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Abstract—Existing works in the field of quality assessment
focus separately on gaming and non-gaming content. Along
with the traditional modeling approaches, deep learning based
approaches have been used to develop quality models, due to
their high prediction accuracy. In this paper, we present a deep
learning based quality estimation model considering both gaming
and non-gaming videos. The model is developed in three phases.
First, a convolutional neural network (CNN) is trained based on
an objective metric which allows the CNN to learn video artifacts
such as blurriness and blockiness. Next, the model is fine-tuned
based on a small image quality dataset using blockiness and
blurriness ratings. Finally, a Random Forest is used to pool
frame-level predictions and temporal information of videos in
order to predict the overall video quality. The light-weight, low
complexity nature of the model makes it suitable for real-time
applications considering both gaming and non-gaming content
while achieving similar performance to existing state-of-the-art
model NDNetGaming. The model implementation for testing is
available on GitHub1.

Index Terms—Quality of Experience, Video Quality Estima-
tion, Quality Models, Deep Learning, Gaming Video Streaming

I. INTRODUCTION

The video streaming industry is booming with growth
of users of media streaming services such as Netflix and
YouTube, video conferencing applications (e.g., Zoom and
MS Teams), and gaming video streaming (e.g., Twitch and
Facebook Gaming) [1]. Gaming video streaming consists of
a rapidly growing market with emerging online services such
as gaming video streaming, online gaming and cloud gaming
(CG) services. In cloud gaming the heavy processes such
as rendering is performed on the cloud and hence does not
require high-end hardware devices at the user end. Recently
introduced services such as Stadia, and existing services such
as Nvidia Geforce Now and Magenta Gaming by Deutsche
Telekom are some of the examples of such services. Apart
from processing power, cloud gaming benefits users by the
platform in-dependency and for game developers offers secu-
rity to their products and promises a new market to increase
their revenue. Besides cloud gaming, passive video streaming
of gameplay have become popular with hundreds of millions
of viewers per year with Twitch.tv currently being the most
popular services for passive video game streaming.

1https://github.com/stootaghaj/DEMI

In times of exceptional circumstances such as the current
Covid-19, it is imperative that such services meet the minimum
required quality of experience (QoE) to the end users and
video quality forms one of the most important components
of QoE. Video quality assessment is a highly subjective task,
as several factors (resolution, number of stalling events, etc.
[2]) play a role in the final judgement of a user about a
given service. Many services rely on the use of objective
quality models and metrics which try to predict the quality
as perceived by humans. Therefore, over the past many years,
there have been significant efforts towards the development
and usage of quality models for quality prediction of multime-
dia services. For example, Netflix developed a video quality
metric, Video Multimethod Assessment Fusion (VMAF), to
measure the video quality considering encoding and rescaling
artifacts, as they are the only compression related artifacts in
a HTTP Adaptive Streaming based application [2].

While several studies have been done on proposing quality
assessment models and metrics for traditional video streaming
services (e.g., Netflix and YouTube), new types of streaming
content such as gaming video streaming has only recently
started receiving attention of the industry and academia. For a
more cleared discussion on the difference between these, we
refer the reader to the discussion in Chapter 4 in [3]. Towards
this end, in this paper, we present a deep learning model called
DEMI to predict the video quality of compressed videos for
both gaming and non-gaming content. The remaining part of
the paper is organized as follows. In Section II we present a
discussion on the related work. The description of datasets
that are used for evaluation of the model is presented in
Section III. Following this, Section IV presents the proposed
model architecture while in Section V we present a discussion
on the model development and presents the performance
results of the proposed model compared to other existing
models. We then conclude the paper in Section VI.

II. RELATED WORK

Over past several years, due to the nature of the ser-
vice/application in that there is no unimpaired, reference signal
available (e.g., user generated content), there is a growing
demand for no-reference (NR) metrics. Several recent works



have tried to address such NR models for both gaming as well
as non-gaming applications, which we briefly discuss next.

