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Abstract 

 

Increasing concerns regarding depletion of groundwater in the Delta region of 

Mississippi have led to a need to augment natural recharge. Infiltration basins are often one of 

the simplest means of artificially recharging aquifers. However, the Delta has a layer of clay and 

silt at the surface, so it is a better idea to use vadose-zone recharge wells that are not limited by 

the surficial layer of fine soils. The purpose of this study is to use full-scale field testing to assess 

the feasibility of using vadose-zone wells for artificial recharge of the Mississippi River Valley 

alluvial aquifer by using a combination of field, laboratory, and computer simulation techniques. 

From field tests data, the calculated transmissivity ranged from 5800 to 7800 m2/day. The 

calculated hydraulic conductivity ranged from 150 to 220 m/day. The calculated storativity of the 

aquifer ranged from 0.19 to 0.22. Field tests indicated that there is inverse correlation between 

barometric pressure and water level in the monitoring wells, indicating a barometric efficiency of 

approximately 60%. Despite 50 hours of injection test, there were small water table rises from 

well recharge. Water table rises decreased with increasing distance from the vadose-zone wells, 

ranging from 1 to 4 cm. Small water-table rises likely are due to the high hydraulic conductivity 

of the aquifer, vertical heterogeneity, screen location of the monitor wells, or some combination 

of these factors. Eight soil samples were collected from the site, and for some samples their 

saturated hydraulic conductivities (Ksat) and wetting/draining curves were determined using 

falling head permeability test, METER Hyprop, and hanging water-column method. An 

axisymmetric model was developed using VS2DTI software. The simulations were run with a 
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range of Ksat and porosity (n) values. The results of the simulations show that head changes at the 

nearest monitor well will occur faster and be smaller with a greater ratio of Ksat/n and vice versa. 

In addition, 3D numerical variably-saturated model was developed using HYDRUS-3D software. 

This model simulated the injection of water from four vadose-zone wells in an alluvial aquifer. 

Simulated pressure head differences in five observation nodes that are located 0.17 m below the 

water table showed that the observation node that is below the vadose-zone well had the largest 

water level increase and the observation node that is furthest from the vadose-zone well had the 

smallest water level increase, ranging from 0.6 to 2 cm. Different water-table responses between 

the final field test and model simulations are likely due to the differences in the amount of water 

injected into the system and the positions of the monitor wells. A total of 272 m3/day of water 

was injected during the field test whereas only 88 m3/day of water was injected during the 

HYDRUS simulation, and the field monitor wells were screened deeper than the depths of the 

observation nodes in HYDRUS. This research provides understanding of the hydraulic properties 

controlling vadose-zone wells and operation of the artificial recharge system. As most alluvial 

aquifers have similar geological settings as the Delta, results are expected to be relevant to other 

areas. 
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INTRODUCTION 

 

Significant demands for irrigation water in the Delta region of Mississippi have resulted 

in heavy depletion of groundwater in the aquifer to the extent of unsustainability of groundwater 

resources (Brandon, 2015). To augment natural recharge, infiltration basins are commonly used 

for artificially recharging aquifers (Bouwer, 2002). However, most alluvial aquifers, including 

the Mississippi River Valley alluvial aquifer (MRVAA), have capping layers of fine soils that 

significantly reduce the infiltration of water to the subsurface (Pyne, 1995). 

Therefore, it is a better idea to use vadose-zone recharge wells, instead of infiltration 

basins, since they are not limited by the surficial layer of fine soils that impedes infiltration. 

Instead, the wells are drilled through the capping layer and screened in the unsaturated (vadose) 

zone of the aquifer (Bouwer, 2002). Recent research based on a series of numerical simulations 

reported that the simulation results reveal the significant advantages of using small-diameter, 

shallow vadose-zone wells compared to surface infiltration basins, demonstrating possible flow 

rates of 76 gallons per minute (gpm) (414m3/day) (Handel et al., 2014).  

The purposes of this study are to perform full-scale field tests of vadose-zone wells in 

order to i)determine properties controlling well hydraulics such as saturated hydraulic 

conductivities, flow rate, groundwater storage, and unsaturated hydraulic properties of the 

aquifer and ii) assess feasibility of the use of vadose-zone wells for artificial recharge of the 

MRVAA.  

To address these project objectives, a combination of field, laboratory, and numerical 
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modeling methods were applied. Two initial field tests were conducted for planning the final 

aquifer recharge test. Final field test was conducted consisting of eight hours of pumping the 

nearby production well (only to an adjacent pond) and followed by 50 hours of injection into 

four vadose-zone wells. Eight soil samples were collected from the site and their saturated 

hydraulic conductivities (Ksat), wetting/draining curves, and unsaturated hydraulic properties of 

the soil samples were determined using falling head permeability test, METER Hyprop, and 

hanging water-column method. An axisymmetric model was developed using VS2DTi software 

from the U.S. Geological Survey (USGS). Simulations were run with a range of Ksat and porosity 

(n) values in order to estimate potential water-table response to these parameters. Finally, a three-

dimensional (3D) numerical variably-saturated flow model was developed using HYDRUS-3D 

software to simulate the injection of water into four vadose-zone wells. 

 This research provides better understanding of the hydraulic properties controlling 

vadose-zone wells. In addition, the research assesses feasibility of operation of the artificial 

recharge system using small-diameter vadose-zone wells in the shallow alluvial aquifer in order 

to address drawdown problems in the Delta. As most alluvial aquifers have similar geological 

settings as the Delta, results are expected to be relevant to other areas. 
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I. BACKGROUND 

 

Mississippi River Valley Alluvial Aquifer 

The Mississippi River alluvial plain in Mississippi is locally called the “Delta”. The 

Delta is a lens-shaped area about 320 kilometers long. The MRVAA underlies about 650 square 

kilometers (km2) of the region of Delta in most parts of the 19 counties in northwestern 

Mississippi. The MRVAA broadly underlies approximately 85,000 square kilometers located 

within Mississippi, Arkansas, and Louisiana, extending to small portions of Tennessee, Illinois, 

and Kentucky (Miller, 1994; Maupin and Barber, 2005) (Fig. 1).  

The alluvial aquifer consists of unconsolidated alluvium and terrace deposits of 

Quaternary age (Ackerman, 1996). The MRVAA predominately consists of two hydrogeologic 

units: an upper surficial confining layer of clay, silt, and fine sand and a lower coarse sand and 

gravel aquifer (Ackerman, 1996; Arthur, 1994) (Fig. 2). The aquifer grades from coarse sand or 

gravel at the bottom of the aquifer to fine-grained sand at the top. Lenses of clay, slit, or sandy 

silt occur at many places in the alluvial aquifer besides the confining layer at the surface 

(Ackerman, 1996). The upper confining layer has average thickness of between 6.1 – 9.1 meters 

in most areas, however, in some parts of Mississippi and Arkansas, the thickness of the upper 

confining layer unit can range from 18.3 to 30.5 meters locally (Ackerman, 1996).  

Sources of recharge to the aquifer are: infiltration from land surface, leakage from 

adjacent rivers, streams, and lakes; and lateral interflow from sediments and aquifers of the Bluff 

Hills that lie along the eastern boundary of Delta (Barlow and Clark, 2011). Natural groundwater 
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recharge from infiltration is typically limited due to presence of the overlying clay and fine-

grained soil in the upper part of the aquifer. A previous study has shown that only 5 percent (6.6 

cm) of the average annual rainfall typically recharges the aquifer (Arthur, 2001). Main sources of 

recharge are leakage from the Mississippi River and lateral recharge from the Bluff Hills.  

The Delta is a prime area for agriculture due to its fertile soils, a long growing season, 

heavy annual rainfall rate, and a productive alluvial aquifer. The MRVAA produces roughly 35 

million cubic meters per day (m3/day) of groundwater and the aquifer is the third most used 

aquifer in the U.S. (Maupin and Barber, 2005). Among the total withdrawals from the MRVAA, 

98 percent of groundwater was used for irrigation purposes (Maupin and Barber, 2005) (Fig. 3). 

 However, many studies have reported that the groundwater resources of the aquifer are 

not sustainable, and better solutions are required to halt the declines of groundwater all across the 

Delta (Ackerman, 1996; Barlow and Clark, 2011; Konikow, 2013). Using annual water-level 

data, Yazoo Mississippi Delta Joint Water Management District (YMD) reported that the average 

drawdown in groundwater storage since 1987 resulted in a cumulative loss of groundwater of 

approximately 4.09 cubic kilometers (km3) from 1987 to 2009 (Yazoo Mississippi Delta Joint 

Water Management District, 2010). 

 

Artificial Recharge Methods 

 In order to mitigate groundwater drawdown problems, one approach is to store extra 

water during periods of low demand. Surface reservoirs have been widely used to store water, 

however, this approach is limited due to high evaporation rate of stored water, economic 

efficiency, potential of structural failure, and adverse environmental, ecological, and socio-

cultural issues (Bouwer, 2002). Therefore, artificial recharge methods (managed aquifer 
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recharge) has been increasingly recognized as an alternative approach to address water problems 

(Lowry and Anderson, 2006). Artificial recharge methods are the systems of spreading or 

injecting water on/into the ground to increase recharge to the aquifer in order to augment 

groundwater resources (Bouwer, 2002). Artificial recharge systems are typically achieved using 

infiltration basins and trenches, abandoned quarries, large-diameter, high-capacity injection 

wells, and vadose-zone wells (dry wells). 

An infiltration basin is one of the means of artificially recharging aquifers. The source 

water is spread on the ground and infiltrates into the ground and moves down to the groundwater 

(Bouwer, 2002). Surface infiltration methods are cost effective and most commonly used, 

however, they have a number of disadvantages compared to well-based methods (Minsley at al., 

2011). The disadvantages include the following: greater land area requirement, loss of stored 

water due to evaporation, and vulnerability to contamination (Minsley at al., 2011). Moreover, a 

permeable surficial soil layer is required to obtain a high flux of recharged water for infiltration 

basin systems (Bouwer, 2002). This is the main disadvantage especially for alluvial aquifers such 

as MRVAA. Also, subsurface soil layers should not be contaminated by past or current activities 

since the water will infiltrate though the soil, potentially dissolve some contaminants, and 

directly recharge the groundwater with poor quality water.  

Artificial recharge wells are another methods of artificially recharging aquifers. Artificial 

recharge wells can be classified into shallow vadose-zone wells and deep wells that are screened 

into the targeted aquifer under the groundwater table (Fig. 4). Recently, deep artificial recharge 

wells have broadly been used as an alternative to surface reservoirs and infiltration basins 

(Handel at al., 2014). However, they are often not cost-efficient since they require a lot of 

logistical and infrastructure support for operation and maintenance of the wells. 
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A recent paper presented the development of a new artificial recharge method for 

shallow, unconsolidated aquifers using small-diameter, low-cost vadose-zone wells installed with 

direct-push (DP) technology (Handel at al., 2014). DP technology uses hydraulic rams 

supplemented with vehicle weight and high-frequency percussion hammers to rapidly advance 

small-diameter tools. DP technology has been used for installing small-diameter vadose-zone 

wells in shallow, unconsolidated aquifers, and there were no significant performance differences 

between DP wells and wells installed with other drilling techniques in sandy aquifers (Kram et 

al., 2001; Parker et al., 2011). The main advantages of using the DP technique are its cost 

efficiency and lesser subsurface disturbance compared to conventional drilling techniques.  

Smaller diameter vadose-zone wells typically are constructed similar to a conventional 

water well, while larger diameter wells may be filled with coarse sand or fine gravel. The well is 

screened over only part of the vadose-zone. Water is injected directly into the vadose zone of the 

aquifer and the water naturally moves down to the water table predominantly by gravity. The 

main advantage of a vadose-zone well is that it is not limited by any surficial fine-grained layers 

(Bouwer, 2002). 

Handel et al. (2014) performed a series of numerical simulations using HYDRUS-2D 

and reported that the simulation results reveal the significant advantages of using small-diameter, 

shallow wells installed by using DP technology over surface infiltration basins. They show that 

one shallow vadose-zone well was able to recharge a good amount of water into the vadose zone, 

noting that the asymptotic recharge rate of an infiltration basin 10m by 6m in surface area is 

equivalent to that of 5 cm small-diameter vadose-zone wells. The general applicability of the 

small-diameter DP wells has been also shown by numerical modeling and field experiments in 

Austria, Germany, and USA (Handel et al., 2016; Liu et al., 2012). These experimental and 
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numerical assessment results clearly indicate that the small-diameter DP wells have great 

potential for use in shallow unconsolidated aquifers. Therefore, it might be feasible to use small-

diameter wells to address groundwater drawdown problems in the Delta. 
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II. METHODS 

 

Field Site 

 The field site of this study is located in LeFlore County, Mississippi, between Minter 

City and Ruleville approximately 1 km north of Highway 8 (Figs. 5 and 6). The property lies 

along Dugand Bayou and a small pond. The geologic setting of the field site is similar to that of 

typical MRVAA setting. The field site generally consists of 3 layers: upper clayey layer with 

depth of approximately 10 m from surface, mid sand layer with depth from 10 to 27.4 m, and 

lower gravel layer with depth from 27.4 to 42.7 m. Due to the thick clay layer near the surface, it 

is almost impossible to enter this area during wet seasons or after heavy rainfall. The area 

become flooded at times, so that it was impossible to conduct the final field test until May 2019. 

