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Abstract: We put forward the multipolar model which
captures the physics behind linear and nonlinear response
driven by high-quality (high-Q) supercavity modes in sub-
wavelength particles. We show that the formation of
such trapped states associated with bound states in the
continuum (quasi-BIC) can be understood through multi-
polar transformations of coupled leaky modes. The quasi-
BIC state appears with increasing the order of the domi-
nating multipole, where dipolar losses are completely sup-
pressed. The efficient optical coupling to this state in the
AlGaAs nanodisk is implemented via azimuthally polarized
beam illumination matching its multipolar origin. We
establish a one-to-one correspondence between the stan-
dard phenomenological non-Hermitian coupled-mode
theory and multipolar models. The derived multipolar
composition of the generated second-harmonic radiation
from the AlGaAs nanodisk is then validated with full-wave
numerical simulations. Back-action of the second-harmonic
radiation onto the fundamental frequency is taken into ac-
count in the coupled nonlinear model with pump depletion.

A hybrid metal-dielectric nanoantenna is proposed to
augment the conversion efficiency up to tens of per cent due
to increasing quality factors of the involved resonant states.
Our findings delineate novel promising strategies in the
design of functional elements for nonlinear nanophotonics
applications.

Keywords: coupled-mode theory;multipolar decomposition;
nanoantenna; second-harmonic generation; supercavity.

1 Introduction

Controlling light at the nanoscale has been a vibrant field of
research for many years motivated by its various applica-
tions for optical nanoantennas, integrated photonic cir-
cuitry, optical computing, and high-speed ultrathin
photonic devices [1–5]. High-index dielectric nanoparticles
have emerged as a promising platform to enhance light–
matter interactions at the nanoscale based on optically
induced electric and magnetic Mie-type resonances [4, 5].
Due to the strongnear-field confinement and tailorablefield
distributions in the subwavelength regime, optically reso-
nant dielectric nanostructures offer powerful tools to
facilitate various nonlinear processes including nonlinear
frequency conversion, wave mixing, and ultrafast all-opti-
cal switching [4, 6–11]. Resonant mechanisms of light
localization in dielectric nanostructures, such as magnetic
dipole resonance [12–14], nonradiating anapole state
[15–17],magnetic Fano resonance [18, 19], and topologically
protected edge states [20, 21], have been widely utilized for
applications of nonlinear nanophotonics, such as nano-
scale light sources [22], imaging [23], sensing, andadvanced
optoelectronic devices [3].

Methods typically employed to describe nonlinear har-
monic generation at the nanoscale are based on the multi-
polar decomposition of the fields in spherical multipoles [4,
24–27]. This approach provides a transparent interpretation
for the measurable far-field characteristics, such as
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conversion efficiency and radiation patterns, since they are
essentially determined by the interference of dominating
multipolar modes [4]. The nonlinear response depends on
both incident polarization and symmetry of the specific
material or composite structures, such as nanoparticle
oligomers [27–29]. For instance, the nonlinear response of
disk-shaped nanoantennas made of noncentrosymmetric
III–V semiconductors (GaAs or AlGaAs) grown along (100),
(110), and (111) crystallographic directions exhibits four-
fold, two-fold, and continuous rotational symmetries,
respectively [26, 30]. Specifics of the radiation characteris-
tics in each case can be explained by different parities of
nonlinearly generated multipoles, so-called nonlinear
multipolar interference. This represents an example where
multipolar analysis has been proven to be a useful instru-
ment for design of directional nonlinear light emission [31].

A recently suggested approach to trap light in indi-
vidual subwavelength dielectric nanoresonators is based
on high-quality supercavity modes associated with the
physics of quasi-bound states in the continuum (quasi-BIC)
[32–34]. These states are in some sense similar to BICs in
infinite periodic dielectric structures: their high finesse is
due to the destructive interference of several far-field ra-
diation channels. Two interpretations of quasi-BIC forma-
tion in an open resonator, based on (i) leaky modes
supported by the particle [33] and (ii) multipoles of the
electromagnetic field [35], were discussed; however, no
direct correspondence between these twomodels has been
established up to now. Lately, it has been proposed to
utilize these high-quality states to enhance the classical
nonlinear process of second-harmonic generation in
dielectric nanodisks [36].

In this paper, we develop a comprehensive multipolar
theory of the second-harmonic generation (SHG) from
high-quality quasi-BIC states in an AlGaAs cylindrical
nanoresonator (nanodisk). The process of SHG is sche-
matically illustrated in Figure 1. We show that the forma-
tion of quasi-BIC states can be naturally understood
through multipolar transformations of coupled leaky
axially symmetric modes supported by the nanodisk. The
strong SHG can be expected in the case of efficient exci-
tation of the mode with the high quality factor. To achieve
efficient coupling to the mode at the pump frequency, the
multipolar composition of the pump source should match
the multipolar composition of this mode. We show that the
azimuthally polarized beam can be used to couple to the
quasi-BIC state most efficiently because it contains mag-
netic multipoles with zero azimuthal numbers only that
matches the quasi-BIC multipolar origin and maximizes
themodal overlap. Analyzing the spatial distribution of the
induced nonlinear sourcewith the approach put forward in