In light of the peculiarities of gaming content, several
gaming-specific video quality models have been developed.
The focus has mainly been on developing NR models due
to the lack of availability of pristine quality reference videos
in a typical gaming scenario. Zadtootaghaj et al. [4] pro-
posed a NR machine learning-based video quality metric
named NR-GVQM for gaming content which is focused on
frame-level feature extraction. The authors proposed a model
which collects low-level image features from the frame of
the video and trained the model using VMAF scores for the
frame. The model uses pre-trained model using BRISQUE
features, which was trained on non-gaming content and its
quality prediction on gaming content was proven to be not
satisfactory. Göring et al. [5] proposed a NR metric called
nofu, which is a pixel-based video quality model designed
for gaming content. nofu uses 12 different per frame based
values and a center crop approach for the fast computation
of frame-level features. It further uses frame-level features
pooling at video-level and feeds the features to machine
learning based model for the model development. nofu showed
promising results on GamingVideoSET [6] using a 10-fold
cross-validation approach. Barman et al. [7] proposed two NR
metrics, NR-GVSQI and NR-GVSQE, to predict the quality of
gaming content considering a passive gaming video streaming
scenario. NR-GVSQI is designed using Neural Networks and
it uses the MOS score as a target value for training. This
model uses 15 NR features and three features from the score
of three NR metrics for training of the machine learning based
model. It uses GamingVideoSET [6] for training and KUGVD
(also known as Kingston University Gaming Video data) as
the validation dataset. NR-GVQSE was designed as the NR
equivalent of VMAF (i.e. using VMAF as groundtruth) and
performed well with a Pearson Correlation (PCC) of 0.97 with
VMAF. Utke et al. [8] proposed a deep learning based gaming
video quality metrics which outperforms the existing signal
based video quality metrics.

Within the recent years there has been a growing interest
in the application of deep neural networks (DNNs) for image
and video quality assessment tasks. Since the amount of data,
especially datasets with subjective scores is still very less for
training a deep learning model, it is difficult to train a “deep”
neural network. One approach to train such a model is by
the use of transfer learning where the network is learned by
transferring information from a related domain. Still, such
approaches are limited to images and their application for
video quality evaluation is still limited [9], [10], [11].

III. EVALUATION DATASETS AND METHODOLOGY

In this work, we used five public video quality datasets,
three from gaming namely, GamingVideoSet [6], KUGVD [7]
and CGVDS [12] and non-gaming video datasets, namely,
Netflix Public Dataset [13] and LIVE-NFLX-II Subjective
Video QoE Database (NFLX-SVQD) [14]. The selection of the

video quality datasets is done taking into account the similarity
of encoding settings and range of parameters used.

GamingVideoSET (henceforth GVSET) presented in [6]
consists of 24 reference video sequences from 12 different
games with each video of 30 s duration, of 1920×1080 reso-
lution and 30 fps. The reference videos are encoded in multiple
resolution-bitrate pairs using H.264 video compression stan-
dard resulting in a total of 576 distorted video sequences. The
dataset includes subjective ratings for 90 video sequences as
well as per-frame scores for several FR and RR metrics for
the whole dataset.

KUGVD is another publicly available dataset built in line
with the encoding settings used in GamingVideoSET but
limited to six reference video sequences presented in [7]. It
also consists of 144 distorted video sequences with per-frame
scores for the FR and RR metrics, as well as subjective MOS
scores for 90 distorted video sequences.

Netflix Public Dataset (NFLX-PD) is a non-gaming video
dataset provided by Netflix consisting of nine source video
sequences of 1920×1080 resolution with framerates of 24, 25
and 30 fps. The videos are encoded in multiple resolution-
bitrate pairs with bitrates ranging from 375 kbps to 5800 kbps
and resolution ranging from 288p to 1080p.

