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Abstract 9 

The aim of this work was to study the pyrolysis of waste biomass and plastics and use the 10 

produced biochar for the removal of heavy metals from aqueous solution. The batch experiments 11 

of Fe, Ni, Cu, Cr, Cd and Pb with biochars and plastic chars were carried for determining the 12 

effects of various experimental parameters (feedstock, contact time, adsorbent dose, pH and 13 

pyrolysis temperature). The isothermal sorption models demonstrated that the sorption capacities 14 

of biochars are higher in comparison to the plastic chars. The maximum removal efficiency 15 

shown by biochars and plastic chars at pH 4 was 99.86% and 99.93%, respectively. Both the 16 

carbon materials are thereby recognized as an environment-friendly and efficient pollutant 17 

control material at various studied parameters.  18 

 19 
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1.        Introduction  22 

Heavy metals emanating from various industries are perilous for wellbeing and life of the animal 23 

and human (Zou et al., 2016). In the past few years, industrial growth has introduced massive 24 

pollutant levels in the water bodies. Due to their bioaccumulative and toxic nature, heavy metals 25 

have become a major concern. Substantial pollution of heavy metals in river bodies may be 26 

caused either by natural processes, such as flooding, weathering, or by human activities like 27 

waste disposal, industrial processes, or mining (Kaushik et al., 2009). The wastewater streams 28 

typically incorporate nickel (Ni), copper (Cu), chromium (Cr), cadmium (Cd), lead (Pb) and 29 

many more metals. They are non-biodegradable, and their concentrations regularly prompt 30 

bioaccumulation in living beings, causing health issues in human beings, animals and plants 31 

(Argun et al., 2007). For example, intemperate entry of Cu prompts extreme mucosal 32 

disturbance, hepatic damage and aggravation in the nervous system (Rehman et al., 2017). As 33 

indicated by an examination directed by the Central Water Commission (CWC, 2018), India’s 34 

42 rivers have at least two heavy metals beyond the safe limit. Ganga, the National river of India, 35 

was found to be contaminated with five heavy metals (i.e. iron (Fe), Ni, Cu, Cr, and Pb). Other 36 

rivers like Arkavathi, Orsang, Rapti, Sabarmati, Saryu and Vaitarna were found to have even 37 

higher concentrations of these metals. The highest concentration of six major heavy metals found 38 

in Indian river as reported was Cd (0.07 mg L-1), Cr (0.45 mg L-1), Cu (0.31 mg L-1), Pb (0.37 39 

mg L-1), Ni (0.25 mg L-1) and Fe (14.56 mg L-1) (CWC, 2018). In India, major developmental 40 

activities depend on rivers, thereby making it very important to systematically study the removal 41 

techniques of heavy metals from water bodies (Kaushik et al., 2009).  42 

 43 

Recently, there has been a high demand for sustainable solution to tackle the problem of river 44 

contamination due to heavy metals. Many traditional techniques including membrane filtration, 45 
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electrochemical treatment, reverse osmosis, precipitation, ion exchange, electrodialysis and 46 

adsorption were employed to extract metal ions from wastewater. Although most of these 47 

techniques suffer from high overhead and capital expenses, adsorption is far better option 48 

because of its versatility in design, ease of handling and operation. At the same time, it is also 49 

considered more effective and economical (Ahmadi et al., 2014; Han et al., 2013). From past 50 

few years, a considerable interest has been shown towards utilizing carbon and related materials 51 

as low-cost adsorbents for wastewater treatment (Kumar et al., 2020a; Singh et al., 2020). 52 

Heavy metal ions can be easily adsorbed by carbon materials because of their tunable surface 53 

functional groups. Existing studies have affirmed carbon materials as successful adsorbent of 54 

metal particles (Sun et al., 2014; Tounsadi et al., 2016). Char is a typical type of carbon-rich 55 

material and could be generated by the thermo-chemical processing (e.g., pyrolysis and 56 

carbonization) of biomass or carbonaceous waste under an oxygen-deficient condition. It has 57 

been prepared from different feedstocks like plastic waste, wood, forest and farming residues 58 

which are capable of adsorbing substantial metals (Inyang et al., 2016; Johari et al., 2016). The 59 

heavy metals sorption capacity of char is generally determined by the physico-chemical 60 

properties (e.g., specific surface area and surface functional groups) of char which are affected 61 

by the types and composition of feedstock as well the conditions of thermo-chemical processes 62 