our earlier works [25, 26], we reveal that the complex
multipolar composition of the second-harmonic radiation
coincides with the multipolar composition of a particular
high-quality eigenmode of the disk at the second-harmonic
(SH) frequency. We obtain that the efficiency of SHG is
strongly enhanced up to several per cent, provided the
generated frequencymatches the supported resonance, for
parameters of the nanoresonator corresponding to the
nearly resonant excitation of the quasi-BIC state at the
fundamental frequency (FF). We perform full-wave nu-
merical simulations of SHG taking into account nonlinear
effects of back-action and propose the BIC-inspired design
of a hybrid metal-dielectric nanoantenna where the effect
of pump depletion is further increased suggesting a
promising application for the frequency downconversion.

2 Results and discussion

2.1 Multipolar model of quasi-BIC
formation

We consider a high-index cylindrical dielectric resonator
that supports leaky modes (modes of an open resonator)
that may hybridize (couple) when tuning geometric

Figure 1: Schematic of the geometry. Azimuthally polarized
cylindrical vector beam of frequency ω excites an axially symmetric
supercavity mode in the nanodisk. As a result of nonlinear
interaction, the second-harmonic light of 2ω is generated.
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parameters. The particle is characterized by a frequency-
dependent dielectric permittivity ε(ω) and is surrounded
by a homogeneous host medium with εh � 1. The har-

monic time dependence of the fields in the form eiωt is
implied.

Here, we focus on rotationally symmetric TE-polar-
ized modes in the cylindrical coordinate system
(Eφ,Hρ,Hz), whose electromagnetic field does not
depend on the azimuthal angle φ. With the use of the
finite elementmethod (FEM) in COMSOLMultiphysics, we
perform the eigenmode analysis numerically and plot
dispersion as a function of the normalized geometric
parameters defined as the disk aspect ratio r/h and the
size parameter r/λ0, where λ0 is themodewavelength. The
size parameter defined as a ratio of the disk radius to the
mode wavelength can also be referred to as a normalized
eigenfrequency. The results of calculations for the
AlGaAs nanodisk with the fixed height h = 645 nm are
summarized in Figure 2. Two dispersion curves depicted
as colored dots exhibit characteristic avoided crossing in
the plane of parameters, which is a signature of the
strong-coupling regime. It is accompanied by modifica-
tion of the modes quality factors and formation of the
quasi-BIC state that can be naturally understood through

multipolar transformations of coupled modes as we
describe below.

For a nonspherical shape of the resonator, the inter-
actingmodes canbe in general viewed as a superposition of
the spherical multipoles distinguished by orbital l and
azimuthalm indices. Multipolar analysis of the considered
TE-polarized axially symmetric eigenmodes suggests that
the basis of parent multipoles mainly consists of a longi-
tudinal magnetic dipole (MD) l = 1, m = 0 and a magnetic
octupole (MO) l = 3, m = 0 so that each mode has two
multipolar radiation channels, dipolar and octupolar. In
Figure 2, sizes of circles illustrate their relative contribu-
tions in multipolar expansions of the modes (line plots are
provided in Supplementary Material). The occurrence of
high-Q supercavity mode is accompanied by an increase in
the order of a dominating multipole from l = 1 (MD) to l = 3
(MO) and corresponds to the puremagnetic octupole. In the
quasi-BIC condition (r/h = 0.71 and r/λ0 = 0.29), two mag-
netic dipoles interfere destructively in the coupling to the
octupole, thus, restoring its high-quality factor. Insets show
how the electric field distributions inside the disk and far-
field diagrams of thesemodes change aswemove along the
dispersion curves. While far from the BIC point, the radia-
tion patterns are dipolar, near the BIC point the pattern of
the high-Q mode turns to the rotationally symmetric mag-
netic octupolewith three lobes. In addition, theblack line in
Figure 2 shows the dispersion of the mode near the second-
harmonic frequency. The eigenmode analysis is performed
for the AlGaAs disk taking into account the material
dispersion. The refractive index in the fundamental wave-

length range 1500–1700nmn(ω) � �����
10.73

√
≈ 3.27 and in the

SH wavelength range 750–850 nm n(2ω) ≈ 3.52 [37].
We then corroborate our rigorous numerical results by

an analytical model setting the correspondence of the non-
Hermitian coupled-mode theory and the multipolar anal-
ysis. Coupling of two leaky eigenmodes shown in Figure 2
can be described by the Hamiltonian [33, 34]

