
1

Securing Industrial Cyber-Physical Systems: A
Run-time Multi-layer Monitoring

Muhammad Taimoor Khan, Member, IEEE, and Ivana Tomić, Member, IEEE

Abstract—Industrial Cyber-Physical Systems (ICPSs) are widely deployed in monitoring and control of the nation’s critical industrial
processes such as water distribution networks and power grids. ICPSs are the tight integration of cyber (software) and physical entities
connected via communication networks. Communication networks are typically realised via wireless channels to reduce the cost of
wires and installation. However, they are also inherently unreliable, easy to disrupt and subvert, which makes them a potential target for
cyber attacks. The failure of communication can cause data loss or delays, which can compromise system functionality and have
catastrophic consequences due to the strict real-time requirements of ICPSs. Current run-time security monitors protect ICPSs either
at communication level (through network intrusion monitors) or application level (through threat detection monitors). Such monitors are
layer-specific and thus fail to detect advanced threats arising from the multi-layer disruption. In this paper, we present a multi-layer
run-time security monitor that can detect discrepancies caused by interdependent application and communication layer attacks and
prevent their propagation into the system’s control loops. We demonstrate the effectiveness of the approach via an example of the
ICPS used for control and monitoring of a water distribution network.

Index Terms—Industrial Cyber-Physical System (ICPS), security, communication and application layer attacks, run-time monitoring.

F

1 INTRODUCTION

Large scale infrastructure, such as water distribution
networks or petrochemical systems, have evolved into In-
dustrial Cyber-Physical Systems (ICPSs). ICPSs are smart
systems that consist of highly interconnected and integrated
networks of physical components (sensor and actuator de-
vices) and computational components [1]. These enable fine-
grained control of infrastructure assets, making them more
efficient, reduce wastage, and increase resilience to failure.
A wireless approach to ICPSs further reduces the cost of the
wires and maintenance efforts and enables the scale as the
system grows [2].

Despite their increasing potential in new generation
ICPSs, Wireless Sensor and Actuator Networks (WSANs)
face significant security challenges that distinguish them
from wired industrial networks. The WSAN communication
relies on radio networks that are easy to disrupt and subvert,
which opens an attack vector against the ICPS [3]. An attack
to a WSAN can lead to the loss or delay of data which
will then compromise functionalities of ICPS applications.
In general, the underlying control schemes of ICPS will not
have access to temporally relevant data and thus may not
meet performance and safety requirements. Since standard
definitions of safety and security indicate the dependency of
application process safety on system security [1], an insecure
system cannot be safe [4]. Furthermore, ICPSs relying on
WSANs need to be protected such that if a security breach
occurs in, for example, communication infrastructure, other
ICPS functionalities will not be at risk.

Existing approaches have attempted to protect data com-
munication (i.e., communication layer) and computation
(i.e., application layer) of the ICPS separately. Regarding

• M. Taimoor Khan and Ivana Tomić are with School of Computing and
Mathematical Sciences, University of Greenwich, London, SE10 9LS, UK
E-mail: M.Khan@greenwich.ac.uk

the communication layer, extensive research efforts have
been put into hardening security of WSANs with the use
of cryptographic primitives and key sharing schemes [5],
[6], [7]. Additionally, the communication protection has
been provided via run-time monitoring (through network
intrusion monitors) [3], [8], [9]. Since these approaches pro-
tect only data communication, they fail to detect advanced
threats that involve semantics of the data contents or data-
based computations, e.g., application software.

Regarding the application layer, several run-time threat
detection monitors have been developed to harden the secu-
rity of computation. Such monitors establish good and bad
reference behaviours. They can raise alarms whenever the
observed behaviour matches the bad reference behaviour
or deviates from the good reference behaviour. To operate,
these monitors either employ data-driven approaches [10],
[11], [12] that are known to suffer from a high rate of
false alarms or model-based approaches [13], [14], [15], [16]
that are limited to protecting application computations only.
Recently, more rigorous AI based security monitors [17], [18]
have been developed, however, they require underlying AI
models.

Both, the communication layer approaches and the ap-
plication layer approaches to security, fail to acknowledge
the interdependencies between the communication network
and control application and the effects that communication
has on the operation of a control application. For example, a
malicious activity at the communication layer may increase
resource contention in WSANs, leading to long commu-
nication delays or failures which will not be necessarily
accounted for or checked by the control application. Ad-
ditionally, the operation of the control application would be
similarly affected if the attack’s intensity or the extent of the
attack’s impact changes.

In this paper, we present a design methodology for de-

2

Fig. 1. The architecture of ICPS.

veloping secure and reliable ICPSs by unifying the strengths
of the application behaviour monitor (that includes an appli-
cation specification) and communication constraints model
(that adds non-deterministic complexity and delay). The
main contribution of this work is a Multi-Layer Run-time
Security Monitor (ML-RSM) that can detect discrepancies
caused by interdependent communication and application-
layer attacks and prevent their propagation into the system’s
control loops. The ML-RSM detection method relies on the
inter-dependencies that have been identified between the
ICPS application and communication layer as a set of timing
constraints. For instance, a particular computation at the
application layer cannot be performed until all the required
information has not been received, i.e., a particular time at
the communication layer has not been elapsed. Additionally,
we present the threat model that includes attacks specific to
both the communication and application layer. These attacks
aim to disturb or delay the flow of data to the control system
application such that performance and safety guarantees
cannot be met. We instantiated ML-RSM using the protocol
specification rules of WirelessHART [19], a state-of-the-art
standard widely adopted in industrial processes manage-
ment and control [2]. We demonstrated the effectiveness of
the approach via an example of the ICPS used for control
and monitoring of a water distribution network.

The rest of the paper is structured as: Section 2 describes
the ICPS architecture and the application example. Section 3
presents the WirelessHART model, the communication con-
straints and main security threats. Section 4 presents a run-
time multi-layer security monitor design approach. Section 5
presents the results of vulnerability analysis. Section 6 lists
potential future work directions and conclusions.

2 ICPS ARCHITECTURE AND THE APPLICATION
EXAMPLE

In this section, we present the architecture of an ICPS. We
also give an example of a typical ICPS control application
that will be used throughout the paper.

