	49.5	
2	40	60	51	
3	60	40	52	2.7
4	80	20	55	
5	100	0	56	

Таблица 1. Составы формовочных паст **Table 1.** Compositions of molding pastes

*отношение суммы масс воды, содержащихся в каждом компоненте, к сумме масс всех компонентов / ratio of the total mass of water contained in each component to the total mass of all components;

**PVA – polyvinyl alcohol.

(далее η-Al₂O₃), полученного прокаливанием синтезированного гидроксида при 500 °С.

При затворении дистиллированной водой порошка байерита или его смесей с 20–80 масс. % порошка оксида, их дальнейшей гомогенизации с приложением сдвиговых нагрузок, к сожалению, не удалось получить пасты, пригодные для экструдирования.

Использование в качестве пластификатора пятипроцентного раствора поливинилового спирта в дистиллированной воде позволило сформовать полученные гомогенизированные пасты в шнековом грануляторе через фильеру диаметром 2 мм.

Экструдаты, после «провяливания» при (20 ± 2) °C в течение 16–18 ч и высушивания при 100–110 °C до постоянной массы, термообрабатывали при 280–290 °C и 500–510 °C в течение 4 ч при каждой температуре (скорость подъёма температуры 10 °C/мин).

Методы исследования образцов

Дифференциально-термический (ДТА) и термогравиметрический анализ синтезированных образцов байерита проводили в атмосфере воздуха на дериватографе SHIMADZU DTG-60H при скорости нагревания 10 °/мин от комнатной температуры до 800 °C. Масса образцов составляла \approx (15–50) мг. Температуру определяли с точностью до 1 °C, изменение массы до 0.1 %. Количественно фазовый состав образцов определяли, исходя из наблюдаемых потерь массы в результате термолиза соединений, входящих в состав образца.

Фазовый состав высушенных образцов байерита исследовали методом рентгенофазового анализа (РФА) с помощью многофункционального рентгеновского диффрактометра «RigakuSmartLab 3» (*RigakuCorporation*, Токио, Япония) с использованием СиКа-монохроматического излучения в интервале углов (10–80)° (2 Θ) со скоростью сканирования 10 °/мин. Объём загружаемого образца составлял не менее 0.1 см³, угловое разрешение рефлексов до 0.01°. Расшифровка рентгенограмм выполнена с помощью программы Crystallographica Search-Match v. 2,0,3,1 Oxford Cryosystems. При расшифровке использовали стандартную базу данных.

Фракционный состав порошков синтезированных образцов байерита и η -Al₂O₃, использованных для приготовления формовочных паст, определяли методом лазерного рассеивания на приборе SALD-2201 Laser Diffraction Particle Size Analyzer (*SHIMADZU*, Япония).

Функция кислотности поверхности (H_0) образцов носителей была определена методом рН-метрии с использованием рН-метра-милливольтметра рН-673.М со стеклянным электродом ЭВЛ-1МЗ в водной среде, имеющей рН_{H20} в интервале 6.4–6.6 по методике, представленной в [15].

Удельная поверхность (S_{уд}) гранулированных экспериментальных образцов была определена по тепловой десорбции азота по одноточечному методу Брюнера-Эммета-Теллера.

Испытания гранулированных образцов на прочность при раздавливании «по торцу» (P_{\Box}) были проведены с помощью прибора экстензометра МП-2С по методике, описанной в [17].

Определение суммарного объема пор (V_{Σ}) гранулированных образцов по влагоемкости было проведено с использованием воды в качестве пикнометрической жидкости [18].

Исследования распределения объема пор по их размерам проводили методом азотной порометрии. Изотермы адсорбции/десорбции азота определялись с использованием установки «Autosorb 6iSA» (*Quantachrome Instruments*, США) после дегазации образцов в вакууме при 250 °С в течение 1 часа. Удельная поверхность, удельный объём пор (заполнение пор адсорбатом при его относительном давлении \approx 1) и средний эффективный размер пор определялись методом теории функционала плотности (DFT – density functional theory) [16].

Для определения относительной активности образцов носителей и оценки таким образом перспективности получения на их основе эффективных кислотных катализаторов изомеризации, в соответствии с рекомендациями [19], проводили тестовые испытания в реакции изомеризации *н*-бутана по методике $H\Pi\Phi \ll OЛKAT$ ». Испытания проводили при загрузке носителя катализатора 3.0 см³ при следующих условиях: температура на входе в реактор составляла 75 °C, объемная скорость подачи *н*-бутана (в расчете на жидкость) – 1 ч⁻¹, мольное отношение H₂ : *н*-бутан поддерживалось равным 1 : 1. Анализ на содержание изомеризата в газовой смеси на выходе из реактора осуществляли методом газовой хроматографии [19].