Ĥ2 � ( E1   V
W   E2

) , (1)

being a squarematrix, where E1 � ω̃1 + iγ1 and E2 � ω̃2 + iγ2
are complex frequencies of the modes 1 and 2,W and V are
complex coupling parameters including the interaction
between themodes via free space,W ≠ V*. A scheme of this
phenomenological two-level model is shown in Figure 3A.
The eigenfrequencies depend on the aspect ratio ξ ≡ r/h
and can be deviated from the point ω̃1,2 � 0. Taking
γ1 � γ2 � γ, V � W � ϰ + iγ, in the strong-coupling regime
γ ≲ ϰ, the eigenvalues of the matrix 1 are given by
E+ � ϰ + 2iγ andE− � −ϰ, that yields a frequency splitting of
2 ϰ and the infinitely-large Q factor for one of the modes

Figure 2: Dispersion of the axially symmetric eigenmodes of the
AlGaAs nanodisk. Colored circles depict the multipolar
decomposition of these modes: magnetic dipole (MD – blue) and
magnetic octupole (MO – pink), sizes of circles scale their relative
contributions and radiative decay. The upper branch traces the high-
quality mode and features a special point in the parameter space
(r/h = 0.71, r/λ0 = 0.29), where the quality factor of this mode
reaches its maximum. The filled pink dotmarks this quasi-BIC point,
it corresponds to pure MO. Insets show near-field distributions of
the electric field magnitude and far-field diagrams: the top row
corresponds to the high-quality mode at r/h = 0.6, 0.71 (BIC), 0.8;
the bottom row corresponds to the low-quality mode at r/h = 0.6,
0.71, 0.77. The corresponding values of aspect ratio are marked by
dots at the horizontal axis. The overlaid black line sketches a
dispersion branch of themode near the second-harmonic frequency
(the wavelength is doubled for direct comparison).
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(BIC state). The avoided crossing of two modes in the two-
level system qualitatively captures the numerically calcu-
lated dispersion depicted in Figure 2.

For our system, we derive the dynamic equations for
two modes with slowly varying amplitudes B1 and B2

excited by the external pump source in the following form:

d
dt

(B1

B2
) − iĤ2(B1

B2
) � ( d1Sd + d01S0

d2Sd + d02S0
)eiΩt  , (2)

where the matrix Ĥ2 explicitly reads

Ĥ2 � ( ω̃1(ξ) + i[d2
1 + d2

01]   ϰ + i[d1d2 + d01d02]
ϰ + i[d1d2 + d01d02]   ω̃2(ξ) + i[d2

2 + d2
02] ) . (3)

The d coefficients govern both the dipolar and octupolar
radiative decays of the modes and their coupling to each

other and to the external field, d201,02 � d21,2. The near-field

coupling is incorporated by off-diagonal ϰ terms. Using the
scattering-matrix method (see Supplementary Material),
the coupled-mode equations can be mapped onto the
three-state model schematically illustrated in Figure 3B.
The reduced multipolar basis includes two magnetic-
dipole states a1,2 and the magnetic-octupole state a3 with
m � 0. The evolution equations recast as

−i
da
dt

� Ĥ3a − iseiΩt  , (4)

with the amplitude column-vector a � [a1, a2, a3], and the
external source

s � ⎛⎜⎝ d1sd
d2sd
d0s0

⎞⎟⎠. (5)

The non-Hermitian Hamiltonian of the structure in Eq. (4)
assumes the form

Ĥ3 � ⎛⎜⎜⎜⎝ω1 + id2
1 id1d2 τ1

id1d2 ω2 + id2
2 τ2

τ1 τ2 ω0 + id2
0

⎞⎟⎟⎟⎠ , (6)

where d1,2,0 are the effective dipole and octupole moments.
The τ coefficients describe the hybridization of the dipole
and octupole multipoles. Ohmic losses are neglected. The
high-quality resonant state is formed at the frequency
ωBIC � (ω1d2τ2 + ω2d1τ1)/(d1τ1 + d2τ2), where the imagi-
nary part of the octupole-like eigenstate frequency is
restored to a bare value d2

0.
The excitation of the quasi-BIC mode depends on how

efficiently the incident source couples to the BIC state, that
is on their spatial overlap. The external source can be
divided into the octupolar component S0 and the dipolar
component Sd and their fractions determine the resultant
response. We consider two types of pump radiation which
carry Hz component of the electromagnetic field and can
excite the quasi-BIC mode: a linearly polarized plane wave

E � E0eikxŷ (PW) and an azimuthally polarized cylindrical
vector beam (AP) [38] (see Supplementary Material). We
perform the multipolar decomposition of the incident ra-
diation in terms of vector spherical harmonics (see Sup-
plementary Material) and after numerical integration we
obtain the following relations of the magnetic octupolar

and magnetic dipolar contributions:
∣∣∣∣∣∣∣∣AM(3,0)
AM(1,0)

∣∣∣∣∣∣∣∣2 � 0.875 for

the PW excitation, and
∣∣∣∣∣∣∣∣AM(3,0)
AM(1,0)

∣∣∣∣∣∣∣∣2 � 4.854 for AP excitation.