2.1 System Architecture

We consider an ICPS with an architecture such as the one
shown in Fig. 1. The ICPS consists of N subsystems each
labelled i, where i ∈ {1, . . . , N}. Each subsystem consists

of a single plant, described using a linear time-invariant
model:

ξ̇i(t) = Aiξi(t) +Bivi(t). (1)

The vectors ξi(t) ∈ Rni and vi(t) ∈ Rmi are the state and
input vector of the subsystem i at time t, respectively. ni and
mi correspond to the number of sensors and actuators of the
subsystem i, respectively.Ai ∈ Rni×ni andBi ∈ Rni×mi are
the matrices appropriate to the application.

The plant i is instrumented with ni sensors
{si1, si2, . . . , sini} to measure its physical processes. We
assume that each sensor can access only one of the sys-
tem states. The measurements are taken periodically ξi(t)
based on the periodic sampling sequence τki := {tki |tki :=
kihi, ki ∈ N} where hi > 0 is the time between the samples
and ki is the number of the sample.

To control the plant, we use a linear input-to-state feed-
back controller:

vi(t) = Kiξ̂i(t). (2)

The vector ξ̂i(t) ∈ Rni includes the measured values of
states (a measurement error vector) that have been transmit-
ted to the controller. ξ̂i(t) is defined as ξ̂i(t) = ξi(t) − ξrefi
where ξrefi is the reference point (or a set point). Ki ∈
Rmi×ni is a pre-designed control gain for which the con-
trolled system is stable (i.e. Ai +BiKi is a Hurwitz matrix).

The goal of the controller is to provide the control
input vector, vi(t), that defines the actions sent to actua-
tors {ai1, ai2, . . . , aimi}. for which the values of ξi(t) are
maintained at a reference point.

The information exchange between sensors and actua-
tors and the controller is enabled by a wireless communi-
cation network. All N subsystems in Fig. 1, are coupled
through the shared wireless communication network and
use a single gateway. In this paper, we will use the terms
gateway and controller interchangeably, and we can treat
them as one device. This is a safe assumption because
the communication between them is wired, and therefore,
instantaneous and reliable. The communication layer will
be described in more details in Sec. 3.

2.2 Application Example
In this section, we present the physical model of a Water
Distribution Network (WDN) consisting of three District
Meter Areas (DMAs) (see Fig. 2) [20]. Each DMA has three or
four water tanks and supplies an average of 10-30 customer
connections via a set of pressurised pipes, pumping stations,
and valves.

For simplicity, we present a model of a single DMA
with three tanks (DMA1). The DMA1 is modelled us-
ing the linear time-invariant model in Eq. 1 with the
matrices: Ai = diag{−8.367 − 6.276 − 5.020} × 10−4,

Bi =

 0.1068 −0.0371 −0.0371
−0.0279 0.0801 −0.0279
−0.0223 −0.0223 0.0641

. In the state vector

ξi(t) ∈ Rni each state is measured by a sensor and rep-
resents the difference between the current water level and
set point reference water level for a tank. The set-point in
our system is ξref is equal to 3 meters and the number of
sensors, ni, is equal to 3. The system is sampled at the rate
of once every h = 2 seconds.

3

Fig. 2. The water distribution network.

The control input vector vi(t) ∈ Rmi represents the
degree to which the in-valves are open to fill each tank.
To calculate the actions that are sent to actuators we use
a linear input-to-state feedback controller in Eq. 2 with

Ki =

−0.3024 −0.0089 −0.0238
0.0228 −0.3034 −0.0073
0.0357 0.0215 −0.3024

. Ki ∈ Rni×ni is a

designed control gain for which closed-loop system is stable
and the number of actuators, mi, is equal to 3. We assume a
constant water demand for each of the three tanks.

3 ICPS COMMUNICATION LAYER

In this section, we present the ICPS communication layer.
First, we derive the main requirements of the ICPS com-
munication system. Then, we give an example of a rep-
resentative protocol that satisfies the previously defined
constraints. Finally, for the chosen communication protocol,
we present the timing constraints and the threat model.

3.1 ICPS Communication Requirements

ICPSs require reliable real-time communication. They have
strict requirements on the maximum allowed transmission
delays and message loss that they can tolerate and still
maintain system stability. We refer to ICPSs as to the delay-
intolerant, loss-intolerant applications. However, the reality
is that the transmission delays and message loss of wireless
communication are inherently non-deterministic and unre-
liable. The most common way to constrain this unreliability
is to use a class of reservation-based wireless protocols. For
such protocols, sensor and actuator nodes are allocated, for
example, a fixed time slot to transmit their sampled data and
receive their control actions, respectively [21]. As a result,
communication is collision-free and deterministic.

In this paper, we use WirelessHART [19] as a repre-
sentative example of reservation-based wireless protocols.
We chose WirelessHART as it is an industry-standard that
is adopted widely for control systems. However, the same
approach could be applied to any other reservation-based
protocol. Next, we present the network model that uses the
WirelessHART protocol.

3.2 WirelessHART Network Model

A WirelessHART single-hop network consists of a set of
end-devices denoted by j = 1, 2, . . . ,M where M is the
total number of end-devices, and a gateway. An end-device

Fig. 3. The WirelessHART frame structure.

is either a sensor node or an actuator node (i.e.,M = ni+mi

for the subsystem i), and is instrumented on the physical
process (or plant) such as the one described in Section 2.2.
The end-devices are communicating wirelessly to the gate-
way that is further connected to the controller. The commu-
nication between the gateway and the controller is wired,
which is instantaneous and reliable.

WirelessHART operates in 2.4GHz Industrial Scientific
and Medical (ISM) radio frequency band. It adopts the
IEEE 802.15.4 PHY layer, and its MAC layer needs to
conform to the IEEE 802.15.4 standard. The WirelessHART
MAC layer uses two main features: 1) Time-diversity that
is achieved using TDMA (Time Division Multiple Access),
where each end-device is allocated a 10ms long time slot to
communicate with the gateway. 10ms long time slots allow
exactly one transmission and its associated acknowledge-
ment. 2) Spectrum diversity that is achieved by using all
16 channels defined in IEEE 802.15.4. An end-device can
change the channel to avoid potential interference (from
coexisting wireless systems or jammers).

