Patta Salomi et al., (2020) Int. J. Res. Pharm. Chem & Analy., 1(4), 88-94

International Journal of Research in **Pharmaceutical Chemistry and Analysis**

A robust stability indicating HPLC technique for evaluation of Pibrentasvir and Glecaprevir in tablet dosage form

Patta Salomi^{*1}, ShobhaRani¹, K. Ravindra Reddy², S. AfreenSultana¹

¹Department of Pharmaceutical Analysis, P. Rami Reddy Memorial College of Pharmacy, Kadapa. Andhra Pradesh, India. ²Department. of Pharmaceutics, P. Rami Reddy Memorial College of Pharmacy, Kadapa, Andhra Pradesh, India.

ABSTRACT

When liver cells gets infected and vandalized, the condition is termed as Hepatitis. HCV therapy is performed with mixture of drugs. For the combined evaluation of Pibrentasyir and Glecaprevir in tablets, a rapid, selective and robust HPLC technique stability indicating was developed herein this work. Analysis was executed by Cosmicsil, with dimensions 250 mm by 4.6 mm column and mobile phase possessing KH₂PO₄ with 0.1M, 65 ml and 35 ml of methanol and 230 nm of PDA analysis. Elution times were found out as were 1.663 min and 2.249 min, for Pibrentasvir and Glecaprevir respectively with linear ranges 20µg/ml, 60 µg/ml and 50 μ g/ml, 150 μ g/ml, respectively having detection limits as 0.190 μ g/ml and 0.207 μ g/ml and quantization limits as 0.634 µg/ml and 0.690 µg/ml. This method is explicit having RSD values as 0.097% Pibrentasir & 0.232% Glecaprevir showing an accuracy of between 98.82 and 100.07% for Pibrentasir 99.31, Glecaprevir 100.45% recovery values. During the investigation of degradation, peaks elution times of degradants greatly varied with the elution times of Glecaprevir and Pibrentasvir thus, proving method's power of stability indication and specificity. The validation and degradation stability studies were carried out according to ICH and ICH 01B Guidelines.

Keywords: Hepatitis; HCV; Pibrentasvir; Glecaprevir; HPLC; Cosmicsil; PDA analysis; ICH.

ISSN: 2582-1970
Research Article
Corresponding Author
Name: Patta Salomi
Email: rayofhope01@gmail.com
Article Info
Received on: 07-08-2020
Revised on: 19-08-2020
Accepted on: 26-08-2020
DOI: https://doi.org/10.33974/ijrpca.v1i4.217

ubatosis Publications Copyright© 2020, Patta Salomi, et al. A robust stability indicating HPLC technique for evaluation of Pibrentasvir and Glecaprevir in tablet dosage form, Production and hosting by Rubatosis Publications.

INTRODUCTION

When liver cells gets infected and vandalized, the condition is termed as Hepatitis. Although there are varied reasons for its occurrence and types, similar symptoms may be exhibited ^{[1].} The major service of liver is to detoxify blood, store vitamins and manufacture hormones. Disruption of previously stated liver functions may lead to severe health issues in total body^{[2].} The acute and major kinds are Hepatitis A, B, C caused because of various viruses [3, 4].. Multi-class

combination drugs refer to a single pill or pill pack combination of drugs. The combination of used drugs approved is represented in (Table 1). Pibrentasvir acts on NS3A proteases are indispensable to replication of hepatitis C virus RNA and virus assembly. These processes are clogged and hence virus growth is held in by Pibrentasvir ^[5-7]. Glecaprevir Proteases NS4A and 5A are preconditions for RNA replication and virus assembly of hepatitis C virus. Hence, blocks these two processes and thus virus development is suppressed [8-10].

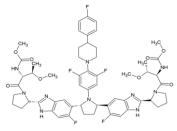


Figure 1: Structure of Pibrentasvir

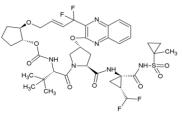


Figure 2: Structure of Glecaprevir

To the finest of our information, handful studies use HPLC and UPLC to assess pibrentasvir together with glecaprevir [11-17].