LIVE-NFLX-II Subjective Video QoE Database (NFLX-
SVQD) [14] consists of 15 source videos and a total of 420
distorted sequences obtained by encoding the source videos
at different bitrates at native resolution. The dataset includes
both objective and subjective quality ratings, both continuous
as well as retrospective prediction scores.

In addition to the above five public gaming and non-gaming
video datasets, we used a gaming image and one cloud gaming
dataset described next.

GISET: is a gaming image dataset consisting of 164 images
extracted from the GamingVideoSET dataset in which from
each source image, three encoded images are selected, one
with blockiness artifact, one with blurriness and finally one
with mixture of these two degradations. GISET is the only
image quality dataset annotated with blockiness and blurriness.

CGVDS: Cloud Gaming Video Dataset (CGVDS) [12]
consists of a larger number of recording gaming content
captured at 60 fps. Similar to the previously discussed gaming
datasets, three different resolutions, namely, 480p, 720p and
1080p are considered at three different framerates of 20, 30
and 60 fps. The dataset includes results from five different
subjective studies, each with three video games.

A. Perceptual Video Quality Dimensions

One of the reasons for the increasing popularity of adaptive
streaming is the fact that in adaptive bitrate streaming using
TCP there exist no visual quality impairment due to packet
losses and bit-errors. The major impairments that arise during
the lossy encoding process are compression artifacts and scal-
ing artifacts which in turn affect the end user’s QoE. Therefore,
we decided to train our model based on the two of the
three video quality dimensions (Fragmentation (Blockiness)



and Unclearness (Blurriness)) that are introduced in the ITU-
T Rec. P.918 for the design of our video quality metric,
which can also serve as a diagnostic tool. Table I summarizes
the three identified dimensions which later are used to build
the quality model using a Direct Scaling method. The video
discontinuity dimension was not used in the training process.

TABLE I: Perceptual video quality dimensions introduced in
ITU-T Rec P.918 [15]

.
VQD Name Description Example Impairment

I Fragmentation
(FRA)

Fallen apart, torn and blocki-
ness

Low Coding Bitrate

II Unclearness
(UCL)

Unclear and blurry image Upscaling effect using bicubic
function

III Discontinuity
(DIC)

Interruptions in the flow of the
video

Low frame rate

IV. DEMI MODEL ARCHITECTURE

In this section, we describe the architecture of the proposed
model, DEMI, and the special model design. DEMI is a
CNN based metric which takes into account different types
of artifacts such as blockiness, blurriness and jerkiness, to
predict the overall gaming video quality. The structure of the
model is shown in Figure 1. DEMI has three components.
The first component is a CNN which is used to predict
the frame level blurriness and blockiness. Second component
is a temporal complexity index which is based on Block
Motion estimation (BM) and Temporal Index (TI). Finally
the predicted blockiness, blurriness, TI and BM for multiple
patches of a video is pooled using a random forest model to
predict the video quality which is the third component of the
proposed model.

A. Phase 1 – VMAF training

In order to train a CNN for the quality estimation task, a
major limitation is the availability of a large scale image qual-
ity dataset with images and their subjective ratings. Mixing
multiple datasets could be one option but it suffers strongly
from many shortcomings such as subjective bias, difference
in viewing conditions, display used, etc. and hence, requires
an anchor dataset to deal with this bias which is missing
in such cases. For training, we use the annotated frames
using an objective, full-reference video quality metric called
VMAF, as was done in [8]. The selection of VMAF is due to
high performance of the metric for different types of content
(including gaming content [16] when compression artifacts are
present.

As the underlying CNN architecture, we chose the light-
weight, DenseNET-121 architecture [17], which has been
shown to perform well for image quality estimation tasks
[8]. Selection of the DenseNET-121 is also considering the
fact that the model is of very low complexity, with almost
8 million parameters (e.g. compared to ResNet50 with 25
million parameters), while reaching high accuracy for quality
prediction problems [8]. In order to let DenseNET-121 learn a
regression task (instead of the originally trained classification
task), the fully connected layer at the end of the CNN was

removed. Instead, we added a dense layer consisting of only
one output neuron with linear activation. Training the model
using the VMAF annotated frames allows the network to
learn different types of image compression degradation such
as blurriness and blockiness.