For simplicity, we assume that the subsystem i uses a
single frequency channel to realise its uplink (sensor-to-
controller) and downlink (controller-to-actuator) communi-
cation. Each sensor is allocated a 10ms uplink time slot to
send its measurements. The number of uplink time slots
is equal to the number of sensors in the subsystem, ni.
Similarly, each actuator is allocated a 10ms downlink time
slot for receiving the corresponding control action. The
number of downlink time slots is equal to the number of
actuators in the subsystem, mi. The sensor and actuator
time slots are separated by the guard slot within which the
controller performs the computation of control inputs.

The sensor, actuator, and guard time slots are organised
within frames. The frame structure is depicted in Fig 3. The
frames are occurring periodically where the length of the
period corresponds to the sampling rate of sensor nodes, hi,
of the ICPS. For the presented network model, we give the
timing constraints in the following section.

3.3 WirelessHART Timing Constraints
To specify the timing constraints of the WirelessHART net-
work, we first need to define the end-to-end delay. The end-
to-end delay is defined as the total delay from when the
data is sampled by sensors and transmitted to the controller
until when the corresponding control action is received at
actuators. The total delay can be expressed as the sum of
following terms:

tdelay = tuplink + tcomp + tdownlink. (3)

tuplink is the time that a sensor node takes to access its time
slot and send its measurements. tuplink cannot be larger than

4

ni × 10 ms (i.e., the worst-case scenario when the sensor is
allocated the last available time slot). tcomp is the time that
the controller takes to process the received measurements
and compute the control input. We do not consider this
delay in the analysis as it is negligible when compared
to the other delay terms. tdownlink is the time an actuator
node takes to receive the control action from the controller.
tdownlink cannot be larger than mi × 10 ms (i.e., the worst-
case scenario when the actuator is allocated the last available
time slot).

To enable real-time communication, a set of timing con-
straints need to be satisfied in the following order:

1) The controller has to receive all sensor measure-
ments before it performs computation, i.e. tuplink ≤
ni × 10 ms, ∀sini , ∀t.

2) The actuators need to receive their control action
before the frame is over, i.e. tdownlink ≤ mi×10 ms,
∀aimi , ∀t.

3) The total delay has to be smaller or equal to the
sampling time, i.e. tdelay ≤ hi, ∀t.

If any of the constraints is not satisfied, the operation
of the ICPS can be affected. Additional failures can happen
also due to malicious disruption and subverting [22], [23].
The threat model of WirelessHART and its security features
are given next.

3.4 WirelessHART Threat Model

WirelessHART implements several mechanisms to ensure
data confidentiality, authenticity and integrity in both hop-
by-hop and end-to-end transmissions [23]. However, the
use of wireless interface makes WirelessHART vulnerable
against a number of threats. An attacker can disrupt the
flow of data by undertaking a number of the malicious
activities [22], We categorise these into two main categories:

• Computational threats where an attacker can modify
the instructions or internal-data values of the appli-
cation computations. This falsifying of information
can lead to a de-synchronisation which is critical
for a correct operation of time-based protocols such
as WirelessHART. The detection of such threats is
discussed in Sec. 4.4.

• Communication threats where an attacker can cause a
communication failure (e.g., by using a jammer) or
injects a false data. In both cases, due to the lack of
up-to-date readings, the controller will not be able to
produce the correct action and the system operation
will be severely affected. For this class of threats we
consider two cases, a simple communication failure
where some data is dropped randomly (discussed in
Sec. 4.4) and a more advanced data injection which
might go undetected by the monitor and would
require a vulnerability analysis to be done (discussed
in Sec. 5).

The presented categories of the attacks considered a dif-
ferent levels of sophistication (i.e. more and less advanced
attacker actions).

Fig. 4. Multi-layer run-time security monitor (ML-RSM)

4 MULTI-LAYER RUN-TIME SECURITY MONITOR

In this section we present the Multi-Layer Run-time Secu-
rity Monitor (ML-RSM) that combines strengths of an ap-
plication behaviour model and communication constraints
model. First, we describe the ML-RSM structure. Then, we
demonstrate how it can be used with our application exam-
ple in Sec. 2.2. Finally, we present the ML-RSM prototype
implementation details and we discuss the detection of the
computational and communication threats in Sec. 3.4.

4.1 Run-Time Multi-layer Security Monitor Design

Based on ARMET [16], we introduce our Multi-Layer Run-
time Security Monitor (ML-RSM). The ML-RSM structure
is given in Fig. 4. ML-RSM allows monitoring of both, the
application layer and communication-layer of an ICPS. In
simple terms, ML-RSM checks if the observed behaviour is
consistent with the expected behaviour of the ICPS. If any
inconsistency is detected, the ML-RSM raises the alarm. The
alarm could be then further used by a larger system (e.g.,
AWDRAT [24]) to enable a fail-safe operation of the ICPS.
Next we give an explanation of the ML-RSM operating
principle and the challenge of modelling and observing the
application and communication layer behaviours together.

To perform the monitoring, ML-RSM requires two in-
puts: the application specification (Apppec) and the ap-
plication implementation (AppImpl) [25]. Since AppSpec
(predicted behaviour) and AppImpl (observed behaviour)
correspond to a different level of abstraction of an ICPS,
Wrapper is used to encapsulate AppImpl and provide the
monitor with the representation that is comparable to App-
Spec. ML-RMS then runs AppSpec and AppImpl in parallel
checking their consistency.

The challenge in modelling and observing the applica-
tion layer and communication layer behaviours together
lies in the understanding of their inter-dependencies. We
performed an analysis of the ICPS, with the goal of estab-
lishing inter-dependencies between the control system in
Sec. 2.1 and the communication system in Sec. 3.2. Based
on the results of the analysis, we expressed the identified
inter-dependencies as a set of timing constraints. These are
given in Sec. 3.3. For instance, a certain computation at the
application layer cannot be performed until all the required
information has not been received, i.e., a certain time at
communication layer has not been elapsed. To grasp these
inter-dependencies our AppSpec models the two types of
the behaviour together:

5

• Computational behaviour (or application layer be-
haviour) by establishing the definitions of good and
bad behaviour (for ICPS cyber and physical parts).
The good behaviour is obtained by decomposing the
ICPS into submodules that are encoded using pre-
and post-conditions. Submodules are connected via
data-flow and control-flow links. The bad behaviour
is obtained by defining known and suspected attack
plans.