Исследование проводили на научно-исследовательском оборудовании, предоставленном Инжиниринговым центром Санкт-Петербургского Государственного Технологического Института (Технического Университета) и *НПФ «ОЛКАТ»*.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Результаты исследования фазового состава синтезированных образцов гидроксида алюминия методом рентгенофазового анализа приведены на рис. 1. На приведенной рентгенограмме определены дифракционные максимумы, характерные для гидроксидов алюминия байеритной и бемитной структуры.

Fig. 1. X-ray diffraction pattern of the synthesized bayerite sample (♦ – bayerite; + – boehmite).

Исследование образцов гидроксида алюминия методом ДТА позволило количественно оценить содержание в них тригидроксида алюминия байеритной структуры. Согласно расчетам, выполненным по потерям массы, осаждение в условиях эксперимента (за 2 и 24 ч проведения процесса осаждения и старения, соответственно) приводит к образованию (85 ± 2) масс. % байерита. Дериватограмма полученного осадка приведена на рис. 2.

Рис. 2. Дериватограмма синтезированного образца байерита. Fig. 2. Derivatogram of a synthesized bayerite sample.

При нагревании на кривой ДТА наблюдаются два эндоэффекта с минимумами при 63 °С и 278 °С. Первый из них связан с удалением физически адсорбированной воды. Из литературных данных [9, 10, 20] известно, что фазовый переход байерита в η-Al₂O₃ происходит в интервале температур 250–350 °С, что объясняет второй эндотермический эффект.

Результаты количественной оценки фазового состава продукта прокаливания синтезированного порошка байерита при 500 °С показали содержание 80 масс. % η-Al₂O₃ и 20 масс. % γ-Al₂O₃ [14].

Фракционные составы порошков синтезированного образца байерита и η -Al₂O₃, использованных для приготовления формовочных паст, представлены на рис. 3, 4 и в табл. 2.

Рис. 3. Дифференциальная кривая распределения частиц порошка байерита по размерам. **Fig. 3.** Differential particle size distribution curve of bayerite powder.

Рис. 4. Дифференциальная кривая распределения частиц порошка η-Al₂O₃ по размерам. **Fig. 4.** Differential particle size distribution curve of η-Al₂O₃ powder.

Габлица 2. Фракционный состав порошков байерита и η-Al ₂ O ₃ ,
использованных для приготовления формовочных паст
Table 2. Fractional composition of bayerite and η-Al ₂ O ₃ powders
used for the preparation of molding pastes

ОбразецФракция, мкмСSampleFraction, µm		Содержание, масс. % Content, wt %	Преобладающий размер*, мкм Prevailing size,* µm		
	0.2–1	30.6	0.5		
Баиерит Bayerite	1–10	42.0	5		
Dayerne	10–50	27.4	19		
	0.5–3	21.5	2		
η -Al ₂ O ₃	3–10	30.4	5		
	10–100	48.1	20		

*эквивалентный диаметр

*equivalent diameter

По полученным результатам видно, что в процессе осаждения в заданных условиях образуется осадок байерита с размером частиц от 0.2 до 50 мкм. Причем преобладают частицы размером от 1 до 10 мкм (42 масс. %). Термообработка данного образца при 500 °C и получение η -Al₂O₃ приводит к увеличению размера частиц до 100 мкм. При этом наблюдается уменьшение количества частиц фракции 0.5–3 мкм.

Результаты измерений функции кислотности поверхности, удельной поверхности, параметров пористой структуры, прочности гранул на раздавливание, а также суммарного объема пор гранулированных образцов носителей представлены в табл. 3.

Результаты определения интегральной характеристики кислотно-основных свойств носителей свидетельствуют об отсутствии влияния исследуемых условий их приготовления на значение функции Гаммета, равное $H_0 = 7.1 \pm 0.1$.

С увеличением доли порошка байерита в формовочной пасте (от образца 1 к образцу 5) наблюдается рост значений следующих текстурных характеристик гранул носителей: S_{ya} от 285 до 365 м²/г, V_{Σ} от 0.68 до 0.76 см³/г, P_{\Box} от 0.6 до 2.0 МПа.