For DenseNET-121, we used the implementation available
in [18]. For training the model, we crop nine non-overlapping
patches, each of size 299 × 299 instead of default DenseNet
patch size of 224 × 224, as recommended in [8], from
each frame for training the model based on the VMAF. In
its entirety, we used over 200k frames and their respective
VMAF scores as the target. The frames are extracted from
multiple videos from several datasets (see Section III for more
information). Since nine patches are extracted per frame, the
total number of inputs during the training phase is over a
million.

Since we have VMAF scores only at frame level, we used
Partial PSNR to determine the quality and the weight of each
patch that contribute to the overall VMAF score. Thus, for the
patch i of frame j, the weight of patch is calculated as follows:

W(i,j) = PPSNR(i,j)/PSNRj (1)

The quality of each patch then was determined based on the
VMAF of each frame which is calculated as:

VMAF(i,j) = VMAFj ∗W(i,j) (2)

The selection of PSNR is due to the simplicity and nature
of the metric as it only measures the signal to noise ratio
and avoids any content bias or scaling adjustment as also
used earlier by authors in [19]. Due to the high similarity
between neighbouring frames, in the training process, we only
used every 20th frame. The number is selected based on our
experience from previous work in [8], which showed that a
too long interval might negatively affect the result due to a
smaller training set .

B. Phase 2- Fine-tuning

Once the model is trained based on VMAF, the model is
then fine-tuned two times based on a small image quality
dataset using Fragmentation (blockiness) and Unclearness
(blurriness) subjective ratings. We retrain the 33 layers of
Densenet-121 (one DenseNet block including 2191k param-
eters) using transfer learning. The 25% of CNN was retrained
once based on the blur ratings and once based on the blocki-
ness ratings. Since only 25 percent of the CNN was retrained
two times, the overhead of double training (for blur and
blockiness) does only result in computational overhead for
testing the model for one additional DenseNet block. It needs
to be noted that this additional step would slightly increase
the prediction computation due to forward propagation of the
prediction process.

C. Phase 3: Video Level

Once the model is fine-tuned based on the blockiness and
bluriness, we collect the frame prediction level of the model
to be used in the training process at the video level. In
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Fig. 1: Architecture of the proposed model (adapted based on [17]). Each transition block consists of 1x1 Conv and 2x2 Pool
with stride 2. The regression layer has an average pool and a dense layer consisting of only one output with linear activation.

addition to the frame level prediction, we extracted temporal
features (temporal index and block motion estimation) for
better prediction on the video level. We then use Random
Forest (RF) as the training algorithm to fuse the features for
prediction of video quality. Since we have subjective scores
from multiple datasets, in order to compensate for subjective
bias, we used a linear mapping as recommended in [ITU-
T. P.1401] per dataset to the objective quality scores before
computing the performance of the evaluation metrics. This
was done at video level only, as in the subjective scores are
available only for video sequence.

We define temporal information (TI) at a frame level similar
to ITU-T Rec. P.910 [20] as:

TI = std[Mn
p ] (3)

where Mn
p is the pixel intensity difference between Fn

p ,
current frame n, calculated as

Mn
p = Fn

p − Fn−1
p (4)

where Fn−1
p , previous frame n − 1. Block Motion (BM)

estimation with a block size of 8x8 is calculated based on
Sci-kit video library [21]. The block motion is then averaged
over a frame (between two frames) and one value per frame
(second frame in each prediction) is stored for training. With
consideration of the low computation complexity during the
test (considering real-time prediction requirement in real world
applications), the frame-level information was extracted for
every 20th frames. This number is based on previous research
[8] and our investigation.