Remarkably, an AP vector beamcan be used to couple to the
BIC mode more efficiently than a linearly polarized plane
wave because the AP beam can be decomposed solely to
magneticmultipoles withm = 0 that matches themultipolar
composition of the modes, while the plane wave consists of
electric and magnetic multipoles with different azimuthal
indices m. Furthermore, the relative contribution of MO is
significantly higher in the AP vector beam than in the plane
wave, so that the azimuthally polarized cylindrical vector
beam is favorable for excitation of the high-quality reso-
nance in thedielectric nanodisk. Thus, hereafterwe focuson
the study of SHG in a AlGaAs nanodisk excited by an AP
cylindrical vector beam in the vicinity of the BIC point.

2.2 Nonlinear response driven by quasi-
BIC state

For noncentrosymmetric materials, the induced nonlinear
polarization is defined by the second-order polarizability

tensor χ̂(2):

Figure 3: (A) Schematic of interaction between two-coupled
eigenmodes of an open dielectric resonator. Arrows illustrate
individual couplings of the modes to the continuum and couplings
between the modes via the continuum. (B) Schematic of the three-
level multipolar model for the formation of the quasi-BIC state
captured by the Hamiltonian Eq. (6).
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P(2ω) � ε0χ̂(2)E(ω)E(ω)  , (7)

where ε0 is the vacuum dielectric constant, E is the electric
field inside the particle. For AlGaAs in the principal axis
system of the crystal, the tensor of the second-order
nonlinear susceptibility containsonlyoff-diagonal elements
χ(2)ijk � χ(2) = 100 pm/V being nonzero if any of two indices
i, j, k do not coincide. Thus, the induced nonlinear polari-
zation at the second-harmonic frequency takes the form

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
P(2ω)
x

P(2ω)
y

P(2ω)
z

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ � 2ε0χ(2)
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

E(ω)
y E(ω)

z

E(ω)
x E(ω)

z

E(ω)
x E(ω)

y

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (8)

We assume that the main axes of the crystalline lattice are
oriented along the axis of the Cartesian coordinate system:
[100] ∥ x̂, [010] ∥ ŷ, [001] ∥ ẑ. Thereby, in the case of exci-
tation of the azimuthally polarized modes inside the
nanodisk the nonlinear current at the second-harmonic
frequency has the form

j(2ω) � 2iωP(2ω) � 2iωε0χ(2)E(ω)2
φ sin 2φẑ . (9)

Here, E(ω)
φ is the electric field distribution inside the parti-

cle, which can be approximated by the following expres-
sion

E(ω)
φ ≈ B1α1J1(k0 �

ε
√

ρ) + B2α2 J1(k0ρ ������
ε −

π
k0h

√ )cosπz
2h

 ,

(10)

where J1 is the first order Bessel function of the first kind,
k0 � ω/c, ρ � ������

x2 + y2
√

is a radial distance, α1,2 are co-
efficients of the eigenmodes contributions. Next, using the
approximation for the field profile inside the particle, we
analyze the multipolar composition of the SH radiation
generated by the nonlinear source following the procedure
described in Ref. [25]. We deduce that the orbital numbers l
of generated multipoles are even for electric and odd for
magnetic multipoles, while the azimuthal number takes the
values m � ±2 only. We find four dominant generated mul-
tipoles: a(2ω)

M (2,±2), a(2ω)
M (4,±2), a(2ω)

E (3,±2), a(2ω)
E (5,±2).

Our analytical calculations show that at k0r ∼ 1 electric
multipolar coefficients a(2ω)

E (l,±2) rapidly decrease for l ≥ 7,
while magnetic amplitudes a(2ω)

M (l,±2) decay fast for l ≥ 6.
For example, in the vicinity of the BIC point we obtain the
following relations in the case of AP beam excitation:

∣∣∣∣∣∣∣∣∣a(2ω)
E (7,   ± 2)

a(2ω)
E (5,   ± 2)

∣∣∣∣∣∣∣∣∣ ∼ 0.02, 

∣∣∣∣∣∣∣∣∣a(2ω)
M (6,   ± 2)

a(2ω)
M (4,   ± 2)

∣∣∣∣∣∣∣∣∣ ∼ 0.08 . (11)

In the case when a nanoantenna supports both a
quasi-BIC resonance near the pump frequency and an

eigenmode near the SH frequency, we expect a resonant
increase in the up-conversion. In addition to the eigen-
modes at the fundamental frequency, Figure 4 features the
dispersion of the high-quality mode at the second-har-
monic frequency lying in the same range of parameters (SH
mode). The Q-factor of this mode is large (Q ≈ 200 − 600)
(see Supplementary Material). Both Figures 2 and 4 show
two interacting modes responsible for the quasi-BIC for-
mation at the fundamental frequency and selected SH
mode which falls in the same parameters’ range and, by
symmetry, can be excited by the BIC-driven nonlinear
source. Certainly, there are several eigenmodes at the
second-harmonic frequency in the considered range of
parameters. However, here we specifically focus on
the eigenmode that can be addressed by our nonlinear

source j(2ω) � 2iωP(2ω), namely, only the eigenmode with
azimuthal indices m = ±2. This mode is composed of the
multipoles that the induced nonlinear current at the quasi-
BIC conditions generates. Themultipolar decomposition of
the SHmode is visualized by circles of different colors. The
right inset additionally shows relative contributions of
multipoles in the line plot. The SH mode has a more com-
plex multipolar content than the FF modes, and a more
sophisticated near-field distribution (top inset), which
modifies slightly in the considered parameter range. The
radiation pattern of the SH mode is generally multi-lobed
and noticeably changes depending on the multipolar