According to a driller’s log from a well at the site, the aquifer is more heterogeneous, 

consisting of the following lithology: clay from ground level to 9.8m, coarse sand from 9.8 m to 

11.9 m, sand and pea gravel from 11.9 m to 17.7 m, large gravel from 17.7 m to 18.3 m, coarse 

sand from 18.3 m to 20.7 m, sand and gravel from 20.7 m to 29.0 m, and large gravel from 29.0 

m to 39.6 m (Appendix A). The YMD survey well A053 is the closest known well with historical 

water-level measurements. The water table at the well has been recorded since 1976 and the 

depth to water table in 2016 was approximately 15 m with a strong downward trend. The water 

table varies by about 60 cm between spring and fall measurements (Rigby, 2015). 
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Wells 

 Ten 10-cmdiameter wells, consisting of four vadose-zone recharge wells and six 

monitoring wells, and one supply well were installed in the field site using the mud rotary 

technique by the Mississippi Department of Environmental Quality (MDEQ) (Fig. 7). The 

vadose-zone wells are screened over depths of approximately 8.6 to 13.15 m (top part of sand 

layer) (Rigby, 2015) (Fig. 8). The monitoring wells are screened over depths ranging from 22.25 

to28.34 m and from 24.38 to 30.48 m (Table 1). Pressure transducer and specific conductance 

sensors are installed in each monitoring well and in two of the four vadose-zone wells (V-1 and 

V-2), and water level, temperature, and specific conductance were recorded at 15-minute 

intervals initially and at 1-minute intervals for the final test. However, during the final field test, 

transducers in M1, M3, and M6 were not functioning, so the water levels were measured 

manually using an electric groundwater-level measurement tape every hour for M1, M3, and M6 

and every two hours for the other wells. 

The production well (supply well) was planned to be installed far from the vadose-zone 

and monitoring wells so that the water table at these wells would not be affected by a cone of 

depression. However, the well was installed nearby the vadose-zone and monitoring wells close 

enough to affect the groundwater table during pumping. The pumping well is screened deeper 

than the vadose-zone wells, at the depth of 19.81 to 28.96 m. A portable generator was used to 

run the pump to withdraw water from the production well (Fig. 9).  

Groundwater from the supply well is directly injected into the recharge wells through 

PVC pipes at the surface, and four flow meters are installed on the pipes to measure flow rates 

into the vadose-zone wells (pitot-tube pressure flowmeter, model F-300 from Blue-White 

Industries). Vadose-zone wells are intended to inject surface water, thereby augmenting recharge 
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to the aquifer, which requires treatment of water before injection in order to mitigate potential 

water-quality impacts. Therefore, groundwater is being used to conduct the vadose-zone well 

tests in order to avoid an unregulated injection of surface water. The water is injected through a 

smaller diameter PVC pipe that extends to the bottom of the vadose well.  

 

Field Pumping Test 

Three preliminary field tests were conducted on August 10, 2018, August 27, 2018, and 

October 22, 2018. These tests were for planning the larger final pumping test. Initially, the pump 

was run and the water discharged to the adjacent pond for two hours in order to obtain 

sustainable pumping flow rate. Then, one of the vadose-zone wells was run for another 5 hours. 

In addition, the water level in the vadose-zone and observation wells were measured hourly 

using an electric water-level meter and at 15-minute intervals by the transducers. Transmissivity 

and storativity were determined by using the drawdown data and the Cooper and Jacob method 

(Cooper and Jacob, 1946). 

On March 28, 2019, an 8-hour test was conducted in order to estimate the effect of 

pumping on the water table at each monitoring well. Groundwater was pumped from the 

production well and discharged only to the pond for 8 hours. The water table was monitored by 

transducers in the observation wells every one minute and by using the electric water-level meter 

every hour manually. Also, the flow rate of pump discharge to the pond was measured using a 5-

gallon bucket and a stopwatch. After the pumping test, transmissivity and storativity were 

determined by using the drawdown data and the Cooper and Jacob method. 

The final field test was conducted from May 28 to 31, 2019. Initially, to obtain a 

sustainable pumping flow rate, the pump was turned on and water discharged only to the nearby 
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pond at 8:00 PM, May 28th and kept running over night (approximately 8.5 hours of pumping 

only to the pond). On May 29th, pumping stopped at about 5:30 AM due to lack of gasoline in the 

portable generator. Pumping only to the pond was restarted at 7:40 AM and the valves to all four 

vadose-zone wells were opened at 9:46 AM on May 29th (the valve to the pond was closed after 

10 minutes). Due to multiple overflows in the vadose-zone wells, the valve to the pond was 

slightly opened to inject less water into the vadose-zone wells. The injection test was conducted 

for approximately 50 hours and the test was finished at 12:15 PM, May 31st. The water table was 

monitored by transducers in the observation wells every one minute. Also, the water table was 

measured using the water-level meter every hour manually for the wells that did not have 

transducer data and every two hours manually for the wells that did have operating transducers. 

Flow rate of pump discharge to the pond was measured periodically using a 5-gallon bucket and 

a stopwatch.  

 

Sample Collection 

 Eight soil samples were collected from the field site on May 24, 2018. The first soil 

sample was collected using a Hyprop sample ring (8 cm diameter and 5 cm high) (Fig. 10) and 

the other seven soil samples were collected using SoilMoisture Equipment Corporation sample 

rings (5.38 cm inner diameter and 6 cm high) (Fig. 11). A 10-cm diameter auger from 

SoilMoisture Equipment Corporation (Fig. 12) was used to hand auger the borehole. At a 

location approximately 2 m south of V1, cores were taken at depths of 0.27, 0.48, 0.94, 1.43, 

1.67, 2.13, 2.59, and 3.01 m. 
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Laboratory Measurements 

 

Falling Head Permeability Test 

Saturated hydraulic conductivities were determined by using falling head permeability 

tests. The tests were conducted using a 2816G1 Chameleon Station from SoilMoisture 

Equipment Corporation. The reservoir cylinder is filled with water and attached by a flexible 

plastic tube to the Tempe cell that holds the soil core. The soil core is capped by the Tempe cell 

and a filter that retains the soil sediments and allows for water to flow upward from the base to 

exit the top of the core and overflow through an open tube. Also, a pressure transducer is 

attached to the port of the reservoir cylinder (Fig. 13). This transducer monitors pressure head 

and sends the data to the computer automatically. The software provided with the 

instrumentation calculates the saturated hydraulic conductivity of the soil sample automatically.  

Sample A-8(3.01 m depth) and sample A-3 (0.94 m depth) were tested in order to 

measure representative saturated hydraulic conductivity values of the clay layer at the field site. 

Due to the thickness of the clay layer at the field site, a sample of sand from the vadose-zone 

could not be collected by hand auger. Therefore, for a representative saturated hydraulic 

conductivity of the sand layer, sample SL-1-11 collected near Sky Lake, northwest of Belzoni, 

Mississippi was tested. In 2016, Jenkins (2017) and Moore (2017) collected sample SL-1-11 

consisting of a bagged sample and a core sample, and performed a grain-size analysis, which 

indicated 98.3% passed #18 sieve, 50.4% passed #60 sieve, and 7.1% passed #200 sieve. With 

less than 10% silt- and clay-sized particles, this sample is a sand according to the U.S. 

Department of Agriculture (USDA) textural classification. 
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METER Hyprop Device 

 Hyprop is an automated measuring and evaluation system to determine unsaturated 

hydraulic properties of a soil sample (draining curve) (Fig. 14). The two tensiometer shafts at 

different levels in the device measure the water tensions at two levels. The soil sample is 

installed on the sensor unit and the two tensiometer shafts measure the water tensions with time 

as water in the initially saturated sample evaporates. Also, the scale records the weight of the 

sample to determine the weight of water evaporated for each time steps. After obtaining the 

draining curve of the sample, the Hyprop Fit software automatically fits the data points to 

determine unsaturated properties of the sample.  

Due to different sizes of sample rings for the Hyprop device and the soil samples 

collected, a feasible adaptor for attaching the collected samples to the device was manufactured 

by Matt Lowe (Machine Shop Supervisor, School of Engineering, University of Mississippi) 

(Fig. 15). Since there are physical limitations to obtaining a draining curve for fine-grained clay 

soil samples by using the hanging water column method (clay samples require significant 

amount of negative pressures to drain the water out of the sample), the Hyprop device was used 

to test sample A-3 in order to determine the unsaturated hydraulic properties representative of the 

confining clay layer at the field site. 

 

Hanging Water Column Method 

 The hanging water column method is designed to determine the wetting/draining curve 

of a soil sample. This method is performed in a system consisting of a Buchner funnel, burette, 

and connecting tubing, also referred to as a Haines apparatus. In the hanging water column 

method, a fully saturated soil sample is placed on the porous plate inside the Buchner funnel 
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using a silica flour slurry to ensure the sample is in hydraulic contact with water in the porous 

plate and with bulk water in the system (Fig. 16). The tubing from the funnel is connected to the 

burette where a specific water level is maintained upon hydraulic equilibrium of the system. 

Also, rubber stoppers and tubing are used to connect the burette back to the Buchner funnel 

where the sample is placed, in order to have a closed system throughout the funnel, porous plate, 

burette, and tubing. All connections are sealed with electrical tape to ensure no evaporation 

occurs from the system. 

After obtaining equilibrium of the system with the burette water level positioned at the 

base of the soil sample, a defined negative pressure is applied to the saturated sample by 

lowering the burette, which results in drainage of moisture in the sample. Then, the displacement 

of increased water level in the burette is recorded to determine the amount of water drained per 

established negative pressure. This procedure is repeated, each time lowering the burette to a 

new level until the moisture content of the sample reaches residual moisture content of the soil 

sample (i.e. until there is no increased water level in the burette even with higher negative 

pressure). The moisture wetting curve can be obtained by reversing the procedure, starting with 

the residually saturated sample and incrementally raising the burette until it reaches equilibrium 

at each level. The porosity of the sample is calculated by comparing the mass of the fully 

saturated soil sample and the mass of fully dried soil sample after 24 hours of oven drying. 

After obtaining both draining and wetting curve data, the van Genuchten (1980) model is 

applied to determine unsaturated hydraulic properties. 

The formula of this model is: 

 ( )
( )1/ 1

1
nnS αψ
−

 = +    

where, S is the saturation, ψ is the suction head (m), α is the scaling parameter inversely related  



   

15 

 

to the air-entry head and n is the slope parameter inversely related to the width of the pore-

size distribution. The saturation, S, is calculated as: 

 r

s r

S θ θ
θ θ
−

=
−

  

where, θ is the volumetric moisture content, θr is the residual moisture content and θs is the 

saturated moisture content. 

 Moisture wetting and draining curves were determined for the only the sandy sample 

(SL-1-11) using this method, as stated before, since this method will not work for the fine-

grained samples because it takes too long to reach equilibrium and requires very high negative 

pressures 

. 

Computer Simulations 

2D Numerical Model using VS2DTi 

In order to better understand the effects of various saturated/unsaturated hydraulic 

parameters on vadose-zone well hydraulics, a two-dimensional (2D) axisymmetric variably 

saturated model was developed using the VS2DTI software from USGS (Fig. 17) to predict 

vadose-zone well hydraulics. This model is constructed based on the function developed by 

Brooks and Corey (1964). This model consists of the following three layers: clayey layer (gray) 

with saturated hydraulic conductivity (Ksat) of 3.7×10–5m/day and porosity (n) of 0.43, sand layer 

(green) with Ksat of 2.23 m/day and n of 0.28, and gravel layer (yellow) with Ksat of 2.15 m/day 

and n of 0.27. The clayey layer is at the depth from ground level (0 m) to 9.76 m, sand layer is at 

the depth from 9.76 m to 27.43 m, and the gravel layer is at the depth from 27.43 m to 42.67 m. 

This model assumes that the elevation of ground surface is the elevation-head datum, so that a 
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negative total head represents a water level that is below the ground surface. The initial water 

table is at the depth of 14.6 m below the ground surface.  

The vadose-zone well is screened over depth of 9.11 to 12.19 m at the field site, 

however, we have excluded the screened section in the clay layer because flow into or out of the 

clay is negligible given the small Ksat and there was convergence failure while running the model 

if we included the screened clay part; the well is screened from 9.76 m to 12.20 m in our model. 

The value of 200 m3/day was given for specified volumetric flow into the domain at the red line 

on the left side of the model as a boundary condition. For the following models, we have varied 

both Ksat and porosity and ran all combinations of Ksat and n as shown in Table 2. In addition, we 

varied Brooks& Corey parameters (hb and λ) and ran all combinations of hb and λ as shown in 

Table 2. 

 Since the model is axisymmetric and uses radial coordinates, it cannot simulate more 

than one recharging boundary condition (e.g. multiple vadose-zone wells). Also, the production 

well is very near the vadose-zone wells. Since withdrawal from the production well is not 

radially symmetric in relation to the vadose-zone well, the model also cannot simulate the 

drawdown effect. Thus, for this research, a 3D variably saturated numerical flow model is 

required to successfully simulate our field site situation. 