V. MODEL TRAINING AND PERFORMANCE EVALUATION

The model development was carried out in three phases
of model training which we discuss next. In this section, we
report the performance in terms of Pearson Linear Correlation
Coefficient (PCC), Spearman’s Rank Correlation Coefficient
(SRCC) and Root Mean Square Error (RMSE) after each phase
of training. The results are reported based on their performance
on the training dataset. For the training, the scale of VMAF
was from 1 to 100 and for the Phase-2 and 3 we used 5-point
ACR scale and RMSE is reported accordingly.

A. Model Training

1) Phase-1 (VMAF Training): In first phase, we train the
model using VMAF scores from three datasets, GVSET,

KUGVD, NFLX-PD. The DeneseNet-121 was trained
based on the frames extracted from these three datasets,
using the VMAF scores as the target labels. The result
on the training set showed high performance with RMSE
of 5.15 and PCC score of 0.943 at frame level and
RMSE of 3.25 and PCC of 0.954 at video level (using
average pooling) across all datasets. The result on the two
validation datasets is shown in Figure 2.

2) Phase-2 (Fine-tuning): Once the model is trained based
on VMAF scores, it is then fine-tuned based on MOS
scores from GISET, as it includes scores for both blocki-
ness and blurriness. The model is fine-tuned in two steps,
once using the scores for blockiness and once based
on scores for blurriness. The same weighting method
explained in Phase-1 was applied to the rating of each
patch. Since the number of images is quite less, we used
a leave one out cross-validation method where we left out
video sequences from a game (reference video together
with all encoded videos of that video sequence). The
process is repeated twelve times for each game in the
GISET. The result shows high performance of model for
both blockiness, with PCC of 0.94 and RMSE of 0.39,
and blurriness with PCC of 0.92 and RMSE of 0.45. Due
to small size of dataset, we extracted all possible non-
overlapping patches for fine-tuning the model.

3) Phase-3 (Video-Level): In Phase-3, we train the model at
video level using four datasets, GVSET, KUGVD, NFLX-
PD and a subset of CGVDS consisting of videos of 60
fps (since the other datasets were limited to videos of
upto 30 fps). We trained a random forest model based
on temporal features and the predicted blockiness and
blurriness scores. The features are extracted only from
nine patches of a frame and only from every 20th frame.
The statistical information of patch features over a video
is used in training of the random forest. The result for
the training data showed a very high PCC score of 0.941
and RMSE of 0.31.

B. Model Performance Evaluation

The final model at the end of the training process is called
DEMI which is then evaluated using two datasets not used
in the training process. One each from gaming (CGVDS)
and one non-gaming (Live-NFLX-1) are used for testing
the model performance. Using NFLX-PD and CGVDS for
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(a) Predicted VMAF vs. Actual VMAF scores for NFLX-PD dataset.
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(b) Predicted VMAF vs. Actual VMAF scores for CGVDS dataset.

Fig. 2: Scatter plots of predicted VMAF vs Actual VMAF scores for the two test datasets.

TABLE II: Comparison of Model Performance

PCC SRCC PCC SRCC
PSNR 0.64 0.66 0.66 0.67
SSIM 0.69 0.76 0.64 0.76

VMAF 0.93 0.91 0.87 0.87
BRISQUE -0.77 -0.76 -0.48 -0.46

NIQE -0.83 -0.81 -0.53 -0.53
PIQE -0.78 -0.80 -0.41 -0.41

NDNetGaming 0.89 0.85 0.92 0.93
DEMI 0.89 0.89 0.93 0.92

Metrics
NFLX-PD CGVDS

FR Metrics

NR Metrics

validation, the results perform well which is shown in Table
II which is compared with some of the well known FR and
NR quality metrics. It can be observed that the result for
gaming video dataset, CGVDS, is slightly higher than Live
dataset which might be due to the fact that there is a higher
number of gaming frames in the training set. Based on the
Table II, we can see that NDNetGaming performs slightly
higher than DEMI for CGVDS dataset. This is due to the
fact that NDNetGaming is trained only based on the gaming
video dataset and it is more complex compared to DEMI.
However, DEMI outperform NDNetGaming for non-gaming
content while still behind VMAF. It has to be noted that
VMAF is trained based on the similar dataset to NFLX-PD
and the result could be biased for VMAF on this dataset.