The main aim of this investigation is an effort to establish the RP-HPLC method which is stability indicating for testing pibrentasvir and glecaprevir which is economically friendly, fast and have a wide accurate range. The established method is validated for parameters such as sensitivity, linearity, specificity, selectivity, accuracy, robustness and precision according to ICH Guidelines ^[18]. And degradation studies were carried out to represent the method sensitivity according to ICH Q1B Guidelines ^[19].

MATERIALS AND METHODS

Materials used: The materials employed were Pibrentasvir, Glecaprevir, Methanol, Hydrochloric acid, Sodium hydroxide, Hydrogen peroxide, and Potassium dihydrogen phosphate.

The apparatus used were Waters alliance HPLC system, Photodiode array detector and Cosmicsil analytical column, measuring C18, 250 x4. 6 mm, 5 μ m

HPLC technique conditions: The Mobile phase flow rate was 1.0ml/Min, Temperature was maintained at 25° C, Volume subjected was 10μ l, Run time was 5min, detected at the wave length of 230nm and maintained pH was 4.5.

Preparation of mobile phase

 $\rm KH_2PO_4$ of 0.1 M is blended in 65:35 parts with methanol: Orthophosphoric acid is used to alter pH to 4.5. This mixture is also applied as a solvent in the development of standard solutions.

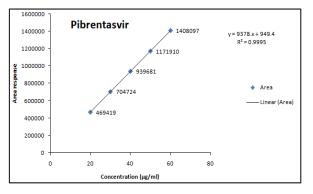
Preparation of stock solution

Implicated in the preparation of stock solution of pibrentasvir and glecaprevir, a properly weighed 40 mg pibrentasvir and 100 mg glecaprevir in a 100 ml volumetric flask and exactly diluted with mobile phase. Concentration of stock solutions: pibrentasvir 400 μ g/ml and glecaprevir 1000 μ g/ml.

Preparation of sample solutions for validation

The standard solution to validate pibrentasvir and glecaprevir was performed in which mobile phase was used to dilute one ml of stock of pibrentasvir and glecaprevir to ten ml in the flask of capacity 10 ml. Standard solution concentration for validation is pibrentasvir 40 μ g/ml and glecaprevir 100 μ g/ml.

Optimized method


After several trials a method was optimized with following conditions represented in (Table 2) and results are represented in (Figure 3).

Assay of Pibrentasvir and Glecaprevir in Maviret tablet

Involved in the preparation of pibrentasvir and glecaprevir stock tablet solution, a properly weighed finely powdered Marivet tablet equivalent to 40 mg

pibrentasvir and 100 mg glecaprevir in a 100 ml volumetric flask with 30 ml mobile phase were mixed. Concentrations of stock tablet solutions are 400μ g/ml and 1000 μ g/ml of pibrentasvir & glecaprevir respectively. Test tablet solution concentrations are 40μ g/ml (pibrentasvir) and 100 μ g/ml (glecaprevir).

A sample solution amounting 20 μ l was 3 times infused into HPLC. The peak areas are measured at 230 nm and concentrations of pibrentasvir and glecaprevir in tablet specimens were determined with the help of linear regression equation or calibration graphs.

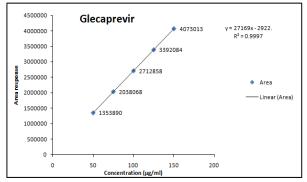
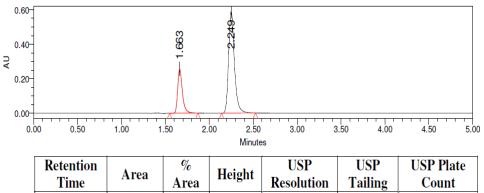