(Son et al., 2018).  63 

 64 
There have been limited studies on comparing the adsorption performance of heavy metals and 65 

the underlying mechanism of char derived from organic origin (e.g., biomass) with that from 66 

synthetic origin (e.g., plastic waste). The former is referred as biochar while the latter is plastic 67 

char in this work. Singh et al. (2020) synthesized low-cost plastic char using Polyethylene (PE), 68 

Polyethylene terephthalate (PET) and Polyvinyl chloride (PVC) waste plastics and investigated 69 
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the effects it shows towards the sorption of arsenic. It was found that plastic chars also have 70 

prospects for usage as a sustainable adsorbent material and proficient removal of pollutants from 71 

aqueous media. Kumar et al. (2020a) concluded that the chars derived from organic origin i.e. 72 

biomass materials were suitable for effective sorption of the volatile organic compounds (VOCs) 73 

with the mechanism of physical sorption and partitioning. However, the intake capacity differed 74 

with the changing VOC types. A comprehensive review by Yang et al. (2019) on various carbon 75 

sorbents clearly stated the role of their functional groups towards the exceptional removal 76 

efficiency of heavy metals from the aqueous solutions by enhancing the surface properties and 77 

structural stability of the sorbent materials.  78 

 79 

This work deals with the use of two major carbon materials prepared from biomass and plastics 80 

towards purification of water bodies. It aimed to explain the role of these sorbents concerning 81 

their application for effective uptake of heavy metals from the polluted aqueous media. This 82 

work compared the compositions (proximate and ultimate), surface functional groups and surface 83 

morphology of biomass-derived chars (i.e. biochars) and plastic-derived chars (i.e. plastic chars). 84 

The metal ions uptake capacities between both the chars were also investigated in the current 85 

study. Although much work has been carried out using biochar towards the sorption of heavy 86 

metal ions, the use of chars derived from synthetic origin for the same remains understudied. The 87 

adoption of sustainable method for conversion of plastic and biomass wastes to chars for use as 88 

sorbent towards sorption of heavy metals as well as safeguarding the increasing loads of these 89 

waste warrant the present study.  90 

 91 
2.      Materials and Methods  92 

2.1    Materials 93 
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Three biomass materials namely bamboo, sugarcane and neem were used for preparing biochar. 94 

The plastic char was prepared using PET, PE and PVC plastics.  The biomass materials as well 95 

as plastic samples were washed, dried and then grinded using a mechanical grinder prior to 96 

pyrolysis. Pyrolysis was done using a fixed bed reactor comprising of a holder for placing the 97 

feedstock, a flow meter, gas collector, liquid collector and a water condenser. Moderate pyrolysis 98 

was performed in the presence of nitrogen (N2) at a flow rate of 1 L min-1 at 450 °C and 550 °C 99 

at 8 °C min-1 of heating rate to convert each feedstock of 60 g of into char. The final temperature 100 

was held for 10 min, similar to that of Singh et al. (2020). The char was then sieved to achieve 101 

0.5-1.0 mm size and dried at 105 °C for 18 hr and this was used for any further analysis. Both the 102 

chars were prepared in similar pyrolysis setups as followed in the previous works done by 103 

Kumar et al. (2020a, b) and Singh et al. (2020). The chars were named based on varying raw 104 

material, pyrolysis temperature and their applied dose for sorption as presented in Table 1.  105 

 106 

Table 1 107 

2.2 Characterization  108 

Fourier transform infrared (FTIR) spectroscopy, BET (Brunauer-Emmett- Teller) surface area 109 

analyzer and Scanning Electron Microscopy (SEM) images were used to characterize biochar 110 

and plastic char. The thermogravimetric (TGA) analyzer (Model: DTG 60, PerkinElmer, USA) 111 

was used to assess thermogravimetric properties such as thermal stability and changes in weight 112 

with changing temperature. The elemental analyses of the char were done using Elemental 113 

Analyzer (Model: CHNS 628, Leco, UK).  The SEM images were captured using Scanning 114 

Electron Microscope (Model: Vega 3, Tescan, Czech Republic). The FTIR analysis was done 115 

using FTIR spectrometer (Model: Vertex 70, Bruker, USA) at a room temperature for 116 

determining the functional groups on the prepared char’s surface. The specific surface area of the 117 
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chars was determined using BET surface area analyzer (Model: Autosorb iQ3, Quantachrome 118 

Instruments, USA) (Ladavos et al., 2012). 119 

2.3     Batch Sorption of Heavy Metals 120 

The batch sorption experiments of Fe, Ni, Cu, Cr, Cd and Pb with biochars and plastic chars 121 

were carried out in polypropylene tubes by batch technique for determining the effects of various 122 

parameters (contact time, adsorbent dose, pH and pyrolysis temperature). This was done by 123 

spiking Etalonmulti-element stock solution (Make: VMR Chemicals). Chars were prepared at 124 

two varying pyrolysis temperatures (450 and 550 °C).  The solution was applied with 0.1 g and 125 