In addition, we compared the performance of the metric
with MOS on the scatter plot in Figure 3. The scatter plot
showing that the model performs very well with gaming
video dataset. We can observe a few underestimation for
very low complex sequences. For example, we can see that
DEMI underestimates a few sequences of the game, League
of Legend (LoL), which is recorded from special level named
teamfight tactics. We believe this result is due to the training
process where more complex video games exist in the training
dataset compared to low complex sequences. Similar result can
be seen for NFLX-PD.

For testing, we used a PC with 16 GB RAM and NVIDIA
graphic card of GTX 1080, on which our model took less

than 200 seconds for a 1080p video of 30 seconds duration.
The reduced computation time is due to the fact that we
sample frames and patches, as explained in Section V-A, to a
minimum for reduction in computation complexity. We did
not compare our model with existing deep learning video
quality models due to the following practical and theoretical
reasons. First, the source code of those models are not always
available. Second, most of deep learning models are trained
on datasets with different type of artifacts which result in low
correlation with our selected validation datasets and it is not
fair to make such a comparison. In addition, within the same
CNN architecture, deeper CNNs typically perform better (e.g.
DenseNet201 performs better than DenseNet121 on ImageNet)
and such a comparison is valid if we have similar number of
trainable parameters.

C. Discussion
In this paper, we presented a deep learning based video qual-

ity model which is trained based on gaming and non-gaming
content. While the proposed model is more complex during
the training phase than the state-of-the-art (NDNetGaming)
model, its complexity during test (runtime) phase is greatly
reduced due to a much lower sampling rate of frames from
the video and hence, reduced number of computations. An
exact comparison of complexity is out of the scope of this
paper and will be presented in future work. In the Phase-1,
we decided to not combine multiple image quality datasets
due to subjective bias that could occur and influence the result,
and hence instead we used VMAF for training. Using GISET
in Phase-2, we augmented the training process for Blockiness
and Blurriness artefacts. In Phase-3, we combined the three
video datasets in the training process. The reason behind such
a approach in Phase-1 and Phase-3 is that for Phase-1 we
wanted to combine a huge image quality dataset to allow the
deep CNN to learn image compression artifacts. While in the
Phase-3, we only combine the three datasets that are similar in
terms of methodology of subjective test. One major advantage
that the model provides over the existing models is that a
service provider can use the quality dimensions output as a
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(a) Estimated MOS vs. Actual MOS scores for NFLX-PD dataset.
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(b) Estimated MOS vs. MOS scores for CGVDS dataset.

Fig. 3: Scatter plots of predicted MOS vs. MOS scores for the two test datasets.

diagnostic tool to improve the quality of experience of the
user by providing improved quality video to the end user.

VI. CONCLUSION AND FUTURE WORK

We presented in this work a deep learning based model
DEMI for quality prediction of both gaming and non-gaming
content. DEMI was trained on four different publicly available
datasets and its performance was independently evaluated on
two separate datasets. A performance comparison with existing
models showed that it achieves similar performance as the
state-of-the-art model NDNetGaming but at a much reduced
complexity making it suitable for real-world quality estimation
tasks. The quality dimensions output can also be used by
service providers to adapt the video quality to enhance the
quality of experience of the end user, hence making such
a model suitable for QoE based measurement and control.
Our future work will include assessment of other transfer
learning methods, inclusion of more quality dimensions and
more relevant datasets.
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