 

3D Numerical Model using HYDRUS-3D  

 The HYDRUS-3D software is a finite element model for simulating three-dimensional 

movement of water in variably saturated media (Šimůnek et al. 2013). This program numerically 
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solves the Richards equation for saturated-unsaturated water flow (Sejna et al., 2011). Since the 

Richards equation is highly nonlinear, its numerical approximation requires much finer spatial 

and temporal discretization than saturated flow models in order to obtain accurate simulation 

results.  

Using a domain size for the 3D model in HYDRUS-3D similar in lateral extent as the 

VS2DTi axisymmetric model required a very fine mesh size with a computationally prohibitive 

number of nodes. Therefore, in order to reduce the domain size and number of nodes, a domain 

with a lateral extent of 20 by 20 m and a vertical extent of 32.91m (extending from the bottom of 

the upper clayey layer to the bottom of the MRVAA) was developed for the 3D model (Fig. 18). 

The origin of the coordinate system is located at the center of the bottom surface of the model. 

The upper clay confining layer was omitted, because flow exchange between the clay and sand is 

negligible given the very large contrast in hydraulic conductivity. The targeted finite element size 

of the domain was 0.5 m; at points representing the vadose-zone wells, the mesh was refined up 

to a radius of 2 m with inner mesh size of 0.005 m (at the well) and outer mesh size of 0.05 m (at 

the 2-m radial distance). The total number of finite element mesh nodes was 234,025 (Figures 19 

and 20). The model consists of a sand layer with saturated hydraulic conductivity of 200 m/day, 

residual moisture content of 0.09, and porosity of 0.34. The model is based on the van Genuchten 

(1980) model. The model parameters are: α of 4.54 m-1 and n of 2.98.  

An equilibrium initial condition was specified with a water table at the depth of 4.84 m 

from the top boundary of the model with a linear distribution of pressure head with depth. The 

horizontal boundary conditions were specified as constant head at all four lateral boundaries with 

the same pressure head distribution as the initial condition. No-flow boundaries were specified at 
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the upper and lower surfaces of the model, corresponding to the bottom of the upper clay 

confining unit (top of the MRVAA) and the top of the lower confining unit (bottom of the 

MRVAA), respectively. 

Explicitly representing the physical dimension of each vadose-zone well with a diameter 

of 0.01 m was unnecessary given the project objectives of assessing well impact at a much larger 

scale of 1 m or more. Therefore, nodal recharge of 22 cubic meter per day (m3/d) was specified 

at the nodes corresponding to the position approximately at the mid-point of the screened section 

of the vadose-zone wells (Fig. 21). Four nodes were specified as nodal recharge to simulate the 

vadose-zone wells. The production well was omitted because field monitoring indicated an 

approximately constant drawdown was reached after only 2 hours of pumping, which also 

allowed reduction of the domain size of the model. The four nodal recharge points were applied 

to locations [x,y,z coordinates: (0,-5,31.635), (6,2,31.635), (0,6.1,31.635), and (-6,2,31.635)]. 

The observation points were applied to locations [x,y,z coordinates: N6 (0,0,27.9), N5 

(1.5,0.5,27.9), N4 (3,1,27.9), N3 (4.5,1.5,27.9) and N2 (6,2,27.9)] to observe water level 

response over distance from a vadose-zone well and an observation well (0,0,13.26) representing 

monitoring well M2. The straight-line distances between the observation points and the vadose 

zone well are: N6: 6.32 m, N5: 4.74 m, N4: 3.16 m, N3: 1.58 m, and N2: 0.00m. The model was 

run for 1 day, giving a total volume 88 m3 of water injected into the domain. 
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III. RESULTS AND DISCUSSION 

 

Field Pumping Tests 

 Field tests indicated that each of the two initially tested vadose-zone wells (V1 and V2) 

could intake 100 to 170 m3/day by gravity flow. Transducer data and electric water-level meter 

data collected on October 22, 2018 show that drawdowns ranged from 2 to 5 cm in the 

observation wells after pumping 5 hours (Fig. 22). We interpreted that the drawdowns are due to 

pumping effect of the source well since the source well is adjacent to the observation wells. 

Since there was no increase in the water table, it was concluded that a longer pumping test was 

required for the final test. The transmissivity was calculated as 7800 m2/day. Given the thickness 

of the aquifer as 39.62 m, the hydraulic conductivity is calculated as 220 m/day which is in the 

range of typical coarse sand. The calculated storativity of the aquifer was 0.22 which is in the 

range of typical unconfined aquifer (0.1 – 0.3) (Appendix B). 

On March 28, 2019, an 8-hour pumping test was conducted in order to further estimate 

the effect of pumping on the water table. Groundwater was pumped from the production well and 

discharged only to the pond for 8 hours, starting at 9:00 AM and stopping 5:00 PM. Transducer 

data and electric water-level meter data collected during the test show that drawdowns 

approximately ranged from 2 to 5 cm in the observation wells after pumping 3 hours (Fig. 23).  

After 3 hours of pumping, groundwater level actually started to increase and seemingly 

reached equilibrium at the end of the pumping test. The water-level fluctuations are interpreted 
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as due to change in barometric pressure. As barometric pressure increased, water level in the well 

decreased. This inverse correlation in water level and barometer pressure is clearly shown in 

Figure 23. The transmissivity was calculated as 5800 m2/day. Given the thickness of the aquifer 

as 39.624 m, the hydraulic conductivity is calculated as 150 m/day which is in the range of 

typical coarse sand. The calculated storativity of the aquifer was 0.19 which is in the range of 

typical unconfined aquifer (0.1 – 0.3). 

The final field test was conducted from May 28 to 31, 2019. Transducer data and electric 

water-level meter data collected show that drawdowns approximately ranged from 6 to 8 cm in 

the observation wells after pumping of 8.5 hours (Figs. 24 and 25). Transmissivity was 

calculated as 5700 m2/day. Given the thickness of the aquifer as 39.62 m, the hydraulic 

conductivity is calculated as 140 m/day which is in the range of typical coarse sand. The 

calculated storativity of the aquifer was 0.03 which was much smaller than other tests. This result 

is due to larger drawdowns during this test. Comparison of the transducer data with the manual 

tape downs from the electric water-level meter (after applying the appropriate correction factors 

in Table 1) shows close agreement, indicating that the transducers were providing accurate 

measurements (Appendix C). 

As observed in the pumping test on March 28, 2019, the barometric pressure effects on 

groundwater levels were also observed in the final test. Figure 26 presents a hydrograph showing 

this inverse correlation between barometric pressure and water-level. The data was collected for 

approximately 14 days including 3 days of final test data at the end. The graph is showing there 

were clear barometric effects on the water table levels, with a magnitude half that of the 

drawdown from pumping. Comparison of the transducer data with the manual tape downs from 
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the electric water-level meter (after applying the appropriate correction factors in Table 1) shows 

close agreement, indicating that the transducers were providing accurate measurements. Also, the 

flow rate into the vadose zone data from field site indicate that the flow rates taken by vadose-

zone wells are generally decreasing over time (Fig 27).  

 In order to calculate the barometer pressure effects on the water tables during final field 

test, the correlation between the barometer pressure head and the water table pressures for M2, 

M4, and M5 were plotted (Appendix D). The barometric efficiency was calculated as 60%, 

where the slope of the line for the plots represents the barometric efficiency. The barometric 

efficiency corrected water table data was plotted (Fig. 28). This data show that a slight increase 

in water levels occurs after injection starts, with the largest increase at M2 (about 4 cm), less at 

M4 (about 2 cm), and the least at M5 (about 1 cm). Water levels increase quickly at first and then 

slowly after that, and don’t start decreasing until the regional pumping effects from irrigation 

start the evening of May 30. 

Despite approximately 50 hours of injection of water to the vadose-zone wells, small 

water table rises from well recharge were observed. The water table rises ranged from 1 cm for 

the well far from vadose zone wells (M5) to 4 cm for the well nearest vadose zone wells (M2). 

This is much less than what might be estimated by a simple mass balance. Theoretically, given 

approximately 272m3/day (49.9 gpm) of injection for 50 hours and porosity of 0.35, this volume 

of water would give approximately 40 cm rise (1.3 ft) in the water table over an area of about 

4,050 m2 (1 acre). 

This result is likely due to high hydraulic conductivity, vertical heterogeneity in 

hydraulic properties, well placement, or some combination of these factors. High hydraulic 
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conductivity of the aquifer may allow rapid transport of infiltrated water laterally with little 

hydraulic gradient, resulting in little mounding of the water table. In the vadose-zone, thin lenses 

of sediments with lower or higher hydraulic conductivity potentially could intercept infiltrating 

water spreading it laterally over a larger area. Lateral and vertical locations of the monitoring 

wells relative to hydraulic property variations also may affect observed water levels. The 

monitoring wells are all screened in the lower coarse sand and sand and gravel layers of the 

aquifer, whereas, the water table is located in the upper sand and pea gravel layer. The top of the 

shallowest monitoring well screen is approximately 10 m below the water table. As a result, the 

pressure increase from the rise in the water table due to injection of water possibly is 

substantially dissipated as it moves downward to the depth of the monitoring wells, which results 

in smaller rises in the water-level data in the monitoring wells. This issue can be addressed for 

future research by placing monitoring wells closer to the vadose-zone wells or screening the 

monitoring wells at shallower depths or across the water table. 

 

Laboratory Measurements 

From the falling-head permeability test, sample A-3 from depth of 0.94 m had saturated 

hydraulic conductivity of 2.18×10-3 m/day which is in the reasonable range of hydraulic 

conductivity for fine-grained clay samples. Sample A-8 from depth of 3.01 m had saturated 

hydraulic conductivity of 0.02 m/day, which is in the reasonable range of hydraulic 

conductivities for silt and clay samples. Sample SL-1-11 had saturated hydraulic conductivity as 

7.97 m/day, which is in the reasonable range of hydraulic conductivities for sand samples 

(Appendix E).  
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Sample A -3 was tested using METER Hyprop device to determine unsaturated 

hydraulic properties. Since the sample is fine-grained clay sample, it takes a lot of time to obtain 

data. According to the tension and weight graphs from the Hyprop test, the pressure in both 

tensiometers started to increase 3 days after the test started and decreased slowly for another 3 

days (Appendix F). According to the volumetric water content versus tension head graph (θ(pF)) 

and hydraulic conductivity versus tension head graph (K(pF)), the K(pF) data generally had the 

right shape, however, the θ(pF) graph was incorrect due to physically unrealistic data (Fig. 29). 

This error in θ graph is likely due to using a different sample ring size than the standard Hyprop 

ring. In contrast, the Ksat of 0.2 cm/day from falling head test is close to 0.1 cm/day from k(pF) 

curve at pF = 0, likely because Hyprop calculates K from tension-head difference and flux from 

weight change. Therefore, it appears that only θ data was influenced by the different soil sample 

ring size. Further analysis of the data is required to obtain reliable data for the sample, which 

would involve calculations outside of the Hyprop Fit software. 

Sample SL-1-11 was tested using the hanging water column method to determine 

unsaturated hydraulic properties. Both draining curve and wetting curve data for the sample were 

plotted (Fig. 30), and the van Genuchten model was applied to each dataset (Fig. 31). Based on 

the curve fitting method using the root-mean-square error and the Excel Solver Add-in, the 

parameters are calculated as 𝜃𝜃𝑟𝑟 = 0.097; 𝜃𝜃𝑠𝑠 = 0.34;  𝛼𝛼 = 2.99 1
𝑚𝑚

;  𝑛𝑛 = 7.082 from draining 

curve fitting, and 𝜃𝜃𝑟𝑟 = 0.092; 𝜃𝜃𝑠𝑠 = 0.335;  𝛼𝛼 = 4.54 1
𝑚𝑚

;  𝑛𝑛 = 3.91 from wetting curve.After 24 

hours of oven drying, the porosity of the sample was calculated as 0.33 (Appendix G). 
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Computer Simulations 

2D Numerical Model using VS2DTi 

Figures 32-40 depict color-shaded simulated saturation after 1 day of injection with 

varying combinations of hydraulic conductivity and porosity. These results show that the 

groundwater mound was higher in vertical extent and smaller in horizontal extent for lower Ksat 

or higher porosity, whereas the mound was lower in vertical extent but larger in horizontal extent 

for higher Ksat or lower porosity after same period of time. The different heights of groundwater 

mounds for different Ksat values and porosity are due to an increase/decrease in Ksat that makes it 

easy/difficult for water to flow, whereas, given the same Ksat value, an increase/decrease in 

porosity provides more/less volume for water to be stored given the same volume of water 

injected into the system for each cases. 

Figure 41 depicts hydrographs of simulated total head versus time at the observation 

point with varying hydraulic conductivity and porosity. The hydrograph indicates that the greater 

the ratio of Ksat/n, the more quickly the system reaches equilibrium. The total head changes are 

smaller, but propagate over a longer distance given the same amount of water injected into the 

system, because a larger Ksat or lower porosity makes it easier/faster for water to flow through 

the system and less likely for water to be stored in the aquifer and propagate further horizontally. 