Такие тенденции могут быть объяснены суммарным влиянием на вторичную пористую структуру и прочность гранул следующих изменений, которые протекают при взаимной упаковке частиц в пастах и гранулах и формировании межчастичных контактов, обеспечивающих прочность пористого тела. Во-первых, от образца 1 к образцу 5 увеличивается доля более мелких частиц, то есть возрастает число единичных контактов на единицу контактного сечения, а также доля реакционноспособных частиц (гидроксид по сравнению с оксидом), то есть повышается число контактов более высокой силы, что в совокупности способствует увеличению прочности и уменьшению размера пор. Во-вторых, рост содержания выгорающей добавки – поливинилового спирта приводит к формированию дополнительного объема вторичных пор, что влечет за собой рост суммарного объема пор V_{Σ} и снижение прочности.

Данные о распределении объема пор по их размерам, рассчитанные из интегральных и дифференциальных кривых, полученных из результатов азотопорометрии, приведены в табл. 4.

По приведенным в табл. 4 результатам видно, что увеличение доли байерита в формовочной пасте приводит к смещению преобладающего размера пор d_{max} в диапазоне 3–10 нм от 4.6 до 3.7 нм и некоторому увеличению их объема от 0.12 до 0.14 см³/г. Изменение этих показателей сопровождается возрастанием площади поверхности пор как в диапазоне 3–10 нм, так и «суммарной» S_{ya} образцов носителей (смотрите табл. 3 и 5). Одновременно наблюдается (табл. 4)

Table 3. Properties of carrier sample								
Характеристика Characteristics		Образец носителя* / Sample No.						
		2	3	4	5			
Функция кислотности поверхности H_0 Surface acidity function H_0	7.1	7.1	7.1	7.0	7.2			
Удельная поверхность S_{ya} , м ² /г Specific surface S_{sp} , m ² /g	285	290	300	310	365			
Суммарный объем пор V_{Σ} , см ³ /г Total pore volume V_{Σ} , сm ³ /g	0.68	0.70	0.70	0.74	0.76			
Предельный объем сорбционного пространства $W_{\rm s}$, см ³ /г Maximum volume of sorption space $W_{\rm s}$, cm ³ /g	0.24	0.25	0.26	0.32	0.37			
Объем макропор $V_{\text{макро}} = V_{\Sigma} - W_{\text{S}}, \text{ см}^3/\text{г}$ Macropore volume $V_{\text{macro}} = V_{\Sigma} - W_{\text{S}}, \text{ cm}^3/\text{g}$	0.44	0.45	0.44	0.42	0.39			
Прочность на раздавливание «по торцу» P_{\Box} , МПа Strength P_{\Box} , MPa	0.6	0.7	1.6	2.0	2.0			
Насыпная плотность Δ , г/см ³ Bulk density Δ , g/cm ³	0.57	0.57	0.54	0.54	0.53			

*Представленные в табл. 3 образцы отличаются составом формовочных паст: от образца 1 к 5 повышается содержание порошка гидроксида от 20 до 100 масс. % (в пересчете на A1₂O₃) и поливинилового спирта (в зависимости от содержания порошка гидроксида) – в диапазоне от 0.0054 до 0.027 г ПВС на 1 г A1₂O₃ в дисперсной фазе, что соответствует содержанию ПВС в формовочной пасте от 0.4 до 1.8 масс. %.

*The composition of the molding pastes differs for the samples presented in Table 3: from sample 1 to 5, the content of hydroxide powder increases from 20 to 100 wt % (with regards to $A1_2O_3$) and the amount of polyvinyl alcohol (depending on the content of hydroxide powder) increases from 0.0054 to 0.027 g of PVA per 1 g Al_2O_3 , corresponding to a PVA content of 0.4 to 1.8 wt %.

некоторое увеличение преобладающих размеров и объемов пор более крупных разновидностей, а именно: мезопор в интервале 10–50 нм (d_{max} от 27.4 до 31.5 нм и $V_{\text{пор (10-50)}}$ от 0.16 до 0.24 см³/г) и пор в интервале 50–80 нм (d_{max} от 65.2 до 77.8 нм и $V_{\text{пор (50-80)}}$ от 0.08 до 0.16 см³/г). Это отражает изменения, прежде всего, во вторичной пористой структуре гранул и может быть обусловлено влиянием содержания выгорающей добавки – ПВС (смотрите табл. 3 и 5).

Изотермы адсорбции-десорбции азота синтезированных носителей представлены на рис. 5.