Figure 4: Colored circles trace dispersion of the eigenmode of the
AlGaAs disk at the second-harmonic frequency (similar to Figure 2,
its wavelength is doubled). Sizes of circles scale the total radiative
decay (black) and partial multipolar contributions, also plotted as
lines in the inset. Black solid lines are dispersion curves of the
fundamental-frequency eigenmodes from Figure 2. Insets show the
near-field distribution of the electric field magnitude at r/h = 0.729
(top and side views in the upper image) and far-field diagrams at
r/h = 0.62, 0.667, 0.729 and 0.775 (the bottom row). E/M – electric/
magnetic multipoles, Q – quadrupole, O – octupole,
H – hexadecapole, T – triacontadipole.
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composition. The most efficient SHG can be reached at the
resonant conditions, close to the dispersion crossing of the
quasi-BIC mode and the SH mode.

As a pump, we choose an AP beam in order to maxi-
mize the overlaps of the modes with the incident field. We
numerically calculate dependencies of multipolar compo-
sitions of the linear scattering and SH radiation on the disk
radius in the case of AP beam excitation (for comparison
with the case of PW excitation see Supplementary Mate-
rial). The multipolar contents of both FF and SH fields are
found to be in excellent agreement with the results of our
theory that justifies its validity. Figure 5 shows two-
dimensional maps of linear scattering of the AP beam and
the SH power. We recover maps of linear scattering, MD
and MO contributions in linear scattering on the nanodisk
radius by calculating slices at fixed pumpwavelengths.We
observe strong excitation of a magnetic octupole (MO) in
the proximity of the BIC point so that the high-Q mode
branch can be clearly traced in themap of linear scattering.
Next, wemodel SHG and obtain a sharp enhancement peak
in the SH intensity. The resonant area in the parameter
space is visualized with high contrast in Figure 5D. These
our results fully explain the recent experimental observa-
tions reported in Refs. [39, 40].

Figure 6 shows two slices of 2D color maps in Figure 5
for two close wavelengths: the slice at λ0 = 1580 nm con-
tains the BIC point and the slice at λ0 = 1600 nm contains

the intersection of the SH and FF dispersion curves. If we
consider the fixed pump wavelength λ0 = 1580 nm, we see
that MO dominates in the linear scattering and the maxima
of the scattering cross-section and the SH power for this
slice correspond to the BIC point (r = 457 nm, h = 645 nm).
We obtain that in this case magnetic quadrupole (MQ)

a(2ω)M (2,±2) dominates the emission, and the SH radiation
pattern is mainly quadrupolar. For the wavelength
λ0 = 1600 nm corresponding to the intersection of the FF
high-Q mode and SH mode dispersion branches, the SHG
enhancement is even higher. In this case major multipoles

are a(2ω)M (4,±2), a(2ω)E (5,±2), that matches the multipolar
content of the SH mode.

Because the distribution of the AP beam intensity is
inhomogeneous, herewe define the scattering efficiency as
the ratio of the scattering power at the fundamental fre-
quency PFF to the energy flux through the geometrical cross
section of the particle in the waist plane PAP:

σ̃ � PFF

PAP
,   (12)

PAP � ∫
​
SndS � −∫

​EφH
∗
ρ + E∗

φHρ

4
dS . (13)

Here, S � 1
2Re(E ×H∗) is a time-averaged Poynting vector,

n ∥ ẑ is a normal vector. The scattering cross section
σsca � σ̃S is much larger than the geometric cross section S

Figure 5: Maps of linear scattering of the AP beam by the AlGaAs
nanodisk (A) and the SH generated power (D). Panels (B) and (C)
correspond to magnetic dipole and octupole contributions to the
linear scattering. Solid pink lines correspond to the dispersion
curves of FF eigenmodes, solid blue line is the dispersion curve of SH
mode. Pink dot marks a BIC state. Dashed lines are two slices of
λ0 = 1580 nm and λ0 = 1600 nm. Insets in the panel (D) show electric
field distribution at the BIC point (in the pink frame) and at point of
intersections of dispersion curves (at maximum SH power) (in the
yellow frame).