In contrast, the smaller the ratio of Ksat/n, the more slowly the system reaches equilibrium. The 

head changes are larger, but propagate over a shorter distance, because a smaller Ksat or higher 

porosity makes it harder/slower for water to flow and more likely for water to be stored in the 

aquifer and not propagate horizontally. These results are expected given that Ksat/n represents the 

hydraulic diffusivity of the zone around the vadose zone well that is saturated or nearly saturated. 
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Figure 42 depicts a hydrograph showing vertical total head profile with depth. For a 

lower hydraulic conductivity value, there was a large increase of total head where the total head 

exceeds zero while for the higher hydraulic conductivity total heads stayed under zero. This 

indicates that there is a large vertical head gradient with smaller Ksat, because water is more 

likely to be stored building a groundwater mound in higher vertical extent and smaller in 

horizontal extent. Since the MRVAA consists of coarse-grained sediment, gravity force 

dominates over capillary forces in the vadose-zone. Therefore, water being pumped into the 

vadose-zone well is flowing out the well and moving predominantly downward by gravity, 

because the top of the well is open and there is a free-water surface in the well. It is due to the 

above stated reasons that these simulations indicate water tends to build up a higher pressure 

around the vadose-well where the low Ksat makes it harder for water to flow further horizontally 

and the upper clayey layer acts like a confining layer. This indicates that simulated total head will 

rise unrealistically if water is injected into the system more than the aquifer can transmit and 

store in this model.  

Lastly, Figure 43 depicts a hydrograph of total head versus time with varying Brooks – 

Corey parameters (hb and λ). The graph indicates that the effects of hb and λ on total head was 

smaller compared to that of hydraulic conductivity and porosity, because the impact of the 

injected water on the total head was primarily due to saturated flow where hb and λ are 

parameters controlling unsaturated flow. 
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3D Numerical Model using HYDRUS-3D  

Figure 44 – 47 depict vertical views of pressure head distribution at 0, 0.1, 0.4, and 1 

day. The model simulated injection of water from nodal recharge over time; however, no 

apparent rise in water table was observed. Figure 48 – 51 depict horizontal views of pressure 

head distribution 0.75 m below the water table at 0, 0.1, 0.4, and 1 day. The size of the plume of 

the injected water is increasing over time. Figure 52 depicts the cumulative constant flux to four 

lateral boundaries, showing the system was approaching steady state by 0.4 days. 

Figure 53 and 54 depict the pressure head changes in six observation nodes (one 

monitoring node and five observation points). There was no response in pressure head in the 

monitoring well. This result is likely due to the greater depth of the monitor well (approximately 

10 m below the water table) compared to the observation points that are much shallower, which 

is also one possible explanation why there was only a small response in the monitor wells during 

the final field test. Pressure head differences in five observation nodes 0.17 m below the water 

table showed that N2 (6,2,27.9) which is below the vadose-zone well (6,2,31.635) had largest 

water level increase of 2 cm and N6 (0,0,27.9) which is furthest from the vadose-zone well had 

smallest water level increase of 0.6 cm. 

Based on the water-balance output file from the model, the absolute water balance error 

was 87.3 m3 and the relative water balance error was 53.52 percent. However, these high water 

balance errors are likely due to programmatic setting of the HYDRUS software. It appears that 

the nodal fluxes are not included in the equation that calculates water-balance error in the 

software. Therefore, given total nodal recharge of 88 m3, the new calculated absolute water-

balance error is 0.7 m3 and the revised relative water-balance error is only 0.8 percent of total 
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nodal recharge, which confirms proper numerical solution of the Richards equation and the 

reliability of the model results (Appendix G). When using smaller values for nodal recharge, the 

same error in the HYDRUS water-balance output was found. 
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IV. SUMMARY AND CONCLUSIONS 

 

The purposes of this study were to perform full-scale field tests of vadose-zone wells 

and numerical simulations in order to i) determine properties controlling well hydraulics such as 

saturated hydraulic conductivities and unsaturated hydraulic properties, flow rate, and 

groundwater storage, and ii) assess feasibility of vadose-zone wells for artificial recharge of the 

MRVAA.  

Two initial field tests indicated each of two vadose-zone wells could intake 100 to 170 

m3/day by gravity flow. Transducer data and electric water-level meter data collected on October 

22, 2018 show that drawdowns ranged from 2 to 5 cm in the observation wells after pumping 

five hours. The transmissivity was calculated as 7800 m2/day. The hydraulic conductivity is 

calculated as 220 m/day. The calculated storativity of the aquifer was 0.22. On March 28, 2019, 

an 8-hour pumping test was conducted in order to further estimate the effect of pumping on the 

water table. The transmissivity was calculated as 5800 m2/day. The hydraulic conductivity is 

calculated as 150 m/day. The calculated storativity of the aquifer was 0.19. 

The final field test results indicate that there is an apparent inverse correlation between 

barometric pressure and water levels in the monitoring wells. The barometric efficiency was 

calculated as 60%. Despite approximately 50 hours of injection of water to the vadose-zone 

wells, small water table rises from well recharge were observed. The water table rises ranged 

from 1 cm for the well far from vadose zone wells (M5) to 4 cm for the well nearest vadose zone 
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wells (M2). This result is likely due to vertical heterogeneity and high hydraulic conductivity of 

the aquifer. High hydraulic conductivity would minimize the formation of a water table mound, 

as a relatively large lateral water flux could be supported by a small hydraulic gradient. The 

screen location of the monitoring wells also may be a factor. The monitoring wells are all 

screened over the lower coarse sand/sand & gravel part of the aquifer, however, the water table is 

located in the upper sand & pea gravel layer. This issue can be addressed by placing monitoring 

well screens at a shallower depth or across the water table for future research.  

From falling-head permeability test, Sample A-3, which represents the clay layer at the 

field site at a depth of 0.94 m had saturated hydraulic conductivity of 2.18×10-3 m/day. Sample 

A-8 from depth of 3.01 m had saturated hydraulic conductivity of 0.02 m/day. Sample SL-1-11, 

which represents sand layer in vadose zone, had saturated hydraulic conductivity of 7.97 m/day. 

Sample SL-1-11 was tested using hanging water column method to determine unsaturated 

hydraulic properties. Based on the curve fitting method, the parameters are calculated as 𝜃𝜃𝑟𝑟 =

0.097; 𝜃𝜃𝑠𝑠 = 0.34;  𝛼𝛼 = 2.99 1
𝑚𝑚

, ;  𝑛𝑛 = 7.082 from draining curve fitting, and 𝜃𝜃𝑟𝑟 = 0.092; 𝜃𝜃𝑠𝑠 =

0.335;  𝛼𝛼 = 4.54 1
𝑚𝑚

;  𝑛𝑛 = 3.91 from wetting curve. 

The results of the 2D axisymmetric numerical simulations using VS2DTi show that 

head changes at the nearest monitor well are likely to be smaller with a greater ratio of Ksat/n and 

vice versa, and the simulated total head will rise unrealistically if water is injected into the 

system at a rate more than an aquifer can transmit and store in this model. Also, it was indicated 

that the effects of hb and λ on total head was smaller compared to that of hydraulic conductivity 

and porosity, since the impact of the injected water on the total head was primarily dominated by 

saturated flow where hb and λ are parameters for unsaturated flow. 
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The results of the 3D numerical model using HYDRUS-3D show that it was able to 

simulate injection of water from nodal recharge over time. There was no response in pressure 

head in the monitoring well. This result is likely due to the same reason that caused no response 

in the final field test. However, pressure head differences in five observation nodes 0.17 m below 

the water table showed that N2 (6,2,27.9) which is below the vadose-zone well (6,2,31.635) had 

largest water level increase and N6 (0,0,27.9) which is furthest from the vadose-zone well had 

smallest water level increase. 

The final pumping test result showed that the water table rises ranged from 1 cm for the 

well far from vadose zone wells (M5) to 4 cm for the well nearest vadose zone wells (M2). It 

took about 6 hours after start of injection to reach highest water rise in the monitoring wells. 

According to HYDRUS simulation results, the water table rises ranged from 0.6 cm for the 

observation point far from the vadose-zone well (N2) to 2 cm for the point nearest the vadose 

zone well (N6). Also, it took approximately 4 hours after start of injection to reach the highest 

water table rise at the observation points. These differences are likely due to the differences in 

the amount of water injected into the system and the positions of the monitor wells. A total of 

272 m3/day of water was injected during the field test whereas only 88 m3/day of water was 

injected during the HYDRUS simulation, and the field monitor wells were screened deeper than 

the depths of the observation points in HYDRUS. 
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Table 1: Well construction information and correction factors to add to transducer measurements 

to adjust water-level data to elevation above mean sea level. 

Well Well Depth 

(m), 

below land 

surface 

Screened Depth 

(m), below land 

surface 

Well Casing 

(m), above land 

surface 

Correction Factor 

(m) 

Production 

Well 

28.95 19.8 – 28.95   

Observation 

Wells 

  

 

 

 

 

 

M1 

M2 

M3 

M4 

M5 

M6 

28.05 

30.52 

28.55 

28.53 

27.81 

27.38 

21.95 – 28.05 

24.42 – 30.52 

22.45 – 28.55 

22.43 – 28.53 

21.71 – 27.81 

21.28 – 27.38 

0.83 

0.71 

0.72 

0.73 

0.70 

0.78 

20.486 

20.530 

20.161 

20.451 

20.415 

20.333 

Vadose-

Zone Wells 

    

V1 

V2 

V3 

V4 

12.53 

12.08 

12.35 

13.15 

9.05 – 12.53 

8.6 – 12.08 

8.87 – 12.35 

9.67 – 13.15 

0.69 

0.60 

0.67 

0.53 
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Table 2: Combination of saturated/unsaturated parameter tested in VS2DTi 

 Combination of Parameters 

Ksat and n simulation 

high K = 22.3 m/day 

mid K = 2.23 m/day 

low K = 0.223 m/day 

high n = 0.4 

mid n = 0.28 

low n = 0.1 

Low n & Low K Low n &Mid K Low n &High K 

Mid n & Low K Mid n & Mid K Mid n &High K 

High n & Low K High n & Mid K High n & High K 

hb and λ simulation 

high hb = -1 m 

mid hb = -0.53 

low hb = -2 m 

high λ = 5 

mid λ = 2.25 

low λ = 1 

Low hb & Low λ Low hb& Mid λ Low hb & High λ 

Mid hb & Low λ Mid hb & Mid λ Mid hb & High λ 

High hb & Low λ High hb & Mid λ High hb & High λ 
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Figure 1: Location of the MRVAA (Maupin and Barber, 2005) 
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Figure 2: A cross-section view of generalized geologic setting of the MRVAA (Arthur, 1994) 
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Figure 3: A graph showing percentages of use of groundwater from the MRVAA. More than 98 
percent of groundwater from MRVAA was used for irrigation purposes (Maupin and Barber, 2005) 
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Figure 4: A Cross section of a vadose-zone well (Bower, 2002) 
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Figure 5: Overview of research sites (Rigby, 2015) 
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Figure 6: Location of installed wells (looking northeast) 
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Figure 7: Well distance layout including one supply well, six monitoring wells, and four vadose-
zone wells (Prepared by J.R. Rigby, 2018) 
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Figure 8: Diagrammatic view of vadose-zone well with injection tube and instrumentation (Rigby, 
2015) 
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Figure 9: A portable generator to run the pump to withdraw water from the supply well 
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Figure 10: Hyprop sample ring 



   

49 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11: SoilMositure Equipment Corporation sample ring 
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Figure 12: Borehole kit from SoilMoisture Equipment Corporation 
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Figure 13: 2816G1 Chameleon Station for falling head permeability test 
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Figure 14: Overview of the parts of Hyprop device 
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Figure 15: A feasible adaptor for attaching the collected samples to the device was manufactured 
by Matt Lowe 
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Figure 16: Overview of the hanging-water column apparatus 
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Figure 17: Overview of an axisymmetric model using VS2DTI software from USGS 
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Figure 18: A preview of 3D model domain in HYDRUS-3D  
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Figure 19: Top view of the model showing mesh distribution in HYDRUS-3D 
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Figure 20: Lateral view of the model showing mesh distribution in HYDRUS-3D 
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Figure 21: Location of nodal recharge (Vadose-zone wells). Four small blue dots are representing 
the vadose-zone wells. 
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Figure 22: Drawdown data from Central & South transducers on October 22, 2018. The pumping 
test started at 9:20 am and ended at 5:00 pm 
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Figure 23: Drawdown data from Central & South transducers on March 28, 2019. The pumping 
test only to the pond started at 9:00 am and ended at 5:00 pm 
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Figure 24: A hydrograph showing Central & South sensor data during 50 hours of final field test  
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Figure 25: A hydrograph showing Central & South sensor data from May 19th to May 31th. The 
final field test was conducted from May 28th to May 31th. 
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Figure 26: A hydrograph showing Central & South sensor data from May 19th to May 31th, 
including barometric pressure data. The inverse correlation between barometric pressure and water 
level is clearly shown on the graph  
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Figure 27: A graph showing flow rates into V1 and V4 over time. Flow rates into the wells are 
decreasing over time. Values plotted at 10 gpm were below the detection limit of the flow meter, 
thus actual flow rate may be less than 10 gpm 
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Figure 28: A barometric efficiency corrected graph showing Central & South sensor data from 
May 19th to May 31th. 
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Figure 29: Hyprop Fit calculation 
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Figure 30: Draining curve and wetting curve of SL-1-11 sample by hanging water column method 
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Figure 31: Two curves fitted to the van Genuchten model 
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Figure 32: Simulated saturation for high saturated hydraulic conductivity (22.3 m/day) and high 
porosity (0.4) for the axisymmetric VS2DTi model 