Все изотермы сорбции образцов носителей, при некотором количественном различии в величинах адсорбции, достигаемых при определенных значениях относительного давления P/P_0 , (где P и Р_о – равновесное давление и давление насыщенных паров адсорбата при температуре адсорбции), имеют одинаковую форму. Гистерезисы всех образцов могут быть отнесены к типу НЗ, для которого, как правило, характерны щелевидные поры с почти плоскопараллельными стенками. Адсорбционные ветви этих изотерм имеют типичную для II типа по классификации Брунауэра форму, что свидетельствует о наличии полимолекулярной адсорбции. На десорбционных же ветвях отсутствуют горизонтальные участки, а положение нижней точки петли гистерезиса, не зависящее от текстуры образца, а зависящее от природы адсорбтива, соответствует значению $P/P_0 = 0.40$ [16]. Текстурные характеристики синтезированных носителей приведены в табл. 5, анализ данных которой согласуется с вышесказанным.

Таблица 3. Свойства образцов носителей

Таким образом, исходя из наблюдений при экструдировании формовочных паст, можно сделать вывод, что применение поливинилового спирта в качестве компонента дисперсионной среды ведет к снижению степени разжижения формовочной пасты при экструдировании за счет обволакивания частиц байерита, тем самым препятствует выделению коллоидно-связанной воды и позволяет получать гранулы η -Al₂O₃-носителя. Применение порошка оксида алюминия при приготовлении формовочных паст позволяет, в известных пределах, регулировать пористую структуру получаемых носителей.

Результаты тестирования образцов носителей в реакции низкотемпературной изомеризации *н*-бутана представлены в табл. 6. В качестве образца сравнения использован носитель на основе η-A1₂O₃, полученный из порошка гидроксида алюминия байеритной структуры производства Pural BT (*Sasol*, Германия).

Из полученных результатов испытаний образцов носителей в реакции низкотемпературной изомеризации *н*-бутана видно, что независимо от соотношения применяемых байерит- и Al₂O₃-содержащих компонентов при получении носителей, образцы имеют достаточно высокую и сопоставимую селективность с эталонным образцом и перспективны при получении катализаторов низкотемпературной изомеризации углеводородов.

Образец Sample No	Характеристика	Диапазон размера пор, нм Range of pore size, nm				
Sample No.	Characteristic	3–10	10-50	50-80		
	d_{\max} , HM d_{\max} , nm	4.6	27.4	65.2		
1	Объем пор, см ³ /г Pore volume, cm ³ /g	0.12	0.16	0.08		
	Площадь поверхности, м ² /г Surface area, m ² /g	130	90	5		
	d_{\max} , HM d_{\max} , nm	4.4	30.5	67.2		
2	Объем пор, см ³ /г Pore volume, cm ³ /g	0.12	0.16	0.08		
	Площадь поверхности, м ² /г Surface area, m ² /g	130	95	5		
3	d_{\max} , HM d_{\max} , nm	3.9	31.5	69.2		
	Объем пор, см ³ /г Pore volume, cm ³ /g	0.12	0.18	0.14		
	Площадь поверхности, м ² /г Surface area, m ² /g	100	125	10		
4	d_{\max} , HM d_{\max} , nm	3.9	31.5	71.3		
	Объем пор, см ³ /г Pore volume, cm ³ /g	0.13	0.21	0.15		
	Площадь поверхности, м ² /г Surface area, m ² /g	110	150	10		
5	d_{\max} , HM d_{\max} , nm	3.7	31.5	77.8		
	Объем пор, см ³ /г Pore volume, cm ³ /g	0.14	0.24	0.16		
	Площадь поверхности, м ² /г Surface area, m ² /g	215	155	10		

 Таблица 4. Распределение объема и площади поверхности пор по размерам

 Table 4. Size distribution of the volumes and surface areas of pores

 Таблица 5. Сводная таблица данных о пористой структуре синтезированных носителей, исследованных методом азотной порометрии при 77 К на установке «Autosorb 6iSA»

 Table 5. Summary data table of the porous structure of synthesized carriers studied by nitrogen porosimetry at 77 K using an Autosorb 6iSA unit

Определяемый параметр	Образцы носителей / Sample No.					
Defined parameter	1	2	3	4	5	
Удельная поверхность, м ² /г Specific surface, m ² /g	230	240	250	275	380	
Объем пор, см ³ /г Pore volume, cm ³ /g	0.39	0.48	0.38	0.54	0.53	