Figure 6: Multipolar decomposition of linear scattering (A,C) and
second-harmonic generation (B,D) spectra for two slices in Figure 5.
Top and bottom panels correspond to pump wavelengths λ0 = 1580
and 1600 nm, respectively. Colored lines show different multipole
contributions to the linear scattered and the second-harmonic
fields. Insets show far-field diagrams of SH radiation at the BIC point
(λ0 = 1580 nm, r= 457 nm, h=645 nm) and at the point of dispersion
curves intersection (λ0 = 1600 nm, r = 470 nm, h = 645 nm).
E/M – electric/magnetic multipoles, D – dipole, Q – quadrupole, O
– octupole, H – hexadecapole, T – triacontadipole.
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(S � πr2 for AP and S � 2rh for PW) of the disk near the BIC-

point especially for the AP beam (σ/πr2 ≈ 40) because of the
high-quality factor of the MO resonance. In this case, it
would be incorrect to define the conversion efficiency as the
ratio of the generated power PSH and PAP because these
values become comparable near the BIC point. But the SH
generated power is much smaller than the scattered power
at the fundamental frequency because of the high-quality
factor of the excitedBICmode. Thus, to take into account the
strong interactionof the incident radiationwith the resonant
mode, we define the SH conversion efficiency as the ratio of
the total SH radiated power PSH to the radiated power at the
fundamental frequency PFF:

ρ � PSH

PFF
 . (14)

We obtain that the absolute maximum of SHG corresponds
to the intersection point and ideally, it may reach about 1%
conversion. Also we calculate the conversion efficiency
that doesn’t depend on the incident power

ρ̃ � PSH

P2
FF

 . (15)

The coupled-mode considerations suggest scaling the SHG
efficiency (15) depending on detunings from the reso-
nances at the fundamental and SH frequencies:

ρ̃ ∼ Q2
FFQSH( γ2FF

(ω − ωFF)2 + γ2FF
)2 γ2SH

(2ω − ωSH)2 + γ2SH
 . (16)

Here,QFF andQSH are quality factors of resonances,ωFF and
ωSH are resonance frequencies, γFF and γSH are damping
constants. The highest yield of SHG can be attained in the
double-resonant case.

We compare near-field profiles, far-field diagrams
and multipolar compositions of the SH mode and the SH
radiation near the peak SHG for two types of incident
radiation. We obtain that at the parameters of the
maximum SHG, the multipolar composition of the SH
generated field, the SH electric field distribution and the
SH radiation pattern are almost the same as those of the
SH eigenmode, see Figures 4, 5 and 7. This explicitly
shows that even though the generated SH radiation is
composed of several different multipoles, the only one
SH mode characterized by m � ±2 is predominantly
generated.

2.3 Coupled model of SHG with pump
depletion

In our numerical modeling, we take into account the
nonlinear effects of back-action of the second-harmonic
radiation on the fundamental frequency radiation. In the
case of highly efficient double-resonant excitation, the
electric field amplitudes inside the particle at the funda-
mental and second-harmonic frequencies may become
comparable, and the nonlinear correction of the polariza-

tion P(ω)
nl at the fundamental frequency can no longer be

neglected. Thus, to simulate the back-action nonlinear ef-
fect, we numerically solve the Helmholtz equation for the
electric field with nonlinear sources at the fundamental
and SH frequencies simultaneously:

−ΔE + μ0

∂
2D
∂t2

� −μ0

∂
2

∂t2
(P(ω)

nl + P(2ω)
nl ) . (17)

The expression for the nonlinear polarization at the

fundamental frequency P(ω)
nl in the principle crystalline

axis system has the following form:

⎛⎜⎜⎜⎜⎜⎜⎝P(ω)
nl x

P(ω)
nl y

P(ω)
nl z

⎞⎟⎟⎟⎟⎟⎟⎠ � 2ε0χ(2)⎛⎜⎜⎜⎜⎜⎝E(2ω)
y E(ω)∗

z + E(2ω)
z E(ω)∗

y

E(2ω)
x E(ω)∗

z + E(2ω)
z E(ω)∗

x

E(2ω)
x E(ω)∗

y + E(2ω)
y E(ω)∗

x

⎞⎟⎟⎟⎟⎟⎠ . (18)

The nonlinear source at the second-harmonic frequency is
given by Eq. (8).

In the conditions of the resonant excitation of the
magnetic-octupole quasi-BIC mode and the high-quality
mode at the second-harmonic frequency, the electric field
can be represented as a superposition

E � ϵ1(t)ϵ1(r)eiω1t + ϵ2(t)ϵ2(r)eiω2t + c.c. , (19)

where ϵ1,2(t) are the time-dependent amplitudes, |ϵ1,2|2
are the energies of the modes at the frequencies ω1,2,

Figure 7: Comparison of the far-field diagrams and multipolar
compositions of the SHG electromagnetic field and the disk's
eigenmode at the SH frequency for parameters of themaximumSHG
efficiency (λ0=1600 nm, r=470 nm, h=645 nm): 1 - SH mode, 2 - AP
beam excitation, 3 - PW excitation. E/M–electric/magnetic
multipoles, Q–quadrupole, O–octupole, H–hexadecapole,
T–triacontadipole
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Δω � ω2 − 2ω1,
∣∣∣∣Δω∣∣∣∣≪ ω1,2 is a detuning from the synchro-

nism. Assuming the amplitudes slowly varying in time,
with the characteristic time scale τ � ∣∣∣∣ 1