Figure 3: Linearity curves of Pibrentasvir and Glecaprevir

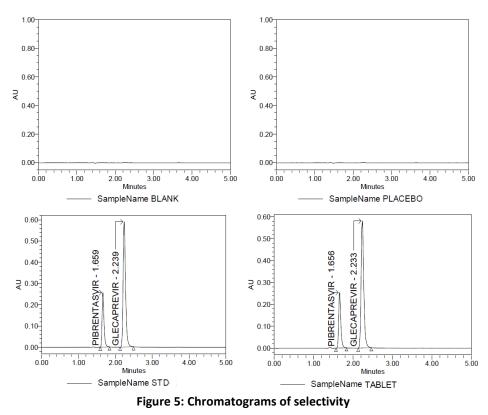
RESULTS AND DISCUSSIONS

A stability indicating method development & validation of Pibrentasvir and Glecaprevir was done by RP-HPLC method. The estimation was done by the analysis in RP-HPLC employing Cosmicsil C18 (250×4 . 6mm, 5µm) chromatographic column. The mobile phase was mixture of Phosphate Buffer and Acetonitrile (65:35). The flow rate was 1.0 ml/ min and detection was performed at 230 nm.


Validation

The new technique has been assessed to meet the International Conference on Harmonization (ICH) Q1B criteria, including sensitivity, linearity, selectivity, accuracy, specificity, robustness and precision.

Table 1: Multi-class drug combination to treat nepatitis C virus				
Brand Name	Generic Name	Status	Pharmaceutical Company	
Epclusa*	Sofosbuvir + Velpatasvir	Approved	Gilead Sciences	
Harvoni*	Ledipasvir + Sofosbuvir	Approved	Gilead Sciences	
Mavyret	Glecaprevir + Pibrentasvir	Approved	Abbvie	
Vosevi	Sofosbuvir/Velpatasvir/ Voxilaprevir	Approved	Gilead Sciences	
Zepatier	Elbasvir + Grazoprevir	Approved	Merck	
n/a	Dactlatasvir + Asunaprevir + Beclabuvir	Phase III	Bristol-Myers Squibb	


Table 2: Optimized method conditions			
KH2PO4 (65%) and Acetonitrile (35%)			
C18 Cosmicsil, 250 mm × 4.6 mm, 5 µm particle dimension			
1.0 ml/min			
10 µl			
25oC			
5 min			
230 nm			

....

Keternion
Area
%
Height
CSF
<th

Figure 4: Chromatogram of optimized method

Selectivity

The selectivity evaluation was conducted by incorporating into the chromatographic system a volume of 20 μ g solution standard (40 μ g/ml pibrentasvir and 100 μ g/ml glecaprevir), tablet sample (40 μ g/ml pibrentasvir and 100 μ g/ml glecaprevir) blank diluent and placebo. No peaks that interfere with peaks when pibrentasvir and glecaprevir are retained. These results are represented in (Figure 4).

Linearity

Linearity solutions were prepared with concentrations pibrentasvir and glecaprevir each solution for concentration was incorporated into the HPLC instrument and assessed according to the similar conditions. The results are represented in (Table 3) and linearity graphs are shown in (Figure 5).

Table 3: Peak area and concentration data

Conc of Glecaprevir µg/ml	Glecaprevir Area re- sponse	Conc of Pibrentasvir µg/ml	Pibren- tasvir Area re- sponse
50	1353890	20	469419
75	2038068	30	704724
100	2712858	40	939681
125	3392084	50	1171910
150	4073013	60	1408097
150	4073013	60	1408097

The linearity range of Pibrentasvir was found to be HPLC 20-60 μ g/ml, with R² value of 0.9995 and linearity range of Glecaprevir was found to be HPLC 60-150 μ g/ml, with R² value of 0.9997. The %RSD for intra precision was <2%. The % recovery varies in the range of 95-105. The method also passes the specifications for robustness parameters

Sensitivity

The sensitivity measurement (LOD and LOQ) is performed by the signal to noise (S/N) ratio for both the drugs. Values proved good sensitivity. Results are represented in (Figure 6). LOD and LOQ was calculated by using following formula

LOD:
$$\frac{3.3}{SD} \times 100$$
, LOQ: $\frac{10}{SD} \times 100$

LOD: 0.190 μ g/ml for Pibrentasvir and 0.20 μ g/ml for Glecaprevir. LOQ: 0.634 μ g/ml for Pibrentasvir and 0.690 μ g/ml for Glecaprevir.

Precision

For precise measurement six area response measurements of standard solution (40 μ g/ml pibrentasvir and 100 μ g/ml glecaprevir) were used. The RSD was calculated and it was precise.