Таблица 6. Результаты испытаний образцов носителей в реакции низкотемпературной изомеризации *н*-бутана **Table 6.** Test results of the carrier samples for the low-temperature isomerization reaction of *n*-butane

Показатель активности		Graal					
Activity indicator	1	2	3	4	5	Susoi	
Глубина изомеризации <i>I</i> , % Depth of isomerization <i>I</i> , %	17.0	20.5	20.9	21.3	21.4	21.8	
Конверсия <i>н</i> -бутана <i>K</i> , % Conversion of <i>n</i> -butane <i>K</i> , %	17.5	21.2	21.6	22	22.1	24.3	
Селективность <i>S</i> , % Selectivity <i>S</i> , %	94.5	94.8	95.3	95.3	95.6	94.4	

Увеличение доли байерита в формовочной пасте приводит к росту всех регистрируемых показателей процесса изомеризации *н*-бутана. Это может быть обусловлено как ростом удельной поверхности образцов носителей, так и увеличением объема крупных мезопор в диапазоне 20–40 нм. Таким образом, образец 5 обеспечивает наибольшие значения селективности и конверсии в проводимом процессе.

ЗАКЛЮЧЕНИЕ

Исследовано влияние условий формования η-алюмооксидных носителей катализатора низкотемпературной изомеризации на их текстурные характеристики и каталитическую активность.

Определено, что в процессе осаждения байерита из раствора нитрата алюминия аммиаком в ранее обоснованных условиях [14] образуется осадок с размером частиц от 0.2 до 50 мкм, а дальнейшая термообработка образца при 500 °С приводит к увеличению размера частиц до 100 мкм.

Установлено, что применение поливинилового спирта в качестве компонента дисперсионной среды формовочных паст из порошка байерита приводит к снижению степени выделения коллоидно-связанной воды из межслоевого пространства байерита и обеспечивает возможность получения гранул η-Al₂O₂ методом шнековой экструзии.

СПИСОК ЛИТЕРАТУРЫ

1. Valavarasu G., Sairam B. Light Naphta Isomerization Process: A Review. *Petrol. Sci. Technol.* 2013;31(6):580-595. https://doi.org/10.1080/10916466.2010.504931

2. Боруцкий П.Н. Каталитическиепроцессы получения углеводородов разветвленного строения. СПб.: НПО «Профессионал»; 2010. 724 с.

3. Ono Y. A survey of the mechanism in catalytic isomerization of alkanes. *Catal. Today.* 2003; 81(1):3-16. https://doi.org/10.1016/S0920-5861(03)00097-X

4. Smolikov M., Dzhikiya O., Zatolokina E., Kiryanov D., Belyi A. Isomerization of *n*-hexane over bifunctional Pt/SO₄/ZrO₂ catalysts. *Petrol. Chem.* 2009;49(473):473-480. https://doi.org/10.1134/S096554410906005X

5. Ясакова Е.А., Ситдикова А.В., Ахметов А.Ф. Тенденции развития процесса изомеризации в России и за рубежом. Электронный научный журнал Нефтегазовое дело. 2010;1:1-19.

URL: http://ogbus.ru/files/ogbus/authors/Yasakova/Yasakova_1.pdf 6. Sousa B.V., Brito K.D., Alves J.J.N., Rodrigues M.G.F.,

Yoshioka C.M.N., Caardoso D. *n*-Hexane Isomerization on Pt/HMOR: Effect of Platinum Content. *Reaction Kinetics, Mechanisms and Catalysis.* 2011;102(2):473-485. https://doi.org/10.1007/s11144-010-0273-0

7. Hidalgo J.M., Zbuzek M., Černý R., Jíša P. Current uses and trends in catalytic isomerization, alkylation and etherification processes to improve gasoline quality. *Cent. Eur. J. Chem.* 2014;12(1):1-13.