• Communication behaviour (or communication layer be-
haviour) by establishing the timing constraints of
the underlying communication scheme as discussed
in Sec. 3.3. These constraints are modelled as an
invariant.

The AppSpec language allows modelling cyber and
physical components of ICPS as first-class models to-
gether with functional (computational behaviour) and non-
functional (communication behaviour) characteristics. The
formalism of the language combines monadic second-order
logic and event calculus that enables describing system be-
haviour at various levels of abstraction, with a higher degree
of modularity. Based on the formalism, the specification
can be directly compiled into executable code, and is thus,
inherently efficient to ensure real-time requirements of ICPS.
Semantically, the formalism of the language translates into a
finite automaton that recognises only the words that satisfy
the specification [26].

When compared to the state of the art run-time monitor-
ing techniques (e.g. [27], [28], [29]), ML-RSM demonstrates
a number of improvements. Existing approaches support
temporal logic to describe various behavioural properties
of ICPS, which usually can model time-related properties
observing historical data and cannot be directly associated
with various implementation modules of ICPS to detect
computational deviation attacks. Our specification language
support monadic logic and thus supports modelling of any
behavioural properties, including pre-conditions (ensuring
that input parameters of a certain module/method satisfy
input conditions); post-conditions (ensuring that output of
a module/method is computed as per body of the mod-
ule); and invariant (ensuring that throughout the execution
of a module/method a certain property holds). Uniquely,
our approach performs analysis to establish communication
requirements for an underlying communication protocol on
the one side and allows to model application and commu-
nication models as well as their inter-dependencies on the
other side. Importantly, the developed monitor is tunable
and can operate in different modes depending on the un-
derlying operational security and safety state of an ICPS.

4.2 Application Example Specification
To demonstrate an AppSpec example, we use the model
of a single DMA presented in Sec. 2.2. In this model, a
single linear input-to-state controller is used to maintain the
water levels of three water tanks at the desired height. Our
AppSpec for the chosen example includes the following:

• A physical model that specifies the physical character-
istics and dynamics of the DMA,

• A cyber model that specifies the computations per-
formed by the controller, and

1 class DMASpec {
2 private static final double VALVE_CLOSED = 0.0;
3 private static final double VALVE_OPENED = 360.0;
4 private double[] water_levels = {0.0,0.0,0.0};
5 private double[] valve_degrees = {VALVE_CLOSED,

VALVE_CLOSED, VALVE_CLOSED};
6 ...
7

8 public double[] sense_levels(double[] readings){
9 for(int i=0; i<3; i++){

10 readings[i] != null /\ readings[i] >= 0.0 ->
11 water_levels[i] = readings[i];
12 }
13 return water_levels;
14 }
15

16 public double[] set_valve_degrees(double[] degrees){
17 for(int i=0; i<3; i++){
18 valve_degrees[i] = degrees[i];
19 }
20 return valve_degrees;
21 }
22

23 public void timestamp(){
24 for(int i=0; i<3; i++){
25 delta_level = valve_degrees[i] *

VALVE_FLOW_PER_DEGREE - EMPTY_RATE
26 /\ 0 <= water_levels[i] + delta_level <=

MAX_LEVEL
27 ->
28 water_levels[i] = min(MAX_LEVEL,
29 max(0, water_levels[i]+

delta_level))
30 }
31 }
32 }

Listing 1. The specification of the DMA

• A communication model that specifies timing con-
straints at the controller in terms of delays (these are
consistent with real-time requirements of an ICPS) as
invariant.

The physical model is given in Listing 1, while the
cyber model and the communication model are sketched
in Listing 2. For readability, we have presented our models
in a Java-like language.

Listing 1 presents the operation principle of the DMA
system that involves the following three operations:

• Obtaining the water levels based on the measured
sensor values,

• Setting degrees to which valves should open and
• Adjusting the water levels based on the flow of water

(the valves openings).

Each of these operations has a corresponding sub-model
and implementation module.

Listing 2 presents the specification of flow of operations
performed by the controller. These are:

1) Use the sensor values to measure the state vector of
the system, ξi(t) = [ξi1 ξi2 ξi3]T .

2) Compute the difference (i.e., the error) between
the measured system states and the set point of
the controller to get the state error vector, ξ̂i(t) =
[ξ̂i1 ξ̂i2 ξ̂i3]

T .
3) Multiply the error vector by a pre-defined gain

Ki to get the control input vector, vi(t) =
[vi1 vi2 vi3]T .

4) Send the control input vector, vi(t), to the actuators.

6

1 public enum Action { PROCESS, WAIT, NOTHING }
2

3 class ControllerSpec {
4 DMASpec dma = ...;
5 ...
6

7 public double[] compute_errors(double[]
sensed_water_levels){

8 double[] errors = new double[3];
9 for(int i=0; i<3; i++){

10 errors[i] = sensed_water_levels[i]-SET_POINT;
11 }
12 return errors;
13 }
14

15 public double[] compute_control_inputs(double[] errors){
16 double[] inputs = new double[3];
17 for(int i=0; i<3; i++){
18 valve_degrees[i] = errors[i] * GAIN;
19 valve_degrees[i] = min(DMASpec.VALVE_FULLY_CLOSED,
20 max(DMASpec.VALVE_FULLY_OPEN

, valve_degrees[i]));
21 }
22 return inputs;
23 }
24

25 public void process(){
26 long start = System.currentTimeMillis();
27 while(System.currentTimeMillis()<start+

SIMULATION_DURATION){
28 double[] sensed_water_levels = dma.

sense_levels();
29 long now = System.currentTimeMillis();
30 Action, Time act, t =
31 { a, t | (a = PROCESS ->
32 (t >= now+T_UPLINK ->
33 errors = compute_errors(

sensed_water_levels) /\
34 new_valve_degrees =

new_valve_degrees(errors)
35 -> (now = System.

currentTimeMillis() /\
36 t >= now+T_DOWNLINK) ->
37 dma.setvalve_degrees(

new_valve_degrees)))
38 /\ (a = WAIT -> now = System.

currentTimeMillis() ->
39 (now <= t < now+T_UPLINK) \/ (now <=

t < now+T_DOWNLINK) -> skip)
40 };
41 ...
42 }
43 }
44 }

Listing 2. The specification of the controller

The flow of operations performed by the controller is
affected by the timing constraints of the communication
model (see Listing 2, lines 2-40). The timing constraints are:

1) Step 1 has to be executed at the sampling time, tki =
khi, k ∈ N only.