ϵ1,2
dϵ1,2
dt

∣∣∣∣−1 ≫ 2π
ω1,2

, one
can write truncated equations

∂ϵ1
∂t

+ γ1ϵ1 � −iχϵ2ϵ∗1 e
iΔωt +

��
γ1

√
S0eiΩt ,

∂ϵ2
∂t

+ γ2ϵ2 � −iχ∗ϵ21e
−iΔωt ,

(20)

where the coefficient

χ ∼ 2ωχ(2)∫
​(ϵ1yϵ1zϵ∗2x + ϵ1xϵ1zϵ∗2y + ϵ1xϵ1yϵ∗2z)d3r (21)

is proportional to the overlap integral, γ1,2 are decay rates of
the quasi-BIC and SH modes.

We calculate the scattering and SHG conversion effi-
ciencies taking into account coupling of the excited SH and
FFmodes and compare themwith the numbers obtained in
the undepleted pump approximation. The results for two
types of incident radiation for parameters corresponding to
the maximum SHG efficiency (λ0 = 1600 nm, r = 470 nm,
h = 645 nm) are summarized in Table 1.

Values of the pump intensity and the energy flux
through the geometric cross section of the disk used in our
calculations are given in Table 2. S denotes the geometrical
cross section of the particle. In the case of AP beam exci-
tation, Imin and Imax are the minimum and the maximum
values of the total field intensity of the AP beam in the focal
plane, P is the energy flux through the geometrical cross
section of the particle in the focal plane. The characteristics
of AP beam are illustrated in Fig. S3 of Supplementary
Material. The plane-wave intensity Imin � Imax is spatially
constant. Taking into account a finite pulse duration, we
have refined the value of the total conversion efficiency ρ̃
for AP beam and compared it with data from experimental
works [39, 40] (see Supplementary Material). The calcu-

lated total second-harmonic efficiency 9.5 × 10−5 W−1 for 2
ps lasers pulses is approximately twice higher than the
estimate in Ref. [40] based on the experimental data.

We obtain that in the case of AP excitation, nonlinear
effects of back-action become noticeable due to efficient
excitation of the high-quality modes. Thus, coupling of
electromagnetic fields at the fundamental and second-

harmonic frequencies should be taken into consideration
when the conversion efficiency reaches 1%. In the case of
PW excitation, the maximum SHG is also reached for the
parameters corresponding to the intersection of the ei-
genmodes dispersion curves, however, the total generated
power turns to be lower than in the case of the AP beam
pump. As noted above, it can be explained using multi-
polar analysis of the incident radiation. The multipolar
composition of the incident plane wave is more compli-
cated than multipolar composition of the AP beam, the
spectrum of linear scattering contains several multipoles
with different values of the azimuthal indexm. As a result,
the electric field distribution at the BIC point is distorted
and appears dependent on the azimuthal angle φ. We still
observe a resonance at the BIC point in the linear scattering
spectrum but the corresponding scattering efficiency is an
order of magnitude lower than in the case of AP excitation.
Since the magnetic octupolar relative contribution with
m � 0 is smaller in the plane wave, the excitation of the
quasi-BIC state is less efficient.

In the next section, we consider the BIC-inspired
nanoantenna design where the second-harmonic radiation
significantly influences the linear scattering. Such nano-
resonators can be particularly promising for realization of
the efficient frequency downconversion at the nanoscale.

2.4 BIC-inspired nonlinear enhancement in
a hybrid metal-dielectric nanoantenna

One type of BICs which has been widely studied is the
symmetry-protected BIC occurring at Γ point of the band-
structure of a periodic leaky lattice. In periodic systems,
when coupling of a certain resonance to the radiation
modes is forbidden by a symmetry mismatch, a symmetry-
protected BIC is formed [32, 41]. Such symmetry-protected
BICs cannot be excited directly under normal plane wave
incidence, while they can be excited externally by breaking
the in-plane C2 symmetry of the system, for example, by
introducing a defect in the nanodisks to open a radiation
channel and transform the ideal BIC to the quasi-BIC with a
finite Q-factor [42]. In particular, by properly designing a
nanodisk metasurface, it can support the longitudinal

Table : Scattering and second-harmonic conversion efficiencies.

~σ ρ ~ρ;W−

AP undepleted pump . . .·−

AP back-action . . .·−

PW undepleted pump . . .·−

PW back-action . . .·−

Table : Pump characteristics.

Imin;
GW
cm Imax;

GW
cm S ⋅ ;m P;W

AP . . . .
PW . . . .
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magnetic dipole resonance at Γ point at the frequency below
the diffraction cut-off. SuchMDmode does not couple to the
free-space radiation forming a BIC. For isolated nano-
resonators and nanoparticle oligomers, the out-of-plane
Mie-type magnetic modes can be excited efficiently via an
azimuthally polarized beam [43, 44, 45]. For periodic sys-
tems, this way is not feasible because the incident radiation
in each unit cell has to be a structured field. However,
inspired by the symmetry-protected BIC mechanism, here
we suggest a novel approach to design and access the high-
quality modes in isolated Mie nanoresonators.