0.5 g of char and the solution pH was held at 4.0, 6.0 and 8.0 for a time range of 5 min to 35 min 126 

(contact time). A 20-ppm working solution was used for setting the experiment, and solution pH 127 

was balanced using hydrochloric acid (HCl) and sodium hydroxide (NaOH). Different 128 

concentrations of these metals were taken at room temperature for evaluating the isotherms. The 129 

suspensions were shaken for varying time (5, 10, 15, 20, 25, 30, 35 minutes) to achieve 130 

equilibrium state and the solid was then separated using 0.45 μm syringe filters. Inductively 131 

Coupled Plasma-Optical Emission Spectrometer (Model: iCAP 6000 Series, Thermo Scientific, 132 

USA) was then used to analyze the heavy metal ions present in sample. A blank solution without 133 

adding the char put as a control, which corresponded to zero loss of heavy metals during the 134 

analysis. Each experimental set was performed in triplicates to reduce the error chances. The 135 

difference between the initial concentration (C0 mol L−1) and the equilibrium one (Ce mol L−1) 136 

gave the adsorption percentage of ions. 137 

2.4 Isotherm Study 138 

Adsorption isotherm modelling is of fundamental importance while designing sorption-based 139 

system as they specify in what manner metals are partitioned between the aqueous medium and 140 
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the solid adsorbent as a function of concentration of the metal. When the char comes in contact 141 

with the liquid solution, concentration of metals on the surface of adsorbent will increase until 142 

the equilibrium is reached where there is an equal distribution of ions between solid-liquid phase. 143 

Initial ion concentration was fixed at 20 mg L-1 with two different doses (0.1g and 0.5g) of chars 144 

at three pH value cases (4, 6 and 8). The heavy metals sorption was calculated using the least 145 

squares regression approach. Langmuir isotherm’s linear form is mentioned in equation 1 146 

(Miandad et al., 2018): 147 

Ce qe⁄ = Ce qm⁄ + 1/kLqm……………………………………. (1) 148 

Where, qe (mg g-1) is the amount of sorbed metal ions, Ce in (mg L-1) is the metal absorption at 149 

equilibrium stage while qm (mg g-1) is the maximum uptake capacity of char and KL is the 150 

Langmuir constant.  151 

 152 
2.5 Kinetic Study 153 

For determining the adsorption kinetics of the metals considered in the study, the kinetic 154 

parameters were studied for time ranging from 5 min to 35 min by periodically checking the 155 

percent elimination of the heavy metals. The obtained results were finally equated in Lagergren 156 

equation that represents a first order kinetic equation (2) and a pseudo-second order kinetic 157 

equation (3). The rate of heavy metals sorption on the char was calculated using pseudo-first-158 

order equation (2) (Jazini et al., 2017): 159 

log(qe − qt) = log qe − (k1t 2.303)⁄ …………………………. (2) 160 

Pseudo-second-order equation (3) is of the form as per the equation (3) (Jazini et al., 2017): 161 

t qt⁄ = (1 k2⁄ qe
2) + t qe⁄ ………………………………………. (3) 162 

Where, qe and qt (mg g-1) signifies the metal ions sorbed at equilibrium and time t, whereas k1 163 

and k2 signifies the rate constants.  164 
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3.  Result and Discussion 165 

3.1  Biochars and Plastic Chars Characterization 166 

The data obtained from the proximate and elemental studies of the both chars (biochar and 167 

plastic char) are presented in Table 2. It is shown that the MC of biochars ranged from 0.36 wt.% 168 

to 2.15 wt.% while that of plastic chars ranged from 0.57 wt.% to 8.11 wt.%. The initial MC of 169 

biochars feedstock material ranged from 0.18 wt.% to 0.25 wt.%, while that of plastic chars 170 

feedstock material lied in between 0.60 wt.% to 2.01 wt.% (Kumar et al., 2020a; Singh et al., 171 

2020). The MC of the plastic chars was found to increase with higher pyrolysis temperature (550 172 

°C), while it decreased with increasing pyrolysis temperature in the case of biochars. The FC was 173 

found to be higher in bamboo-based biochar (85.4 wt.%) in comparison to that of plastic char 174 