https://doi.org/10.2478/s11532-013-0365-6

Гранулы η-Al₂O₂-носителя, полученные экструдированием паст из порошка байерита с ПВС, имеют следующие текстурные характеристики: $S_{y_{T}} = 365 \text{ м}^2/\text{г},$ $V_{\Sigma} = 0.76 \text{ cm}^3/\text{r}, W_{\text{s}} = 0.37 \text{ cm}^3/\text{r}, V_{\text{makpo}} = 0.39 \text{ cm}^3/\text{r}, \text{ Mexa$ ническая прочность $P_{\Box} = 2.0$ Мпа. Введение в формовочные пасты из байерита, пластфицированные ПВС, порошка η-Al₂O₂ в качестве гетерогенной добавки позволяет регулировать пористую структуру получаемых носителей. Их текстурные характеристики меняются. Повышение массовой доли порошка в смеси с байеритом до 80 масс. % приводит к уменьшению S_{ул} до 285 м²/г, V_{Σ} до 0.68 см³/г, W_{g} до 0.24 см³/г, увеличению V_{макро} до 0.44 см³/г, однако, при заметном снижении механической прочности Р до 0.6 МПа. Увеличение содержания поливинилового спирта в формовочной пасте от 0.4 до 1.8 масс. % сопровождается смещением преобладающего размера вторичных пор в большую сторону в диапазонах их значений 10-50 и 50-80 нм.

На основании проведенных испытаний носителей в модельном процессе изомеризации *н*-бутана выявлено, что полученные образцы алюмооксидного носителя, отличающиеся соотношением исходных байерит- и Al₂O₃-содержащих компонентов, имеют приблизительно одинаковую и достаточно высокую селективность и перспективны в качестве носителей катализаторов низкотемпературной изомеризации углеводородов.

Авторы заявляют об отсутствии конфликта интересов. The authors declare no conflicts of interest.

REFERENCES

1. Valavarasu G., Sairam B. Light Naphta Isomerization Process: A Review. *Petrol. Sci. Technol.* 2013;31(6):580-595. https://doi.org/10.1080/10916466.2010.504931

2. Borutsky P.N. Catalytic processes for the production of branched hydrocarbons. St. Petersburg: NPO Professional; 2010. 724 p. (in Russ.).

3. Ono Y. A survey of the mechanism in catalytic isomerization of alkanes. *Catal. Today.* 2003; 81(1):3-16. https://doi.org/10.1016/S0920-5861(03)00097-X

4. Smolikov M., Dzhikiya O., Zatolokina E., Kiryanov D., Belyi A. Isomerization of *n*-hexane over bifunctional Pt/SO₄/ZrO₂ catalysts. *Petrol. Chem.* 2009;49(473):473-480. https://doi.org/10.1134/S096554410906005X

5. Yasakova E.A., Sitdikova A.V., Akhmetov A.F. Trends in the development of the isomerization process in Russia and abroad. *Neftegazovoe delo* = *Electronic scientific journal Oil and Gas Business.* 2010;1:1-19 (in Russ.). Available from: http://ogbus.ru/files/ogbus/authors/Yasakova/Yasakova_1.pdf

6. Sousa B.V., Brito K.D., Alves J.J.N., Rodrigues M.G.F., Yoshioka C.M.N., Caardoso D. *n*-Hexane Isomerization on Pt/HMOR: Effect of Platinum Content. *Reaction Kinetics, Mechenisms and Catalysis.* 2011;102(2):473-485. https://doi.org/10.1007/s11144-010-0273-0

7. Hidalgo J.M., Zbuzek M., Černý R., Jíša P. Current uses and trends in catalytic isomerization, alkylation and etherification processes to improve gasoline quality. *Cent. Eur. J. Chem.* 2014; 12(1):1-13.

https://doi.org/10.2478/s11532-013-0365-6

Алюмооксидный носитель для катализатора низкотемпературной изомеризации углеводородов

8. Боруцкий П.Н., Подкетнова Н.М. Каталитические процессы изомеризации и дегидрирования углеводородов для производства изокомпонентов бензинов. *Катализ в* промышленности. 2003;2:86-88.

9. Иванова А.С. Оксид алюминия: применение, способы получения, структура и кислотно-основные свойства. Промышленный катализ в лекциях. 2009;8:7-61.

10. Чукин Г.Д. Строение оксида алюминия и катализаторов гидрообессеривания. Механизмы реакций. М.: Принта; 2012. 288 с. ISBN 5-93969-036-Х

11. Kinyakin A.S., Glushachenkova E.A., Borutskii P.N., Shuvalov A.S., Pisarenko Yu.A. Kinetics of the low-temperature isomerization of *n*-hexane on the NIP-3A catalyst in an isothermal flow reactor. *Theor. Found. Chem. Eng.* 2008;42(6):815-821.

https://doi.org/10.1134/S0040579508060031

12. Селиверстова М.Б., Власов Е.А., Дерюжкина В.И. Исследование реологических свойств пептизированных паст гидроокиси алюминия. *Журн. Прикладной Химии.* 1981;54(1):2307-2310.