Table 4: Area response of Glecaprevir and Pibrentasvir for precision

Area response	Area response		
-	Glecaprevir	Pibrentasvir	
Sample I	2708652	939412	
Sample II	2716419	938701	
Sample III	2705033	939606	

Sample IV	2714205	938661
Sample V	2700375	937041
Sample VI	2714368	938340
Average	2709842	938627
Standard Deviation	6276.050414	914.2279
RSD	0.232	0.097

Accuracy

The precision was evaluated using tablets by pibrentasvir and glecaprevir recovery research. Each level concentration was prepared and analyzed for three times. For replicate specimens, the recovery percentage of added analytes was calculated. The result revealed the accuracy.

Robustness

Robustness was evaluated by inspecting the impacts in assay circumstances generated by minor alternations. The Theoretical plate count, asymmetry factor, resolution of analytes and peak area of glecaprevir and pibrentasvir in every condition shows that there was no major changes observed. Hence, the method is robust.

Degradation Studies for Pibrentasvir and Glecaprevir

Acid Hydrolysis - Degrading With 0.1n Hcl

10 ml solution of tablet with 400 μ g/ml concentration of Pibrentasvir and 1000 μ g/ml concentration of Glecaprevir was blended to 10 ml of Hcl with normality 0.1N at 27°C up to 30 min by sonication.

Base hydrolysis degrading with 0.1N NaOH

10 ml tablet solution (strength of 400 μ g / ml pibrentasvir and 1000 μ g / ml glecaprevir) was combined at 27°C to 10 ml 0.1N NaOH for 30 min by sonication.

Oxidative hydrolysis degrading with 30% hydrogen peroxide

10 ml of tablet solution (concentration of 400 μ g/ml pibrentasvir and 1000 μ g/ml glecaprevir) was combined for 1/2 an hour with 10 ml 30 percent H₂O₂ at 27°C through sonication.

Thermal analysis degrading with dry heat at $105\ensuremath{^\circ C}$

Tablet solution at temperature of $105^{\circ}C$ (concentration 400μ g/ml pibrentasvir and 1000μ g/ml glecaprevir) is applied for 30 min to 10 ml in hot air oven.

Photolysis Degrading with sunlight

10 ml tablet solution (400 μ g/ml pibrentasvir concentration and 1000 μ g/ml glecaprevir concentration) is held in sunlight for 6 hours.

Pibrentasvir and glecaprevir was more degraded in dry heat condition and less degraded in peroxide condition. The peak elution times of the degradants are

© Rubatosis Publications | International Journal of Research in Pharmaceutical Chemistry and Analysis

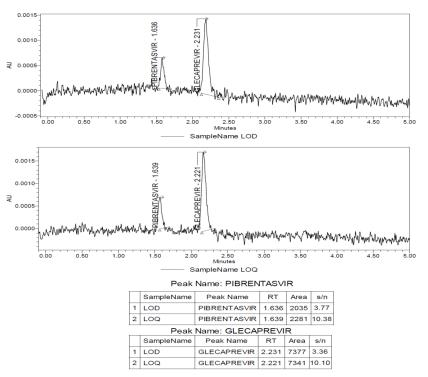


Figure 6: Sensitivity test chromatograms

Table 5: Recovery data for Pibrentasvir for accuracy
--

Level	Area of response Pibrentasvir	Conc. of Pibrentasvir added (µg/ml)	Conc. of Pibrentasvir found (µg/ml)	Percentage of Pibrentasvin Recovered
EQ0/ anilyad	468954	19.8	19.78	99.89
50% spiked	468666	19.8	19.77	99.83
	469413	19.8	19.80	99.99
100% anilyad	938544	39.6	39.58	99.96
100% spiked	938907	39.6	39.60	99.99
	939645	39.6	39.63	100.07
1500/ anilyad	1397221	59.4	58.93	99.20
150% spiked	1391781	59.4	58.70	98.82
	1400703	59.4	59.07	99.45

Table 6: Recovery data for Gecaprevir for accuracy	Table 6: F	Recovery dat	a for Gecap	revir for	accuracy
--	------------	--------------	-------------	-----------	----------