(83.3 wt.%). The elemental analyses of the biochar showed lower content of nitrogen (0.47 to 1.0 175 

wt.%) while the carbon content was found to be between 52.7 to 78.1 wt.%.  Jazini et al. (2017) 176 

prepared barley straw-based biochar in similar range of pyrolysis temperatures (300 °C, 400 °C, 177 

500 °C) and found the nitrogen content ranging from 0.48 to 0.87 wt.% and carbon content from 178 

43.13 to 66.46 wt.%. The plastic chars showed 0.04 wt.% and 88.1 wt.% of nitrogen and carbon, 179 

respectively. With increasing pyrolysis temperature, an increase in the carbon content was 180 

observed, which is consistent with existing studies (Fang et al., 2016; Suliman et al., 2016). On 181 

increasing the temperature from 350 °C to 600 °C, the carbon fraction was found to increase 182 

from 70.5% to 87.8%, 69.9% to 83.1% and 66.1% to 78.1% in the case of Douglas fir wood 183 

biochars, poplar wood biochars and Douglas fir bark biochars, respectively in the study 184 

performed by Suliman et al. (2016). The obtained results were also found to resemble that 185 

obtained elsewhere (Wang and Liu, 2017). In the present work, it was found that with the rise of 186 

temperature from 450 °C to 550 °C, the carbon content increased from 72.8 to 78.1 wt.% and 187 
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63.1 to 66.1 wt.% in neem-based char and bamboo char, respectively. On the other hand, the 188 

plastic chars showed consistent decrease in their respective carbon contents (54.6 to 36.8 wt.%, 189 

55.2 to 46.1 wt.% and 88.1 to 87.4 wt.% for PV, PE, PT chars, respectively) with the increasing 190 

pyrolysis temperatures. 191 

Table 2 192 

Plastic chars surface area ranged between 0.32-5.29 m2 g-1 while that of the biochar ranged 193 

between 1.04 - 43.9 m2 g-1. The specific surface areas are affected by the types of feedstock and 194 

pyrolysis temperature. Sun et al. (2014) observed in their study that the surface area of bamboo 195 

char increased from 1.3 to 10.2 m2 g-1 with a rise in temperature from 300 °C to 450 °C. The 196 

changes in feedstock type at fixed pyrolysis temperature also showed a similar rise in the surface 197 

area i.e. in bagasse 5.2 to 13.6 m2 g-1 while in bamboo, this was 1.3 to 10.2 m2 g-1. In the present 198 

work, the neem-based biochar (NC 1) had the highest specific surface area (43.9 m2 g-1) at 550 199 

°C pyrolysis temperature. It was found that the plastic char (PE1) had highest specific surface 200 

area of 5.29 m2 g-1 which is almost eight times less than the highest area found in the case of 201 

biochar (NC 1) thereby confirming that the biochar to be more appropriate for use as adsorbent.  202 

The results validated the dependency of changing surface areas of the prepared chars on the raw 203 

material (feedstock) used along with the pyrolysis temperature. As pyrolysis temperature 204 

increased, the increase in the surface area of the biochar is possibly because of the decomposition 205 

of organic matters like lignin & cellulose and the formation of vascular bundles, channel 206 

structures and micro pores (Zhao et al., 2017). The destruction of aliphatic alkyls and ester 207 

groups as well as exposure to the lignin and cellulose available in the biomass feedstock at high 208 

pyrolysis temperature leads to the increased surface area (Tomczyk et al., 2020).  209 
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At low pyrolysis temperatures i.e. below 500 °C, lignin is not transformed to polycyclic aromatic 210 

hydrocarbon which makes the char more hydrophilic. At higher temperatures (>650 °C), the char 211 

formed is thought to be more hydrophobic and thermally stable (Tomczyk et al., 2020). Also, at 212 

higher temperatures, the pore-blocking substances thermally crack which increases the externally 213 

accessible surfaces and the release of higher volatile matter helps in formation of more pores 214 

(Rafiq et al., 2016; Shaaban et al., 2014).   215 

 216 

The major functional group detected using FTIR showed that all the spectra obtained displayed 217 

powerful absorption band allocated to O-H bond at 3501 cm-1 for BC 1, 3565 cm-1 for PE 1 and 218 

3544 cm-1 for PT 1 (Li et al., 2013; Ren et al., 2013). The peaks obtained at 1053 cm-1 and 1557 219 

cm-1 in NC 1 is due to C-OH and C-O-C bonds. Peak at 1100 cm-1, 1590 cm-1, 3400 cm-1 220 

indicates C-OH, C=C and -OH groups presence, which were also noticed in an earlier study 221 

conducted by Yang et al. (2016). New bands at 2359 cm-1 and 2883 cm-1 obtained for SC 1 have 222 

been given to symmetric and asymmetric CH2 groups. The peaks obtained at 668, 1035, 871, 223 