A schematic illustration of the proposed principle is
shown in Figure 8A. As was described in Ref. [16], when an
electric current is placed near a perfect-electric-conductor
(PEC) surface, the excited free electron oscillations in the
adjacent PEC affect the near-field and far-field properties of
such composite system. The effect can be reproduced with
an oppositely oriented image of the electric current by
using the image dipole model. Using this analogy, a peri-
odic system of MD resonators can be transformed to a
single MD resonator surrounded by a PEC-like box. As an
example, we employ a dielectric disk surrounded by gold
(Au) nanobars, as shown in Figure 8B. Remarkably, by
shrinking a periodic system into a single nanoresonator,
the quasi-BIC modes can be directly and efficiently excited
under structured beam illumination that facilitates
nonlinear frequency conversion.

We then take the AlGaAs nanodisk supporting a
magnetic dipole resonance near 1550 nm and study the
nonlinear performance of our proposed design. The geo-
metric parameters of our structure are determined to be the
following: the radius and height of AlGaAs nanodisk are
r0 = 237.5 nm, h0 �400 nm; the length, height, and thick-
ness of the gold structure are L �575 nm, h2 � 2h0, and
t �100 nm. We suppose that an azimuthally polarized

beam, with the maximum intensity Imax � 2.16 GW/cm2,
focused by an objective with the numerical aperture
NA� 0.9 is illuminating our sample. Our recent experi-
mental study [16] ensures that the pump intensities ∼3
GW/cm2 do not cause damage of gold in the near-infrared
range at the 1–2 ps laser pulse duration. Figure 8B shows
the numerically computed linear scattering featuring
magnetic multipoles with m � 0. A narrow dip appears
around 1550 nm corresponding to excitation of the high-Q
mode. The quality factor of this cavity mode is estimated to
be Q � 554 which is much larger than that of typical MD
resonance supported by an individual nanoresonator with
(Q∼ 9) [22]. Its longitudinal nature enables optimal over-
lapping with an AP pump.

We further examine the SHGprocess from the designed
AlGaAs-Gold hybrid nanoresonator. In order to show the
importance of our advanced simulation method intro-
duced in Section 2.3, we compare the calculated results

Figure 8: (A) Top: Schematic of the equivalent transformation
between circular polarization currents excited in a periodic lattice of
MD resonators and currents excited in a single MD resonator
surroundedby PEC structures. Bottom: The transformation froma 2D
periodic array of MD resonators to an isolated nanostructure
composed of an MD resonator surrounded by gold nanobars. (B)
Linear scattering and its multipolar decomposition for the hybrid
AlGaAs-disk-with-Gold nanostructure under AP pump illumination.
(C) SHG efficiency calculated using the undepleted pump model
(solid line) and the coupled nonlinear model with back-action
(dashed line). Inset shows theSH radiationpattern at the resonance.
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based on the undepleted pump and the coupled back-ac-
tion models in Figure 8C.

In the undepleted pump model, we follow two steps to
simulate the nonlinear response. First, we calculate the
linear response at the fundamental wavelength and obtain
the nonlinear polarization induced inside the structure
based on Eq. (8).We then employ the nonlinear polarization
as a source to simulate the electromagnetic response at the
harmonic wavelength. In this two-step procedure, we
disregard the influence of the harmonic waves on the pump
field. As seen in Figure 8C, the SHG emission is significantly
enhanced when exciting the designed high-Q resonance at
the pump frequency. Near the resonance, we observe a clear
difference in the nonlinear emission power when using the
coupled back-action model as compared to the undepleted
pumpmodel: at the pump wavelength of 1549 nm, the total
SHG power is around 0.593 W and 0.546 W for these two
cases, respectively. This indicates that neglecting coupling
from SH field to the pump field in the undepleted pump
model results in more than 8% error in the nonlinear
simulation. Under AP pump illumination, the SHG signal
can be boosted in our proposed configuration leading to
nearly 2000-fold enhancement of the SHG emission power
as compared to the case of SHG driven by the conventional
MD resonance in a single free-standing nanodisk.

3 Conclusions

We have explicated the multipolar nature of quasi-BIC states
in subwavelength dielectric resonators supporting high-
quality supercavity modes called quasi-bound states in the
continuum and discussed their applications for nonlinear
nanophotonics. Using our multipolar model, we have
analyzed optimal conditions for the efficient excitation of
quasi-BIC states in high-index dielectric nanodisks under
structured light illumination. In particular, wehave explained
the multifold increase of the second-harmonic conversion ef-
ficiency for thecaseof azimuthallypolarizedcylindrical vector
beam illumination compared to the linearly polarized plane
wave excitation. Implementing numerically the coupled
nonlinear model, we have computationally refined values of
SHG efficiencies and discussed pump depletion in high-
quality nanoresonators.
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