 

 

 

 

Figure 33: Simulated saturation for high saturated hydraulic conductivity (22.3 m/day) and mid 
porosity (0.28) for the axisymmetric VS2DTi model 
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Figure 34: Simulated saturation for high saturated hydraulic conductivity (22.3 m/day) and low 
porosity (0.1) for the axisymmetric VS2DTi model 

 

 

 

 

Figure 35: Simulated saturation for mid saturated hydraulic conductivity (2.23 m/day) and high 
porosity (0.4) for the axisymmetric VS2DTi model 
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Figure 36: Simulated saturation for mid saturated hydraulic conductivity (2.23 m/day) and mid 
porosity (0.28) for the axisymmetric VS2DTi model 

 

 

 

Figure 37: Simulated saturation for mid saturated hydraulic conductivity (2.23 m/day) and low 
porosity (0.1) for the axisymmetric VS2DTi model 
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Figure 38: Simulated saturation for low saturated hydraulic conductivity (0.223 m/day) and high 
porosity (0.4) for the axisymmetric VS2DTi model 

 

 

 

 

Figure 39: Simulated saturation for low saturated hydraulic conductivity (0.223 m/day) and mid 
porosity (0.28) for the axisymmetric VS2DTi model 
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Figure 40: Simulated saturation for low saturated hydraulic conductivity (0.223 m/day) and low 
porosity (0.1) for the axisymmetric VS2DTi model 
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Figure 41: A hydrograph of total head vs time at the observation point with varying hydraulic 
conductivity (K) and porosity (n) simulated by the axisymmetric VS2DTi model. Two letters 
stands for hydraulic conductivity and porosity respectively, first letter for Ksat and second letter for 
porosity. For example, LL stands for low Ksat and low n and ML stands for mid Ksat and low n. 
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Figure 42: A hydrograph showing vertical total head profile with depth simulated by the 
axisymmetric VS2DTi model. The radial coordinate for this graph is corresponding to that of 
observation point. Two letters stands for hydraulic conductivity and porosity respectively, first 
letter for Ksat and second letter for porosity. For example, LL stands for low Ksat and low n and ML 
stands for mid Ksat and low n. 
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Figure 43: A hydrograph of total head vs time at the observation point with varying hb and λ 
simulated by the axisymmetric VS2DTi model. The first letter stands for hb and second stands for 
λ. Two letters stands for hb and λ respectively, first letter for hb and second letter for λ. For example, 
LL stands for low hb and low λ and ML stands for mid hb and low λ. 
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Figure 44: Vertical pressure head distribution after 0 day from 3D HYDRUS model for a cross 
section at an x-coordinate of 0 
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Figure 45: Vertical pressure head distribution after 0.1 day from 3D HYDRUS model for a cross 
section at an x-coordinate of 0 
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Figure 46: Vertical pressure head distribution after 0.4 day from 3D HYDRUS model for a cross 
section at an x-coordinate of 0 
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Figure 47: Vertical pressure head distribution after 1 day from 3D HYDRUS modelfor a cross 
section at an x-coordinate of 0 
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Figure 48: Top view of pressure head distribution after 0 day from 3D HYDRUS model at the 
depth of 0.75 m below the water table 



   

83 

 

 

 

 

 

 

Figure 49: Top view of pressure head distribution after 0.1 day from 3D HYDRUS model at the 
depth of 0.75 m below the water table 
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Figure 50: Top view of pressure head distribution after 0.4 day from 3D HYDRUS model at the 
depth of 0.75 m below the water table 
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Figure 51: Top view of pressure head distribution after 1 day from 3D HYDRUS model at the 
depth of 0.75 m below the water table 
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Figure 52: Cumulative flux volume and instantaneous flux to four lateral boundaries from 3D 
HYDURS model, showing the system approached steady state by 1 day. 
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Figure 53: Pressure head changes in the monitoring node from 3D HYDRUS model 
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Figure 54: Pressure head changes in the five observation point below the water table from 3D 
HYDRUS model. N2 is located closest to the vadose-zone well (0 m away in x,y coordinate) and 
N6 is located furthest from the vadose-zone well (6.32 m away) 
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APPENDIX A 

Geophysical driller’s log of the field site 
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Figure A1: Geophysical driller’s log 
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Table A1: Table of driller’s log 

Depth Lithology 

Ground level to 9.8 
m 

Clay 

9.8 to 11.9 m Coarse Sand 

11.9 to 17.7 m Sand and Pea Gravel 

17.7 to 18.3 m Large Gravel 

18.3 to 20.7 m Coarse Sand 

20.7 to 29.0 m Sand and Gravel 

29.0 to 39.6 m Large Gravel 
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APPENDIX B 

Cooper-Jacob Analysis of Pumping Test 
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Figure B1: Drawdown per distance Cooper-Jacob method of pumping test on October 22  
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Table B1: Drawdown data of pumping test on October 22 

 M2 M4 M5 M6 

Initial H 24.67228 24.67863 24.6914 24.6734 

10:00 24.6418 24.65729 24.6853 24.66426 

11:30 24.63266 24.6512 24.67616 24.64902 

2:00 24.6479 24.66034 24.6853 24.64902 

4:00 24.64485 24.65729 24.6853 24.64597 

Actual Drawdown  

10:00 0.03048 0.021336 0.006096 0.009144 

11:30 0.039622 0.027427 0.015236 0.024385 

2:00 0.024384 0.018288 0.006096 0.024384 

4:00 0.027432 0.021336 0.006096 0.027432 

 

Initial heads and drawdown at each time at each monitoring wells on October 22 are 

given in the table above. Using drawdown versus distance method from Copper – Jacob analysis, 

the transmissivity was calculated as 7800 m2/day. Given the thickness of the aquifer as 39.62 m, 

the hydraulic conductivity is calculated as 220 m/day which is in the range of typical coarse 

sand. The calculated storativity of the aquifer was 0.22 which is in the range of typical 

unconfined aquifer (0.1 – 0.3) 
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Figure B2: Drawdown per distance Cooper-Jacob method of pumping test on March 28  
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Table B2: Drawdown data of pumping test on March 28  

 M2 M4 M5 

Initial H 25.114 25.121 25.136 

10:00 25.08 25.099 25.127 

11:30 25.072 25.093 25.118 

2:00 25.083 25.105 25.13 

4:00 25.092 25.114 25.139 

Actual Drawdown   

10:00 0.034 0.022 0.009 

11:30 0.042 0.028 0.018 

2:00 0.031 0.016 0.006 

4:00 0.022 0 -0.003 

 

Initial heads and drawdown at each time at each monitoring wells on March 28 are given 

in the table above. Using drawdown versus distance method from Copper – Jacob analysis, the 

transmissivity was calculated as 5900 m2/day. Given the thickness of the aquifer as 39.62 m, the 

hydraulic conductivity is calculated as 147 m/day which is in the range of typical coarse sand. 

The calculated storativity of the aquifer was 0.19. 
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Figure B3: Drawdown per distance Cooper-Jacob method of pumping test on May 28  
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Table B3: Drawdown data of pumping test on May 28 

 M2 M4 M5 

Initial H 25.29103 25.29738 25.31929 

4:30 25.21788 25.23947 25.27052 

Actual Drawdown   

4:30 0.07315 0.05791 0.04877 

 Transmissivity (T) Delta s 

4:30   5682.149 0.030547 

 Storativity (S) r0 

4:30   0.035582 245.7959 

 

Initial heads and drawdown at each monitoring wells on May 28 are given in the table 

above. Using drawdown versus distance method from Copper – Jacob analysis, the 

transmissivity was calculated as 5700 m2/day. Given the thickness of the aquifer as 39.62 m, the 

hydraulic conductivity is calculated as 143 m/day which is in the range of typical coarse sand. 

The calculated storativity of the aquifer was 0.03 which was much smaller than other tests. This 

result is due to larger drawdowns during this test. 

 

 

 

 

 

 



   

99 

 

 

 

 

 

 

 

 

 

APPENDIX C 

Manual Tapedown Data from Final Pumping Test 
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Table C1: Manual tapedown data of final field test. Water level is above mean sea level. 

Time 
WL elev–

M2(m) 
Time 

WL elev–

M4(m) 
Time 

WL elev–

M5(m) 

2019-05-29 8:44 25.227 2019-05-29 8:42 25.245 2019-05-29 8:40 25.273 

2019-05-29 9:41 25.229 2019-05-29 9:38 25.247 2019-05-29 9:35 25.269 

2019-05-29 10:39 25.231 2019-05-29 10:36 25.251 2019-05-29 13:01 25.281 

2019-05-29 13:09 25.254 2019-05-29 13:02 25.265 2019-05-29 15:05 25.298 

2019-05-29 15:11 25.273 2019-05-29 15:07 25.283 2019-05-29 17:05 25.299 

2019-05-29 17:08 25.279 2019-05-29 17:06 25.287 2019-05-29 20:11 25.296 

2019-05-29 20:08 25.274 2019-05-29 20:12 25.281 2019-05-30 8:54 25.282 

2019-05-30 8:50 25.255 2019-05-30 8:56 25.262 2019-05-30 11:02 25.275 

2019-05-30 11:07 25.248 2019-05-30 11:04 25.26 2019-05-30 13:05 25.281 

2019-05-30 13:09 25.254 2019-05-30 13:04 25.266 2019-05-30 15:08 25.288 

2019-05-30 15:13 25.257 2019-05-30 15:10 25.27 2019-05-30 17:08 25.289 

2019-05-30 17:16 25.255 2019-05-30 17:09 25.269 2019-05-30 18:30 25.282 

2019-05-30 18:35 25.249 2019-05-30 18:32 25.26 2019-05-31 7:08 25.221 

2019-05-31 7:12 25.19 2019-05-31 7:09 25.204 2019-05-31 9:12 25.209 

2019-05-31 9:15 25.185 2019-05-31 9:05 25.204 2019-05-31 10:07 25.22 

2019-05-31 10:20 25.187 2019-05-31 10:10 25.203 2019-05-31 12:03 25.218 

2019-05-31 12:08 25.19 2019-05-31 12:05 25.202   

 

Figure C1: Comparison of manual tapedown data and transducer data 
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APPENDIX D 

Barometric Efficiency Correction 
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Figure D1: Pearson method of M2 data 
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Figure D2: Pearson method of M4 data  
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FigureD3: Pearson method of M5 data 
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Figure D2: Barometric efficiency corrected water table data  
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APPENDIX E 

Falling Head Permeability Tests 
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Table E1: Pressure head results of sample A3 from falling head permeability test. Flow rate was 
calculated as 0.023 ml/min and Ksat was 0.0021 meters/day 

Date  Time 

 Elapsed 

Time 

(min) 

 Pressure 

(cmH2O) 

 Total 

Water 

Consumed 

(ml) 

 6/28/2018  8:55:36 PM 0.01 42.6  

 6/28/2018  8:56:33 PM 0.95 42.5 2.1 

 6/28/2018  9:04:48 PM 9.2 42.4 4.1 

 6/28/2018  9:21:22 PM 25.78 42.3 6.2 

 6/28/2018  11:03:38 PM 128.05 42.1 10.3 

 6/29/2018  12:13:12 AM 197.61 42 12.4 

 6/29/2018  12:34:42 AM 219.1 41.9 14.5 

 6/29/2018  1:01:53 AM 246.28 41.8 16.5 

 6/29/2018  5:52:00 AM 536.4 41.6 20.7 

 6/29/2018  6:07:44 AM 552.13 41.5 22.7 

 6/29/2018  6:10:51 AM 555.26 41.4 24.8 

 6/29/2018  6:45:02 AM 589.44 41.3 26.9 

 6/29/2018  9:42:49 AM 767.22 41.1 31 

 6/29/2018  11:05:17 AM 849.69 41 33.1 

 6/29/2018  12:39:20 PM 943.74 40.9 35.1 

 6/29/2018  2:22:53 PM 1047.3 40.8 37.2 

 6/29/2018  5:52:53 PM 1257.29 40.6 41.3 

 6/29/2018  7:26:45 PM 1351.15 40.5 43.4 

 6/29/2018  9:15:59 PM 1460.38 40.4 45.5 

 6/29/2018  11:50:08 PM 1614.54 40.3 47.5 

 6/30/2018  4:19:04 AM 1883.48 40.1 51.7 

 6/30/2018  5:53:50 AM 1978.24 40 53.7 

 6/30/2018  7:37:39 AM 2082.05 39.9 55.8 

 6/30/2018  9:12:17 AM 2176.69 39.8 57.9 

 6/30/2018  5:04:23 PM 2648.79 39.6 62 
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Table E2: Pressure head results of Sample A8 from falling head permeability test. Flow rate was 
calculated as 0.098 ml/min and Ksat was 0.02 meters/day 

Date  Time 

 Elapsed 

Time 

(min) 

 Pressure 

(cmH2O) 

 Total 

Water 

Consumed 

(ml) 