1053, 1416, 1539 cm-1 are given to the aromatic rings (Machado et al., 2011), C-H and C-H O-224 

H vibration mode and bending mode, respectively (Liu et al., 2010). The peaks observed from 225 

the study can be correlated to those found on activated carbon and graphene oxide (Ren et al., 226 

2013). It is shown that both biochar and plastic char contain oxygen containing functional groups 227 

and thus confirms the presence of adsorption sites for heavy metal ions (Miandad et al., 2018).   228 

 229 

The morphology of NC 1, SC 1, PV 1 and PE 1 chars was studied using SEM. Plastic char 230 

showed rough surface with several cracks having spongy pores. This confirms that the char 231 

contains mesopores which is consistent with the study by Miandad et al. (2018). The cracked 232 

structures with pores also confirm the amorphous structure of the formed chars. This was 233 
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consistent with the results of the study performed using activated carbon for decontaminating 234 

copper by Ren et al. (2013). The biochar on the other hand showed smooth surfaces and long 235 

cylindrical structures having longer diameter. Furthermore, they were found to be curved and 236 

entangled among themselves. The interrelation among the pores of these biochars also predict 237 

better sorption capacity in comparison to the plastic chars. Similar morphological structure was 238 

found in the study conducted by Shaaban et al. (2013) using rubber wood sawdust-based chars 239 

prepared at 300 ℃ and 700 ℃ pyrolysis temperature. BET, SEM, FTIR, proximate and ultimate 240 

study described the structure of all the prepared chars. This research offered a qualitative and 241 

quantitative explanation of pyrolysis for sorption of heavy metals on the basis of char quality, 242 

quantity and its pore structures. These analyzes require time, and the measurements are mostly 243 

conducted after cooling down, which could result in a change in the char structure. Therefore, 244 

more sophisticated methods are required for analyzing the char performance to save time and 245 

money. The factors primarily responsible for adsorption are the specific surface area, contact 246 

time, feedstock content and pyrolysis temperatures.  247 

 248 
3.2  Adsorption Studies 249 

3.2.1  Influence of the Feedstock Material 250 

Fig. 1 shows the uptake capacities of heavy metals of all the prepared biochars and plastic chars. 251 

Adsorption capacity is influenced directly with the changes in the raw samples being used. This 252 

happens due to the changing physico-chemical properties of the biomass and plastic samples. 253 

These changes in the properties of the feedstock are further responsible for the varying sorption 254 

performance for uptake of heavy metals. In the case of biochars, the highest sorption of Ni 255 

(99.01%), Cu (91.60%), Cd (99.24%), Fe (10.95%) and Pb (95.52%) was shown by SC 11 while 256 

Cr (99.06%) by BC 11. Meanwhile, in the case of plastic chars, the highest sorption of Ni 257 
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(43.32%) and Cu (90.96%) was shown by PV 11 while Cd (28.31%), Fe (4.0%), Pb (70.07%) 258 

and Cr (99.01%) by PT 11. The experimental data obtained fitted well for Langmuir isotherm in 259 

comparison to Freundlich isotherm. The value of correlation coefficient (R2) for Pb sorption on 260 

different feedstocks was found to be 0.99 in case of Langmuir isotherm which inferred that the 261 

soprtion on these biochars and plastic chars is favorable in the studied conditions. Therefore, 262 

chars prepared from biomass feedstocks showed higher adsorption capacities for all the heavy 263 

metals considered when compared with the one prepared from synthetic plastics. In a study 264 

performed by Kongsuwan et al. (2009) using activated carbon from eucalyptus bark having 265 

specific surface area of approximate 1240 m2 g-1 showed merely 0.45 and 0.53 mmol g-1 of Cu2+ 266 

and Pb2+ ions, respectively. Although the chars used in the present study are non-activated one 267 

still both plastic as well as biomass-based char clearly showed high removal efficiencies thereby 268 

confirming the positive role played as sorbent materials. Studies performed by various 269 

researchers showed the respective uptake sorption capacities of chars prepared at 400 to 600 ℃ 270 

pyrolysis temperature from varying feedstocks under similar conditions as in  corn straw (12.5 271 

mg g-1 of Cu, 11.0 mg g-1 of Zn), hardwood (6.8 mg g-1 of Cu, 4.5 mg g-1 of Zn), oak wood (0.3 272 

mg g-1 of Cd, 3 mg g-1 of Pb), pine bark (0.4 mg g-1 of Cd, 2.6 mg g-1 of Pb), oak bark (5.4 mg g-1 273 

of Cd, 13.1 mg g-1 of Pb) and rice husk (0.3 mg g-1 of Cu), respectively (Inyang et al., 2016; 274 