2) Steps 2 and 3 require all three sensor readings
to be successfully received via an uplink wireless
communication channel within the time tuplink (see
Sec. 3.3).

3) Step 4 requires the controller to get the access to
a downlink wireless channel. It has to be executed
within the time tdownlink.

4) All four steps have to be executed within the time
tdelay which has to be less than the sampling time,
hi, ∀t.

Based on the identified timing constraints, a number of
properties can be checked and ensured at run-time. For
instance, the property reflecting Step 1 is described in line

TABLE 1
Monitor overhead performance

Per 1× 10−1 cycle
Execution mode CPU time Real time
End-to-End (no invariant) 2.90× 10−5 3.09× 10−5

End-to-End (with invariant) 3.63× 10−4 4.47× 10−4

Full ML-RSM 8.17× 10−3 8.32× 10−3

28 of Listing 2. The property reflecting Step 2 and Step 3 is
described in lines 30-40 of Listing 2. More specifically:

• When the wait time equals to sum of current time
and T UPLINK elapses, compute the errors for the
received water levels, and then, based on the com-
puted errors, compute valve degrees.

• When the wait time equals to sum of current time
and T DOWNLINK elapses, send the computed
valve degrees to actuators to adjust the water flow.

• The system is in wait state when the elapsed time
is in the range {now . . . T UPLINK} or in the range
{now. . . T UPLINK}.

4.3 The ML-RSM Prototype Implementation

Our current prototype implementation is simulated on a
Mac Pro with a 2.6 GHz 6-Core Intel Core i7 processor.
The controller algorithm runs as an application in Pro-
grammable Logic Controller (PLC), while the ML-RSM runs
as a middleware for PLC. The controller application can be
developed based on any other industry standard (i.e., IEC
61131-3 [30]) language using any or many among ladder
diagram, sequential function charts (SFC), structured text
(ST) and function block diagram (FBD). ML-RSM can run
on top of the operating system, e.g., RTOS [31].

To demonstrate the ML-RSM performance, we simulated
the experiment for 200 seconds using different monitoring
execution modes. These are:

1) End-to-End (no invariant) – is a lightweight mode in
which the monitor observes minimum behaviour
(pre- and post-conditions of each module) to detect
threats. This mode usually operates when the ICPS
environment is determined as safe.

2) End-to-End (with invariant) – is a hybrid mode in
which the monitor observes moderate behaviour
(i.e., pre- and post-conditions and invariant of each
module) to detect threats. This mode usually oper-
ates when the ICPS environment is determined as
suspicious.

3) Full ML-RSM – is a heavyweight mode in which the
monitor observes full behaviour (i.e., pre- and post-
conditions, invariant and data flow of each module)
to detect threats. This mode usually operates when
the ICPS environment is determined as under attack.

The results are presented in Table 1 for the above-mentioned
three respective modes. We can observe that the monitor
runs efficiently with negligible overhead even in the case of
fine-grained monitoring (i.e., CPU time of 8.17 x 10-3 seconds
for each cycle of the ML-RSM algorithm).

7

4.4 Computational/Communication Threats Detection
The current prototype of ML-RSM aims to detect the com-
putational and communication threats presented in Sec. 3.4.
This is done by checking if the observed behaviour is
consistent with the expected behaviour of the ICPS.

More specifically, in the case of a computational attack
where an attacker modifies the internal sensor values, the
deviation will be detected as the values would be sig-
nificantly different than what has been predicted by the
AppSpec. If an attacker manipulates the operations (i.e.,
command) of the controller implementation (AppImpl) or
the information flow, the inconsistency will be detected
again.

In the case of a communication attack that may falsify
the information or cause a transmission failure when some
of the sensor readings were dropped, the monitor will
successfully detect the attacks because there is no significant
gap between the model of the system and its corresponding
example implementation. Both of the attacks were launched
artificially through modifications during a simulation. For
instance, in case of falsifying information, when the timing
information was tampered, it was immediately detected by
the monitor being inconsistent with predicted time value
whose model is given in Lines 30–40 of Listing 2. Similarly,
in case of transmission failure, when some of the sensor
readings were dropped, the monitor immediately alarmed
detecting violation of the condition that the reading is null
(the model is given in Line 10 of Listing 1).

As demonstrated, our ML-RSM can detect various com-
putational and communication attacks, however, there is
still a possibility of eluding the monitor through stealthy
attacks [32]. These are characterised as advanced false data
injection and tampering attacks and we analyse them next.

5 VULNERABILITY ANALYSIS

In this section we present the results of a vulnerability
analysis to detect stealthy attacks that cannot be detected
by ML-RSM. We demonstrate our approach based on a
variation of the application example in Sec. 2.2.

5.1 Stealthy Attacks
This category of the attacks considers more advanced adver-
saries that can tamper with sensor readings or control action
signals over an extended period of time. The tampering is
done subtly (to approximate the expected behaviour of the
system) so that the values are not detected as anomalous by
anomaly detection mechanisms. However, the underlying
physical system will be compromised, and over time its
degraded performance can lead to a complete denial of
service. We refer to these as to stealthy attacks [32].

Most of the existing approaches to handle stealthy at-
tacks are limited as they either harden the security of the
network through switching an underlying topology [33],
[34] or by measuring the magnitudes of behaviour resid-
uals [35]. Such approaches will fail to detect stealthy attacks
in the cases when an attacker has enough knowledge of the
system topology to manipulate the readings such that they
do not violate the desired threshold.