 10/17/2018  4:40:06 PM 0 37.5  

 10/17/2018  4:40:28 PM 0.38 37.4 2.1 

 10/17/2018  4:41:10 PM 1.06 37.3 4.1 

 10/17/2018  4:43:37 PM 3.53 37.1 8.3 

 10/17/2018  4:43:38 PM 3.54 37 10.3 

 10/17/2018  4:43:39 PM 3.56 36.8 14.5 

 10/17/2018  4:43:40 PM 3.58 36.6 18.6 

 10/17/2018  4:43:49 PM 3.72 36.5 20.7 

 10/17/2018  4:45:47 PM 5.7 36.4 22.7 

 10/17/2018  4:47:37 PM 7.53 36.3 24.8 

 10/17/2018  4:50:52 PM 10.78 36.1 28.9 

 10/17/2018  4:53:04 PM 12.97 36 31 

 10/17/2018  4:55:33 PM 15.46 35.9 33.1 

 10/17/2018  4:56:45 PM 16.66 35.8 35.1 

 10/17/2018  5:02:56 PM 22.84 35.6 39.3 

 10/17/2018  5:05:40 PM 25.57 35.5 41.3 

 10/17/2018  5:08:13 PM 28.13 35.4 43.4 

 10/17/2018  5:11:18 PM 31.2 35.3 45.5 

 10/17/2018  5:17:05 PM 36.99 35.1 49.6 

 10/17/2018  5:21:58 PM 41.87 35 51.7 

 10/17/2018  5:23:51 PM 43.75 34.9 53.7 

 10/17/2018  5:29:35 PM 49.49 34.8 55.8 

 10/17/2018  5:42:38 PM 62.54 34.6 59.9 

 10/17/2018  5:47:34 PM 67.47 34.5 62 

 10/17/2018  5:53:31 PM 73.42 34.4 64.1 

 10/17/2018  5:57:22 PM 77.27 34.3 66.1 

 10/17/2018  6:04:21 PM 84.26 34.1 70.3 

 10/17/2018  6:07:52 PM 87.77 34 72.3 

 10/17/2018  6:12:03 PM 91.95 33.9 74.4 
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 10/17/2018  6:18:30 PM 98.4 33.8 76.5 

 10/17/2018  6:28:58 PM 108.87 33.6 80.6 

 10/17/2018  6:36:02 PM 115.95 33.5 82.7 

 10/17/2018  6:44:01 PM 123.92 33.4 84.7 

 10/17/2018  6:50:59 PM 130.9 33.3 86.8 

 10/17/2018  7:08:55 PM 148.83 33.1 90.9 

 10/17/2018  7:17:08 PM 157.05 33 93 

 10/17/2018  7:25:54 PM 165.81 32.9 95.1 

 10/17/2018  7:35:44 PM 175.65 32.8 97.1 

 10/17/2018  7:50:02 PM 189.93 32.6 101.3 

 10/17/2018  8:00:38 PM 200.54 32.5 103.3 

 10/17/2018  8:11:53 PM 211.79 32.4 105.4 

 10/17/2018  8:17:39 PM 217.56 32.3 107.5 

 10/17/2018  8:40:42 PM 240.6 32.1 111.6 

 10/17/2018  8:52:58 PM 252.88 32 113.7 

 10/17/2018  9:01:13 PM 261.12 31.9 115.7 

 10/17/2018  9:11:02 PM 270.93 31.8 117.8 

 10/17/2018  9:30:57 PM 290.85 31.6 121.9 

 10/17/2018  9:42:43 PM 302.63 31.5 124 

 10/17/2018  9:55:08 PM 315.05 31.4 126.1 

 10/17/2018  10:09:42 PM 329.6 31.3 128.1 

 10/17/2018  10:31:23 PM 351.29 31.1 132.3 

 10/17/2018  10:42:05 PM 362 31 134.4 

 10/17/2018  10:54:03 PM 373.96 30.9 136.4 

 10/17/2018  11:07:51 PM 387.75 30.8 138.5 

 10/17/2018  11:28:39 PM 408.55 30.6 142.6 

 10/17/2018  11:42:17 PM 422.19 30.5 144.7 

 10/17/2018  11:55:51 PM 435.76 30.4 146.8 

 10/18/2018  12:04:08 AM 444.04 30.3 148.8 

 10/18/2018  12:35:28 AM 475.38 30.1 153 

 10/18/2018  12:47:19 AM 487.22 30 155 

 10/18/2018  1:03:00 AM 502.91 29.9 157.1 

 10/18/2018  1:15:23 AM 515.29 29.8 159.2 

 10/18/2018  1:45:40 AM 545.57 29.6 163.3 

 10/18/2018  1:58:00 AM 557.91 29.5 165.4 
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 10/18/2018  2:13:48 AM 573.7 29.4 167.4 

 10/18/2018  2:27:55 AM 587.82 29.3 169.5 

 10/18/2018  2:55:07 AM 615.03 29.1 173.6 

 10/18/2018  3:07:13 AM 627.12 29 175.7 

 10/18/2018  3:23:25 AM 643.31 28.9 177.8 

 10/18/2018  3:34:35 AM 654.48 28.8 179.8 

 10/18/2018  4:05:05 AM 684.99 28.6 184 

 10/18/2018  4:17:07 AM 697.02 28.5 186 

 10/18/2018  4:33:13 AM 713.13 28.4 188.1 

 10/18/2018  4:42:43 AM 722.62 28.3 190.2 

 10/18/2018  5:13:33 AM 753.45 28.1 194.3 

 10/18/2018  5:29:27 AM 769.35 28 196.4 

 10/18/2018  5:43:29 AM 783.38 27.9 198.4 

 10/18/2018  5:57:05 AM 796.99 27.8 200.5 

 10/18/2018  8:00:12 AM 920.11 27.6 204.6 

 10/18/2018  8:09:39 AM 929.56 27.5 206.7 

 10/18/2018  8:34:52 AM 954.77 27.4 208.8 

 10/18/2018  8:38:41 AM 958.58 27.3 210.8 

 10/18/2018  8:46:23 AM 966.29 27.1 215 

 10/18/2018  8:57:41 AM 977.59 27 217 

 10/18/2018  9:11:47 AM 991.7 26.9 219.1 

 10/18/2018  9:29:27 AM 1009.36 26.8 221.2 

 10/18/2018  10:03:09 AM 1043.06 26.6 225.3 

 10/18/2018  10:34:45 AM 1074.65 26.5 227.4 

 10/18/2018  10:51:03 AM 1090.95 26.4 229.4 

 10/18/2018  11:07:52 AM 1107.77 26.3 231.5 

 10/18/2018  11:54:56 AM 1154.84 26.1 235.6 

 10/18/2018  12:38:25 PM 1198.33 26 237.7 

 10/18/2018  1:24:59 PM 1244.89 25.9 239.8 

 10/18/2018  2:21:45 PM 1301.66 25.7 243.9 

 10/18/2018  2:50:03 PM 1329.95 25.5 248 

 10/18/2018  3:02:19 PM 1342.22 25.4 250.1 

 10/18/2018  4:10:34 PM 1410.48 25.2 254.2 

 10/18/2018  4:48:59 PM 1448.88 25 258.4 

 10/18/2018  5:05:54 PM 1465.8 24.9 260.4 
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 10/18/2018  5:53:52 PM 1513.76 24.7 264.6 

 10/18/2018  6:24:48 PM 1544.7 24.5 268.7 

 10/18/2018  6:50:24 PM 1570.31 24.4 270.8 

 10/18/2018  7:32:22 PM 1612.27 24.2 274.9 

 10/18/2018  8:22:03 PM 1661.95 24 279 

 10/18/2018  9:54:25 PM 1754.33 23.9 281.1 

 10/18/2018  10:10:17 PM 1770.19 23.7 285.2 

 10/18/2018  10:27:48 PM 1787.7 23.5 289.4 

 10/18/2018  10:43:44 PM 1803.65 23.4 291.4 

 10/18/2018  11:21:20 PM 1841.23 23.2 295.6 

 10/19/2018  12:05:06 AM 1885.01 23 299.7 

 10/19/2018  12:25:29 AM 1905.4 22.9 301.8 

 10/19/2018  1:06:59 AM 1946.89 22.7 305.9 

 10/19/2018  1:50:39 AM 1990.55 22.5 310 

 10/19/2018  2:06:12 AM 2006.11 22.4 312.1 

 10/19/2018  3:00:17 AM 2060.19 22.2 316.2 

 10/19/2018  3:46:00 AM 2105.91 22 320.4 

 10/19/2018  4:13:06 AM 2133 21.9 322.4 

 10/19/2018  4:50:25 AM 2170.33 21.7 326.6 

 10/19/2018  5:34:09 AM 2214.06 21.5 330.7 

 10/19/2018  5:49:13 AM 2229.13 21.4 332.8 

 10/19/2018  8:26:45 AM 2386.66 21.2 336.9 

 10/19/2018  8:38:07 AM 2398.02 21 341 

 10/19/2018  8:45:53 AM 2405.79 20.9 343.1 

 10/19/2018  9:33:09 AM 2453.05 20.7 347.2 

 10/19/2018  10:49:52 AM 2529.77 20.5 351.4 

 10/19/2018  11:09:55 AM 2549.83 20.4 353.4 

 10/19/2018  12:06:35 PM 2606.5 20.2 357.6 

 10/19/2018  1:45:34 PM 2705.47 20 361.7 

 10/19/2018  2:20:57 PM 2740.86 19.9 363.8 

 10/19/2018  2:51:40 PM 2771.58 19.7 367.9 

 10/19/2018  3:59:37 PM 2839.53 19.5 372 

 10/19/2018  4:42:03 PM 2881.96 19.4 374.1 

 10/19/2018  5:22:21 PM 2922.26 19.2 378.2 

 10/19/2018  5:55:40 PM 2955.57 19 382.4 
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 10/19/2018  6:15:44 PM 2975.64 18.9 384.4 

 10/19/2018  7:14:16 PM 3034.17 18.7 388.6 

 10/19/2018  8:06:35 PM 3086.49 18.5 392.7 

 10/19/2018  8:41:40 PM 3121.57 18.4 394.8 

 10/19/2018  9:29:59 PM 3169.9 18.2 398.9 

 10/19/2018  10:36:44 PM 3236.64 18 403.1 

 10/19/2018  11:02:18 PM 3262.21 17.9 405.1 

 10/19/2018  11:52:21 PM 3312.25 17.7 409.3 

 10/20/2018  12:42:33 AM 3362.46 17.5 413.4 

 10/20/2018  1:08:47 AM 3388.69 17.4 415.5 

 10/20/2018  1:49:34 AM 3429.48 17.2 419.6 

 10/20/2018  2:37:45 AM 3477.65 17 423.7 

 10/20/2018  2:57:21 AM 3497.26 16.9 425.8 

 10/20/2018  3:51:24 AM 3551.3 16.7 429.9 

 10/20/2018  4:41:53 AM 3601.8 16.5 434.1 

 10/20/2018  5:09:15 AM 3629.16 16.4 436.1 

 10/20/2018  5:56:22 AM 3676.27 16.2 440.3 

 10/20/2018  6:44:56 AM 3724.83 16 444.4 

 10/20/2018  7:15:02 AM 3754.94 15.9 446.5 

 10/20/2018  8:10:03 AM 3809.96 15.7 450.6 

 10/20/2018  8:56:49 AM 3856.73 15.5 454.7 

 10/20/2018  9:22:03 AM 3881.95 15.4 456.8 

 10/20/2018  10:27:37 AM 3947.53 15.2 460.9 

 10/20/2018  11:40:50 AM 4020.73 15 465.1 

 10/20/2018  12:03:22 PM 4043.27 14.9 467.1 

 10/20/2018  1:03:10 PM 4103.08 14.7 471.3 

 10/20/2018  2:22:18 PM 4182.2 14.5 475.4 

 10/20/2018  2:51:40 PM 4211.57 14.4 477.5 

 10/20/2018  3:42:09 PM 4262.06 14.2 481.6 

 10/20/2018  4:41:52 PM 4321.78 14 485.7 

 10/20/2018  5:16:30 PM 4356.4 13.9 487.8 

 10/20/2018  6:28:45 PM 4428.65 13.7 491.9 

 10/20/2018  7:18:53 PM 4478.78 13.5 496.1 

 10/20/2018  7:42:23 PM 4502.28 13.4 498.1 

 10/20/2018  8:37:59 PM 4557.88 13.2 502.3 
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 10/20/2018  9:31:01 PM 4610.93 13 506.4 