Chen et al., 2011). This confirms the varying uptake capacities of each sorbent formed from 275 

different feedstock materials irrespective of similar conditions of preparing them (Wang et al., 276 

2019a). The obtained results in comparison with earlier studies confirmed the proficiency of the 277 

formed chars in efficiently removing heavy metals.  278 

Fig. 1. 279 

 280 
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3.2.2   Influence of Pyrolysis Temperature  281 

 282 
The chars obtained at 550 °C (NC 11, BC 11, SC 11, PV 11, PE 11, PT 11) exhibited a higher 283 

sorption ability in comparison to the chars pyrolyzed at 450 °C (NC 00, BC 00, SC 00, PV 00, 284 

PE 00, PT 00). The percentage of Cd removal using NC, SC, PV, PT was found to be 45.86%, 285 

98.36%, 7.89% and 3.97% which increased to 66.40%, 99.24%, 24.58%, 28.31%, respectively 286 

with increasing pyrolysis temperature. This could be attributed to the lower specific surface areas 287 

of the char prepared at the lower temperature (450 °C). Wang et al. (2019b) reported a 288 

subsequent decrease in Cd removal efficiency using maize straw biochar from 97.1±0.8% to 289 

90±2% at 500 °C and 600 °C pyrolysis temperatures, respectively. The uptake efficiency of all 290 

the chars used in the present study showed increased removal efficiency with increasing 291 

pyrolysis temperature. Among all the chars studied, SC showed the maximum increase in uptake 292 

efficiency of Cd ions from 98.36% to 99.24% on increasing the temperature from 450 °C to 550 293 

°C.  This shows the outstanding uptake efficiency of the prepared char in comparison to those 294 

reported in earlier studies (Wang et al., 2019b). Also, the results are noteworthy keeping in 295 

mind that the chars in the present study have not been modified by any means. The uptake 296 

capacities at different pyrolytic temperature of all the chars have been shown in Fig. 2. Analysis 297 

of Variance (ANOVA) was performed for studying the influence of different pyrolysis 298 

temperature on sorption capacity. The p value (2.2 E-5 for 450 °C, 3.4 E-6 for 550 °C) obtained is 299 

very less than 0.05 thereby strongly confirming the rejection of null hypothesis. This low p value 300 

simply indicated the strong relationship between pyrolysis temperature (450 °C and 550 °C) and 301 

adsorption capacity. 302 

Fig. 2 303 

 304 
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3.2.3   Influence of Char Dosage 305 

 306 
Fig. 3 clearly showed that the adsorption of all the metals increased with an increase of char 307 

dosage from 0.1 to 0.5 g. All the other parameters i.e. pH, contact time, and temperature were 308 

kept constant for studying the effect of changing dosage of different chars on sorption capacity 309 

of heavy metals. Sorption of heavy metal ions was found to increase from 11.76 to 99.24%, 310 

87.62 to 99.36%, 36.43 to 91.59%, 0.60 to 10.95%, 11.56 to 43.31% and 59.0 to 95.52% for Cd, 311 

Cr, Cu, Fe, Ni and Pb, respectively on rising the dose from 0.1 g to 0.5 g. The obtained results 312 

confirm inter-relationship between the dose of char and removal capacity and subsequent 313 

increase in the available sorption sites. The surface area increases with an increase in the dose of 314 

char, which subsequently increases the free sites available for sorption. This is possibly the 315 

reason behind increased sorption capacity of the prepared char. Kula et al. (2008) reported a 316 

change in sorption capacity of the char with the change in its dose and also reported maximum 317 

removal of Cd2+ at equilibrium time of 60 min, pH 6.0 and adsorbent dose of 1.0 g 50 mL-1. 318 

Acharya et al. (2009) also obtained 97.74% maximum removal of Pb2+ at sorbent dose of 5g L-1, 319 

while the char studied in the present work showed a maximum of 99.36% removal with 320 

increased dose. This confirms the quality and presence of high specific area of the char prepared 321 

in this study.  322 

Fig. 3 323 

3.2.4   Influence of pH  324 

 325 
The variation in removal efficiencies of heavy metal ions by biochar and plastic char with 326 

respect to pH is shown in Fig. 4. The results clearly showed that the pH value significantly 327 

affects the removal efficiency of the char.  At pH 4, the maximum removal was found to be 328 
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89.36%, 99.01%, 98.78%, 0.14%, 72.51% and 89.93% for Cu, Cd, Cr, Fe, Ni and Pb, 329 

respectively. The maximum removal efficiencies are 91.60% for Cu, 81.88% Ni, 95.52% Pb, 330 