13. Ильин А.П., Прокофьев В.Ю. Физико-химическая механика в технологии катализаторов и сорбентов: Монография. Иваново: Ивановский государственный химико-технологический университет; 2004. 315 с. ISBN 5-9616-0049-1

14. Тагандурдыева Н., Бурлуцкая Л.П. Разработка метода синтеза байеритсодержащего носителя катализатора изомеризации углеводородов. Инновационные материалы и технологии в дизайне: тезисы докладов IV Всероссийской научно-практической конференции с участием молодых ученых, 22, 23 марта 2018 г. 2018; 17-18.

15. Нечипоренко А.П., Кудряшова А.И., Кольцов С.И. Способ определения кислотности поверхности твердых веществ: SU 1377709 А1 А.с. СССР. Заявка № 4036187; заявл. 10.03.1986; опубл. 29.02.1988; Бюл. № 8.

16. Грег С., Синг К. Адсорбция. Удельная поверхность. Пористость. 2-е изд. М.: МИР; 1984. 306 с.

17. Мухленов И.П. Исследование механической прочности катализаторов. Л.: ЛТИ им. Ленсовета; 1981. 27 с.

 Дерюжкина В. И. Методы исследования пористой структуры катализаторов. Л.: ЛТИ им. Ленсовета; 1981. 27 с.

19. Боруцкий П.Н. Сальников В.А., Никульшин П.А., Александрова Ю.В., Кузичкин Н.В. Конверсия *н*-бутана – метод тестирования твердокислотных катализаторов и их носителей для процессов нефтепереработки. СПб.: СПбГТИ(ТУ); 2017. 94 с.

20. Busca G. Structural, Surface, and Catalytic Properties of Aluminas. *Adv. Catal.* 2014;57(3):319-404.

https://doi.org/10.1016/B978-0-12-800127-1.00003-5

8. Borutsky P.N., Podkletnova N.M. Catalytic processes of isomerization and dehydrogenation of hydrocarbons for the production of gasoline isocomponents. *Kataliz v promyshlennosti* (*Catalysis in Industry*). 2003;2:86-88 (in Russ.).

9. Ivanova A.S. Alumina: application, production methods, structure and acid-base properties. *Promyshlennyi kataliz v lektsiyakh = Industrial Catalysis in Lectures*. 2009;8:7-61 (in Russ.).

10. Chukin G.D. Stroenie oksida alyuminiya i katalizatorov gidroobesserivaniya. Mekhanizmy reaktsii (The structure of alumina and hydrodesulfurization catalysts. Reaction mechanisms). Moscow: Printa; 2012. 288 p. ISBN 5-93969-036-X (in Russ.).

11. Kinyakin A.S., Glushachenkova E.A., Borutskii P.N., Shuvalov A.S., Pisarenko Yu.A. Kinetics of the low-temperature isomerization of *n*-hexane on the NIP-3A catalyst in an isothermal flow reactor. *Theor. Found. Chem. Eng.* 2008;42(6):815-821.

https://doi.org/10.1134/S0040579508060031

12. Seliverstova M.B., Vlasov E.A., Deryuzhkina V.I. Investigation of the rheological properties of peptized pastes of aluminum hydroxide. *Zhurnal Prikladnoi Khimii* = *J. Appl. Chem.* 1981;54:2307-2310 (in Russ.).

13. Il'in A.P., Prokof'ev V.Ju. *Fiziko-khimicheskaya mekhanika v tekhnologii katalizatorov i sorbentov* (Physical and chemical mechanics in the technology of catalysts and sorbent). Ivanovo: Ivanovo State University of Chemistry and Technology; 2004. 315 p. ISBN 5-9616-0049-1 (in Russ.).

14. Tagandurdyyeva N., Burlutskaya L.P. Development of a method for the synthesis of a bayerite-containing catalyst for the isomerization of hydrocarbons. In: *Innovative materials* and technologies in design: abstracts of the IV All-Russian scientific and practical conference with the participation of young scientists, March 22, 23. 2018:17-18 (in Russ.).

15. Nechiporenko A.P., Kudryashova A.I., Koltsov S.I. The method for determining the surface acidity of solids: USSR Pat. 4036187. Publ. 28.02.1988 (in Russ.).

16. Greg S., Sing K. Adsorbtsiya. Udel'naya poverkhnost'. Poristost' (Adsorption, Specific Surface Area, Porosity). Moscow: Mir; 1984. 306 p. (in Russ.).