 10/20/2018  9:53:06 PM 4633.01 12.9 508.5 

 10/20/2018  10:45:00 PM 4684.91 12.7 512.6 

 10/20/2018  11:36:55 PM 4736.82 12.5 516.7 

 10/21/2018  12:07:31 AM 4767.42 12.4 518.8 

 10/21/2018  1:05:43 AM 4825.63 12.2 522.9 

 10/21/2018  1:55:01 AM 4874.92 12 527.1 

 10/21/2018  2:17:48 AM 4897.71 11.9 529.1 

 10/21/2018  3:10:48 AM 4950.7 11.7 533.3 

 10/21/2018  4:00:46 AM 5000.68 11.5 537.4 

 10/21/2018  4:28:54 AM 5028.81 11.4 539.5 

 10/21/2018  5:13:36 AM 5073.51 11.2 543.6 

 10/21/2018  6:05:44 AM 5125.63 11 547.7 

 10/21/2018  6:32:07 AM 5152.03 10.9 549.8 

 10/21/2018  7:27:52 AM 5207.77 10.7 553.9 

 10/21/2018  8:33:30 AM 5273.41 10.5 558.1 

 10/21/2018  9:19:21 AM 5319.26 10.4 560.1 

 10/21/2018  3:04:26 PM 5664.35 10.2 564.3 

 10/21/2018  4:38:36 PM 5758.5 10 568.4 

 10/21/2018  5:26:39 PM 5806.56 9.9 570.5 
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Table E3: Pressure head results of sample SL-1-11 from falling head permeability test. Flow rate 
was calculated as 36.594 ml/min and Ksat was 7.97 meters/day 

Date  Time 
 Elapsed 

Time (min) 

 Pressure 

(cmH2O) 

 Total 

Water 

Consumed 

(ml) 

 11/1/2018  4:21:13 PM 0 21.8  

 11/1/2018  4:21:49 PM 0.6 21.7 2.1 

 11/1/2018  4:21:52 PM 0.66 21.5 6.2 

 11/1/2018  4:21:54 PM 0.69 21.4 8.3 

 11/1/2018  4:21:58 PM 0.76 21.2 12.4 

 11/1/2018  4:22:02 PM 0.82 21 16.5 

 11/1/2018  4:22:03 PM 0.83 20.9 18.6 

 11/1/2018  4:22:07 PM 0.91 20.7 22.7 

 11/1/2018  4:22:11 PM 0.98 20.5 26.9 

 11/1/2018  4:22:13 PM 1.01 20.4 28.9 

 11/1/2018  4:22:18 PM 1.08 20.2 33.1 

 11/1/2018  4:22:21 PM 1.13 20 37.2 

 11/1/2018  4:22:23 PM 1.17 19.9 39.3 

 11/1/2018  4:22:27 PM 1.24 19.7 43.4 

 11/1/2018  4:22:31 PM 1.31 19.5 47.5 

 11/1/2018  4:22:32 PM 1.33 19.4 49.6 

 11/1/2018  4:22:37 PM 1.4 19.2 53.7 

 11/1/2018  4:22:41 PM 1.48 19 57.9 

 11/1/2018  4:22:43 PM 1.51 18.9 59.9 

 11/1/2018  4:22:47 PM 1.58 18.7 64.1 

 11/1/2018  4:22:51 PM 1.64 18.5 68.2 

 11/1/2018  4:22:53 PM 1.68 18.4 70.3 

 11/1/2018  4:22:59 PM 1.78 18.2 74.4 

 11/1/2018  4:23:01 PM 1.81 18 78.5 

 11/1/2018  4:23:04 PM 1.85 17.9 80.6 

 11/1/2018  4:23:08 PM 1.92 17.7 84.7 

 11/1/2018  4:23:14 PM 2.02 17.5 88.9 

 11/1/2018  4:23:17 PM 2.07 17.4 90.9 

 11/1/2018  4:23:20 PM 2.12 17.2 95.1 

 11/1/2018  4:23:25 PM 2.2 17 99.2 
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 11/1/2018  4:23:27 PM 2.24 16.9 101.3 

 11/1/2018  4:23:31 PM 2.31 16.7 105.4 

 11/1/2018  4:23:36 PM 2.39 16.5 109.5 

 11/1/2018  4:23:40 PM 2.45 16.4 111.6 

 11/1/2018  4:23:43 PM 2.51 16.2 115.7 

 11/1/2018  4:23:47 PM 2.58 16 119.9 

 11/1/2018  4:23:49 PM 2.61 15.9 121.9 

 11/1/2018  4:23:56 PM 2.72 15.7 126.1 

 11/1/2018  4:23:59 PM 2.77 15.5 130.2 

 11/1/2018  4:24:02 PM 2.83 15.4 132.3 

 11/1/2018  4:24:07 PM 2.9 15.2 136.4 

 11/1/2018  4:24:13 PM 3.01 15 140.6 

 11/1/2018  4:24:15 PM 3.03 14.9 142.6 

 11/1/2018  4:24:20 PM 3.12 14.7 146.8 

 11/1/2018  4:24:24 PM 3.19 14.5 150.9 

 11/1/2018  4:24:27 PM 3.25 14.4 153 

 11/1/2018  4:24:34 PM 3.35 14.2 157.1 

 11/1/2018  4:24:38 PM 3.42 14 161.2 

 11/1/2018  4:24:41 PM 3.47 13.9 163.3 

 11/1/2018  4:24:46 PM 3.56 13.7 167.4 

 11/1/2018  4:24:52 PM 3.66 13.5 171.6 

 11/1/2018  4:24:55 PM 3.7 13.4 173.6 

 11/1/2018  4:25:02 PM 3.82 13.2 177.8 

 11/1/2018  4:25:07 PM 3.91 13 181.9 

 11/1/2018  4:25:09 PM 3.94 12.9 184 

 11/1/2018  4:25:13 PM 4.01 12.7 188.1 

 11/1/2018  4:25:20 PM 4.13 12.5 192.2 

 11/1/2018  4:25:23 PM 4.18 12.4 194.3 

 11/1/2018  4:25:29 PM 4.27 12.2 198.4 

 11/1/2018  4:25:33 PM 4.34 12 202.6 

 11/1/2018  4:25:38 PM 4.43 11.9 204.6 

 11/1/2018  4:25:44 PM 4.53 11.7 208.8 

 11/1/2018  4:25:49 PM 4.6 11.5 212.9 

 11/1/2018  4:25:54 PM 4.69 11.4 215 

 11/1/2018  4:25:59 PM 4.77 11.2 219.1 
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 11/1/2018  4:26:06 PM 4.89 11 223.2 

 11/1/2018  4:26:07 PM 4.91 10.9 225.3 

 11/1/2018  4:26:17 PM 5.07 10.7 229.4 

 11/1/2018  4:26:21 PM 5.14 10.5 233.6 

 11/1/2018  4:26:27 PM 5.24 10.4 235.6 

 11/1/2018  4:26:30 PM 5.3 10.2 239.8 

 11/1/2018  4:26:32 PM 5.33 9.8 248 

 11/1/2018  4:26:33 PM 5.35 9.7 250.1 

 11/1/2018  4:26:45 PM 5.54 9.6 252.2 

 11/1/2018  4:26:48 PM 5.59 9.5 254.2 

 11/1/2018  4:26:50 PM 5.62 9.4 256.3 

 11/1/2018  4:26:53 PM 5.67 9.3 258.4 

 11/1/2018  4:26:55 PM 5.71 9.2 260.4 

 11/1/2018  4:26:58 PM 5.76 9.1 262.5 

 11/1/2018  4:26:59 PM 5.77 9 264.6 

 11/1/2018  4:27:04 PM 5.86 8.9 266.6 

 11/1/2018  4:27:08 PM 5.93 8.8 268.7 

 11/1/2018  4:27:09 PM 5.94 8.7 270.8 

 11/1/2018  4:27:11 PM 5.98 8.6 272.8 

 11/1/2018  4:27:14 PM 6.03 8.5 274.9 

 11/1/2018  4:27:16 PM 6.06 8.4 277 

 11/1/2018  4:27:20 PM 6.12 8.3 279 

 11/1/2018  4:27:22 PM 6.15 8.2 281.1 

 11/1/2018  4:27:27 PM 6.24 8.1 283.2 

 11/1/2018  4:27:30 PM 6.29 8 285.2 

 11/1/2018  4:27:32 PM 6.32 7.9 287.3 

 11/1/2018  4:27:36 PM 6.39 7.8 289.4 

 11/1/2018  4:27:39 PM 6.44 7.7 291.4 

 11/1/2018  4:27:42 PM 6.49 7.6 293.5 

 11/1/2018  4:27:45 PM 6.54 7.5 295.6 

 11/1/2018  4:27:48 PM 6.59 7.4 297.6 

 11/1/2018  4:27:52 PM 6.66 7.3 299.7 

 11/1/2018  4:27:54 PM 6.7 7.2 301.8 

 11/1/2018  4:27:57 PM 6.75 7.1 303.8 

 11/1/2018  4:28:01 PM 6.8 7 305.9 
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 11/1/2018  4:28:06 PM 6.88 6.9 308 

 11/1/2018  4:28:07 PM 6.9 6.8 310 

 11/1/2018  4:28:12 PM 6.99 6.7 312.1 

 11/1/2018  4:28:14 PM 7.02 6.6 314.2 

 11/1/2018  4:28:16 PM 7.06 6.5 316.2 

 11/1/2018  4:28:20 PM 7.12 6.4 318.3 

 11/1/2018  4:28:23 PM 7.18 6.3 320.4 

 11/1/2018  4:28:28 PM 7.26 6.2 322.4 

 11/1/2018  4:28:30 PM 7.3 6.1 324.5 

 11/1/2018  4:28:33 PM 7.35 6 326.6 

 11/1/2018  4:28:39 PM 7.43 5.9 328.6 

 11/1/2018  4:28:43 PM 7.5 5.8 330.7 

 11/1/2018  4:28:46 PM 7.55 5.7 332.8 

 11/1/2018  4:28:48 PM 7.59 5.6 334.8 

 11/1/2018  4:28:52 PM 7.65 5.5 336.9 

 11/1/2018  4:28:56 PM 7.72 5.4 339 

 11/1/2018  4:29:00 PM 7.79 5.3 341 

 11/1/2018  4:29:02 PM 7.83 5.2 343.1 

 11/1/2018  4:29:06 PM 7.89 5.1 345.2 

 11/1/2018  4:29:11 PM 7.98 5 347.2 

 11/1/2018  4:29:13 PM 8.01 4.9 349.3 

 11/1/2018  4:29:17 PM 8.06 4.8 351.4 

 11/1/2018  4:29:22 PM 8.15 4.7 353.4 

 11/1/2018  4:29:25 PM 8.2 4.6 355.5 

 11/1/2018  4:29:28 PM 8.25 4.5 357.6 

 11/1/2018  4:29:34 PM 8.36 4.4 359.6 

 11/1/2018  4:29:35 PM 8.37 4.3 361.7 

 11/1/2018  4:29:41 PM 8.48 4.2 363.8 

 11/1/2018  4:29:44 PM 8.53 4.1 365.8 

 11/1/2018  4:29:52 PM 8.66 3.9 370 

 11/1/2018  4:30:00 PM 8.78 3.7 374.1 

 11/1/2018  4:30:08 PM 8.92 3.5 378.2 

 11/1/2018  4:30:17 PM 9.07 3.3 382.4 

 11/1/2018  4:30:20 PM 9.13 3.2 384.4 

 11/1/2018  4:30:27 PM 9.24 3 388.6 
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 11/1/2018  4:30:43 PM 9.5 2.8 392.7 

 11/1/2018  4:30:44 PM 9.52 2.7 394.8 

 11/1/2018  4:30:55 PM 9.71 2.5 398.9 

 11/1/2018  4:31:06 PM 9.89 2.3 403.1 

 11/1/2018  4:31:11 PM 9.98 2.2 405.1 

 11/1/2018  4:31:24 PM 10.19 2 409.3 

 11/1/2018  4:31:33 PM 10.34 1.8 413.4 

 11/1/2018  4:31:46 PM 10.56 1.6 417.5 

 11/1/2018  4:32:03 PM 10.84 1.4 421.7 

 11/1/2018  4:32:10 PM 10.96 1.3 423.7 

 11/1/2018  4:32:22 PM 11.16 1.1 427.9 

 11/1/2018  4:32:46 PM 11.55 0.9 432 

 11/1/2018  4:32:55 PM 11.7 0.8 434.1 

 11/1/2018  4:33:11 PM 11.98 0.6 438.2 
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APPENDIX F 

Hyprop Results 
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Figure F1: Tension data from 2 tensiometers 

Figure F2: Weight data from Hyprop test 
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APPENDIX G 

Hanging Water Column Data and van Genuchten Equation Fit 
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Table G1: Hanging water column data – draining curve 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Suction head ψ 
(cm) 

Increase of the 
water level in 
the burette, ∆h 

(cm) 

The loss of the 
water,  Moisture Content 

 

 (cm3) 
 

θ 

5.1 3 0.1 0.329 
7.1 0.1 -0.2 0.332 
12.1 0 0 0.332 
17.1 0 0 0.332 
19.1 0.5 -0.6 0.342 
25.1 0 0 0.342 
30.1 1.9 3.6 0.284 
30.2 0.8 1.1 0.266 
31.4 0.6 0.9 0.251 
31.8 0.4 0.3 0.246 
33.4 0.9 1.2 0.227 
34.5 0.5 1 0.210 
36.1 0.9 0.8 0.198 
37.1 0.7 0.9 0.183 
38.1 0.3 0.4 0.177 
39.8 0.7 0.8 0.164 