99.24% for Cd, 99.03% for Cr and 4.81% for Fe at pH 6 which later decreased to 34.03%, 331 

72.10%, 58.64%, 61.07%, 49.08% at pH 8. Therefore, the removal efficiency of both the char 332 

was observed to increase with an increase in pH from 4 to 6. After pH 6, a significant decrease in 333 

the removal efficiency of the chars was observed. The influence of pH was also observed by 334 

Mousavi et al. (2010) while using waste tire rubber ash as an adsorbent to remove Pb2+ from 335 

waste stream. Mousavi et al. (2010) varied the pH from 4 to 6 and demonstrated that quantity of 336 

Pb2 + ions uptake from solution rises rapidly from 73.8% at pH 4 to 93.1% at pH 6. Pellera et al. 337 

(2012) also reported maximum Cu (II) uptake of 93.6%, 90.1%, 88.7% and 77.8% at pH 7 by the 338 

biochars prepared from compost, rice husks, orange waste and olive pomace, respectively. The 339 

results from the previous studies as well as the present study clearly demonstrated that the metal 340 

ions are better removed at higher pH range. The carbon content found in any char material 341 

studied acts mostly as a weak alkali that buffers the pH of the working solution. After the rise in 342 

pH, it becomes more difficult for the heavy metal ions present in the sample solution or the 343 

aqueous media to dissolve as it becomes less soluble. This thereby allows the sorption of the 344 

positively charged toxic heavy metal ions to be easily on the surface of the adsorbent which is 345 

then removed from the polluted stream. All the aquatic media are in general quite sensitive to pH 346 

and thereby special care needs to be taken while treating them. Hence, a pH neither alkaline nor 347 

acidic in nature is generally considered as the best for proper remediation. In this study, pH 6 has 348 

been found as the best one for removing heavy metals concentration.  349 

Fig. 4 350 

 351 
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3.2.5        Influence of Contact Time  352 

 353 
The sorption rate of Fe, Cu, Cd, Cr, Ni and Pb on all the chars regardless the carbon material 354 

used increased with change in the contact time. After the attainment of equilibrium condition at 355 

20 min, the adsorption rate decreases progressively due to the limited free spaces available. This 356 

is because the adsorption efficiency of metal ions on the char is rapid during the first stage (0 to 357 

20 min) for all the metal ions studied. The sorption rate also decreased after 20 min contact time 358 

and marginal changes occur till 35 min. Sorption of these metals onto the adsorbents (NC 11, PT 359 

11, NC 00 and PT 00) also showed increasing uptake with increasing time during initial stage (0-360 

20 min). After this, rate decreased and the equilibrium state was attained after 20 min.  This is 361 

mostly due to the availability of well aligned free spaces of char for binding together the toxic 362 

heavy metal ions. After this stage, the sorption capacity of the char slowly decreases until the 363 

equilibrium condition is reached because of the saturation of all the available sites. Also, for 364 

studying the kinetics, pseudo first and second order models were applied. It was found that 365 

pseudo second order model fits better in comparison to pseudo first order model. The R2 value in 366 

pseudo second order was 0.99. This confirms the that the sorption of heavy metals on both the 367 

chars is a chemical process. The obtained results were similar to those obtained from the 368 

experiment. 369 

In adsorption experiment study conducted by Pellera et al. (2012), the reduction of Cu (II) was 370 

accomplished by increasing the contact time. In most of the cases, a slower adsorption rate 371 

followed the rapid initial adsorption rate within the first few min before reaching equilibrium. It 372 

is because of presence of ample amount of available biochar site, while as adsorption proceeded 373 

the depletion of these active sites also occurred over time. 374 

 375 
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3.2.6    Influence of Surface Area 376 