In contrast to the contemporary approaches, we handle
the stealthy attacks based on a method that identifies the

vulnerabilities in the system design [16], [36]. The method is
iterative; the design will be refined until no vulnerabilities
are identified, or the identified vulnerabilities are covered
by the monitor. The method requires a model of the system
as a state function. It is then analysed to determine a set of
input values that establish a stealthy attack. The method is
described in more details next.

5.2 Stealthy Attack Detection Method
Consider an ICPS that implements a control loop for some
process that is modelled as a function P (xt). P (xt) accepts
a set of input variables (xt) at every time instant t and
checks if the variables satisfy the process specification. In
the implementation of the system, the set of variables xt is
measured through sensor readings (yt), that is later input to
the controller and used to estimate the state of the system
as well as the necessary actions (at). Therefore, we rewrite
process model as P (x, y) that accepts the measurements y
stored in a set of variables x and checks their compliance
with the specification.

We consider that the system is monitored by a monitor
mon(x, y). During secure operations, the monitormon(x, y)
accepts all measurements y and uses them to estimate the
state as modelled by P (x, y). A set of measurements y′ con-
stitutes a successful stealthy attack if the monitormon(x, y′)
accepts the measurements y′ and the measurements y′ are
tampered/injected values of the actual measurements y
such that y′ 6= y.

To detect such an attack we ask solver a question to find
a set of measurements y′ such that P (x, y) holds (i.e., the
measurements correctly estimate the system state) and the
monitor mon(x, y) accepts the measurements. The question
is specified as ∃y′ : P (x, y) ∧ mon(x, y) ∧ y′ 6= y and is
encoded in an SMT solver for reals, namely, dReal [37] that
implements δ-precision decision procedures.

In fact, these procedures can find such values with given
error δ. If the solver answers ”yes” then it also provides
one set of y′ that constitutes a stealthy attack. Once the set
is identified, the system state model f() can be refined by
introducing constraints that eliminate the attack constituted
by the y′. Each refinement reduces the search space of the
model until either all such attacks have been identified or
we collect identified vulnerable values to be handled at run-
time by the monitor ML-RSM. We use the presented detec-
tion approach to detect a stealthy attack on our application
example which is given next.

5.3 Stealthy Attack to the Application Example
We demonstrate our approach based on a variation of the
application example in Sec. 2.2. We consider a DMA that
has 3 valves to distribute water to three tanks. Each water
tank has a sensor to measure the water level. The outgoing
flow of water from the valves is r1, r2 and r3. These are
monitored by sensors that give the valve open-degree and
represented by real numbers, r1, r2 and r3 ∈ {0.0, 1.0}.
The horizontal cross-section area of the tanks is 1. These
standard values lead to a property that the volume of water
in each tank has the same value as the water level in it.

The system operates in a discrete time and at the begin-
ning of each time period the state of the valves may change.

8

1 (set-logic QF_NRA)
2 (declare-fun h1t () Int)
3 (declare-fun h1t1 () Int)
4 (declare-fun h2t () Int)
5 (declare-fun h2t1 () Int)
6 (declare-fun h3t () Int)
7 (declare-fun h3t1 () Int)
8 (declare-fun a () Int)
9 (declare-fun r1in () Real)

10 (declare-fun r2in () Real)
11 (declare-fun r3in () Real)
12 (assert (and (and (= h1t 2) (= h1t1 3)) (= a 1)))
13 (assert (and (= h2t 2) (= h2t1 3)))
14 (assert (and (= h3t 2) (= h3t1 3)))
15 (assert (and (<= 0 r1in) (<= r1in 1)))
16 (assert (and (<= 0 r2in) (<= r2in 1)))
17 (assert (and (<= 0 r3in) (<= r3in 1)))
18 (assert (= (+ (- h1t1 h1t) (+ (- h2t1 h2t) (- h3t1 h3t)))

(+ (/ r1in (ˆ a 2)) (+ (/ r2in (ˆ a 2)) (/ r3in (ˆ a
2))))))

19 (check-sat)
20 (exit)

Listing 3. Application example model

The overall state of ICPS including three tanks and DMA,
which is monitored by the monitor mon(x, y), is expressed
using the following function:

H1 +H2 +H3 = r1 + r2 + r3, (4)

where H1 = H1(t+1)−H1(t), H2 = H2(t+1)−H2(t) and
H3 = H3(t + 1) − H3(t) are the difference of water levels
of the three tanks, and r1, r2 and r3 are the outgoing flow
rates of water at time t + 1 as measured by the sensors. In
principle, the state function expresses that sum of the water
level differences in the tanks at t + 1 is equal to the rate of
water that flows in the tanks at time t+ 1.

To demonstrate the stealthy attack, consider the scenario
where at the time t the system state has been configured as

H1(t) = H2(t) = H3(t) = 2, (5)
r1(t+ 1) = r2(t+ 1) = r3(t+ 1) = 0.5. (6)

At the time t+1, the states should beH1(t+1) = H2(t+1) =
H3(t+1) = 2.5 satisfying Eq. 4. In the case when the sensors
provide correct values for the rates and heights as above,
the monitor mon(x, y) will accept all values as they satisfy
Eq. 4. However, an attacker can launch a stealthy attack by
injecting false values in detected-way or evaded way.

In detected-way, the attacker injects values that do not sat-
isfy Eq. 4 and thus are detected by the monitor. For instance,
the injected values forH1(t+1) = H2(t+1) = H3(t+1) = 3
are detected because (3−2)+(3−2)+(3−2) 6= 0.5+0.5+0.5.

In evaded-way, the attacker provides values that are false
but satisfy Eq. 4 and thus are undetected by the monitor. For
instance, the injected values for H1(t + 1) = H2(t + 1) =
H3(t + 1) = 3 and r1 = r2 = r3 = 1 satisfy (3 − 2) + (3 −
2) + (3 − 2) = 1 + 1 + 1 but are clearly not the legitimate
system state at t+ 1 as per configuration in Eq. 5 and Eq. 6.