Level	Area of response Glecaprevir	Conc. of Glecaprevir added (µg/ml)	Conc. of Glecaprevir found (µg/ml)	Percentage of Glecaprevir Recovered
EO0/ aniliad	1343575	49.5	49.16	99.31
50% spiked	1350505	49.5	49.41	99.82
	1341895	49.5	49.10	99.18
	2703946	99.0	98.93	99.93
100% spiked	2710263	99.0	99.16	100.16
	2701147	99.0	98.83	99.83
1500/ aniliad	4066263	148.5	148.77	100.18
150% spiked	4068818	148.5	148.87	100.25
	4076857	148.5	149.16	100.45

Table 7: Robustness data of Pibrentasvir

Sample Name	Peak Name	RT	Area	USP Tailing	USP Plate Count
FLOW-1	Pibrentasvir	1.376	787370	1.38	4713
FLOW-2	Pibrentasvir	1.499	859477	1.39	4946
TEMP-1	Pibrentasvir	1.823	1059372	1.40	5582
TEMP-2	Pibrentasvir	2.054	1191705	1.40	5973
COMP-1	Pibrentasvir	1.376	787370	1.38	4713
COMP-2	Pibrentasvir	1.823	1059372	1.40	5582
pH-1	Pibrentasvir	1.657	942412	1.38	4997
pH-2	Pibrentasvir	1.654	939701	1.37	4973

© Rubatosis Publications | International Journal of Research in Pharmaceutical Chemistry and Analysis

Sample Name	Peak Name	RT	Area	USP Tailing	USP Plate Count	USP Resolution
FLOW-1	Glecaprevir	1.847	2291831	1.29	5379	5.06
FLOW-2	Glecaprevir	2.007	2506019	1.29	5551	5.12
TEMP-1	Glecaprevir	2.429	3070004	1.29	6110	5.30
TEMP-2	Glecaprevir	2.751	3463366	1.30	6742	5.63
COMP-1	Glecaprevir	1.847	2291831	1.29	5379	5.06
COMP-2	Glecaprevir	2.429	3070004	1.29	6110	5.30
pH-1	Glecaprevir	2.233	2718652	1.27	5782	5.30
pH-2	Glecaprevir	2.230	2716419	1.27	5703	5.28

Table 8: Robustness data of Glecaprevir

Table 9: Data achieved for degradation study
--

	Pibrentasvir			Glecaprevir			
Test	Area	Percentage	Percentage	Area	Percentage	Percentage	
	Response	remained	degraded	Response	remained	degraded	
Acid	857202	90.38	9.62	2505748	91.68	8.32	
Alkali	906340	95.56	4.44	2594536	94.93	5.07	
H ₂ O ₂	914387	96.41	3.59	2646545	96.83	3.17	
Dry heat	845426	89.14	10.86	2403035	87.92	12.08	
Sun light	904050	95.32	4.68	2555828	93.51	6.49	

distinct from the time of glecaprevir and pibrentasvir being eluted. So interference will not occur. Results proved stability indicating ability.

CONCLUSION

Stability study on Pibrentasvir and Glecaprevir was carried out was an efficient HPLC method for the quantification of Pibrentasvir and Glecaprevir and identification of its degradation products and validated. The results of stress testing of API, undertaken to the ICH Q1B guidelines, revealed that degradation products were formed under acidic, alkaline, oxidizing and thermal conditions.

The results show the method is accurate, precise, sensitive, and economic friendly and rapid. Hence, the method can be successfully applied to the pharmaceutical dosage form and can be used for routine analysis.

ACKNOWLEDGEMENT

I am thankful to P. Rami Reddy Memorial College of pharmacy to provide facilities to carry out Research work.

ACKNOWLEDGEMENTS

Nutech Biosciences Pvt Ltd, for providing the gift samples of Amlodipine and Lisinopril and also to Seven Hills College of Pharmacy for providing facilities to carry out the research work.

REFERENCES

- 1. Hepatitis. Medline plus. U. S. National Library of Medicine, accessed on April 2019. Available at: https://medlineplus.gov/hepatitis.html
- 2. Colli, A., Berzuini, A., & Prati, D. (2018). Liver sequestration in sickle-cell disease and hepatitis. The Lancet, 392(10164), e16.