17. Muhlenov I.P. *Issledovanie mekhanicheskoi prochnosti katalizatorov* (The study of the mechanical strength of the catalysts). Leningrad: LTI im. Lensoveta; 1981. 27 p. (in Russ.).

18. Deryuzhkina V.I. *Metody issledovaniya poristoi struktury katalizatorov* (Methods of studying the porous structure of catalysts). Leningrad: LTI im. Lensoveta; 1981. 27 p. (in Russ.).

19. Borutskiy P.N. Sal'nikov V.A., Nikul'shin P.A., Aleksandrova Yu.V., Kuzichkin N.V. Konversiya n-butana – metod testirovaniya tverdokislotnykh katalizatorov i ikh nositelei dlya protsessov neftepererabotki (Conversion of *n*-butane – a test method for solid acid catalysts and their carriers for oil refining processes). St. Petersburg: SPbGTI (TU); 2017. 94 p. (in Russ.).

20. Busca G. Structural, Surface, and Catalytic Properties of Aluminas. *Adv. Catal.* 2014;57(3):319-404. https://doi.org/10.1016/B978-0-12-800127-1.00003-5

Об авторах:

Тагандурдыева Нурджахан, аспирант кафедры общей химической технологии и катализа Санкт-Петербургского государственного технологического института (технический университет) (190013, Россия, Санкт-Петербург, Московский пр-т, д. 26). E-mail: jahana_18101993@mail.ru. https://orcid.org/0000-0001-7560-3605

Мальцева Наталья Васильевна, кандидат технических наук, доцент кафедры общей химической технологии и катализа Санкт-Петербургского государственного технологического института (технический университет) (190013, Россия, Санкт-Петербург, Московский пр-т, д. 26). E-mail: maltzeva.nv@yandex.ru. https://orcid.org/0000-0001-5978-5189

Вишневская Татьяна Алексеевна, инженер кафедры общей химической технологии и катализа Санкт-Петербургского государственного технологического института (технический университет) (190013, Россия, Санкт-Петербург, Московский пр-т, д. 26).

Нараев Вячеслав Николаевич, доктор химических наук, профессор кафедры общей химической технологии и катализа Санкт-Петербургского государственного технологического института (технический университет) (190013, Россия, Санкт-Петербург, Московский пр-т, д. 26). E-mail: naraev@lti-gti.ru. https://orcid.org/0000-0003-0276-8593

Постнов Аркадий Юрьевич, кандидат технических наук, доцент, заведующий кафедрой общей химической технологии и катализа Санкт-Петербургского государственного технологического института (технический университет) (190013, Россия, Санкт-Петербург, Московский пр-т, д. 26). E-mail: ap1804@yandex.ru. https://orcid.org/0000-0003-2302-0103

About the authors:

Nurjahan Tagandurdyyeva, Postgraduate Student, Department of General Chemical Technology and Catalysis, Saint-Petersburg State Institute of Technology (26, Moskovsky pr., St. Petersburg, 190013, Russia). E-mail: jahana_18101993@mail.ru. https://orcid.org/0000-0001-7560-3605

Natalya V. Maltseva, Cand. of Sci. (Engineering), Associate Professor of the Department of General Chemical Technology and Catalysis, Saint-Petersburg State Institute of Technology (26, Moskovsky pr., St. Petersburg, 190013, Russia). E-mail: maltzeva.nv@yandex.ru. https://orcid.org/0000-0001-5978-5189

Tatyana A. Vishnevskaya, Engineer, Department of General Chemical Technology and Catalysis, Saint-Petersburg State Institute of Technology (26, Moskovsky pr., St. Petersburg, 190013, Russia).

Vyacheslav N. Narayev, Dr. of Sci. (Chemistry), Professor, Department of General Chemical Technology and Catalysis, Saint-Petersburg State Institute of Technology (26, Moskovsky pr., St. Petersburg, 190013, Russia). E-mail: naraev@lti-gti.ru. https://orcid.org/0000-0003-0276-8593

Arkady Yu. Postnov, Cand. of Sci. (Engineering), Associate Professor, Head of the Department of General Chemical Technology and Catalysis, Saint-Petersburg State Institute of Technology (26, Moskovsky pr., St. Petersburg, 190013, Russia). E-mail: ap1804@yandex.ru. https://orcid.org/0000-0003-2302-0103

Поступила: 16.01.2020; Получена после доработки: 18.02.2020; Принята к опубликованию: 19.05.2020. Submitted: January 16, 2020; Reviewed: February 18, 2020; Accepted: May 19, 2020.