The previous example demonstrates that the system is
vulnerable to stealthy attack when the sensor values for
H and r are compromised. However, our method is able
to detect such an attack using SMT solver, providing the
state function as an input and asking if there is a solution
to this equation with parameter values H1(t + 1), H2(t +
1), H3(t+1) and r1(t+1), r2(t+1), r3(t+1) in the defined
ranges, which is different from the real action. The model of

1 a : [ENTIRE] = [1, 1]
2 h1t : [ENTIRE] = [2, 2]
3 h1t1 : [ENTIRE] = [3, 3]
4 h2t : [ENTIRE] = [2, 2]
5 h2t1 : [ENTIRE] = [3, 3]
6 h3t : [ENTIRE] = [2, 2]
7 h3t1 : [ENTIRE] = [3, 3]
8 r1in : [ENTIRE] = [1, 1]
9 r2in : [ENTIRE] = [1, 1]

10 r3in : [ENTIRE] = [1, 1]
11 delta-sat with delta = 0.00100000000000000

Listing 4. Application example stealthy attack detection

our described stealthy attack example is shown in Listing 3.
In detail, in Listing 3, the lines 2-7 model the three height
functions at time t and t + 1, the lines 9-11 model flow
rates, lines 12-14 model specification of height functions and
the lines 15-17 model ranges of flow rates. Finally, line 18
models the design of the system as a relationship among
heights, flow rates and surface area. The successful detection
of the attack to the system is presented in Listing 4. Based on
the detection, these values can be monitored by ML-RSM or
the design can be constrained to reduce the attack surface.

6 CONCLUSIONS AND FUTURE WORK

We have introduced a rigorous multi-layer run-time security
monitor that protects ICPS against advanced attacks that
arise from the inter-dependence of application-layer and
communication-layer vulnerabilities. The monitor detects
attacks at run-time by comparing the model behaviour
with the observed behaviour of the ICPS execution. The
feasibility of the approach has been demonstrated through
its application to a small-scale water distribution system.
Our results show the protection of the ICPS not only against
the computational attacks but also the stealthy attacks.

In our future work, we will extend our approach to
include novel control strategies that use aperiodic communi-
cation patterns based on events occurring in the underlying,
monitored physical process. Events are triggered at the sen-
sors asynchronously only when the sample measurement
of the process indicates that a change will negatively affect
the stability or performance of the system. This makes it
difficult to model and monitor. We will also consider larger-
scale industrial systems that consist of tens of DMAs that are
distributed but sharing common communication resources.

ACKNOWLEDGMENTS

The work presented in this paper was undertaken in the
scope of project ENSURESEC, which has received funding
from the European Union’s Horizon 2020 research and
innovation programme under Grant Agreement No. 883242.

REFERENCES

[1] “Framework for cyber-physical systems, release 1.0,” CPS Public
Working Group, 2016, pages.nist.gov/cpspwg.

[2] C. Lu, A. Saifullah et al., “Real-time wireless sensor-actuator
networks for industrial cyber-physical systems,” Proc. of the IEEE,
vol. 104, no. 5, pp. 1013–1024, 2015.

[3] I. Tomić and J. A. McCann, “A survey of potential security issues
in existing wireless sensor network protocols,” IEEE Internet of
Things Journal, vol. 4, no. 6, pp. 1910–1923, 2017.

9

[4] D. Serpanos, M. T. Khan et al., “Designing safe and secure indus-
trial control systems: a tutorial review,” IEEE Design & Test, vol. 35,
no. 3, pp. 73–88, 2018.

[5] A. Liu and P. Ning, “Tinyecc: A configurable library for elliptic
curve cryptography in wireless sensor networks,” in 2008 Int. Conf.
on Inf. Processing in Sensor Netw. (IPSN). IEEE, 2008, pp. 245–256.

[6] J. Louw, G. Niezen et al., “A key distribution scheme using
elliptic curve cryptography in wireless sensor networks,” in Proc.
of INDIN, 2016, pp. 1166–1170.

[7] S. Athmani, A. Bilami et al., “Edak: An efficient dynamic authenti-
cation and key management mechanism for heterogeneous wsns,”
Future Gen. Comp. Sys., vol. 92, pp. 789–799, 2019.

[8] R. Mitchell and R. Chen, “Behavior rule specification-based intru-
sion detection for safety critical medical cyber physical systems,”
IEEE Trans. on Depend. Sec. Comp., vol. 12, no. 1, pp. 16–30, 2014.

[9] R. Mitchell and I.-R. Chen, “A survey of intrusion detection
techniques for cyber-physical systems,” ACM Computing Survey,
vol. 46, no. 4, pp. 55:1–55:29, Mar. 2014.

[10] Z. Niu, S. Shi et al., “A survey of outlier detection methodologies
and their applications,” in Int. Conf. on Artificial Intelligence and
Comput. Intelligence. Springer, 2011, pp. 380–387.

[11] A. Lakhina, M. Crovella et al., “Mining anomalies using traffic
feature distributions,” SIGCOMM Comput. Commun. Rev., vol. 35,
no. 4, p. 217–228, 2005.

[12] R. Mitchell and R. Chen, “A survey of intrusion detection tech-
niques for cyber-physical systems,” ACM Comput. Surveys (CSUR),
vol. 46, no. 4, pp. 1–29, 2014.

[13] S. Adepu and A. Mathur, “Using Process Invariants to Detect
Cyber Attacks on a Water Treatment System,” in 31st IFIP Int.
Inf. Sec. and Privacy Conf. (SEC), vol. AICT-471, 2016, pp. 91–104.

[14] C. M. Ahmed, C. Murguia et al., “Model-based attack detection
scheme for smart water distribution networks,” in Proc. of ASIA
CCS. ACM, 2017, pp. 101–113.

[15] S. Adepu and A. Mathur, “Distributed detection of single-stage
multipoint cyber attacks in a water treatment plant,” in Proc. of
ASIA CCS. ACM, pp. 449–460.

[16] M. T. Khan, D. Serpanos et al., “Armet: Behavior-based secure and
resilient industrial control systems,” Proceedings of the IEEE, vol.
106, no. 1, pp. 129–143, Jan 2018.