A correlation evaluation of specific surface area of biochars and plastic chars was performed to 377 

analyze the effect on adsorption capacity on the basis of obtained results (Fig. 1). None of the six 378 

metals produced a line graph when their respective sorption capabilities were considered, which 379 

differed from those of other carbon materials (Kumar et al., 2020a). The sorption took place in 380 

accordance to the adsorption-partitioning processes. The interaction between sorption and 381 

surface area indicated that the adsorption of metals by char produced at 550 °C is primarily 382 

exothermic. Also, it is compatible with the adsorption-partition cycle. In the case of biochars 383 

prepared at higher temperatures, i.e. 550 °C with higher surface area and lower non-carbonized 384 

organic matter, adsorption is the dominant mechanism while partitioning remains a mechanism 385 

for chars prepared at lower pyrolysis temperatures with lower surface area and higher non-386 

carbonized organic matter (Kumar et al., 2020a).  387 

3.3  Statistical Analyses 388 

Heavy metals sorption was done using ANOVA to obtain the basic data about the efficacy of 389 

parameters set for the sorption. The influence of independent variables on the dependent ones i.e. 390 

pH and sorption were studied. The statistically significant values were symbolized as p-values. It 391 

was found to be 0.012 for all the chars applied on different pH which indicated a positive relation 392 

between the sorption capacity, pH (4.0, 6.0, and 8.0), dose (0.1 g, 0.5 g) and contact time (35 393 

min). F value was found to be 2.95 that is more than the F critical (2.21) for single way. This 394 

shows the rejection of null hypothesis and that the char dose plays a major role in its uptake 395 

capacity. 396 

 397 

 398 
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3.4         Isotherm Modeling and Kinetic Study 399 

The data obtained from the sorption analysis were put to Langmuir adsorption isotherm using 400 

linear expression of the model similar to that used in the study performed by Miandad et al. 401 

(2018). The isotherm assumes homogenous surface and a continuous sorption potential. The 402 

sorption capacity of the biochar followed Langmuir isotherm with R2 value being 0.99, thereby 403 

confirming the process of sorption being chemical. The increase in the sorption capacity of the 404 

char with increase in metal ion concentration is because of the high concentration gradient that 405 

resists the mass transfer from aqueous media to solid char. After a certain time, the efficiency of 406 

uptake of ions does not increase because the number of available sites is fixed.   Son et al. (2018) 407 

also found Langmuir isotherm to fit better in the sorption study performed using marine macro 408 

algae for the uptake of Cu, Cd and Zn ions. Li et al. (2013) also demonstrated Langmuir model 409 

to be more suitable in comparison to Freundlich model to the obtained sorption data. Langmuir 410 

isotherm stated that monolayer sorption took place. The Langmuir model predicts the suitability/ 411 

favorability of the adsorption process to take place using both the chars. The linear form of the 412 

model suggests that the char prepared has high affinity towards the positively charged metal ions 413 

and would support the sorption process under the controlled experimental conditions. Biochars 414 

and plastic chars samples used in the present study presented moderately similar sorption by BC 415 

11 and PV 11 which implied that chemical and physical sorption is involved in the entire 416 

adsorption procedure. Metal ions, amount of carbon material used, pH, contact time are 417 

accountable for the percentage removal of these metal ions. Even though the chars showed 418 

moderate surface areas, but because of high oxygen, it showed sorption of the metal ions on pore 419 

surface (Mohan et al., 2014).  420 

 421 
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The kinetic data in the present study was done with the help of some models. The models were 422 

verified by the fitness check of the lines obtained. The R2 value clearly demonstrated that the 423 

data obtained during the study followed the retention kinetic of all the heavy metal ions. The first 424 

order kinetic model calculated qe value differs from the experimental values and obtained R2 425 

values also. The calculated qe values for second order model are somewhat near to the 426 

experimental value. The R2 value was more in the case of pseudo second order kinetic model. 427 

This confirms the suitability of pseudo-second order model for better explaining the sorption of 428 

metal ions on different plastic char and biochar sorbents used in the study. Also, this confirms 429 

chemisorption being the fundamental mechanism behind the sorption of heavy metal ions on the 430 

biochar and plastic char surface by exchange of valence electron between adsorbate and 431 

adsorbent. The positive results for the sorption of six heavy metals found in Indian river using 432 

biomass and plastic-based chars thus suggested that both these chars serve as alternative sorbents 433 

to mitigate the heavy metals contamination. Large-scale field experiments will be required to 434 

examine the effects of char-based sorbents on reducing the heavy metals concentrations in river. 435 

5.      Conclusion 436 

The study focused on synthesis of carbon materials from biomass and plastic wastes and 437 

comparing their performance as an economical heavy metals sorbent. It revealed the dependency 438 

of various factors like dose, pyrolysis temperature, feedstock type, contact time and pH on the 439 

sorption capacity. SC biochar was found to be most effective with sorption efficiencies ranging 440 

from 3.27-99.4%. Although, some challenges need to be addressed while implementing 441 

purification of aqueous media using these materials, the performance shown by biochars 442 

favorably suggested their use for better results. Carbon materials are thereby a proved sustainable 443 

solution towards purification of river water.  444 
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