41.1 0.7 0.8 0.150 

43.1 0.7 0.4 0.144 
45.1 -0.3 0.3 0.139 
47.1 0.3 0.2 0.136 
50.1 0.4 0.6 0.126 
55.1 0.3 0.5 0.118 
65.1 0.4 0.7 0.107 
75.1 0.3 0.3 0.102 
85.1 0.3 0.3 0.097 
95.1 0.2 0.5 0.089 
105.1 0 0 0.089 
109.1 0 0 0.089 
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Figure G1: Van Genuchten model fit – draining curve 
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Table G2: Hanging water column data – wetting curve 

Suction 
head ψ 
(cm) 

The gain of the water,  Moisture 
Content 

 

 (cm3) 
 

θ 

109.1 0 0.089 
85.1 0.3 0.094 
65.1 0.9 0.108 
45.1 1 0.125 
35.1 1.7 0.152 
30.1 1.3 0.173 
25.1 1.7 0.201 
20.1 3.2 0.253 
15.1 3.6 0.311 
10.1 2.2 0.330 
5.1 1.1 0.330 
0.1 0.9 0.330 
-4.9 6.4 0.330 
-9.9 6.4 0.330 
-14.9 6.8 0.330 
-24.9 0 0.330 
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Figure G2: Van Genuchten model fit – wetting curve 
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APPENDIX H 

Balance Error File from 3D Model using HYDRUS-3D 
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---------------------------------------------------------- 

 Time       [T] 0.00000000E+00 

---------------------------------------------------------- 

 Sub-region num.                     1 

---------------------------------------------------------- 

Volume  [L3]        0.13093E+05  0.13093E+05 

VolumeW [L3]        0.40277E+04  0.40318E+04 

InFlow  [L3/T]      0.00000E+00  0.00000E+00 

hMean   [L]         0.11660E+02       11.660 

---------------------------------------------------------- 

 

---------------------------------------------------------- 

 Time       [T]        0.0500 

---------------------------------------------------------- 

 Sub-region num.                     1 

---------------------------------------------------------- 

Volume  [L3]        0.13093E+05  0.13093E+05 

VolumeW [L3]        0.40320E+04  0.40359E+04 

InFlow  [L3/T]      0.75252E+02  0.75252E+02 

hMean   [L]         0.11676E+02       11.676 

WatBalT [L3]        0.43691E+01 

WatBalR [%]              96.744 

---------------------------------------------------------- 

 

---------------------------------------------------------- 

 Time       [T]        0.1000 

---------------------------------------------------------- 

 Sub-region num.                     1 

---------------------------------------------------------- 
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Volume  [L3]        0.13093E+05  0.13093E+05 

VolumeW [L3]        0.40340E+04  0.40377E+04 

InFlow  [L3/T]      0.21294E+02  0.21294E+02 

hMean   [L]         0.11684E+02       11.684 

WatBalT [L3]        0.86910E+01 

WatBalR [%]              77.943 

---------------------------------------------------------- 

 

---------------------------------------------------------- 

 Time       [T]        0.1500 

---------------------------------------------------------- 

 Sub-region num.                     1 

---------------------------------------------------------- 

Volume  [L3]        0.13093E+05  0.13093E+05 

VolumeW [L3]        0.40348E+04  0.40384E+04 

InFlow  [L3/T]      0.10415E+02  0.10415E+02 

hMean   [L]         0.11688E+02       11.688 

WatBalT [L3]        0.13031E+02 

WatBalR [%]              68.174 

---------------------------------------------------------- 

 

---------------------------------------------------------- 

 Time       [T]        0.2000 

---------------------------------------------------------- 

 Sub-region num.                     1 

---------------------------------------------------------- 

Volume  [L3]        0.13093E+05  0.13093E+05 

VolumeW [L3]        0.40352E+04  0.40388E+04 

InFlow  [L3/T]      0.65646E+01  0.65646E+01 
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hMean   [L]         0.11691E+02       11.691 

WatBalT [L3]        0.17386E+02 

WatBalR [%]              63.446 

---------------------------------------------------------- 

 

---------------------------------------------------------- 

 Time       [T]        0.2500 

---------------------------------------------------------- 

 Sub-region num.                     1 

---------------------------------------------------------- 

Volume  [L3]        0.13093E+05  0.13093E+05 

VolumeW [L3]        0.40355E+04  0.40390E+04 

InFlow  [L3/T]      0.46231E+01  0.46231E+01 

hMean   [L]         0.11693E+02       11.693 

WatBalT [L3]        0.21746E+02 

WatBalR [%]              60.740 

---------------------------------------------------------- 

 

---------------------------------------------------------- 

 Time       [T]        0.3000 

---------------------------------------------------------- 

 Sub-region num.                     1 

---------------------------------------------------------- 

Volume  [L3]        0.13093E+05  0.13093E+05 

VolumeW [L3]        0.40357E+04  0.40392E+04 

InFlow  [L3/T]      0.35284E+01  0.35284E+01 

hMean   [L]         0.11695E+02       11.695 

WatBalT [L3]        0.26110E+02 

WatBalR [%]              59.033 
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---------------------------------------------------------- 

 

---------------------------------------------------------- 

 Time       [T]        0.3500 

---------------------------------------------------------- 

 Sub-region num.                     1 

---------------------------------------------------------- 

Volume  [L3]        0.13093E+05  0.13093E+05 

VolumeW [L3]        0.40358E+04  0.40394E+04 

InFlow  [L3/T]      0.28140E+01  0.28140E+01 

hMean   [L]         0.11696E+02       11.696 

WatBalT [L3]        0.30477E+02 

WatBalR [%]              57.793 

---------------------------------------------------------- 

 

---------------------------------------------------------- 

 Time       [T]        0.4000 

---------------------------------------------------------- 

 Sub-region num.                     1 

---------------------------------------------------------- 

Volume  [L3]        0.13093E+05  0.13093E+05 

VolumeW [L3]        0.40359E+04  0.40395E+04 

InFlow  [L3/T]      0.23260E+01  0.23260E+01 

hMean   [L]         0.11697E+02       11.697 

WatBalT [L3]        0.34844E+02 

WatBalR [%]              56.865 

---------------------------------------------------------- 

 

---------------------------------------------------------- 
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 Time       [T]        0.4500 

---------------------------------------------------------- 

 Sub-region num.                     1 

---------------------------------------------------------- 

Volume  [L3]        0.13093E+05  0.13093E+05 

VolumeW [L3]        0.40361E+04  0.40396E+04 

InFlow  [L3/T]      0.19811E+01  0.19811E+01 

hMean   [L]         0.11698E+02       11.698 

WatBalT [L3]        0.39214E+02 

WatBalR [%]              56.204 

---------------------------------------------------------- 

 

---------------------------------------------------------- 

 Time       [T]        0.5000 

---------------------------------------------------------- 

 Sub-region num.                     1 

---------------------------------------------------------- 

Volume  [L3]        0.13093E+05  0.13093E+05 

VolumeW [L3]        0.40361E+04  0.40396E+04 

InFlow  [L3/T]      0.17046E+01  0.17046E+01 

hMean   [L]         0.11699E+02       11.699 

WatBalT [L3]        0.43584E+02 

WatBalR [%]              55.704 

---------------------------------------------------------- 

 

---------------------------------------------------------- 

 Time       [T]        0.5500 

---------------------------------------------------------- 

 Sub-region num.                     1 
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---------------------------------------------------------- 

Volume  [L3]        0.13093E+05  0.13093E+05 

VolumeW [L3]        0.40362E+04  0.40397E+04 

InFlow  [L3/T]      0.14804E+01  0.14804E+01 

hMean   [L]         0.11700E+02       11.700 

WatBalT [L3]        0.47955E+02 

WatBalR [%]              55.274 

---------------------------------------------------------- 

 

---------------------------------------------------------- 

 Time       [T]        0.6000 

---------------------------------------------------------- 

 Sub-region num.                     1 

---------------------------------------------------------- 

Volume  [L3]        0.13093E+05  0.13093E+05 

VolumeW [L3]        0.40363E+04  0.40398E+04 

InFlow  [L3/T]      0.13098E+01  0.13098E+01 

hMean   [L]         0.11701E+02       11.701 

WatBalT [L3]        0.52326E+02 

WatBalR [%]              54.902 

---------------------------------------------------------- 

 

---------------------------------------------------------- 

 Time       [T]        0.6500 

---------------------------------------------------------- 

 Sub-region num.                     1 

---------------------------------------------------------- 

Volume  [L3]        0.13093E+05  0.13093E+05 

VolumeW [L3]        0.40364E+04  0.40398E+04 
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InFlow  [L3/T]      0.11691E+01  0.11691E+01 

hMean   [L]         0.11702E+02       11.702 

WatBalT [L3]        0.56697E+02 

WatBalR [%]              54.605 

---------------------------------------------------------- 

 

---------------------------------------------------------- 

 Time       [T]        0.7000 

---------------------------------------------------------- 

 Sub-region num.                     1 

---------------------------------------------------------- 

Volume  [L3]        0.13093E+05  0.13093E+05 

VolumeW [L3]        0.40364E+04  0.40399E+04 

InFlow  [L3/T]      0.10564E+01  0.10564E+01 

hMean   [L]         0.11702E+02       11.702 

WatBalT [L3]        0.61068E+02 

WatBalR [%]              54.334 

---------------------------------------------------------- 

 

---------------------------------------------------------- 

 Time       [T]        0.7500 

---------------------------------------------------------- 

 Sub-region num.                     1 

---------------------------------------------------------- 

Volume  [L3]        0.13093E+05  0.13093E+05 

VolumeW [L3]        0.40365E+04  0.40399E+04 

InFlow  [L3/T]      0.95750E+00  0.95750E+00 

hMean   [L]         0.11703E+02       11.703 

WatBalT [L3]        0.65440E+02 
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WatBalR [%]              54.104 

---------------------------------------------------------- 

 

---------------------------------------------------------- 

 Time       [T]        0.8000 

---------------------------------------------------------- 

 Sub-region num.                     1 

---------------------------------------------------------- 

Volume  [L3]        0.13093E+05  0.13093E+05 

VolumeW [L3]        0.40365E+04  0.40399E+04 

InFlow  [L3/T]      0.87693E+00  0.87693E+00 

hMean   [L]         0.11703E+02       11.703 

WatBalT [L3]        0.69812E+02 

WatBalR [%]              53.920 

---------------------------------------------------------- 

 

---------------------------------------------------------- 

 Time       [T]        0.8500 

---------------------------------------------------------- 

 Sub-region num.                     1 

---------------------------------------------------------- 

Volume  [L3]        0.13093E+05  0.13093E+05 

VolumeW [L3]        0.40366E+04  0.40400E+04 

InFlow  [L3/T]      0.81067E+00  0.81067E+00 

hMean   [L]         0.11704E+02       11.704 

WatBalT [L3]        0.74185E+02 

WatBalR [%]              53.787 

---------------------------------------------------------- 
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---------------------------------------------------------- 

 Time       [T]        0.9000 

---------------------------------------------------------- 

 Sub-region num.                     1 

---------------------------------------------------------- 

Volume  [L3]        0.13093E+05  0.13093E+05 

VolumeW [L3]        0.40366E+04  0.40400E+04 

InFlow  [L3/T]      0.74375E+00  0.74375E+00 

hMean   [L]         0.11705E+02       11.705 

WatBalT [L3]        0.78558E+02 

WatBalR [%]              53.690 

---------------------------------------------------------- 

 

---------------------------------------------------------- 

 Time       [T]        0.9500 

---------------------------------------------------------- 

 Sub-region num.                     1 

---------------------------------------------------------- 

Volume  [L3]        0.13093E+05  0.13093E+05 

VolumeW [L3]        0.40366E+04  0.40401E+04 

InFlow  [L3/T]      0.69362E+00  0.69362E+00 

hMean   [L]         0.11705E+02       11.705 

WatBalT [L3]        0.82931E+02 

WatBalR [%]              53.611 

---------------------------------------------------------- 

 

---------------------------------------------------------- 

 Time       [T]        1.0000 

---------------------------------------------------------- 
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 Sub-region num.                     1 

---------------------------------------------------------- 

Volume  [L3]        0.13093E+05  0.13093E+05 

VolumeW [L3]        0.40367E+04  0.40401E+04 

InFlow  [L3/T]      0.64544E+00  0.64544E+00 

hMean   [L]         0.11706E+02       11.706 

WatBalT [L3]        0.87304E+02 

WatBalR [%]              53.525 

---------------------------------------------------------- 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



   

137 

 

VITA 

 

Kyungwon (Won) Kwak 

 

 

Master of Science in Hydrology                     August 2017 - August 2019 
Department of Geology and Geological Engineering, University of Mississippi, University, MS 
THESIS: “Examining the Use of Vadose-Zone Recharge Wells in the Mississippi River  
         Valley Alluvial Aquifer as an Artificial Recharge Method” 
Advisor: Dr. Andrew M. O’Reilly 

 
Bachelor of Science in Geological Sciences March 2012 - February 2016 
Department of Earth Systems & Environmental Sciences, Chonnam National University, 
Gwangju, South Korea 
GPA: 4.24/4.5   summa cum laude   Top Student in College of Natural Sciences 
THESIS: “The Hydrologic Causes of Sinkhole Formation in an Urban Area”  


	Field testing and simulation of vadose-zone recharge wells in the Mississippi river valley alluvial aquifer as an artificial recharge method
	Recommended Citation

	tmp.1603374843.pdf.anh1E