[17] M. Khan and H. Shrobe, “Security of cyber physical systems:
Chaining induction and deduction,” Computer, vol. 52, no. 07, pp.
72–75, jul 2019.

[18] M. T. Khan, D. Serpanos et al., “Rigorous machine learning for
secure and autonomous cyber physical systems,” in 2020 25th
IEEE International Conference on Emerging Technologies and Factory
Automation (ETFA), vol. 1, 2020, pp. 1815–1819.

[19] J. Song, S. Han et al., “WirelessHART: Applying wireless technol-
ogy in real-time industrial process control,” 2008 IEEE Real-Time
and Embedded Tech. and Appl. Symposium, pp. 377–386, 2008.

[20] L. Bhatia, I. Tomić et al., “Control communication co-design for
wide area cyber-physical systems,” arXiv e-prints, pp. arXiv–2008,
2020.

[21] P. Suriyachai, U. Roedig et al., “A survey of mac protocols for
mission-critical applications in wireless sensor networks,” IEEE
Commun. Surveys & Tutorials, vol. 14, no. 2, pp. 240–264, 2011.

[22] S. Raza, A. Slabbert et al., “Security considerations for the wire-
lesshart protocol,” in 2009 IEEE Conference on Emerging Technologies
& Factory Automation. IEEE, 2009, pp. 1–8.

[23] L. Bayou, D. Espes et al., “Security analysis of WirelessHART
communication scheme,” in Int. Symp. on Found. and Practice of
Security, 2016, pp. 223–238.

[24] H. Shrobe, R. Laddaga et al., “AWDRAT: A Cognitive Middleware
System for Information Survivability,” in Proc. of the 18th Conf. on
Innovative Appl. of Artificial Intelligence (IAAI), 2006, pp. 1836–1843.

[25] M. T. Khan, D. Serpanos et al., “A rigorous and efficient run-time
security monitor for real-time critical embedded system applica-
tions,” in WF-IoT, Dec 2016, pp. 100–105.

[26] B. Courcelle and J. Engelfriet, Graph Structure and Monadic Second-
Order Logic: A Language-Theoretic Approach. Cambridge U. P., 2012.

[27] X. Zheng, C. Julien et al., “Efficient and scalable runtime moni-
toring for cyber–physical system,” IEEE Sys. J., vol. 12, no. 2, pp.
1667–1678, 2018.

[28] E. Bartocci, J. Deshmukh et al., Specification-based monitoring of
cyber-physical systems: A survey on theory, tools and applications, ser.
Lecture Notes in Computer Science, 2018, pp. 135–175.

[29] T. Zhang, J. Wiegley et al., “Correct-by-construction implementa-
tion of runtime monitors using stepwise refinement,” in Proc. of
SETTA, 2018, pp. 31–49.

[30] R. Ramanathan, “The iec 61131-3 programming languages features
for industrial control systems,” in WAC, 2014, pp. 598–603.

[31] Yanbing Li, M. Potkonjak et al., “Real-time operating systems for
embedded computing,” in Proc. Int. Conf. on Computer Design VLSI
in Computers and Processors, 1997, pp. 388–392.

[32] C. Kwon, W. Liu et al., “Analysis and design of stealthy cyber at-
tacks on unmanned aerial systems,” Journal of Aerospace Information
Systems, vol. 11, no. 8, pp. 525–539, 2014.

[33] M. A. Rahman, E. Al-Shaer et al., “A formal model for verifying
stealthy attacks on state estimation in power grids,” in IEEE 4th
Int. Conf. on Smart Grid Commun., 2013, pp. 414–419.

[34] G. Hug and J. A. Giampapa, “Vulnerability assessment of ac state
estimation with respect to false data injection cyber-attacks,” IEEE
Trans. on Smart Grid, vol. 3, no. 3, pp. 1362–1370, Sept 2012.

[35] A. Teixeira, I. Sha‘mes et al., “Revealing stealthy attacks in control
systems,” in 2012 50th Annual Allerton Conf. on Commun., Control,
and Comp., 2012, pp. 1806–1813.

[36] Y. Liu, P. Ning et al., “False data injection attacks against state
estimation in electric power grids,” ACM Trans. of Information
Systems Security, vol. 14, no. 1, pp. 13:1–13:33, Jun. 2011.

[37] S. Gao, S. Kong et al., “dreal: An smt solver for nonlinear theories
over the reals,” in Proc. of CADE, 2013, pp. 208–214.

M. Taimoor Khan is a Senior Lecturer in Cyber
Security at University of Greenwich and PI of
H2020 ENSURESEC. Prior to that, he was a
Lecturer in Cyber Security at University of Sur-
rey, UK and a postdoc at MIT CSAIL, USA and
AAU, Austria. He received a PhD in Formal Ver-
ification from JKU, Austria in 2014. His research
interests span the areas of formal verification
and software security, with a focus on building
reliable, secure and resilient real-time systems.
His works have won several best paper awards.

Ivana Tomić is a Senior Lecturer in Cyber Secu-
rity at University of Greenwich and co-I of H2020
ENSURESEC. Prior to that, she was a Research
Associate in the Computing Department at Im-
perial College London. She received a PhD in
Control Engineering from City, University of Lon-
don in 2016. Her research interests span the
areas of control engineering, cyber-security and
wireless communication networks, with a focus
on building secure, resilient and energy efficient
cyber-physical systems.

View publication statsView publication stats

https://www.researchgate.net/publication/344750602

	Introduction
	ICPS Architecture and the Application Example
	System Architecture
	Application Example

	ICPS Communication Layer
	ICPS Communication Requirements
	WirelessHART Network Model
	WirelessHART Timing Constraints
	WirelessHART Threat Model

	Multi-layer Run-Time Security Monitor
	Run-Time Multi-layer Security Monitor Design
	Application Example Specification
	The ML-RSM Prototype Implementation
	Computational/Communication Threats Detection

	Vulnerability Analysis
	Stealthy Attacks
	Stealthy Attack Detection Method
	Stealthy Attack to the Application Example

	Conclusions and Future Work
	References
	Biographies
	M. Taimoor Khan
	Ivana Tomic