- 3. Center for Substance Abuse Treatment. (1995). Treatment Improvement Protocol (TIP) Series, No 22.LAAM in the treatment of opiate addiction. Rockville, MD: Department of Health and Human Services.
- 4. Gilson R, Brook MG. Hepatitis A, B, and C. Sexually Transmitted Infections, 2006, 82 (Supple 4), iv35iv39.
- 5. Pibrentasavir. Pubchem, U. S. National Library of Medicine. Accessed on April 2019, Available at : https://pubchem. ncbi. nlm. nih. gov/compound/Pibrentasvir
- 6. Pibrentasavir. Drug bank. Accessed on April 2019, Available at: https://www. drugbank. ca/drugs/DB13878
- 7. Ng, T. I., Krishnan, P., Pilot-Matias, T., Kati, W., Schnell, G., Beyer, J.,.. & Tripathi, R. (2017). In vitro antiviral activity and resistance profile of the next-generation hepatitis C virus NS5A inhibitor pibrentasvir. Antimicrobial agents and chemotherapy, 61(5).
- 8. Glecaprevir. Pubchem, U. S. National Library of Medicine. Accessed on April 2019, Available at : https://pubchem. ncbi. nlm. nih. gov/compound/Glecaprevir
- 9. Glecaprevir. Drug bank. Accessed on April 2019, Available at : https://www. drugbank. ca/drugs/DB13879
- 10. Lawitz, E. J., O'Riordan, W. D., Asatryan, A., Freilich, B. L., Box, T. D., Overcash, J. S.,... & Lin, C. W. (2016). Potent antiviral activities of the directacting antivirals ABT-493 and ABT-530 with three-day monotherapy for hepatitis C virus genotype 1 infection. Antimicrobial agents and chemotherapy, 60(3), 1546-1555.

- 11. Hemalatha, K., Kistayya, C., Nizamuddhin, N. D., & Dastiagiriamma, D. (2018). Simultaneous estimation of new analytical method development and validation of glecaprevir and pibrentasvir by high performance liquid chromatography. Innovat International Journal Of Medical & Pharmaceutical Sciences, 3(7).
- 12. Babu, D., Chetty, C. M., & Mastanamma, S. K. (2018). A New Force Indicating RP-HPLC Method Development and Validation for the Simultaneous Estimation of Pibrentasvir and Glecaprevir in Bulk and its Tablet Dosage Form. Pharmaceutical Methods, 9(2).
- 13. Sreeram, V., & Venkateswarlu, C. (2018). Stability indicating RP-HPLC method for the simultaneous estimation of glecaprevir and pibrentasvir in drug product. Journal of pharmaceutical sciences and research, 10(11), 2757-2761.
- 14. Rama Kumar, K., & Raja, S. (2018). Simultaneous assay of two antiviral agents, Pibrentasvir and Glecaprevir, using stability indicating RP-HPLC method in bulk and tablets. Der Pharmacia Letter, 10(8), 33-47.
- 15. Gampa VK, Reddy DS. (2018) RP- HPLC method development and validation for simultaneous estimation of glecaprevirand pibrentasvir in pharmaceutical dosage form. Indo american journal of Pharmaceutical sciences, 05 (12), 16827-16840.
- 16. Saroja, J., Lakshmi, P. A., Ram Mohan, Y., & Divya, D. (2019). Quantification of antiviral drug combination, Glecaprevir and Pibrentasvir, in bulk and tablet formulation by stability indicating RP-HPLC method. The Pharma Innovation Journal, 8(1), 163-169.
- 17. Marakada S, Rao TS, Challa GN. (2018) Development and validation for the simultaneous estimation of glecaprevir and pibrentasavir in drug product by UPLC. European Journal of Biomedical and Pharmaceutical Sciences, 5 (4), 473-480.
- 18.ICH, (2006), Harmonized Tripartite Guideline, Validation of Analytical procedure: Text and Methodology, Geneva, Switzerland.
- 19. ICH, (Q1B), (1996), Harmonized Tripartite Guideline, Stability testing: Photo stability testing of New Drug Substances and Products, in: Proceeding of the International Conference on Harmonization, Geneva.